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ABSTRACT V3-glycan-targeting broadly neutralizing antibodies (bNAbs) are a focus
of HIV-1 vaccine development. Understanding the viral dynamics that stimulate the
development of these antibodies can provide insights for immunogen design. We
used a deep-sequencing approach, together with neutralization phenotyping, to in-
vestigate the rate and complexity of escape from V3-glycan-directed bNAbs com-
pared to overlapping early strain-specific neutralizing antibody (ssNAb) responses to
the V3/C3 region in donor CAP177. Escape from the ssNAb response occurred rap-
idly via an N334-to-N332 glycan switch, which took just 7.5 weeks to reach �50%
frequency. In contrast, escape from the bNAbs was mediated via multiple pathways
and took longer, with escape first occurring through an increase in V1 loop length,
which took 46 weeks to reach 50% frequency, followed by an N332-to-N334 rever-
sion, which took 66 weeks. Importantly, bNAb escape was incomplete, with contem-
poraneous neutralization observed up to 3 years postinfection. Both the ssNAb re-
sponse and the bNAb response were modulated by the presence/absence of the
N332 glycan, indicating an overlap between the two epitopes. Thus, selective pres-
sure by ssNAbs to maintain the N332 glycan may have constrained the bNAb escape
pathway. This slower and incomplete viral escape resulted in prolonged exposure of
the bNAb epitope, which may in turn have aided the maturation of the bNAb lin-
eage.

IMPORTANCE The development of an HIV-1 vaccine is of paramount importance,
and broadly neutralizing antibodies are likely to be a key component of a protective
vaccine. The V3-glycan-targeting bNAb responses are among the most promising
vaccine targets, as they are commonly elicited during infection. Understanding the
interplay between viral evolution and the development of these antibodies provides
insights that may guide immunogen design. Our work contrasted the dynamics of
the early strain-specific antibodies and the later broadly neutralizing responses to a
common Env target (V3C3), showing slower and more complex escape from bNAbs.
Constrained bNAb escape, together with evidence of contemporaneous autologous
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virus neutralization, supports the proposal that prolonged exposure of the bNAb
epitope enabled the maturation of the bNAb lineage.

KEYWORDS broadly neutralizing antibodies, deep sequencing, glycan holes, viral
escape, glycan shield, V3-glycan supersite, neutralization escape, N332 glycan,
helper/cooperating NAb responses

While antiretroviral therapy (ART) is highly effective at controlling HIV-1 and
significant advances have been made in using ART treatment for prevention, an

effective vaccine still represents the greatest chance of ending the HIV/AIDS pandemic.
Broadly neutralizing antibodies (bNAbs) are one of the main focus points for HIV-1
vaccine research due to their ability to block infection by different subtypes and strains
of HIV-1. Although the elucidation of B cell evolutionary pathways to bNAb develop-
ment has provided a promising approach to immunogen design, these studies have
not yet translated into bNAb-eliciting vaccines. Immunogen design strategies can be
augmented by studies of natural infection that elucidate viral evolution in response to
early strain-specific and later bNAb responses.

There are six known sites on the viral envelope targeted by bNAbs, with the
ontogeny of only three of these bNAb specificities characterized to date: the CD4
binding site, V1V2, and V3-glycan (1–6). Of these, the V3-glycan targeting bNAb
responses may be easiest to elicit via vaccination, because they are among the most
common and potent bNAb responses in infected individuals (7–10), can develop
relatively early in infection, and do not always require extensive somatic hypermutation
(4, 11, 12). Furthermore, these bNAbs have the highest expected therapeutic effective-
ness (10) and indeed have been shown to suppress viremia in passive immunization
studies (13). Therefore, considerable interest exists in the field with regard to under-
standing the virus-antibody dynamics relevant to the development of, and escape
from, this class of bNAbs.

Glycans on the surface of gp120 are important modulators of antibody neutraliza-
tion, with some of the most potent bNAbs requiring glycan contacts (8, 12, 14–19). Most
V3-glycan bNAbs are highly dependent on the N332 glycan (9, 12, 19–21), although this
varies within bNAb lineages (6, 21, 22), and loss of this glycan has been associated with
viral escape (6, 13, 16, 20, 21, 23). V3-glycan bNAbs also target the 324GDIR327 motif at
the base of the V3 loop, and escape mutations in this motif, particularly at positions
D325 and R327, have been shown to reduce neutralization (24, 25). In addition, an
increase in V1 loop length, and its glycosylation content, can mediate escape from this
class of bNAbs (5, 6, 24, 26, 27).

Strain-specific neutralizing antibody (ssNAb) responses, which occur in early infec-
tion, drive viral evolution and thus are responsible for molding the virus that elicits the
bNAb response later in infection. The interplay between early ssNAb responses and the
later bNAb responses has not received significant attention, with only a few studies
conducted to date (23, 28–30). A study of two individuals who developed V3-glycan-
targeting bNAb responses, one of which is the subject of this paper, found that escape
from ssNAb responses resulted in creation of the bNAb epitope (16). Such studies
provide important insights into the role of ssNAb responses in creating a favorable
environment for the development of bNAbs (30).

In order to evaluate virus-antibody dynamics relevant to the V3-glycan class of
bNAbs, we studied an HIV-1-infected individual, CAP177, who developed an ssNAb
response to the V3/C3 region at 19 weeks postinfection (wpi) (31), as well as a V3-glycan
bNAb response, which first emerged at approximately 1 year postinfection and ma-
tured gradually to reach 52% breadth by 3 years postinfection (16, 32). Using deep
sequencing coupled with neutralization phenotyping, we showed rapid escape from
ssNAb responses but slow, incomplete escape from bNAbs. These data indicate that
selective pressure exerted by the ssNAb response have constrained bNAb escape,
thereby prolonging exposure of the bNAb epitope and potentially aiding the matura-
tion of the bNAb response.
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RESULTS

Sequences were generated from a total of 25 plasma samples from donor CAP177,
collected at two weekly intervals for the first 3 months, monthly up to the end of the
first year, and quarterly until 4 years postinfection. Using next-generation sequencing
and the primer ID method (33), we generated a total of 92,319 consensus sequences
covering the V1V2 (255 bp) and V3/C3 (333 bp) regions, with an average of 1,846 (339
to 12,840) consensus sequences generated per time point for each region.

Viral population dynamics associated with early neutralizing antibody pres-
sure. Sequences from the first HIV-1-positive plasma sample (HIV PCR positive, anti-
body negative; estimated to be 2 wpi) were highly homogenous: 98% of the sequences
were identical, with the remaining sequences differing by dispersed single-nucleotide
changes. A distinct, closely related variant which grouped separately on a maximum
likelihood tree (Fig. 1A) was detected at 4 wpi (frequency of 8.3%). This variant differed
from the transmitted/founder virus by 6.5% in the V1V2 region and 1.2% in the V3C3
region, indicating a multivariant transmission event (34). Given the depth of sampling
at 2 wpi, we had a 95% probability of detecting a variant present at a �0.25%
frequency, suggesting either that the minor variant was present at extremely low levels
at 2 wpi or that its migration from the local site of infection was delayed.

Sequence variation over time was evaluated by plotting the Shannon entropy for
each position (Fig. 1B). Prior to the first detectable ssNAb response at 19 weeks, there
was no increase in entropy in the V3 region. However, an increase in entropy was
observed in C3 (positions 351 to 360) at 4 wpi, which may have been due to immune
pressure from nonneutralizing antibody effector functions or cytotoxic T-lymphocytes,
as this change occurred in a known cytotoxic T lymphocyte epitope (35), restricted by
the participant’s human leukocyte antigen allele (Cw*0401).

From 19 weeks, concurrent with the emergence of ssNAbs, there was elevated
entropy at position 295, at position 321 in V3, and at various positions in the C3 �2-helix
(334, 337, 339 to 344, 347, and 350). We have previously reported that escape from the
early ssNAb response was mediated by a shift of the N334 glycan to position N332 (16).
Both the major variant, detected at 2 wpi, and the minor variant, detected at 4 wpi, had
the N334 glycan. After the development of ssNAb responses, there was a rapid shift
from 100% of variants harboring the N334 glycan to a population dominated by N332
glycan viruses (Fig. 1C). The frequency of the N334 glycan variant fell to 0.13% by 36
wpi and was undetectable by 54 wpi (95% probability to detect variant at a frequency
of 0.14%). These data suggest that the early ssNAb made contacts within the �2-helix
of C3 and the N334 glycan.

Early C3 ssNAb and V3-glycan bNAb epitopes were partially overlapping. The
bNAb response in CAP177 belongs to the V3-glycan class, with dependence on the
N332 glycan (16). A number of V3-glycan bNAbs target the 324GDIR327 motif and are
influenced by changes in the V1 loop (5, 6, 24, 26, 27), as well as being largely
dependent on glycosylation at N332 and N301 (12, 24).

We assessed viral evolution after the emergence of bNAb and compared sites under
immune pressure with those targeted by the ssNAbs described above to determine
whether these epitopes overlapped. Concurrent with the emergence of the bNAb
response at �54 wpi, several positions increased in sequence entropy (sites 300, 325,
330, 337, and 340), which continued to increase as the bNAb response matured. The V1
loop underwent a pronounced expansion in length and glycan number (Fig. 1D)
between 41 and 46 wpi (6 to 13 weeks prior to detection of cross-neutralization). Large
insertions in the V1 loop of 7 to 20 amino acids (aa) emerged at 54 wpi, with the
greatest variation in loop length seen over 54 to 73 weeks, where the V1 loop length
varied from 10 to 37 aa. While some V1 loop deletion variants were present at 80 wpi,
the overwhelming trend was toward longer V1 loops, with this increase in loop length
associated with a larger number of glycosylation sites in the V1 loop. Reversion of N332
to the N334 glycan occurred later, first detected at 80 wpi (3.39% frequency), and
reached 52.9% frequency at 120 wpi when the bNAb response peaked.
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Both ssNAb and bNAb responses were influenced by the presence/absence of the
N332/N334 glycan, suggesting that these two responses target partially overlapping
epitopes. Based on the timing of changes in sequence entropy, the predicted ssNAb
epitope was shifted toward the C3 �2-helix, while the putative bNAb epitope was
located further toward the V3 loop (Fig. 2).

FIG 1 Dynamics of gross changes in the V1 and V3/C3 regions of CAP177 env. (A) Phylogeny of the V3/C3 regions, generated using the maximum likelihood
approach. Colors indicate time from 2 wpi (red) to 172 wpi (purple). Multiple-variant transmission is indicated (arrows), with one major variant detected at 2
wpi and two distinct variants identified at 4 wpi. Bubble sizes are proportional to the frequency of the given sequence. (B) Heatmap showing positional entropy
over env V3C3 regions. Time points corresponding to the emergence of ssNAb and bNAb responses are indicated (dotted lines). (C) The frequencies of
glycosylation at positions N334 (blue) and N332 (red) are indicated on the left y axis, with changes in viral load (black) shown on the right y axis. (D) Changes
in V1 loop length and glycosylation content over time. Bubbles indicate the proportion of viruses with a given V1 loop length (y axis) and number of glycan
sequons (color). Bubble sizes were normalized for sequencing depth and scaled by viral load. The emergence of ssNAbs at 19 wpi is indicated by a dotted line,
with time points corresponding to the emergence of the breadth response shaded gray.
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Escape from the bNAb response includes, but is not limited to, loss of the N332
glycan. We explored whether the loss of the N332 glycan conferred escape from the
bNAb response in this individual, as seen with other V3-glycan bNAbs (12, 13, 16, 36).
To investigate this, we generated six functional envelope (env) clones from 107 and 120
wpi. These time points corresponded to the time of peak breadth, and viruses harbor-
ing either the N332 or N334 glycan were present in roughly equal proportions. We
evaluated the change in neutralization sensitivity if the N332 glycan was replaced by an
N334 glycan or vice versa, depending on the wild-type (WT) glycosylation status of each
of the 6 Env proteins.

For two 107-wpi clones (5D and 1B-1), a switch from the N332 to N334 glycan
corresponded with a decrease in sensitivity to CAP177 plasma (Fig. 3A and data not
shown). Reversion of this glycan (N332 to N334) similarly resulted in a decreased
sensitivity to a panel of four V3-glycan monoclonal antibodies (MAbs) (Fig. 3B), sug-
gesting that the selection of the N334 glycan in these clones was driven by the bNAb
response. Of note, both of these clones showed contemporaneous neutralization
(neutralization of virus by plasma from the same time point) and precontemporaneous
neutralization (neutralization of virus by plasma from time points prior to the isolation
of the virus), with titers of �1:100, regardless of whether they had N332 or N334
glycans, suggesting incomplete escape.

In contrast, four 107 wpi clones (4C, 4A-1, 6A-2, and 3E-4) showed no difference in
CAP177 plasma neutralization sensitivity between the N332 (WT) and N334 glycan
mutant (Fig. 3C and data not shown). Furthermore, unlike clones 5D and 1B-1, we
observed no contemporaneous neutralization for clones 4C, 4A-1, 6A-2, and 3E-4.

In addition, these mutants displayed greater resistance to the panel of V3-glycan
MAbs than clone 5C at 107 wpi and clone 1B at 120 wpi (Fig. 3D and data not shown),
regardless of N332 glycan status. This suggested N332/N334 glycan-independent es-
cape in these clones.

A possible N332-independent escape pathway for V3-glycan supersite bNAbs is
through point mutations in the conserved 324GDIR327 motif, which is a known contact
point for many V3-glycan bNAbs (12, 24, 25). Although we observed a transient change
in the GDIR motif after the development of breadth, this involved a D325N mutation
which only reached a peak of �20% frequency (by 80 wpi), after which this mutation

FIG 2 Predicted epitopes for the early ssNAb and bNAb responses. A trimer model of CAP177 gp160
(white), with sequence entropy mapped onto the structure, for the regions covered by the NGS data (light
gray), highlighted using a white-to-red gradient. Predictions of the approximated epitopes for the ssNAb
(blue circle) and bNAb (orange circle) responses are indicated. Glycosylation at position N332 is shown
(green spheres).
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reverted to the WT 325D (98% frequency by 133 wpi) (data not shown). This mutation
is not associated with PGT121/128-like bNAb escape (8, 13, 24, 25, 36), and given its
transient nature, the D325N mutation is unlikely to have contributed significantly to
bNAb escape in CAP177.

Changes in V1 loop length mediated escape from V3-glycan bNAb responses.
Longer V1 loops, with more glycans, can reduce neutralization by V3-glycan bNAbs (24,
26, 27). Given that there was a pronounced expansion of the V1 loop associated with
the development of bNAbs (Fig. 1D), we assessed whether this region contributed to
escape in CAP177. We found that clones where the N332/N334 glycan switch did not
affect neutralization sensitivity (4C, 4A-1, 6A-2, and 3E-4) had V1 loops which were, on
average, seven amino acids longer (31 to 32 aa long) than those of clones which were

FIG 3 Effect of an N332-to-N334 glycan shift and V1 loop length on escape from bNAb activity. (A) CAP177 plasma neutralization titers
(ID50) for N332 (red) and N334 (blue) glycan variants of CAP177 clone 5D. (B) Sensitivity of the N332 and N334 glycan variants to a panel
of V3-glycan supersite MAbs (IC50, in �g/ml). (C) CAP177 plasma neutralization titers (ID50) for N332 (red) and N334 (blue) glycan variants
of CAP177 clone 4C. (D) Sensitivity of the N332 and N334 glycan variants to a panel of V3-glycan supersite MAbs (IC50, in �g/ml). (E)
Sequence alignment for the V1 loop of several clones, with key V1 loop glycans indicated (red). Clones with either sensitive or resistant
neutralization phenotypes are indicated, with those from the resistant group having V1 loops which were between 5 and 9 aa longer. (F)
CAP177 plasma neutralization titers (ID50) to a resistant clone (clone 4C) from 107 wpi (blue), as well as to a variant of this clone with a
shorter V1 loop (red) taken from a sensitive clone (clone 5D). The dotted line indicates the plasma sampling point (107 wpi) from which
the clone was isolated. (G) Sensitivity of V1 loop length variants to a panel of V3-glycan supersite MAbs (IC50, in �g/ml). The dotted line
indicates the plasma sampling point (107 wpi) from which the clones were isolated.
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sensitive to the N332/N334 glycan switch (23 to 26 aa) (Fig. 3E). These clones all
contained a 4-aa insertion upstream of N136 and a 2-aa insertion before N143.
Additionally, these clones had a 2-aa insertion after Y147 relative to clone 5D, intro-
ducing a new glycan site at N148, although this insertion was also seen in the sensitive
clone 1B-1. The sensitive clone 1B-1 and the resistant clone 6A-2 had a further 1-aa
insertion prior to Y147. We therefore constructed a series of chimeric envelopes,
swapping the longer V1 loop from the resistant clone 4C with the shorter loop from the
sensitive clone 5D. This change to the V1 loop increased neutralization sensitivity, with
the shorter V1 loop variant of clone 4C also becoming sensitive to neutralization by
contemporaneous CAP177 plasma (Fig. 3F). The V1 loop swap mutants also showed
increased sensitivity to V3-glycan MAbs PGT121 and PGT128 (Fig. 3G), confirming that
the increased V1 loop length, and possibly the increased glycan content or the
modified glycan positions of the V1 loop, was an alternative escape pathway from the
V3-glycan bNAb response.

When we carried out the reciprocal experiment, introducing the longer V1 loop from
the neutralization-resistant clone 4C into neutralization-sensitive clone 5D (with the
N332 glycan), we saw no change in the neutralization sensitivity (data not shown). This
may be due to sequence variation in regions adjacent to the V1 loop, which may have
influenced the conformation of the loop such that it was stabilized or positioned away
from the V3 bNAb epitope.

Longer V1 loops block access to the V3-glycan supersite. To assess the mech-
anism by which V1 loop length affected the V3-glycan bNAb supersite, we used the
sequences of the sensitive and resistant clones, 5D and 4C, respectively, to generate
modeled structures for these variants. Both variants had N332 glycan; however, 4C had
a longer V1 loop (31 aa) than clone 5D (24 aa). Man-9 glycans were added to potential
N-linked glycosylation sites in silico to produce near-fully glycosylated gp160 trimer
models for each clone. In this model, we found that the V1 loop was orientated in such
a way that the glycan at position N136, which was largely conserved over approxi-
mately the first 3 years of infection (data not shown), could potentially interfere with
bNAb-N332 glycan interactions, bNAb-V3 backbone interactions (including the GDIR
motif), or glycan-glycan interactions involving N332 (Fig. 4A). In contrast, in the
modeled structure for the neutralization-sensitive variant (clone 5D), the V1 loop and its
associated glycans were orientated in such a way that they did not interfere with access
to the GDIR motif or to disrupt bNAb-N332 glycan interactions (Fig. 4B).

Given that the V1 loop could be positioned in various orientations by the modeling
algorithm, we repeated the modeling and glycosylation steps 10 times for each clone.
The iterative modeling provided insights into the potential range of motion of the
different V1 loops and their associated glycans. Overlaying the replicate models for
the resistant clone 4C highlighted the wide range of V1 loop conformations, with
the associated V1 glycans positioned in a number of different orientations, partic-
ularly the glycan at position N136 (Fig. 4C), with the GDIR motif and N332 glycan
occluded. Overlaying the models from the sensitive clone 5D, however, showed a much
lower range of motion for this V1 loop and its associated glycans, with the GDIR motif
and N332 glycan exposed. Consequently, almost all of the V1 glycans displayed
relatively tight clustering (Fig. 4D). Furthermore, the sensitive clone with a shorter V1
loop had a noticeable hole in the glycan shield over the conserved GDIR motif, which
was not exposed in the resistant clone with the longer V1 loop.

No difference in infectivity of N332 and N334 glycan clones. The N334 glycan is
found in approximately 20% of global viruses, with the N332 glycan occurring in �70%
of viruses (21, 36). Although N334 viruses are clearly replication competent, the lower
global frequency of N334 suggests this form is less favorable. To evaluate if the N334
glycan was associated with lower viral infectivity, we generated four pairs of matched
infectious envelope clones (IECs) from clones 1B-1, 5D, 4C, and 3E4 (listed in Fig. 3E),
such that each clone had an N332 and N334 glycan variant. Clones 6A-2 and 4A-1 did
not produce IECs with sufficient infectivity; thus, they were excluded. The N334
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glycan-containing version of each clone had moderately lower infectivity than the
matched N332 clone, with a median fold difference of 0.73 (0.375 to 0.865) (Fig. 5A);
however, this was not statistically significant (P � 0.1250 by Wilcoxon matched-pairs
test). In addition, using the same set of IECs, we tested the effect of long and short V1
loops on viral infectivity (unmatched for V1 loop length), but we found no evidence
that longer V1 loops affected entry efficiency (Fig. 5B) (P � 0.8571 by Mann-Whitney
test).

Escape from bNAb response was slower than that for ssNAbs. We next com-
pared the rates of escape from bNAbs, which target more conserved regions of the Env,

FIG 4 Effect of V1 loop length and glycosylation on V3-glycan supersite accessibility. Modeled trimeric
structures of CAP177 neutralization-resistant (A) and -sensitive (B) clones (cartoon representation), with
Man-9 glycans (colored spheres) attached to potential N-linked glycan sites (with clash resolution). The
key V3-glycan bNAb 324GDIR327 motif is indicated (dark blue). An overlay of several modeled trimeric
structures of CAP177 neutralization-resistant (C) and -sensitive (D) clones (cartoon representation) is
shown.

FIG 5 Effect of N332/N334 glycosylation and V1 loop length on viral entry efficiency. (A) Differences in
entry efficiency for N332 glycan and matched N334 glycan IECs are shown, with the Wilcoxon
matched-pairs test P value indicated. (B) Differences in entry efficiency for unmatched IECs with long
(31 or 32 amino acids) or short (23 or 26 amino acids) V1 loops are shown, with the Mann-Whitney test
P value indicated.
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to those of ssNAbs that are known drive rapid escape (31, 37–39). In CAP177, time to
escape (the time point at which escape mutations were present at �50% frequency in
viral sequence data) was measured from the first detectable ssNAb response at 19 wpi
and the first detectable breadth at 54 wpi (neutralization of more than two heterolo-
gous viruses, with a 50% inhibitory dilution [ID50] of �45).

The N334/N332 glycan shift was the major escape pathway from the early ssNAb
response. This N334-to-N332 glycan shift occurred rapidly, taking just 7.5 weeks to
reach 50% frequency and only 11 weeks to reach 90% replacement of the transmitted/
founder sequence (Fig. 6A). In contrast, escape from the bNAb response was much
slower. The first escape pathway was the lengthening of the V1 loop (V1 loop length
of �31 aa), which took 46 weeks to reach 50% frequency and 105 weeks to reach a
peak of 89% frequency. The second bNAb escape pathway was a reversion of the N332
glycan to N334, which took 66 weeks to reach 50% and 105 weeks to reach 90%
frequency (Fig. 6B). Thus, escape from bNAbs took 40 weeks longer to achieve than
escape from ssNAbs in this donor, despite the fact that we observed no significant
fitness costs associated with the reversion to N334.

To evaluate whether slow escape was associated with contemporaneous neutral-
ization, we tested three to five clones from 80, 107, 133, and 156 wpi against longitu-
dinal plasma (Fig. 7A). We found contemporaneous neutralization for the majority of
clones at each time point, with the exception of 107 wpi, where two of the three clones
tested only became sensitive at the following time point (120 wpi). These results
support the finding of slow escape from the bNAb response.

The presence of contemporaneous neutralization indicates incomplete escape from
the antibody response and led us to evaluate whether antibodies played a role in
transiently controlling viral replication. Thus, we investigated changes in viral load in

FIG 6 Kinetics of escape from ssNAb and bNAb responses. (A) Rate of escape from early ssNAb responses
via the N334-to-N332 glycan shift (black) is shown, with 50% escape reached 11 weeks after the
emergence of the ssNAb response (red). (B) Rates of escape from the bNAb response, including escape
via the V1 loop (green), and reversion to the N334 glycan (blue). The incremental development of
neutralization breadth is indicated (red).
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relation to the development of heterologous neutralization (measured as plasma neutral-
ization titers against a panel of 18 cross-clade viruses [32]). We observed a sustained drop
in viral load of greater than 1 log from 67 wpi (just 13 weeks after the emergence of bNAbs)
until the peak of the breadth responses at �107 wpi (Fig. 7B).

DISCUSSION

The generation of bNAb responses through vaccination remains an essential ques-
tion in HIV research. In infection, these antibodies generally take years to evolve and
many are extensively hypermutated (4, 12, 40–44), suggesting a requirement for
prolonged antigen exposure. Here, we investigated the interplay between ssNAbs and
bNAbs in an individual where there was conflicting selection pressure on the N332/344
glycan. Shifting of the N332 glycan to N334 resulted in rapid escape from ssNAbs, while
escape from bNAbs was slow and complex, involving multiple pathways.

Escape from NAbs can occur even in response to low antibody titers (45). As a result,
circulating viruses usually are not neutralized by contemporaneous plasma (45–49).
This rapid viral escape likely deprives B cells of antigenic stimulation, prematurely
terminating their development. However, we observed contemporaneous neutraliza-
tion by CAP177 plasma at several time points, suggesting incomplete viral escape.
Examples of contemporaneous neutralization have been observed before (28, 48–50),
including in another bNAb donor, CAP256, who developed a potent V2 response. The
slow escape seen here and in other bNAb donors (3, 28, 30), together with contem-
poraneous autologous virus neutralization, supports the notion that bNAb develop-
ment requires prolonged exposure to the epitope.

FIG 7 Contemporaneous neutralization and changes in viral load associated with the development of the
bNAb response. (A) Longitudinal autologous neutralization ID50 titers over the development of bNAbs
are depicted for several viral clones, sampled from 80 wpi (green), 107 wpi (purple), 133 wpi (blue), and
155 wpi (red), showing contemporaneous neutralization at all time points. (B) The increase in neutral-
ization for longitudinal CAP177 plasma to a panel of 18 heterologous, cross-clade viruses (black lines)
overlaps a 40-week period (gray shading) of a sustained, greater-than-1-log decrease in viral load (red).
Time points corresponding to the emergence of ssNAb and bNAb responses are indicated (dotted line).
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One explanation for the slow reversion to N334 is a possible difference in infectivity
between N332 and N334 glycan viruses. The higher global prevalence of the N332
glycan relative to N334 suggests that this glycan provides a fitness advantage to the
virus. However, while we found that viruses with N334 had slightly lower infectivity
than matched N332 viruses, this was not significant, indicating that the relative entry
efficiency of viruses with N332 or N334 glycans was not responsible for the low rate of
escape in this case. Additionally, it is clear that N334 viruses are replication competent
and can be selected for in vivo, as shown previously in V3-glycan bNAb donors CAP177
and CAP314 (16).

Alternatively, the slow escape from the bNAbs in CAP177 is a consequence of
competing selection pressures mediated by the ssNAb response, which targets the
N334 glycan. In the context of passive immunization, escape from V3-glycan bNAbs via
the removal of the N332 glycan can occur rapidly. In the recent V3-glycan bNAb passive
infusion trial, over 90% of viruses had escaped by elimination of the N332 glycan within
4 weeks of infusion of the 10-1074 V3-glycan bNAb (13). This is in striking contrast to
the slow escape in CAP177 and suggests that the ssNAb response constrained V3-
glycan bNAb escape pathways, resulting in the observed slow and incomplete escape.
The concept that ssNAbs can facilitate bNAb development was originally demonstrated
by Moore et al., who first described the role of viral escape in the development of
breadth (16). The cooperation between ssNAbs and bNAbs was elucidated in more
detail by Gao et al., who isolated two antibody lineages and showed that escape from
one lineage created a viral variant that was recognized by the second CD4 binding site
bNAb lineage (30). Overall, these studies emphasize the importance of ssNAb response
in shaping bNAb development.

Interestingly, the increase in V1 loop length was a more complete escape pathway
from polyclonal responses than that of N334, evidenced by the fact that the N334
escape variants were still susceptible to contemporaneous neutralization, which was
not seen for the V1 loop escape variants. This is supported by two recent studies (26,
27) which showed that changes in the V1 loop were primarily responsible for V3-glycan
bNAb escape, with no escape mutations detected in the GDIR motif or in the N332
glycan site. Additionally, a number of studies have implicated changes in V1 loop
glycosylation, particularly position N136/137, as being important for many V3-glycan
bNAbs (5, 21, 25–27, 51). We found that the N136 glycan was largely conserved
throughout infection. However, our molecular modeling results indicate that escape
was likely the result of this glycan changing its relative orientation as the V1 loop
lengthened, thereby shielding distal sites of vulnerabilities. Thus, the significance of a
particular glycan in the V1 loop must be considered a function of loop length.

Conclusions. With the identification of helper lineages, there is increased interest in
the role of ssNAbs that may facilitate breadth. We found that the overlapping ssNAb
response may have constrained escape from the CAP177 bNAb response. This slow
escape from the bNAb response, resulting in a prolonged exposure of the bNAb
epitope, may have contributed to bNAb development. This finding is supported by
slow escape observed for other bNAb lineages, including the V2 targeting donor
CAP256 (28) and CD4 binding site targeting donor CH505 (3, 30). These results highlight
a role for strain-specific responses in driving breadth, possibly by constraining certain
bNAb escape pathways due to the overlapping polyclonal response.

MATERIALS AND METHODS
Study participant. CAP177 is a participant in the Centre for the AIDS Programme of Research in

South Africa (CAPRISA) 002 cohort, an acute infection study established in 2004 in Durban, South Africa
(52).

Next-generation sequence library preparation. We used the primer ID method, which tags each
RNA template with a unique identifier (33). Sequences were then grouped according to their ID tags, and
a consensus sequence was derived for each group. The generation of consensus sequences largely
removes PCR and sequencing errors, resulting in high-quality sequence data (53). Furthermore, as each
RNA template has a unique sequence tag, it also controls for resampling, which occurs during PCR, thus
enabling accurate quantification of viral variants. RNA extraction, cDNA synthesis, and amplification were
carried out as described previously (33, 54), with the following modifications. A minimum of 5,000 HIV-1
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RNA copies were isolated from longitudinal plasma, spanning 4 years of infection, using the QIAamp viral
RNA kit (Qiagen, Germany). The cDNA synthesis primer was designed to bind to the C2 or C3 region of
the envelope (HXB2 gp160 positions 658 to 683 and 1094 to 1118) and included a randomly assigned
9-mer tag (primer ID method) to uniquely label each cDNA molecule, followed by a universal primer
binding site to allow out-nested PCR amplification of cDNA templates. First-round amplification primers
were designed to amplify the V1/V2 or C2 to C3 regions of the envelope (HXB2 gp160 positions 332 to
358 and 721 to 749, respectively) and contained a template-specific binding region followed by a
variable-length spacer of 0 to 3 randomly assigned bases to increase sample complexity. In addition, PCR
primers contained 5= overhangs, introducing binding sites for the Nextera XT indexing primers (Illumina,
CA). The nested PCRs were carried out using the Nextera XT indexing kit. After indexing, samples were
purified using the MinElute PCR purification kit (Qiagen, Germany), quantified using the Quant-iT
PicoGreen double-stranded DNA assay (Invitrogen, CA), and pooled in equimolar concentrations. Size
selection was performed on the pooled amplicons using the QIAquick gel purification kit (Qiagen,
Germany) before submitting the final library for sequencing on an Illumina MiSeq (San Diego, CA) using
2- by 300-bp paired-end chemistry.

Next-generation sequencing data processing and analysis. Raw reads were processed using a
local instance of Galaxy (55–57), housed within the University of Cape Town High-Performance
Computing Core. Read quality was assessed using fastqc (http://www.bioinformatics.babraham.ac
.uk/projects/fastqc). Short reads (�150 bp) and low-quality data were filtered out using the Filter FASTQ
(version 1.0.0) tool (55), with a minimum quality of Q35 for 3= base trimming. Forward and reverse reads
were merged using PEAR (58). A custom python script was used to bin all reads containing an identical
primer ID tag, to align the reads within each bin using MAFFT (59), and to produce a consensus sequence
based on a majority rule. Sequences with a primer ID that was represented in fewer than three reads
were discarded, along with those containing degenerate bases. The remaining sequences from each time
point were aligned with MAFFT, Muscle, or RAMICS (60). Phylogenetic trees were drawn with FastTree
v2.1 (61) and visualized using the python library ete3 (62). For the calculation of amino acid frequencies,
V1-loop length, and glycosylation content, Shannon entropy (63) tests were performed using custom
python scripts, and mapping of sequence entropy scores onto modeled structures of CAP177 was
visualized using python scripts and the PyMOL molecular graphics system, version 1.8, Schrödinger, LLC.
Figures were generated using Prism 6.07 (GraphPad, CA) or the python library Matplotlib (64). All custom
scripts used in these analyses are available upon request.

Structural modeling and glycosylation. Crystal structures of the HIV-1 Envelope trimer and gp41
(PDB entries 4NCO, 4TVP, and 2B4C) were used as templates to create models from the CAP177 gp160
sequences, which was carried out using Modeler (65) and the UCSF Chimera package (66). The addition
of high-mannose (Man-9) glycans to the modeled trimers was achieved using an in-house tool, devel-
oped by Oliver Grant and David Matten (unpublished data), which first explores the most populated
rotamers of the Asn-GlcNAc linkage and then, if necessary, adapts the carbohydrate structure to its
environment by iteratively rotating the interglycosidic linkages within normal bounds to resolve inter-
glycan clashes (67). This automated process resolves potential steric clashes and increases the number
of carbohydrates that can be attached to a glycoprotein substantially without the need for manual
adjustment or minimization. Man-9 glycans were chosen to limit the computational complexity required,
which increases exponentially when dealing with other oligomannose glycans which have multiple
branching topologies.

Single-genome amplification (SGA) and sequencing. HIV-1 RNA was isolated from plasma using
the Qiagen QIAamp viral RNA kit and reverse transcribed to cDNA using SuperScript III reverse trans-
criptase (Invitrogen, CA). The envelope genes were amplified from single-genome templates (68), and
amplicons were directly sequenced using the ABI PRISM BigDye Terminator cycle sequencing ready
reaction kit (Applied Biosystems, Foster City, CA) and resolved on an ABI 3100 automated genetic
analyzer. The full-length env sequences were assembled and edited using Sequencher version 4.5
software (Genecodes, Ann Arbor, MI). Multiple sequence alignments were performed using Muscle (69)
and edited with AliView (70).

Cloning of env genes and site-directed mutagenesis. Selected SGA amplicons were cloned into
the expression vector pcDNA 3.1 (directional) (Invitrogen, CA) by reamplification of SGA first-round
products using Fusion enzyme (Stratagene, CA) with the EnvM primer (71) and the directional primer
EnvAStop (72). Cloned env genes were sequenced to confirm that they matched the sequenced amplicon
exactly. SGA clones were mutated at positions 332 and 334 by site-directed mutagenesis using the
Stratagene QuikChange II kit (Stratagene, CA) as described by the manufacturer. V1-loop mutants were
constructed using overlap extension PCR with the primer EnvAdir, V1 loop-specific primers, and the EnvM
primer. Mutations were confirmed by Sanger sequencing.

Cell lines. The TZM-bl cell line, engineered from CXCR4-positive HeLa cells to express CD4, CCR5, and
a firefly luciferase reporter gene (under the control of the HIV-1 LTR), was obtained from the NIH Reagent
Program. The HEK-293T cell line was obtained from George Shaw (University of Alabama, Birmingham,
AL). Cells were cultured at 37°C, 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) containing 10%
heat-inactivated fetal bovine serum (Invitrogen, CA) with 50 �g/ml gentamicin (Sigma-Aldrich, MI) and
disrupted at confluence by treatment with 0.25% trypsin in 1 mM EDTA (Sigma-Aldrich, MI).

Generation of Envelope-pseudotyped viruses. Pseudoviruses were generated by cotransfecting
the env clones with the subtype B backbone vector pSG3Δenv (NIH AIDS Reagent Program) into 293T
cells using FuGENE 6 transfection reagent (Roche, Switzerland). Cultures were incubated for 48 h to
produce Env-pseudotyped viral stocks that were filtered through 0.45-�m filters and frozen in DMEM
supplemented with 20% fetal bovine serum (FBS).
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Generation of IECs. IECs were constructed by amplification of env from the env clones to introduce
restriction enzyme sites and allow for cloning of these amplicons into a replication-competent pNL-
LucR.T2A backbone vector (73). Infectious virus stocks were generated by transfecting 293T cells with the
env-pnL-45LucR plasmids using PolyFect transfection reagent (Qiagen, Germany). IEC virus-containing
supernatant was harvested 48 h after transfection and stored at �80°C.

Neutralization assays. Neutralization assays were performed in TZM-bl cells as previously described
(37, 74). Neutralization is measured as a reduction in relative light units (RLUs) after a single round of
pseudovirus infection in the presence of the monoclonal antibody or plasma sample of interest. Samples
were serially diluted 1:3, and the ID50/50% inhibitory concentration (IC50) ratio was calculated as the
dilution at which the infection was reduced by 50%. Viral escape was functionally confirmed as resulting
in a �3-fold decrease in sensitivity to plasma neutralization.

Single-cycle infectivity assay. IEC viruses were serially diluted and added in triplicate to 10,000
TZM-bl cells (NIH AIDS Reagent Program) in the absence of DEAE-dextran. Luciferase activity was
quantified after 48 h by adding Steadylite HTS (PerkinElmer, MA) and measuring luminescence with a
Promega GloMax 96 luminometer. RLUs generated per volume of virus stock were calculated using all
virus dilutions in the linear range of the assay (2,000 to 600,000 RLUs). The Gag p24 antigen content in
each virus stock was quantified using the Allianz HIV-1 p24 antigen enzyme-linked immunosorbent assay
(ELISA) kit (PerkinElmer, MA), and viral infectivity was subsequently calculated as the RLU per nanogram
of p24 averaged over the dilutions and over two independent experiments.

Ethics approval and consent. The CAPRISA 002 acute infection study was reviewed and approved
by the research ethics committees of the University of KwaZulu-Natal (E013/04), the University of Cape
Town (025/2004), and the University of the Witwatersrand (MM040202). Participant CAP177 provided
written informed consent.

Accession number(s). The deep-sequencing data sets generated during this study are available in
the BioProject short read archive repository (accession numbers SRX2918056 to SRX2918105, available at
http://www.ncbi.nlm.nih.gov/bioproject/390513). The CAP177 clonal sequences used have been depos-
ited in the GenBank repository (accession numbers MF346585 to MF346598).

ACKNOWLEDGMENTS
We thank participant CAP177 for participation in the CAPRISA program. We thank

Ben Murrell for useful discussions, Owen Karimanzira for technical assistance with neutral-
ization assays, and Oliver Grant for assistance with the glycan attachment tools.

This research was supported by the National Institute of Allergy and Infectious
Diseases (NIAID), National Institutes of Health (NIH) (grant AI51794), the National
Research Foundation of South Africa (NRF) (grant 67385), the Columbia University-
Southern African Fogarty AIDS International Training and Research Programme (AITRP),
funded by the Fogarty International Center, NIH (grant D43TW00231), and a training
grant from LifeLab, a biotechnology center of the South African Government Depart-
ment of Science and Technology (DST). This work was supported by grants from the
South African Medical Research Council (MRC) Strategic Health Initiative Partnership
and the National Research Foundation of South Africa (NRF). This research was con-
ducted as part of the DST-NRF Centre of Excellence in HIV Prevention, which is
supported by the DST and the NRF. C.A. was supported by fellowships from the NRF
and an AITRP fellowship. R.-C.F. received funding from an NRF Centre of Excellence for
HIV Prevention grant (COE141028106922). P.S. received funding from the Poliomyelitis
Research Foundation and an NIH-MRC grant (5U01AI116061-03). N.T.W. is supported by
the National Research Foundation Research Career Award Fellowship, and P.L.M. is
supported by the South African Research Chairs Initiative of the Department of Science
and Technology and the NRF (grant no. 98341). C.W. is supported by the National
Health Laboratory Service.

We have no competing interests to declare.

C.A. carried out deep-sequencing sample preparation, data analysis, and man-
uscript preparation and editing. T.Y. performed molecular cloning and infectivity
assays and assisted with deep-sequencing sample preparation. V.B. carried out
neutralization assays. D.M., R.-C.F., and N.T.W. performed the structural modeling
and in silico structure glycosylation. P.S. carried out infectivity assays and contrib-
uted to manuscript preparation and editing. L.M., N.J.G., and S.S.A.K. established
and maintained the cohort, contributed to the interpretation of the data, and
edited the manuscript. P.L.M. and C.W. were responsible for study design and
manuscript preparation and editing.

Overlapping Antibody Responses Limit bNAb Escape Journal of Virology

September 2017 Volume 91 Issue 18 e00828-17 jvi.asm.org 13

https://www.ncbi.nlm.nih.gov/sra/?term=SRX2918056
https://www.ncbi.nlm.nih.gov/sra/?term=SRX2918105
http://www.ncbi.nlm.nih.gov/bioproject/390513
http://www.ncbi.nlm.nih.gov/nuccore?term=MF346585
http://www.ncbi.nlm.nih.gov/nuccore?term=MF346598
http://jvi.asm.org


REFERENCES
1. Liao H-X, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, Fire AZ, Roskin KM,

Schramm CA, Zhang Z, Zhu J, Shapiro L, Mullikin JC, Gnanakaran S,
Hraber P, Wiehe K, Kelsoe G, Yang G, Xia S-M, Montefiori DC, Parks R,
Lloyd KE, Scearce RM, Soderberg KA, Cohen M, Kamanga G, Louder MK,
Tran LM, Chen Y, Cai F, Chen S, Moquin S, Du X, Joyce MG, Srivatsan S,
Zhang B, Zheng A, Shaw GM, Hahn BH, Kepler TB, Korber BTM, Kwong
PD, Mascola JR, Haynes BF, Becker J, Benjamin B, Blakesley R, Bouffard G,
Brooks S, Coleman H, Dekhtyar M, Gregory M, Guan X, Gupta J, Han J,
Hargrove A, Ho S, Johnson T, Legaspi R, Lovett S, Maduro Q, Masiello C,
Maskeri B, McDowell J, Montemayor C, Mullikin JC, Park M, Riebow N,
Schandler K, Schmidt B, Sison C, Stantripop M, Thomas J, Thomas P,
Vemulapalli M, Young A, Mullikin JC, Gnanakaran S, Hraber P, Wiehe K,
Kelsoe G, Yang G, Xia S-M, Montefiori DC, Parks R, Lloyd KE, Scearce RM,
Soderberg KA, Cohen M, Kamanga G, Louder MK, Tran LM, Chen Y, Cai
F, Chen S, Moquin S, Du X, Joyce MG, Srivatsan S, Zhang B, Zheng A,
Shaw GM, Hahn BH, Kepler TB, Korber BTM, Kwong PD, Mascola JR,
Haynes BF. 2013. Co-evolution of a broadly neutralizing HIV-1 antibody
and founder virus. Nature 496:469 – 476. https://doi.org/10.1038/
nature12053.

2. Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN, DeKosky
BJ, Ernandes MJ, Georgiev IS, Kim HJ, Pancera M, Staupe RP, Altae-Tran
HR, Bailer RT, Crooks ET, Cupo A, Druz A, Garrett NJ, Hoi KH, Kong R,
Louder MK, Longo NS, McKee K, Nonyane M, O’Dell S, Roark RS, Rudicell
RS, Schmidt SD, Sheward DJ, Soto C, Wibmer CK, Yang Y, Zhang Z,
Mullikin JC, Binley JM, Sanders RW, Wilson IA, Moore JP, Ward AB,
Georgiou G, Williamson C, Abdool Karim SS, Morris L, Kwong PD, Shapiro
L, Mascola JR, Becker J, Benjamin B, Blakesley R, Bouffard G, Brooks S,
Coleman H, Dekhtyar M, Gregory M, Guan X, Gupta J, Han J, Hargrove A,
Ho S, Johnson T, Legaspi R, Lovett S, Maduro Q, Masiello C, Maskeri B,
McDowell J, Montemayor C, Mullikin J, Park M, Riebow N, Schandler K,
Schmidt B, Sison C, Stantripop M, Thomas J, Thomas P, Vemulapalli M,
Young A. 2014. Developmental pathway for potent V1V2-directed HIV-
neutralizing antibodies. Nature 509:55– 62. https://doi.org/10.1038/
nature13036.

3. Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F, Joyce MG, Ozorowski G,
Chuang GY, Schramm CA, Wiehe K, Alam SM, Bradley T, Gladden MA,
Hwang KK, Iyengar S, Kumar A, Lu X, Luo K, Mangiapani MC, Parks RJ,
Song H, Acharya P, Bailer RT, Cao A, Druz A, Georgiev IS, Kwon YD,
Louder MK, Zhang B, Zheng A, Hill BJ, Kong R, Soto C, Mullikin JC, Douek
DC, Montefiori DC, Moody MA, Shaw GM, Hahn BH, Kelsoe G, Hraber PT,
Korber BT, Boyd SD, Fire AZ, Kepler TB, Shapiro L, Ward AB, Mascola JR,
Liao HX, Kwong PD, Haynes BF. 2016. Maturation pathway from germline
to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165:449 – 463.
https://doi.org/10.1016/j.cell.2016.02.022.

4. MacLeod DT, Choi NM, Briney B, Garces F, Ver LS, Landais E, Murrell B,
Wrin T, Kilembe W, Liang C-H, Ramos A, Bian CB, Wickramasinghe L,
Kong L, Eren K, Wu C-Y, Wong C-H, IAVI Protocol C Investigators & The
IAVI African HIV Research Network, Kosakovsky Pond SL, Wilson IA,
Burton DR, Poignard P. 2016. Early antibody lineage diversification and
independent limb maturation lead to broad HIV-1 neutralization target-
ing the Env high-mannose patch. Immunity 44:1215–1226. https://doi
.org/10.1016/j.immuni.2016.04.016.

5. Garces F, Lee JH, de Val N, Torrents de la Pena A, Kong L, Puchades C,
Hua Y, Stanfield RL, Burton DR, Moore JP, Sanders RW, Ward AB, Wilson
IA. 2015. Affinity maturation of a potent family of HIV antibodies is
primarily focused on accommodating or avoiding glycans. Immunity
43:1053–1063. https://doi.org/10.1016/j.immuni.2015.11.007.

6. Bonsignori M, Kreider EF, Fera D, Meyerhoff RR, Wiehe K, Alam SM,
Hwang K, Saunders KO, Gladden MA, Monroe A, Kumar A, Xia S, Cooper
M, Louder MK, Mckee K, Bailer RT, Pier BW, Jette CA, Williams WB, Morris
L, Kappes J, Wagh K, Kamanga G, Cohen MS, Hraber PT, Montefiori DC,
Trama A, Liao H, Kepler TB, Moody MA, Gao F, Mascola JR, Shaw GM,
Hahn BH, Harrison SC, Korber BT, Haynes BF. 2017. Staged induction of
HIV-1 glycan-dependent broadly neutralizing antibodies. Sci Transl Med
9:1–12. https://doi.org/10.1126/scitranslmed.aai7514.

7. Landais E, Huang X, Havenar-Daughton C, Murrell B, Price MA, Wickra-
masinghe L, Ramos A, Bian CB, Simek M, Allen S, Karita E, Kilembe W,
Lakhi S, Inambao M, Kamali A, Sanders EJ, Anzala O, Edward V, Bekker LG,
Tang J, Gilmour J, Kosakovsky-Pond SL, Phung P, Wrin T, Crotty S, Godzik
A, Poignard P. 2016. Broadly neutralizing antibody responses in a large

longitudinal sub-Saharan HIV primary infection cohort. PLoS Pathog
12:1–22. https://doi.org/10.1371/journal.ppat.1005369.

8. Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF, Halper-Stromberg
A, Gnanapragasam PNP, Spencer DIR, Seaman MS, Schuitemaker H, Feizi
T, Nussenzweig MC, Bjorkman PJ. 2012. Complex-type N-glycan recog-
nition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci
U S A 109:E3268 –E3277. https://doi.org/10.1073/pnas.1217207109.

9. Walker LM, Simek MD, Priddy F, Gach JS, Wagner D, Zwick MB, Phogat
SK, Poignard P, Burton DR. 2010. A limited number of antibody speci-
ficities mediate broad and potent serum neutralization in selected HIV-1
infected individuals. PLoS Pathog 6:11–12. https://doi.org/10.1371/
journal.ppat.1001028.

10. Webb NE, Montefiori DC, Lee B. 2015. Dose-response curve slope helps
predict therapeutic potency and breadth of HIV broadly neutralizing
antibodies. Nat Commun 6:8443. https://doi.org/10.1038/ncomms9443.

11. Simonich CA, Williams KL, Verkerke HP, Williams JA, Nduati R, Lee KK,
Overbaugh J. 2016. HIV-1 neutralizing antibodies with limited hypermu-
tation from an infant. Cell 166:77– 87. https://doi.org/10.1016/j.cell.2016
.05.055.

12. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien J-P, Wang
S-K, Ramos A, Chan-Hui P-Y, Moyle M, Mitcham JL, Hammond PW, Olsen
OA, Phung P, Fling S, Wong C-H, Phogat S, Wrin T, Simek MD, Protocol
G Principal Investigators, Koff WC, Wilson IA, Burton DR, Poignard P.
2011. Broad neutralization coverage of HIV by multiple highly potent
antibodies. Nature 477:466 – 470. https://doi.org/10.1038/nature10373.

13. Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T, Kreider EF, Murrell
B, Pfeifer N, Nogueira L, Oliveira TY, Learn GH, Cohen YZ, Lehmann C,
Gillor D, Shimeliovich I, Unson-O’Brien C, Weiland D, Robles A, Kümmerle
T, Wyen C, Levin R, Witmer-Pack M, Eren K, Ignacio C, Kiss S, West AP,
Mouquet H, Zingman BS, Gulick RM, Keler T, Bjorkman PJ, Seaman MS,
Hahn BH, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC, Klein F. 2017.
Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat
Med 23:185–191. https://doi.org/10.1038/nm.4268.

14. Kong L, Lee JH, Doores KJJ, Murin CD, Julien J-P, McBride R, Liu Y,
Marozsan A, Cupo A, Klasse P-J, Hoffenberg S, Caulfield M, King CR, Hua
Y, Le KM, Khayat R, Deller MC, Clayton T, Tien H, Feizi T, Sanders RW,
Paulson JC, Moore JP, Stanfield RL, Burton DR, Ward AB, Wilson IA. 2013.
Supersite of immune vulnerability on the glycosylated face of HIV-1
envelope glycoprotein gp120. Nat Struct Mol Biol 20:796 – 803. https://
doi.org/10.1038/nsmb.2594.

15. Julien J-P, Sok D, Khayat R, Lee JH, Doores KJ, Walker LM, Ramos A,
Diwanji DC, Pejchal R, Cupo A, Katpally U, Depetris RS, Stanfield RL,
McBride R, Marozsan AJ, Paulson JC, Sanders RW, Moore JP, Burton DR,
Poignard P, Ward AB, Wilson IA. 2013. Broadly neutralizing antibody
PGT121 allosterically modulates CD4 binding via recognition of the
HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog
9:e1003342. https://doi.org/10.1371/journal.ppat.1003342.

16. Moore PL, Gray ES, Wibmer CK, Bhiman JN, Nonyane M, Sheward DJ,
Hermanus T, Bajimaya S, Tumba NL, Abrahams R, Lambson BE, Ranchobe
N, Ping L, Seaman MS, Williamson C, Morris L, Abrahams M-RR, Ngandu
N, Abdool Karim Q, Abdool Karim SS, Swanstrom RI, Lambson BE,
Ranchobe N, Ping L, Ngandu N, Karim QA, Karim SSA, Swanstrom RI,
Seaman MS, Williamson C, Morris L, Abdool Karim Q, Abdool Karim SS,
Swanstrom RI, Seaman MS, Williamson C, Morris L. 2012. Evolution of an
HIV glycan-dependent broadly neutralizing antibody epitope through
immune escape. Nat Med 18:1688 –1692. https://doi.org/10.1038/nm
.2985.

17. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin
T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey
SM, Hammond PW, Protocol G Principal Investigators, Kaminsky S, Zamb
T, Moyle M, Koff WC, Poignard P, Burton DR. 2009. Broad and potent
neutralizing antibodies from an African donor reveal a new HIV-1 vac-
cine target. Science 326:285–289. https://doi.org/10.1126/science
.1178746.

18. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N,
Srinivasan K, Sodroski J, Moore JP, Katinger H. 1996. Human monoclonal
antibody 2G12 defines a distinctive neutralization epitope on the gp120
glycoprotein of human immunodeficiency virus type 1. J Virol 70:
1100 –1108.

19. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P, Wang SS-K, Stanfield
RL, Julien J-PJ, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A,

Anthony et al. Journal of Virology

September 2017 Volume 91 Issue 18 e00828-17 jvi.asm.org 14

https://doi.org/10.1038/nature12053
https://doi.org/10.1038/nature12053
https://doi.org/10.1038/nature13036
https://doi.org/10.1038/nature13036
https://doi.org/10.1016/j.cell.2016.02.022
https://doi.org/10.1016/j.immuni.2016.04.016
https://doi.org/10.1016/j.immuni.2016.04.016
https://doi.org/10.1016/j.immuni.2015.11.007
https://doi.org/10.1126/scitranslmed.aai7514
https://doi.org/10.1371/journal.ppat.1005369
https://doi.org/10.1073/pnas.1217207109
https://doi.org/10.1371/journal.ppat.1001028
https://doi.org/10.1371/journal.ppat.1001028
https://doi.org/10.1038/ncomms9443
https://doi.org/10.1016/j.cell.2016.05.055
https://doi.org/10.1016/j.cell.2016.05.055
https://doi.org/10.1038/nature10373
https://doi.org/10.1038/nm.4268
https://doi.org/10.1038/nsmb.2594
https://doi.org/10.1038/nsmb.2594
https://doi.org/10.1371/journal.ppat.1003342
https://doi.org/10.1038/nm.2985
https://doi.org/10.1038/nm.2985
https://doi.org/10.1126/science.1178746
https://doi.org/10.1126/science.1178746
http://jvi.asm.org


Cupo A, Maloveste S, Paulson JC, Feizi T, Scanlan CN, Wong C-HC, Moore
JP, Burton DR, Wilson IA, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C,
Paulson JC, Feizi T, Scanlan CN, Wong C-HC, Moore JP, Olson WC, Ward
AB, Poignard P, Schief WR, Burton DR, Wilson IA. 2011. A potent and
broad neutralizing antibody recognizes and penetrates the HIV glycan
shield. Science 334:1097–1102. https://doi.org/10.1126/science.1213256.

20. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos
S, Mouquet H, Spatz LA, Diskin R, Abadir A, Zang T, Dorner M, Billerbeck
E, Labitt RN, Gaebler C, Marcovecchio PM, Incesu R-B, Eisenreich TR,
Bieniasz PD, Seaman MS, Bjorkman PJ, Ravetch JV, Ploss A, Nussenzweig
MC. 2012. HIV therapy by a combination of broadly neutralizing anti-
bodies in humanized mice. Nature 492:118 –122. https://doi.org/10
.1038/nature11604.

21. Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, Kulp DW,
Julien J-P, Menis S, Wickramasinghe L, Seaman MS, Schief WR, Wilson IA,
Poignard P, Burton DR. 2014. Promiscuous glycan site recognition by
antibodies to the high-mannose patch of gp120 broadens neutralization
of HIV. Sci Transl Med 6:236ra63. https://doi.org/10.1126/scitranslmed
.3008104.

22. Doores KJ, Kong L, Krumm SA, Le KM, Sok D, Laserson U, Garces F,
Poignard P, Wilson IA, Burton DR. 2015. Two classes of broadly neutral-
izing antibodies within a single lineage directed to the high-mannose
patch of HIV envelope. J Virol 89:1105–1118. https://doi.org/10.1128/JVI
.02905-14.

23. Murphy MK, Yue L, Pan R, Boliar S, Sethi A, Tian J, Pfafferot K, Karita E,
Allen SA, Cormier E, Goepfert PA, Borrow P, Robinson JE, Gnanakaran S,
Hunter E, Kong XP, Derdeyn CA. 2013. Viral escape from neutralizing
antibodies in early subtype A HIV-1 infection drives an increase in
autologous neutralization breadth. PLoS Pathog 9:e1003173. https://doi
.org/10.1371/journal.ppat.1003173.

24. Sok D, Pauthner M, Briney B, Lee JHH, Saye-Francisco KLL, Hsueh J,
Ramos A, Le KMM, Jones M, Jardine JGG, Bastidas R, Sarkar A, Liang C-H,
Shivatare SSS, Wu C-Y, Schief WR, Wong C-H, Wilson IAA, Ward ABB, Zhu
J, Poignard P, Burton DRR. 2016. A prominent site of antibody vulnera-
bility on HIV envelope incorporates a motif associated with CCR5 bind-
ing and its camouflaging glycans. Immunity 45:31– 45. https://doi.org/
10.1016/j.immuni.2016.06.026.

25. Garces F, Sok D, Kong L, McBride R, Kim HJ, Saye-Francisco KF, Julien JP, Hua
Y, Cupo A, Moore JP, Paulson JC, Ward AB, Burton DR, Wilson IA. 2014.
Structural evolution of glycan recognition by a family of potent HIV anti-
bodies. Cell 159:69–79. https://doi.org/10.1016/j.cell.2014.09.009.

26. Deshpande S, Patil S, Kumar R, Hermanus T, Murugavel KG, Srikrishnan
AK, Solomon S, Morris L, Bhattacharya J. 2016. HIV-1 clade C escapes
broadly neutralizing autologous antibodies with N332 glycan specificity
by distinct mechanisms. Retrovirology 13:60. https://doi.org/10.1186/
s12977-016-0297-2.

27. van den Kerkhof TLGM, de Taeye SW, Boeser-Nunnink BD, Burton DR,
Kootstra NA, Schuitemaker H, Sanders RW, van Gils MJ. 2016. HIV-1
escapes from N332-directed antibody neutralization in an elite neutral-
izer by envelope glycoprotein elongation and introduction of unusual
disulfide bonds. Retrovirology 13:48. https://doi.org/10.1186/s12977-016
-0279-4.

28. Moore PL, Sheward D, Nonyane M, Ranchobe N, Hermanus T, Gray ES,
Abdool Karim SS, Williamson C, Morris L. 2013. Multiple pathways of
escape from HIV broadly cross-neutralizing V2-dependent antibodies. J
Virol 87:4882– 4894. https://doi.org/10.1128/JVI.03424-12.

29. Wibmer CK, Bhiman JN, Gray ES, Tumba N, Abdool Karim SS, Williamson
C, Morris L, Moore PL. 2013. Viral escape from HIV-1 neutralizing anti-
bodies drives increased plasma neutralization breadth through sequen-
tial recognition of multiple epitopes and immunotypes. PLoS Pathog
9:e1003738. https://doi.org/10.1371/journal.ppat.1003738.

30. Gao F, Bonsignori M, Liao H-X, Kumar A, Xia S-M, Lu X, Cai F, Hwang K-K,
Song H, Zhou T, Lynch RM, Alam SM, Moody MA, Ferrari G, Berrong M,
Kelsoe G, Shaw GM, Hahn BH, Montefiori DC, Kamanga G, Cohen M,
Hraber P, Kwong PD, Korber BT, Mascola JR, Kepler TB, Haynes BF. 2014.
Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing
antibodies. Cell 158:481– 491. https://doi.org/10.1016/j.cell.2014.06.022.

31. Moore PL, Ranchobe N, Lambson BE, Gray ES, Cave E, Abrahams M-R,
Bandawe G, Mlisana K, Abdool Karim SS, Williamson C, Morris L. 2009.
Limited neutralizing antibody specificities drive neutralization escape in
early HIV-1 subtype C infection. PLoS Pathog 5:13. https://doi.org/10
.1371/journal.ppat.1000598.

32. Gray ES, Madiga MC, Hermanus T, Moore PL, Wibmer CK, Tumba NL,
Werner L, Mlisana K, Sibeko S, Williamson C, Abdool Karim SS, Morris L,

CAPRISA002 Study Team. 2011. The neutralization breadth of HIV-1
develops incrementally over four years and is associated with CD4� T
cell decline and high viral load during acute infection. J Virol 85:
4828 – 4840. https://doi.org/10.1128/JVI.00198-11.

33. Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. 2011. Accurate
sampling and deep sequencing of the HIV-1 protease gene using a
primer ID. Proc Natl Acad Sci U S A 108:20166 –20171. https://doi.org/
10.1073/pnas.1110064108.

34. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar
MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F,
Anderson JA, Ping L-H, Swanstrom R, Tomaras GD, Blattner WA, Goepfert
PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC,
Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson
AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM. 2008. Identification
and characterization of transmitted and early founder virus envelopes in
primary HIV-1 infection. Proc Natl Acad Sci U S A 105:7552–7557. https://
doi.org/10.1073/pnas.0802203105.

35. Ferrari G, Korber B, Goonetilleke N, Liu MKP, Turnbull EL, Salazar-
Gonzalez JF, Hawkins N, Self S, Watson S, Betts MR, Gay C, McGhee K,
Pellegrino P, Williams I, Tomaras GD, Haynes BF, Gray CM, Borrow P,
Roederer M, McMichael AJ, Weinhold KJ. 2011. Relationship between
functional profile of HIV-1 specific CD8 T cells and epitope variability
with the selection of escape mutants in acute HIV-1 infection. PLoS
Pathog 7:e1001273. https://doi.org/10.1371/journal.ppat.1001273.

36. Krumm SA, Mohammed H, Le KM, Crispin M, Wrin T, Poignard P, Burton
DR, Doores KJ. 2016. Mechanisms of escape from the PGT128 family of
anti-HIV broadly neutralizing antibodies. Retrovirology 13:8. https://doi
.org/10.1186/s12977-016-0241-5.

37. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF,
Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH,
Kwong PD, Shaw GM. 2003. Antibody neutralization and escape by
HIV-1. Nature 422:307–312. https://doi.org/10.1038/nature01470.

38. Richman DD, Wrin T, Little SJ, Petropoulos CJ. 2003. Rapid evolution of the
neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci
U S A 100:4144–4149. https://doi.org/10.1073/pnas.0630530100.

39. Rong R, Li B, Lynch RM, Haaland RE, Murphy MK, Mulenga J, Allen SA,
Pinter A, Shaw GM, Hunter E, Robinson JE, Gnanakaran S, Derdeyn CA.
2009. Escape from autologous neutralizing antibodies in acute/early
subtype C HIV-1 infection requires multiple pathways. PLoS Pathog
5:e1000594. https://doi.org/10.1371/journal.ppat.1000594.

40. Xiao X, Chen W, Feng Y, Dimitrov DS. 2009. Maturation pathways of
cross-reactive HIV-1 neutralizing antibodies. Viruses 1:802– 817. https://
doi.org/10.3390/v1030802.

41. Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, Pietzsch J,
Ott RG, Anthony RM, Zebroski H, Hurley A, Phogat A, Chakrabarti B, Li Y,
Connors M, Pereyra F, Walker BD, Wardemann H, Ho D, Wyatt RT,
Mascola JR, Ravetch JV, Nussenzweig MC. 2009. Broad diversity of
neutralizing antibodies isolated from memory B cells in HIV-infected
individuals. Nature 458:636 – 640. https://doi.org/10.1038/nature07930.

42. Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P, Wang Y, Zhang M-Y, Longo
NS, Dimitrov DS. 2009. Germline-like predecessors of broadly neutraliz-
ing antibodies lack measurable binding to HIV-1 envelope glycoproteins:
implications for evasion of immune responses and design of vaccine
immunogens. Biochem Biophys Res Commun 390:404 – 409. https://doi
.org/10.1016/j.bbrc.2009.09.029.

43. Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H, Georgiev IS, Pancera
M, Zhou T, Incesu R-B, Fu BZ, Gnanapragasam PNP, Oliveira TY, Seaman
MS, Kwong PD, Bjorkman PJ, Nussenzweig MC. 2013. Somatic mutations
of the immunoglobulin framework are generally required for broad and
potent HIV-1 neutralization. Cell 153:126 –138. https://doi.org/10.1016/j
.cell.2013.03.018.

44. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TYK,
Pietzsch J, Fenyo D, Abadir A, Velinzon K, Hurley A, Myung S, Boulad F,
Poignard P, Burton DR, Pereyra F, Ho DD, Walker BD, Seaman MS,
Bjorkman PJ, Chait BT, Nussenzweig MC. 2011. Sequence and structural
convergence of broad and potent HIV antibodies that mimic CD4 bind-
ing. Science 333:1633–1637. https://doi.org/10.1126/science.1207227.

45. Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, Bonsignori M, Chen X, Hwang
KK, Montefiori DC, Liao HX, Hraber P, Fischer W, Li H, Wang S, Sterrett S,
Keele BF, Ganusov VV, Perelson AS, Korber BT, Georgiev I, McLellan JS,
Pavlicek JW, Gao F, Haynes BF, Hahn BH, Kwong PD, Shaw GM. 2012.
Early low-titer neutralizing antibodies impede HIV-1 replication and
select for virus escape. PLoS Pathog 8:e1002721. https://doi.org/10
.1371/journal.ppat.1002721.

Overlapping Antibody Responses Limit bNAb Escape Journal of Virology

September 2017 Volume 91 Issue 18 e00828-17 jvi.asm.org 15

https://doi.org/10.1126/science.1213256
https://doi.org/10.1038/nature11604
https://doi.org/10.1038/nature11604
https://doi.org/10.1126/scitranslmed.3008104
https://doi.org/10.1126/scitranslmed.3008104
https://doi.org/10.1128/JVI.02905-14
https://doi.org/10.1128/JVI.02905-14
https://doi.org/10.1371/journal.ppat.1003173
https://doi.org/10.1371/journal.ppat.1003173
https://doi.org/10.1016/j.immuni.2016.06.026
https://doi.org/10.1016/j.immuni.2016.06.026
https://doi.org/10.1016/j.cell.2014.09.009
https://doi.org/10.1186/s12977-016-0297-2
https://doi.org/10.1186/s12977-016-0297-2
https://doi.org/10.1186/s12977-016-0279-4
https://doi.org/10.1186/s12977-016-0279-4
https://doi.org/10.1128/JVI.03424-12
https://doi.org/10.1371/journal.ppat.1003738
https://doi.org/10.1016/j.cell.2014.06.022
https://doi.org/10.1371/journal.ppat.1000598
https://doi.org/10.1371/journal.ppat.1000598
https://doi.org/10.1128/JVI.00198-11
https://doi.org/10.1073/pnas.1110064108
https://doi.org/10.1073/pnas.1110064108
https://doi.org/10.1073/pnas.0802203105
https://doi.org/10.1073/pnas.0802203105
https://doi.org/10.1371/journal.ppat.1001273
https://doi.org/10.1186/s12977-016-0241-5
https://doi.org/10.1186/s12977-016-0241-5
https://doi.org/10.1038/nature01470
https://doi.org/10.1073/pnas.0630530100
https://doi.org/10.1371/journal.ppat.1000594
https://doi.org/10.3390/v1030802
https://doi.org/10.3390/v1030802
https://doi.org/10.1038/nature07930
https://doi.org/10.1016/j.bbrc.2009.09.029
https://doi.org/10.1016/j.bbrc.2009.09.029
https://doi.org/10.1016/j.cell.2013.03.018
https://doi.org/10.1016/j.cell.2013.03.018
https://doi.org/10.1126/science.1207227
https://doi.org/10.1371/journal.ppat.1002721
https://doi.org/10.1371/journal.ppat.1002721
http://jvi.asm.org


46. Gray ES, Moore PL, Pantophlet R, Morris L. 2007. N-linked glycan mod-
ifications in gp120 of human immunodeficiency virus type 1 subtype C
render partial sensitivity to 2G12 antibody neutralization. J Virol 81:
10769 –10776. https://doi.org/10.1128/JVI.01106-07.

47. Moore PL, Gray ES, Choge IA, Ranchobe N, Mlisana K, Abdool Karim SS,
Williamson C, Morris L. 2008. The c3-v4 region is a major target of
autologous neutralizing antibodies in human immunodeficiency virus
type 1 subtype C infection. J Virol 82:1860 –1869. https://doi.org/10
.1128/JVI.02187-07.

48. Deeks SG, Schweighardt B, Wrin T, Galovich J, Hoh R, Sinclair E, Hunt P,
McCune JM, Martin JN, Petropoulos CJ, Hecht FM. 2006. Neutralizing
antibody responses against autologous and heterologous viruses in
acute versus chronic human immunodeficiency virus (HIV) infection:
evidence for a constraint on the ability of HIV to completely evade
neutralizing antibody responses. J Virol 80:6155– 6164. https://doi.org/
10.1128/JVI.00093-06.

49. Geffin R, Hutto C, Andrew C, Scott GB. 2003. A longitudinal assessment
of autologous neutralizing antibodies in children perinatally infected
with human immunodeficiency virus type 1. Virology 310:207–215.
https://doi.org/10.1016/S0042-6822(03)00137-5.

50. Sather DN, Carbonetti S, Kehayia J, Kraft Z, Mikell I, Scheid JF, Klein F,
Stamatatos L. 2012. Broadly neutralizing antibodies developed by an
HIV-positive elite neutralizer exact a replication fitness cost on the
contemporaneous virus. J Virol 86:12676 –12685. https://doi.org/10
.1128/JVI.01893-12.

51. Behrens AJ, Vasiljevic S, Pritchard LK, Harvey DJ, Andev RS, Krumm SA,
Struwe WB, Cupo A, Kumar A, Zitzmann N, Seabright GE, Kramer HB,
Spencer DI, Royle L, Lee JH, Klasse PJ, Burton DR, Wilson IA, Ward AB,
Sanders RW, Moore JP, Doores KJ, Crispin M. 2016. Composition and
antigenic effects of individual glycan sites of a trimeric HIV-1 envelope
glycoprotein. Cell Rep 14:2695–2706. https://doi.org/10.1016/j.celrep
.2016.02.058.

52. van Loggerenberg F, Mlisana K, Williamson C, Auld SC, Morris L, Gray CM,
Karim QA, Grobler A, Barnabas N, Iriogbe I, Abdool Karim SS. 2008.
Establishing a cohort at high risk of HIV infection in South Africa:
challenges and experiences of the CAPRISA 002 acute infection study.
PLoS One 3:1– 8. https://doi.org/10.1371/journal.pone.0001954.

53. Zhou S, Jones C, Mieczkowski P, Swanstrom R. 2015. Primer ID validates
template sampling depth and greatly reduces the error rate of next
generation sequencing of HIV-1 genomic RNA populations. J Virol 89:
8540 – 8555. https://doi.org/10.1128/JVI.00522-15.

54. Bhiman JN, Anthony C, Doria-Rose NA, Karimanzira O, Schramm CA,
Khoza T, Kitchin D, Botha G, Gorman J, Garrett NJ, Abdool Karim SS,
Shapiro L, Williamson C, Kwong PD, Mascola JR, Morris L, Moore PL,
Karim SSA, Shapiro L, Williamson C, Kwong PD, Mascola JR, Morris L,
Moore PL. 2015. Viral variants that initiate and drive maturation of
V1V2-directed HIV-1 broadly neutralizing antibodies. Nat Med 21:1332.
https://doi.org/10.1038/nm.3963.

55. Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko
A, Galaxy Team. 2010. Manipulation of FASTQ data with galaxy. Bioin-
formatics 26:1783–1785. https://doi.org/10.1093/bioinformatics/btq281.

56. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M,
Nekrutenko A, Taylor J. 2010. Galaxy: a web-based genome analysis tool
for experimentalists, p 1–21. In Current protocols in bioinformatics. John
Wiley & Sons, Inc, Hoboken, NJ.

57. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang
Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A.
2005. Galaxy: a platform for interactive large-scale genome analysis.
Genome Res 15:1451–1455. https://doi.org/10.1101/gr.4086505.

58. Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate
Illumina Paired-End reAd mergeR. Bioinformatics 30:614. https://doi.org/
10.1093/bioinformatics/btt593.

59. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol Biol
Evol 30:772–780. https://doi.org/10.1093/molbev/mst010.

60. Wright IA, Travers SA. 2014. RAMICS: trainable, high-speed and biolog-
ically relevant alignment of high-throughput sequencing reads to cod-
ing DNA. Nucleic Acids Res 42:e106. https://doi.org/10.1093/nar/gku473.

61. Price MN, Dehal PS, Arkin AP. 2009. Fasttree: computing large minimum
evolution trees with profiles instead of a distance matrix. Mol Biol Evol
26:1641–1650. https://doi.org/10.1093/molbev/msp077.

62. Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and
visualization of phylogenomic data. Mol Biol Evol 33:1635–1638. https://
doi.org/10.1093/molbev/msw046.

63. Shannon CE. 1948. A mathematical theory of communication. Bell Syst
Tech J 27:379 – 423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

64. Hunter JD. 2007. Matplotlib: a 2D graphics environment. Comput Sci Eng
9:99 –104. https://doi.org/10.1109/MCSE.2007.55.

65. Webb B, Sali A, Webb B, Sali A. 2014. Comparative protein structure
modeling using MODELLER, p 5.6.1–5.6.32. In Current protocols in bioin-
formatics. John Wiley & Sons, Inc, Hoboken, NJ.

66. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng
EC, Ferrin TE. 2004. UCSF Chimera–a visualization system for exploratory
research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10
.1002/jcc.20084.

67. Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR. 2004.
Statistical analysis of the protein environment of N-glycosylation sites:
implications for occupancy, structure, and folding. Glycobiology 14:
103–114. https://doi.org/10.1093/glycob/cwh008.

68. Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, Keele BF,
Derdeyn CA, Farmer P, Hunter E, Allen S, Manigart O, Mulenga J,
Anderson JA, Swanstrom R, Haynes BF, Athreya GS, Korber BTM, Sharp
PM, Shaw GM, Hahn BH. 2008. Deciphering human immunodeficiency
virus type 1 transmission and early envelope diversification by single-
genome amplification and sequencing. J Virol 82:3952–3970. https://doi
.org/10.1128/JVI.02660-07.

69. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi
.org/10.1093/nar/gkh340.

70. Larsson A. 2014. AliView: a fast and lightweight alignment viewer and
editor for large datasets. Bioinformatics 30:3276 –3278. https://doi.org/
10.1093/bioinformatics/btu531.

71. Gao F, Morrison SG, Robertson DL, Thornton CL, Craig S, Karlsson G,
Sodroski J, Morgado M, Galvao-Castro B, von Briesen H, Beddows S,
Weber J, Sharp PM, Shaw GM, Hahn BH. 1996. Molecular cloning and
analysis of functional envelope genes from human immunodeficiency
virus type 1 sequence subtypes A through G. The WHO and NIAID
Networks for HIV Isolation and Characterization. J Virol 70:1651–1667.

72. Kraus MH, Parrish NF, Shaw KS, Decker JM, Keele BF, Salazar-Gonzalez JF,
Grayson T, McPherson DT, Ping LH, Anderson JA, Swanstrom R, William-
son C, Shaw GM, Hahn BH. 2010. A rev1-vpu polymorphism unique to
HIV-1 subtype A and C strains impairs envelope glycoprotein expression
from rev-vpu-env cassettes and reduces virion infectivity in pseudotyp-
ing assays. Virology 397:346 –357. https://doi.org/10.1016/j.virol.2009.11
.019.

73. Edmonds TG, Ding H, Yuan X, Wei Q, Smith KS, Conway JA, Wieczorek L,
Brown B, Polonis V, West JT, Montefiori DC, Kappes JC, Ochsenbauer C.
2010. Replication competent molecular clones of HIV-1 expressing re-
nilla luciferase facilitate the analysis of antibody inhibition in PBMC.
Virology 408:1–13. https://doi.org/10.1016/j.virol.2010.08.028.

74. Montefiori DC, Montefiori CD. 2005. Evaluating neutralizing antibodies
against HIV, SIV, and SHIV in luciferase reporter gene assays, p
12.11.1–12.11.17. In Current protocols in immunology. John Wiley &
Sons, Inc, Hoboken, NJ.

Anthony et al. Journal of Virology

September 2017 Volume 91 Issue 18 e00828-17 jvi.asm.org 16

https://doi.org/10.1128/JVI.01106-07
https://doi.org/10.1128/JVI.02187-07
https://doi.org/10.1128/JVI.02187-07
https://doi.org/10.1128/JVI.00093-06
https://doi.org/10.1128/JVI.00093-06
https://doi.org/10.1016/S0042-6822(03)00137-5
https://doi.org/10.1128/JVI.01893-12
https://doi.org/10.1128/JVI.01893-12
https://doi.org/10.1016/j.celrep.2016.02.058
https://doi.org/10.1016/j.celrep.2016.02.058
https://doi.org/10.1371/journal.pone.0001954
https://doi.org/10.1128/JVI.00522-15
https://doi.org/10.1038/nm.3963
https://doi.org/10.1093/bioinformatics/btq281
https://doi.org/10.1101/gr.4086505
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/nar/gku473
https://doi.org/10.1093/molbev/msp077
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1093/glycob/cwh008
https://doi.org/10.1128/JVI.02660-07
https://doi.org/10.1128/JVI.02660-07
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/bioinformatics/btu531
https://doi.org/10.1093/bioinformatics/btu531
https://doi.org/10.1016/j.virol.2009.11.019
https://doi.org/10.1016/j.virol.2009.11.019
https://doi.org/10.1016/j.virol.2010.08.028
http://jvi.asm.org

	RESULTS
	Viral population dynamics associated with early neutralizing antibody pressure. 
	Early C3 ssNAb and V3-glycan bNAb epitopes were partially overlapping. 
	Escape from the bNAb response includes, but is not limited to, loss of the N332 glycan. 
	Changes in V1 loop length mediated escape from V3-glycan bNAb responses. 
	Longer V1 loops block access to the V3-glycan supersite. 
	No difference in infectivity of N332 and N334 glycan clones. 
	Escape from bNAb response was slower than that for ssNAbs. 

	DISCUSSION
	Conclusions. 

	MATERIALS AND METHODS
	Study participant. 
	Next-generation sequence library preparation. 
	Next-generation sequencing data processing and analysis. 
	Structural modeling and glycosylation. 
	Cloning of env genes and site-directed mutagenesis. 
	Cell lines. 
	Generation of Envelope-pseudotyped viruses. 
	Generation of IECs. 
	Neutralization assays. 
	Single-cycle infectivity assay. 
	Ethics approval and consent. 
	Accession number(s). 
	ACKNOWLEDGMENTS

	REFERENCES

