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Introduction
The most commonly used techniques for investigating the rela-
tionship between two quantitative variables are correlation and
linear regression. Correlation quantifies the strength of the
linear relationship between a pair of variables, whereas regres-
sion expresses the relationship in the form of an equation. For
example, in patients attending an accident and emergency unit
(A&E), we could use correlation and regression to determine
whether there is a relationship between age and urea level,
and whether the level of urea can be predicted for a given age.

Scatter diagram
When investigating a relationship between two variables, the
first step is to show the data values graphically on a scatter
diagram. Consider the data given in Table 1. These are the ages
(years) and the logarithmically transformed admission serum
urea (natural logarithm [ln] urea) for 20 patients attending an
A&E. The reason for transforming the urea levels was to obtain a
more Normal distribution [1]. The scatter diagram for ln urea and
age (Fig.1) suggests there is a positive linear relationship
between these variables.

Correlation
On a scatter diagram, the closer the points lie to a straight
line, the stronger the linear relationship between two vari-
ables. To quantify the strength of the relationship, we can cal-

culate the correlation coefficient. In algebraic notation, if we
have two variables x and y, and the data take the form of n
pairs (i.e. [x1, y1], [x2, y2], [x3, y3] … [xn, yn]), then the correla-
tion coefficient is given by the following equation:

where x– is the mean of the x values, and y– is the mean of the y
values.

This is the product moment correlation coefficient (or Pearson
correlation coefficient). The value of r always lies between –1
and +1. A value of the correlation coefficient close to +1 indi-
cates a strong positive linear relationship (i.e. one variable
increases with the other; Fig.2). A value close to –1 indicates
a strong negative linear relationship (i.e. one variable
decreases as the other increases; Fig.3). A value close to 0
indicates no linear relationship (Fig.4); however, there could
be a nonlinear relationship between the variables (Fig.5).

For the A&E data, the correlation coefficient is 0.62, indicat-
ing a moderate positive linear relationship between the two
variables.
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Abstract

The present review introduces methods of analyzing the relationship between two quantitative
variables. The calculation and interpretation of the sample product moment correlation coefficient and
the linear regression equation are discussed and illustrated. Common misuses of the techniques are
considered. Tests and confidence intervals for the population parameters are described, and failures of
the underlying assumptions are highlighted.
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Hypothesis test of correlation

We can use the correlation coefficient to test whether there
is a linear relationship between the variables in the population
as a whole. The null hypothesis is that the population correla-

tion coefficient equals 0. The value of r can be compared with
those given in Table 2, or alternatively exact P values can be
obtained from most statistical packages. For the A&E data,
r=0.62 with a sample size of 20 is greater than the value high-
lighted bold in Table 2 for P=0.01, indicating a P value of less
than 0.01. Therefore, there is sufficient evidence to suggest
that the true population correlation coefficient is not 0 and that
there is a linear relationship between ln urea and age.

Confidence interval for the population correlation
coefficient

Although the hypothesis test indicates whether there is a
linear relationship, it gives no indication of the strength of that
relationship. This additional information can be obtained from
a confidence interval for the population correlation coefficient.

To calculate a confidence interval, r must be transformed to
give a Normal distribution making use of Fisher’s z transfor-
mation [2]:

Figure 1

Scatter diagram for ln urea and age
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Correlation coefficient (r) = –0.9. Negative linear relationship.

X

Y

Figure 2

Correlation coefficient (r) = +0.9. Positive linear relationship.
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Table 1

Age and ln urea for 20 patients attending an accident and
emergency unit

Subject Age (years) ln urea

1 60 1.099

2 76 1.723

3 81 2.054

4 89 2.262

5 44 1.686

6 58 1.988

7 55 1.131

8 74 1.917

9 45 1.548

10 67 1.386

11 72 2.617

12 91 2.701

13 76 2.054

14 39 1.526

15 71 2.002

16 56 1.526

17 77 1.825

18 37 1.435

19 64 2.460

20 84 1.932
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The standard error [3] of zr is approximately:

and hence a 95% confidence interval for the true population
value for the transformed correlation coefficient zr is given by
zr – (1.96 × standard error) to zr + (1.96 × standard error).
Because zr is Normally distributed, 1.96 deviations from the
statistic will give a 95% confidence interval.

For the A&E data the transformed correlation coefficient zr
between ln urea and age is:

The standard error of zr is:

The 95% confidence interval for zr is therefore
0.725 – (1.96 × 0.242) to 0.725 + (1.96 × 0.242), giving
0.251 to 1.199.

We must use the inverse of Fisher’s transformation on the
lower and upper limits of this confidence interval to obtain the
95% confidence interval for the correlation coefficient. The
lower limit is:

giving 0.25 and the upper limit is:

giving 0.83. Therefore, we are 95% confident that the popula-
tion correlation coefficient is between 0.25 and 0.83.

The width of the confidence interval clearly depends on the
sample size, and therefore it is possible to calculate the
sample size required for a given level of accuracy. For an
example, see Bland [4].
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Figure 4

Correlation coefficient (r) = 0.04. No relationship.
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Table 2

5% and 1% points for the distribution of the correlation
coefficient under the null hypothesis that the population
correlation is 0 in a two-tailed test

r values for two-tailed Two-tailed
probabilities (P) probabilities (P)

Sample Sample
size 0.05 0.01 size 0.05 0.01

3 1.00 1.00 23 0.41 0.53

4 0.95 0.99 24 0.40 0.52

5 0.88 0.96 25 0.40 0.51

6 0.81 0.92 26 0.39 0.50

7 0.75 0.87 27 0.38 0.49

8 0.71 0.83 28 0.37 0.48

9 0.67 0.80 29 0.37 0.47

10 0.63 0.76 30 0.36 0.46

11 0.60 0.73 40 0.31 0.40

12 0.58 0.71 50 0.28 0.36

13 0.55 0.68 60 0.25 0.33

14 0.53 0.66 70 0.24 0.31

15 0.51 0.64 80 0.22 0.29

16 0.50 0.62 90 0.21 0.27

17 0.48 0.61 100 0.20 0.26

18 0.47 0.59 110 0.19 0.24

19 0.46 0.58 120 0.18 0.23

20 0.44 0.56 130 0.17 0.23

21 0.43 0.55 140 0.17 0.22

22 0.42 0.54 150 0.16 0.21

Generated using the standard formula [2].

Figure 5

Correlation coefficient (r) = –0.03. Nonlinear relationship.
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Misuse of correlation

There are a number of common situations in which the corre-
lation coefficient can be misinterpreted.

One of the most common errors in interpreting the correlation
coefficient is failure to consider that there may be a third vari-
able related to both of the variables being investigated, which
is responsible for the apparent correlation. Correlation does
not imply causation. To strengthen the case for causality, con-
sideration must be given to other possible underlying vari-
ables and to whether the relationship holds in other
populations.

A nonlinear relationship may exist between two variables that
would be inadequately described, or possibly even unde-
tected, by the correlation coefficient.

A data set may sometimes comprise distinct subgroups, for
example males and females. This could result in clusters of
points leading to an inflated correlation coefficient (Fig. 6). A
single outlier may produce the same sort of effect.

It is important that the values of one variable are not deter-
mined in advance or restricted to a certain range. This may
lead to an invalid estimate of the true correlation coefficient
because the subjects are not a random sample.

Another situation in which a correlation coefficient is some-
times misinterpreted is when comparing two methods of mea-
surement. A high correlation can be incorrectly taken to mean
that there is agreement between the two methods. An analy-
sis that investigates the differences between pairs of obser-
vations, such as that formulated by Bland and Altman [5], is
more appropriate.

Regression
In the A&E example we are interested in the effect of age (the
predictor or x variable) on ln urea (the response or y variable).
We want to estimate the underlying linear relationship so that
we can predict ln urea (and hence urea) for a given age.
Regression can be used to find the equation of this line. This
line is usually referred to as the regression line.

Note that in a scatter diagram the response variable is always
plotted on the vertical (y) axis.

Equation of a straight line

The equation of a straight line is given by y = a + bx, where the
coefficients a and b are the intercept of the line on the y axis
and the gradient, respectively. The equation of the regression
line for the A&E data (Fig. 7) is as follows: ln
urea = 0.72 + (0.017 × age) (calculated using the method of
least squares, which is described below). The gradient of this
line is 0.017, which indicates that for an increase of 1 year in
age the expected increase in ln urea is 0.017 units (and
hence the expected increase in urea is 1.02 mmol/l). The pre-

dicted ln urea of a patient aged 60 years, for example, is
0.72 + (0.017 × 60) = 1.74 units. This transforms to a urea
level of e1.74 = 5.70 mmol/l. The y intercept is 0.72, meaning
that if the line were projected back to age = 0, then the ln
urea value would be 0.72. However, this is not a meaningful
value because age = 0 is a long way outside the range of the
data and therefore there is no reason to believe that the
straight line would still be appropriate.

Method of least squares

The regression line is obtained using the method of least
squares. Any line y = a + bx that we draw through the points
gives a predicted or fitted value of y for each value of x in the
data set. For a particular value of x the vertical difference
between the observed and fitted value of y is known as the
deviation, or residual (Fig. 8). The method of least squares
finds the values of a and b that minimise the sum of the
squares of all the deviations. This gives the following formulae
for calculating a and b:

Usually, these values would be calculated using a statistical
package or the statistical functions on a calculator.

Hypothesis tests and confidence intervals

We can test the null hypotheses that the population intercept
and gradient are each equal to 0 using test statistics given by
the estimate of the coefficient divided by its standard error.

The standard error of the intercept = 
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Figure 6

Subgroups in the data resulting in a misleading correlation. All data: r
= 0.57; males: r = –0.41; females: r = –0.26.
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and for the gradient = 

where 

The test statistics are compared with the t distribution on
n – 2 (sample size – number of regression coefficients)
degrees of freedom [4].

The 95% confidence interval for each of the population coef-
ficients are calculated as follows: coefficient ± (tn – 2 × the
standard error), where tn – 2 is the 5% point for a t distribution
with n – 2 degrees of freedom.

For the A&E data, the output (Table 3) was obtained from a
statistical package. The P value for the coefficient of ln urea
(0.004) gives strong evidence against the null hypothesis,
indicating that the population coefficient is not 0 and that
there is a linear relationship between ln urea and age. The
coefficient of ln urea is the gradient of the regression line and
its hypothesis test is equivalent to the test of the population
correlation coefficient discussed above. The P value for the
constant of 0.054 provides insufficient evidence to indicate
that the population coefficient is different from 0. Although
the intercept is not significant, it is still appropriate to keep it
in the equation. There are some situations in which a straight
line passing through the origin is known to be appropriate for
the data, and in this case a special regression analysis can be
carried out that omits the constant [6].

Analysis of variance

As stated above, the method of least squares minimizes the
sum of squares of the deviations of the points about the
regression line. Consider the small data set illustrated in
Fig. 9. This figure shows that, for a particular value of x, the
distance of y from the mean of y (the total deviation) is the
sum of the distance of the fitted y value from the mean (the
deviation explained by the regression) and the distance from
y to the line (the deviation not explained by the regression).

The regression line for these data is given by y = 6 + 2x. The
observed, fitted values and deviations are given in Table 4.
The sum of squared deviations can be compared with the
total variation in y, which is measured by the sum of squares
of the deviations of y from the mean of y. Table 4 illustrates
the relationship between the sums of squares. Total sum of
squares = sum of squares explained by the regression
line + sum of squares not explained by the regression line.
The explained sum of squares is referred to as the ‘regression
sum of squares’ and the unexplained sum of squares is
referred to as the ‘residual sum of squares’.

This partitioning of the total sum of squares can be presented
in an analysis of variance table (Table 5). The total degrees of
freedom = n – 1, the regression degrees of freedom = 1, and
the residual degrees of freedom = n – 2 (total – regression
degrees of freedom). The mean squares are the sums of
squares divided by their degrees of freedom.

If there were no linear relationship between the variables then
the regression mean squares would be approximately the
same as the residual mean squares. We can test the null
hypothesis that there is no linear relationship using an F test.
The test statistic is calculated as the regression mean square
divided by the residual mean square, and a P value may be
obtained by comparison of the test statistic with the F distrib-
ution with 1 and n – 2 degrees of freedom [2]. Usually, this
analysis is carried out using a statistical package that will
produce an exact P value. In fact, the F test from the analysis
of variance is equivalent to the t test of the gradient for
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Figure 7

Regression line for ln urea and age: ln urea = 0.72 + (0.017 × age).
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Regression line obtained by minimizing the sums of squares of all of
the deviations.
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regression with only one predictor. This is not the case with
more than one predictor, but this will be the subject of a
future review. As discussed above, the test for gradient is
also equivalent to that for the correlation, giving three tests
with identical P values. Therefore, when there is only one pre-
dictor variable it does not matter which of these tests is used.

The analysis of variance for the A&E data (Table 6) gives a P
value of 0.006 (the same P value as obtained previously),
again indicating a linear relationship between ln urea and age.

Coefficent of determination

Another useful quantity that can be obtained from the analysis
of variance is the coefficient of determination (R2).

It is the proportion of the total variation in y accounted for by
the regression model. Values of R2 close to 1 imply that most
of the variability in y is explained by the regression model. R2

is the same as r2 in regression when there is only one predic-
tor variable.

For the A&E data, R2 = 1.462/3.804 = 0.38 (i.e. the same as
0.622), and therefore age accounts for 38% of the total varia-
tion in ln urea. This means that 62% of the variation in ln urea
is not accounted for by age differences. This may be due to
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Table 3

Regression parameter estimates, P values and confidence intervals for the accident and emergency unit data

Standard error
Coefficient of coefficient t P Confidence interval

Constant, or intercept 0.72 0.346 2.07 0.054 –0.01 to +1.45

ln urea 0.017 0.005 3.35 0.004 0.006 to 0.028

Figure 9

Total, explained and unexplained deviations for a point.
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Table 4

Small data set with the fitted values from the regression, the deviations and their sums of squares

Unexplained Explained deviation Total deviation
x (mean x = 16) y (mean y = 38) Fitted y = 6 + 2x deviation = y – fitted y = fitted y – mean y = y – mean y

10 22 26 –4 –12 –16

10 28 26 2 –12 –10

20 42 46 –4 8 4

20 48 46 2 8 10

19 40 44 –4 6 2

17 48 40 8 2 10

Sum of squares 120 456 576

Table 5

Analysis of variance for a small data set

Source of Degrees Sum of Mean
variation of freedom squares square F P

Regression 1 456 456 15.2 0.018

Residual 4 120 30

Total 5 576

squaresofsumTotal

squaresofsumRegression
R 2 =
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inherent variability in ln urea or to other unknown factors that
affect the level of ln urea.

Prediction

The fitted value of y for a given value of x is an estimate of the
population mean of y for that particular value of x. As such it
can be used to provide a confidence interval for the popula-
tion mean [3]. The fitted values change as x changes, and
therefore the confidence intervals will also change.

The 95% confidence interval for the fitted value of y for a par-
ticular value of x, say xp, is again calculated as fitted
y ± (tn – 2 × the standard error). The standard error is given by:

Fig. 10 shows the range of confidence intervals for the A&E
data. For example, the 95% confidence interval for the popu-
lation mean ln urea for a patient aged 60 years is 1.56 to 1.92
units. This transforms to urea values of 4.76 to 6.82 mmol/l.

The fitted value for y also provides a predicted value for an
individual, and a prediction interval or reference range [3] can
be obtained (Fig. 10). The prediction interval is calculated in
the same way as the confidence interval but the standard
error is given by:

For example, the 95% prediction interval for the ln urea for a
patient aged 60 years is 0.97 to 2.52 units. This transforms to
urea values of 2.64 to 12.43 mmol/l.

Both confidence intervals and prediction intervals become
wider for values of the predictor variable further from the mean.

Assumptions and limitations
The use of correlation and regression depends on some
underlying assumptions. The observations are assumed to be

independent. For correlation both variables should be random
variables, but for regression only the response variable y must
be random. In carrying out hypothesis tests or calculating
confidence intervals for the regression parameters, the
response variable should have a Normal distribution and the
variability of y should be the same for each value of the pre-
dictor variable. The same assumptions are needed in testing
the null hypothesis that the correlation is 0, but in order to
interpret confidence intervals for the correlation coefficient
both variables must be Normally distributed. Both correlation
and regression assume that the relationship between the two
variables is linear.

A scatter diagram of the data provides an initial check of the
assumptions for regression. The assumptions can be
assessed in more detail by looking at plots of the residuals
[4,7]. Commonly, the residuals are plotted against the fitted
values. If the relationship is linear and the variability constant,
then the residuals should be evenly scattered around 0 along
the range of fitted values (Fig. 11).

In addition, a Normal plot of residuals can be produced. This
is a plot of the residuals against the values they would be
expected to take if they came from a standard Normal distrib-
ution (Normal scores). If the residuals are Normally distrib-
uted, then this plot will show a straight line. (A standard
Normal distribution is a Normal distribution with mean = 0 and
standard deviation = 1.) Normal plots are usually available in
statistical packages.

Figs 12 and 13 show the residual plots for the A&E data. The
plot of fitted values against residuals suggests that the
assumptions of linearity and constant variance are satisfied.
The Normal plot suggests that the distribution of the residuals
is Normal.
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Table 6

Analysis of variance for the accident and emergency unit data

Source of Degrees Sum of Mean
variation of freedom squares square F P

Regression 1 1.462 1.462 11.24 0.004

Residual 18 2.342 0.130

Total 19 3.804
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Figure 10

Regression line, its 95% confidence interval and the 95% prediction
interval for individual patients.
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When using a regression equation for prediction, errors in
prediction may not be just random but also be due to inade-
quacies in the model. In particular, extrapolating beyond the
range of the data is very risky.

A phenomenon to be aware of that may arise with repeated
measurements on individuals is regression to the mean. For
example, if repeat measures of blood pressure are taken, then
patients with higher than average values on their first reading
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Figure 13

Normal plot of residuals for the accident and emergency unit data.
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Figure 12

Plot of residuals against fitted values for the accident and emergency
unit data.
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(a) Scatter diagram of y against x suggests that the relationship is nonlinear. (b) Plot of residuals against fitted values in panel a; the curvature of
the relationship is shown more clearly. (c) Scatter diagram of y against x suggests that the variability in y increases with x. (d) Plot of residuals
against fitted values for panel c; the increasing variability in y with x is shown more clearly.
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will tend to have lower readings on their second measure-
ment. Therefore, the difference between their second and
first measurements will tend to be negative. The converse is
true for patients with lower than average readings on their
first measurement, resulting in an apparent rise in blood pres-
sure. This could lead to misleading interpretations, for
example that there may be an apparent negative correlation
between change in blood pressure and initial blood pressure.

Conclusion
Both correlation and simple linear regression can be used to
examine the presence of a linear relationship between two
variables providing certain assumptions about the data are
satisfied. The results of the analysis, however, need to be inter-
preted with care, particularly when looking for a causal rela-
tionship or when using the regression equation for prediction.
Multiple and logistic regression will be the subject of future
reviews.
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This article is the seventh in an ongoing, educational
review series on medical statistics in critical care.

Previous articles have covered ‘presenting and
summarizing data’, ‘samples and populations’, ‘hypotheses
testing and P values’, ‘sample size calculations’,
‘comparison of means’ and ‘nonparametric means’.

Future topics to be covered include:

Introduction to correlation and regression
Chi-squared and Fishers exact tests
Analysis of variance
Further non-parametric tests: Kruskal–Wallis and Friedman
Measures of disease: PR/OR
Survival data: Kaplan–Meier curves and log rank tests
ROC curves
Multiple logistic regression.

If there is a medical statistics topic you would like
explained, contact us at editorial@ccforum.com.


