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Drugs targeting the renin-angiotensin-aldosterone system (RAAS) are the mainstay of therapy to retard the progression of
proteinuric chronic kidney disease (CKD) such as diabetic nephropathy. However, diabetic nephropathy is still the first cause
of end-stage renal disease. New drugs targeted to the pathogenesis and mechanisms of progression of these diseases beyond RAAS
inhibition are needed. There is solid experimental evidence of a key role of oxidative stress and its interrelation with inflammation
on renal damage. However, randomized and well-powered trials on these agents in CKD are scarce. We now review the biological
bases of oxidative stress and its role in kidney diseases, with focus on diabetic nephropathy, as well as the role of the Keap1-Nrf2
pathway and recent clinical trials targeting this pathway with bardoxolone methyl.

1. Background

Chronic kidney disease (CKD) is a serious public health
problem, which carries a high morbidity and mortality
[1]. CKD is characterized by a progressive loss of renal
function, chronic inflammation, oxidative stress, vascular re-
modeling, and glomerular and tubulointerstitial scarring.
CKD treatment still represents a clinical challenge. Diabetic
nephropathy (DN) is the leading cause of CKD and end-
stage renal disease (ESRD) [2]. The renin-angiotensin-
aldosterone system (RAAS) is a major pathway involved
in the pathogenesis and progression of DN [3, 4], and
RAAS blockade is an effective therapeutic strategy to reduce
proteinuria and slow progression of diabetic and nondiabetic
CKD. However targeting the system sets off compensatory
mechanisms that may increase angiotensin II, aldosterone,
or renin, and partial RAAS blockade does not prevent
progression in all CKD patients. Angiotensin II (AT II) is the
key mediator of the RAAS [5–7]. Animal models of experi-
mental diabetes, clinical trials, and metanalysis have clearly
demonstrated the effectiveness of angiotensin-converting

enzyme inhibitors (ACEIs) or angiotensin receptor blockers
(ARBs) therapy to improve glomerular/tubulointerstitial
damage, reduce proteinuria, and decrease CKD progression,
independently of blood pressure (BP) control [8–13]. Dual
RAAS blockade with ACEI plus ARB inhibits compensatory
AT II activity resulting from ACE-independent pathways
and limits compensatory AT production induced by AT1
receptor blockade. This combination reduced proteinuria
by 25–45% in DN [14–16]. Results are worse for DN with
diminished kidney function or nonproteinuric CKD with
ischemic renal injury, probably due to advanced structural
renal changes [13, 17, 18] and adverse effects; such acute
deterioration of renal function or hyperkalemia is more
frequent. The aldosterone antagonists spironolactone and
eplerenone reduce albuminuria by 30–60% and slow CKD
progression in experimental models [19–21] and clinical
studies [22–25] in DN. These agents abrogated the “aldos-
terone breakthrough” phenomenon and its proinflammatory
and profibrotic effects. ACEI/ARB therapy increases renin.
Aliskiren, a direct renin inhibitor, was beneficial in animal
models of diabetic/hypertensive nephropathy [26, 27] and
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reduced albuminuria in clinical DN [28]. In a multicenter
and double-blind, randomized clinical trial in hyperten-
sive type 2 DM patients with nephropathy, aliskiren plus
losartan at maximal dose was 20% more effective than
losartan/placebo to reduce albuminuria without adverse
effects, independent of BP control [29].

A number of other strategies have been tried. Adequate
BP and glucose control are part of standard care of DN
patients. Intensive glucose control has more impact on GFR
if early instituted in patients with type 1 DM but this may
not necessarily apply to patients with type 2 DM or with
advanced CKD [30]. A trial of the vitamin D activator
paricalcitol missed the primary endpoint of albuminuria
reduction in DN and caused a transient decrease in eGFR
[31]. The nephroprotective effect of statins on CKD found
in experimental models has not been conclusively proven
in clinical studies [32]. A 1-year dose-ranging study of
pirfenidone suggested better preservation of eGFR by pir-
fenidone in a small number of diabetic nephropathy patients
[33]. The selective endothelin antagonist atrasentan reduced
albuminuria in a short-term (8 weeks) study in a small
number of diabetic patients while receiving RAS inhibitors
but did not assess long-term renal function [34]. Heart
failure patients or with peripheral edema were excluded.

In spite of all this experimental and clinical evidence,
there are 35–40% of patients with DN that progress to
advanced renal disease or ESRD. The risk of progression
to ESRD is still clinically relevant in other proteinuric
nephropathies [35, 36]. Novel therapeutic targets are needed
in CKD that are based on a clear understanding of the
pathogenesis of CKD progression beyond the RAAS.

2. Oxidative Stress and Kidney Disease

Oxidative stress and inflammation promote kidney and
vascular injury [37–42]. Several factors induce ROS in renal
cells, such as inflammatory cytokines, Toll-like receptors,
Angiotensin II, bradykinin, arachidonic acid, thrombin,
growth factors, and mechanical pressure. NADPH oxidases,
now renamed Nox enzymes, are key ROS generators in
response to these stimuli [43, 44].

In acute kidney injury (AKI) induced by ischemic-
reperfusion injury, sepsis or acute rejections ROS contribute
of to endothelial and tubular injury [45, 46]. In murine
models of AKI, bardoxolone methyl decreased functional
and structural renal injury and increased the expression
of protective genes (Nrf2, PPARγ, HO-1) on glomerular
endothelium, cortical peritubular capillaries, tubules, and
interstitial leukocytes [47].

ROS contribute to hypertension-induced kidney and
vascular injury [41, 43, 48, 49]. The chronic complications of
diabetes are characterized by a defect in Nrf2 signaling and
its adaptive response to oxidative stress. This is a potential
mechanism for cellular stress hypersensitivity and tissue
damage [50]. Diabetic nephropathy is characterized by initial
hyperfiltration, albuminuria and subsequent loss of renal
function, thickening of basement membranes, expansion
of mesangial matrix and interstitial fibrosis, and podocytes

and renal cell damage [51]. ROS production in response to
hyperglycemia, protein kinase C (PKC), advanced glycosy-
lation end products (AGEs), free fatty acids, inflammatory
cytokines, and TGF-beta1 contributes to these changes [43,
44, 52–54]. These stimuli activate the NADPH/NADPH
oxidase system in renal cells. Oxidative stress induced by
hyperglycemia or glucose degradation products may cause
leukocyte or renal cell apoptosis and release of extracellular
matrix [52, 55–59]. PKC activates NF-kappaB, extending the
inflammatory response [60]. TGF-beta signaling is key to
the excessive matrix formation [61, 62]. The activation of
Nrf2 is increased in diabetic nephropathy and can ameliorate
mesangial damage via partial inhibition of TGF-beta1 and
reduction of extracellular matrix deposition [63]. ACE
inhibitors lower TGF-beta in urine from DN patients. In
rat DN glomerular HO-1 is increased, evidencing oxidative
stress [52, 64]. ROS can activate several transcription factors
such as NF-kappaB, AP-1, Sp1, which in turn affect the
expression of mediators of inflammation, fibrosis, and cell
death [52, 65] (Figure 1(a)).

ROS also contribute to renal injury in experimental
glomerulonephritis. In experimental anti-Thy 1 glomeru-
lonephritis, ROS enhance cell proliferation and matrix
accumulation and fibrosis and this is improved by the
antioxidant alpha-lipoic acid [66, 67]. ROS also regu-
late the immune response [68]. In nephrotoxic nephritis,
neutrophils promote glomerular TNF-alpha expression via
H2O2 production [69]. TNF-alpha is a key mediator of
glomerular injury [70]. Interstitial inflammatory leukocytes
in proliferative glomerulonephritis locally generate ROS and
contribute to sodium retention [71]. Angiotensin II pro-
motes ROS-mediated F-actin cytoskeleton rearrangement,
resulting in podocyte injury [72]. In cultured podocytes
AT1R signaling activates Rac-1 and NADPH oxidase to
produce additional ROS and downregulates the antioxidant
protein peroxiredoxin (Prdx2) [73]. In experimental passive
Heymann nephritis, a model of membranous nephropa-
thy, C5b-9 activation promotes ROS-mediated injury in
glomerular cells [74, 75]. In this regard, evidence for
oxidative stress, the glomerular neoexpression of aldose
reductase (AR) and SOD2, and the appearance of anti-
AR and anti-SOD2 autoantibodies was recently reported in
human membranous nephropathy suggesting that oxidative
stress may generate new autoimmune targets [76].

In lupus nephritis, multiple abnormalities in T and B cells
lead to autoimmune renal inflammation and ROS produc-
tion [77]. Nrf2-knockout mice showed impaired antioxidant
activity, increased oxidative stress, and a lupus-like autoim-
mune nephritis with glomerular injury, impaired kidney
function, and a shortened lifespan. Thus, Nrf2 deficiency
could lead to systemic autoimmune inflammation with
enhanced lymphoproliferation [78]. In antineutrophil cyto-
plasmic antibodies (ANCAs-) associated vasculitis, ANCA-
activated neutrophils and monocytes release MPO and
generate ROS, producing endothelial and tissue damage [79,
80]. ANCAs also promote ROS-dependent dysregulation of
neutrophil apoptosis [81] (Figure 1(a)).

In proteinuric nephropathies and independently of eti-
ology, the presence of albumin in urine activates proximal
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Figure 1: Continued.
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Figure 1: Overview of interrelation of ROS with other key pathogenic factors in kidney disease. (a) Role of ROS in diabetic nephropathy
and immune-mediated glomerulonephritis. ROS are induced in renal cells in response to high glucose, AGE, and cytokines. PKC, NADPH
oxidase, and mitochondrial metabolism are key to ROS generation. ROS activate signal transduction cascade and transcription factors,
leading to upregulation of genes and proteins involved in renal cell injury, glomerular and interstitial extracellular matrix deposition, and
recruitment of inflammatory cells, promoting albuminuria and progression of chronic kidney disease. (b) Role of albuminuria and ROS in
tubular damage and progression of CKD. Albuminuria injures PTC and activates them to release chemokines that attract macrophages and
promote tubulointerstitial fibrosis. Membrane NADPH oxidase is the main source of the ROS. It is possible the generation of other reactive
species, as carbonyl groups derived from abnormal oxidation of albumin and fatty acids bound to albumin. Abs: antibodies, AGE: advanced
glycation end products, ANCA: antineutrophil cytoplasmic antibodies, ECM: extracellular matrix, EMT: epithelial-mesenchymal transition,
ESRD: end-stage renal disease, MCP-1: monocyte chemoattractant protein-1, NADPH: nicotinamide adenine dinucleotide phosphate, NF-
kappa B: nuclear factor kappa B, PKC: protein kinase C, PTC: proximal tubular cell, RAAS: renin-angiotensin-aldosterone system, ROS:
reactive oxygen species, RCG: reactive carbonyl groups, TGF-β1: transforming growth factor beta 1.
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tubules to release chemokines that promote interstitial
inflammation [82]. Albumin uptake by tubular cells activates
PKC and ROS generation via NADPH oxidase which acti-
vates NF-kappaB and production of inflammatory mediators
[83, 84] (Figure 1(b)).

Accelerated atherogenesis is common in early and ad-
vanced stages of CKD [40, 85]. Oxidative stress contributes
to the Immune inflammation-Renal injury-Atherosclerosis
complex (IRA paradigm), a condition present in AKI and in
CKD, and accelerated atherogenesis [86, 87].

A simplified overview of several components of oxidative
stress and its interrelations with other key elements of
pathogenesis and progression in kidney disease is shown in
Figure 1(a).

3. Oxidative Stress and the Keap1-Nrf2 Pathway

Reactive oxygen species (ROS) include superoxide anion
(SOA), hydrogen peroxide (H2O2), and hydroxyl radical. ROS
are formed continuously as by-product of aerobic metab-
olism. Sources of ROS include the mitochondrial electron
transport chain, metabolism of arachidonate by cyclooxyge-
nases or lipoxygenases, cytochrome P450 enzymes, NADPH
oxidases, or nitric oxide synthetases [88]. ROS contribute
to killing bacteria, and genetic defects of NADPH oxidase
cause chronic granulomatosis [89]. However, ROS may cause
chemical damage to DNA, proteins, and unsaturated lipids
and lead to cell death. ROS contribute to multiple pathologic
processes [48, 90]. In this regard, homeostasis is maintained
through a complex set of antioxidants mechanisms that pre-
vent oxidative stress-induced injury. The main mechanisms
are enzymes that catalyze antioxidant reactions: glutathione
peroxidase, superoxide dismutase, catalase, Hem-oxygenase
(HO-1), NADPH-quinone oxidoreductase and glutamate-
cysteine ligase. These enzymes are encoded by stress-response
genes or phase 2 genes that contain antioxidant response
elements (AREs) in their regulatory regions [88, 91]. Nrf2
is the principal transcription factor that binds to the ARE
promoting transcription. Actin-tethered Keap1 is a cytosolic
repressor that binds to and retains Nrf2 in the cytoplasm,
promoting its proteasomal degradation. Inducers of phase
2 genes modify specific cysteine residues of Keap1 resulting
in conformational changes that render Keap1 unable to
repress Nrf2. Consequently, Nrf2 activates the transcription
of phase 2 genes. Oleanolic acid activates the ARE-Keap1-
Nrf2 pathway, resulting in reduced proinflammatory activity
of the IKK-beta/NF-kappaB pathway, increases production
of antioxidant/reductive molecules, and decreases oxidative
stress, thereby restoring redox homeostasis in areas of
inflammation. In various cell lines, this results in inhibition
of proliferation, promotion of differentiation and apoptosis
induction [91–93]. Synthetic analogues of oleanolic acid,
named triterpenoids, are potent anti-inflammatory agents
that activate the ARE-Keap1-Nrf2 pathway [91]. Bardox-
olone methyl, also known as CDDOMe, is a triterpenoid
whose nephroprotective action has been recently explored in
humans.

4. Antioxidant Agents in Kidney Disease

Epidemiological studies have demonstrated association
between inflammatory and oxidative stress markers with
cardiovascular and renal outcomes in CKD and ESRD [40,
94–96]. Experimental data in animal models of renal disease
suggest beneficial effects of antioxidants agents, but results in
human studies are limited and controversial.

In early experimental diabetes mellitus in hypertensive
rats, the administration of tempol, an antioxidant SOD
mimetic, corrected the oxidative imbalance and improved
oxidative stress-induced renal injury, decreasing albuminuria
and fibrosis [97]. Similar protection was afforded by the
antioxidants N-acetyl-L-cysteine (thiol) and kallistatin in
Dahl salt-sensitive rats [98, 99]. In spontaneously hyper-
tensive rats, a lifelong antioxidant-rich diet diminished the
severity of hypertension, improved oxidative stress and ame-
liorated abnormalities of antioxidant enzyme expressions
and activities in contrast to regular diet [100]. In sum-
mary, in models of hypertensive rats, synthetic and natural
antioxidants induced renal and endothelial protection with
reduction of oxidative stress. In a model of ischaemia reper-
fusion and cyclosporin toxicity after unilateral nephrectomy,
the blockage of the mitochondrial enzymes monoamine
oxidases with pargyline 28 days following surgery prevented
H2O2 production and improved renal function and renal
inflammation (lower IL-1β and TNF-α gene expression)
[101]. Pargyline administrated before ischemia reperfusion
significantly reduced apoptosis, necrosis, and fibrosis. This
effect was associated to decreased expression of TGF-β1, col-
lagen types I, III, and IV and to the normalization of SOD1,
catalase, and inflammatory gene expression. In models of
renal chronic failure (5/6 nephrectomy rats) [102], AST-120,
an oral carbonic adsorbent, improved the oxidative stress in
endothelial cells, measured as oxidized/unoxidized albumin
ratio. This effect was reached reducing the blood levels of
indoxyl sulfate, an uremic toxin that induces ROS. In another
model of remnant kidney, the administration of omega-3
fatty acids, an effective compound in mitigating atheroscle-
rosis, significantly lowered several components of oxidative
stress and markers of inflammatory and fibrotic response.
Furthermore, it attenuated tubulointerstitial fibrosis and
inflammation in the remnant kidney [103]. In anti-Thy1
glomerulonephritis, the treatment with parthenolide, an
anti-inflammatory agent related to the triterpenoid family,
diminished renal inflammation via NF-kappaB inhibition,
decreased MCP-1 and iNOS, and improved proteinuria,
tubular, and glomerular damage [104]. The beneficial effect
of exogenous antioxidants shown in animal models with
hypertension or chronic renal failure has not been demon-
strated in people with clinical hypertension [96, 105] or
CKD.

5. Nephroprotection by Bardoxolone Methyl

Bardoxolone was initially described as an agent that pro-
tected cells from radiation-induced damage (radiation mit-
igator) through Nrf2-dependent and -independent pathways
[106]. In humans, its potential antineoplasic activity was
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Figure 2: Overview of RAAS blockers and bardoxolone in pathogenic pathways in kidney diseases. RAAS blockers target several pathogenic
pathways in kidney injury, including those generating ROS. However, there are several escape mechanisms (aldosterone breakthrough,
increased prorenin effects) as well as less sensitive lesions (significant loss of kidney function, ischemic disease, persistent immune activity).
BARD promotes activation of the Nrf2 transcription factor, that is released of the inhibitory Keap1 protein and migrates to the nucleus
where it regulates transcription of genes containing ARE sequences in their promoters. These phase 2 response genes are collectively
involved in the reduction of ROS and inhibition of NF-kappaB. Thus, BARD could promote renal protection through antioxidants and anti-
inflammatory effects be promoting the activity of the Nrf2 transcription factor and inhibiting the activity of the NF-kappaB transcription
factor. ACE/ACEIs: angiotensin converting enzyme/angiotensin converting enzyme inhibitors, ARBs: angiotensin receptor blockers, AREs:
antioxidant response elements, BARD: bardoxolone methyl, CKD: chronic kidney disease, DRI: direct renin inhibitor, mineralocorticoid
receptor antagonists, Keap1: Kelch-like ECH-associated protein 1, MRA: mineralocorticoid receptor antagonists, NF-kappaB: nuclear factor
kappa B, Nrf2: nuclear factor (erythroid derive 2)-like 2, RAAS: renin-angiotensin-aldosterone system, ROS: reactive oxygen species, TGFβ-1:
transforming growth factor beta 1.

evaluated. In phase 1 trials in oncologic patients, bar-
doxolone unexpectedly improved kidney function, assessed
as serum creatinine and creatinine clearance, especially in
patients with previous CKD. These findings lead to evaluate
potential nephroprotective actions in patients with CKD and

type 2 DM, first in an exploratory phase II open-label trial
and then in a larger randomized clinical trial. In the first trial
[107], 20 patients older than 18 years, with moderate-severe
diabetic CKD, were evaluated after 8 weeks of bardoxolone
at increasing oral doses of 25 to 75 mg/day. Notably, there
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was a significant increase in estimated GFR at 4 weeks
(+2.8 mL/min/1.73 m2) with 25 mg/day and at 8 weeks
(+7.2 mL/min/1.73 m2) with 75 mg/day. Serum creatinine
and BUN decreased and creatinine clearance increased,
without changes in total excretion or tubular secretion of
creatinine. Unfortunately, GFR was not measured. Blood
pressure did not change, and albuminuria had a small albeit
not statistically significant increase. Markers of vascular
injury and inflammation were improved by treatment with
bardoxolone, suggesting a potential beneficial effect on
endothelial injury. There were not changes in urine NGAL
or NAG adjusted for creatinine concentration, suggesting
lack of significant renal toxicity associated to bardoxolone.
There were few adverse effects, mainly muscle spasms and
a self-limited increase of hepatic enzymes without a true
hepatic toxicity. A short followup and an open-label design
without control group are major limitations of this study,
and they do not allow drawing solid conclusions about the
efficacy and long-term safety of this drug on relevant renal
outcomes.

The beneficial effect on eGFR was confirmed in a larger,
multicenter, double-blind, randomized trial [108]. This trial
randomized 227 patients with moderate-severe CKD and
type 2 DM, with stable treatment with ACEI/ARB, to bardox-
olone 25, 75 or 150 mg/day or placebo for 52 weeks. Patients
were categorized by GFR, urinary albumin-creatinine ratio
(UACR), and HbA1c. Patients with hepatic dysfunction or
recent cardiovascular events were excluded. A significant
improvement in the primary endpoint (change of GFR at 24
weeks) was observed in all bardoxolone groups (+8.2, +11.4
and +10.4 mL/min/1.73 m2 resp.) versus 0 mL/min/1.73m2

in the placebo group. The secondary endpoint (change
of GFR at 52 weeks) also was significantly improved in
bardoxolone groups (+5.8, +10.5 and +9.3 mL/min/1.73 m2

resp. versus 0). More patients in the placebo group had a GFR
decrease ≥25% with respect to baseline value at 24 and 52
weeks. Additionally, serum BUN, phosphorus, and uric acid
were significantly lower at 24 and 52 weeks in all bardoxolone
groups when compared to placebo.

Potential unwanted effects included a mild but significant
increase of UACR and decreased serum magnesium. UACR
increased in patients receiving 75 or 150 mg/day bardoxolone
versus placebo. This was observed at 24 and 52 weeks of
treatment, but UACR decreased when patients stopped the
therapy, suggesting that this effect is reversible. There was
an inverse correlation between changes in serum BUN,
phosphorus, uric acid, magnesium, and changes in eGFR,
as well as a direct correlation between changes in eGFR and
changes in UACR, suggesting that changes in eGFR may be
the basis for the other observed changes. Interestingly, there
was a trend toward higher systolic BP values in the 75 mg
bardoxolone group, which was observed despite weight loss
and that will merit close attention in further trials. The main
adverse effects were muscle spasms (63% of patients in the
75 mg group) and nausea (25%).

Another significant effect was loss of body weight. This
appears to be related to decreased appetite and/or nausea
and may be a welcome addition to the therapeutic arma-
mentarium for patients with increased body mass index

(BMI). Indeed, weight loss was more evident in patients with
higher (>35 kg/m2) BMI (mean change −10 kg). However,
and perhaps worryingly, it was also observed in patients with
normal BMI (−3 kg over 52 weeks).

The increased eGFR and effects on systolic BP and albu-
minuria are interesting results on surrogates renal variables
which requires more long-term studies. These parameters
and, more importantly, cardiac and renal hard end-points
(cardiovascular death and progression to ESRD) will be
studied at 2 years of followup in an ongoing randomized
clinical trial in 1600 patients older than 18 years with
advanced CKD (stage 4) and type 2 DM [109]. This study will
compare bardoxolone versus placebo in patients receiving
standard of care.

6. Conclusions and Recommendations

RAAS blockade is the mainstay of current therapy to slow
progression of diabetic and nondiabetic CKD, but this
strategy is frequently not enough. Consequently, an impor-
tant number of patients progress to ESRD. There is solid
experimental evidence for a key role of ROS and oxidative
stress and their interplay with RAAS and inflammation, in
the pathogenesis of CKD. Bardoxolone methyl, a novel syn-
thetic triterpenoid with antioxidant and anti-inflammatory
properties, has shown to improve kidney function in patients
with advanced DN already receiving RAAS blockers, with
few adverse events. This may be a welcomed addition to the
therapeutic armamentarium if data are confirmed in larger,
longer trials (Figure 2). However, the relative importance
and eventual management of the observed influence of
bardoxolone on UACR, magnesium, and body weight must
be further studied.
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[82] M. Gómez-Chiarri, A. Ortiz, S. González-Cuadrado et al.,
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