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Abstract

Objective

It is increasingly common to find patients affected by a combination of type 2 diabetes melli-

tus (T2DM), dyslipidemia (DLP) and periodontitis (PD), which are chronic inflammatory dis-

eases. More studies able to capture unknown relationships among these diseases will

contribute to raise biological and clinical evidence. The aim of this study was to apply associ-

ation rule mining (ARM) to discover whether there are consistent patterns of clinical features

(CFs) and differentially expressed genes (DEGs) relevant to these diseases. We intend to

reinforce the evidence of the T2DM-DLP-PD-interplay and demonstrate the ARM ability to

provide new insights into multivariate pattern discovery.

Methods

We utilized 29 clinical glycemic, lipid and periodontal parameters from 143 patients divided

into five groups based upon diabetic, dyslipidemic and periodontal conditions (including a

healthy-control group). At least 5 patients from each group were selected to assess the tran-

scriptome by microarray. ARM was utilized to assess relevant association rules considering:

(i) only CFs; and (ii) CFs+DEGs, such that the identified DEGs, specific to each group of

patients, were submitted to gene expression validation by quantitative polymerase chain

reaction (qPCR).
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Results

We obtained 78 CF-rules and 161 CF+DEG-rules. Based on their clinical significance, Peri-

odontists and Geneticist experts selected 11 CF-rules, and 5 CF+DEG-rules. From the five

DEGs prospected by the rules, four of them were validated by qPCR as significantly different

from the control group; and two of them validated the previous microarray findings.

Conclusions

ARM was a powerful data analysis technique to identify multivariate patterns involving clini-

cal and molecular profiles of patients affected by specific pathological panels. ARM proved

to be an effective mining approach to analyze gene expression with the advantage of includ-

ing patient’s CFs. A combination of CFs and DEGs might be employed in modeling the

patient’s chance to develop complex diseases, such as those studied here.

Introduction

As a metabolic disorder, diabetes mellitus (DM) is caused either by a deficiency of insulin’s

mechanism of action, by an insulin secretion deficit, or by both [1]. As recently reported by

Jeong et al. [2], the prevalence of DM has increased exponentially in recent decades, being

expected to affect 693 million patients within 25 years. Of all adults newly diagnosed with DM,

more than 90% are affected by type 2 diabetes mellitus (T2DM) [3]. According to Jeong et al.

[2], in 2017 the estimated total global healthcare expenditure considering DM was USD 850

billion, with a relevant proportion of these costs arising from the treatment of various compli-

cations associated with the progression of DM. Over a period of years most T2DM patients

progress to three major groups of complications: microvascular, macrovascular, and miscella-

neous [4]. Regarding miscellaneous T2DM complications, Jeong et al. [2] recently reported

that dyslipidemia had the highest relative incidence risk of comorbidities that evolved after a

diagnosis of T2DM in Koreans. In 2010, the third cause of premature deaths (before the age of

70 years) in Brazilian subjects was regarded as diabetes, with high fasting plasma glucose and

high body mass index (BMI) being some of the major risk factors related to diabetes mortality

(53,353 individuals, or 12%) [5].

Dyslipidemia (DLP) is a metabolic dysfunction that results from an increased level of lipo-

proteins in the blood [6, 7]. Some studies have revealed that DLP could be one factor associ-

ated with DM-induced immune cell alterations [7–9]. It is believed that pro-inflammatory

cytokines produce an insulin resistance syndrome similar to that observed in DM [7, 9]. Find-

ings concerning chronically elevated levels of inflammatory markers suggest that poor glyce-

mic control of T2DM patients could increase risk for cardiovascular disease and infectious

diseases, including periodontitis [8, 10].

Periodontitis (PD) is a common chronic inflammatory disease characterized by destruction

of the periodontium, which is the supporting structures of the teeth, such as gingiva, periodon-

tal ligament and alveolar bone [11]. PD is a microbially induced oral disease, in which the bac-

terial biofilm is formed on the surfaces of teeth providing a chronic microbial stimulus that

elicits a local inflammatory response in the gingival tissues [12]. PD is also considered an

inflammatory disorder influenced by factors such as genetics [13], immune system reactions,

smoking [14] and the occurrence of systemic diseases, including DM [15]. Periodontal infec-

tion and DM have a two-way relationship [16] and PD can be recognized as the sixth largest
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complication associated with DM [17]. In response to bacterial products after periodontium

infection, there are local and systemic elevations of pro-inflammatory cytokines [18], which

may induce alterations in the metabolism of lipids, contributing to DLP in these patients [7,

9]. Some studies indicate an association between elevation in blood lipoproteins and alter-

ations in the periodontal condition [6, 19–21].

Currently, the interplay of T2DM, DLP and PD has been increasingly affecting patients

worldwide. Those are chronic inflammatory diseases, including systemic T2DM and DLP,

while PD is localized at the periodontium of the patient. Growing evidence indicates a biologi-

cal connection among T2DM-DLP-PD, demonstrated by the finding that these patients pres-

ent a hyperinflammatory state promoted by systemically increased levels of pro-inflammatory

molecules, as reviewed by Soory et al. [22]. Moreover, all of them are considered chronic and

complex diseases, since they are caused by a combination of genetic, environmental and life-

style factors [23]. Therefore, more studies focused on detecting unknown relationships in data-

sets of diseased patients will contribute to a better understanding of the interplay of T2DM,

DLP and PD.

Association rule mining (ARM) has been widely used to discover hidden relationships

established by multiple attributes that characterize a complex process under investigation. It

has several applications in the medical domain (for instance, see [24–26]) promoting highly

interpretable explanations without requiring data mining expertise [27]. In addition to

interpretability, another reason that makes ARM a widely used data mining technique is that

the obtained rules are capable of summarizing the joint impact of several factors [27, 28].

Thus, ARM is a powerful technique to assess the supposed interplay of T2DM, DLP and PD.

The ARM was previously used to assess the T2DM survival risk [29], and to determine the

T2DM comorbidities in large amounts of clinical data [30]. Ramezankhani et al. [31] showed

that ARM is a useful approach to determine the most frequent subsets of attributes in people

who will develop diabetes. However, this is the first study using ARM to simultaneously iden-

tify the potential clinical patterns and genetic markers of this group of diseases, thus revealing

clinical features and differentially expressed genes capable of properly characterizing these

chronic inflammatory diseases.

The outline of this paper is as follows. Section Materials and Methods presents the literature

review and our proposed methodology. Section Results and Discussion presents the experi-

mental results and an analytical explanation of their implications, followed by concluding

remarks in Section Conclusion.

Materials and methods

Datasets

Studied population. This research was approved by the Ethics in Human Research Com-

mittee of School of Dentistry at Araraquara (UNESP; Protocol number 50/06). Patients who

voluntarily sought dental treatment at the School of Dentistry at Araraquara (UNESP), Brazil,

were informed about the aims and methods of the study, providing their written consent to

participate; therefore, the whole study was conducted according to the ethical principles of the

Declaration of Helsinki.

The patients were characterized by the following criteria: age from 35 to 60 years, presence

of at least 15 natural teeth and similar socioeconomic level. Pre-selected patients, according to

their medical history, had their glycemic and lipid profiles investigated by biochemical blood

analysis, and were submitted to full periodontal examination. Then, 143 patients were divided

into five groups based upon diabetic, dyslipidemic and periodontal conditions:
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1. Group 1: poorly controlled T2DM with DLP and PD. Number of subjects = 28.

2. Group 2: well-controlled T2DM with DLP and PD. Number of subjects = 29.

3. Group 3: DLP and PD. Number of subjects = 29.

4. Group 4: systemically healthy individuals with PD. Number of subjects = 29.

5. Group 5: systemically and periodontally healthy individuals (control group). Number of

subjects = 28.

No patient in those five groups presented: history of antibiotic therapy in the previous 3

months and/or nonsteroidal anti-inflammatory drug therapy in the previous 6 months, preg-

nancy or use of contraceptives or any other hormone, current or former smoking addiction,

history of anemia, periodontal treatment or surgery in the preceding 6 months, use of hypoli-

pidemic drugs such as statins or fibrates, and history of diseases that interfere with lipid metab-

olism, such as hypothyroidism and hypopituitarism.

Additionally, patients enrolled in this study were previously investigated regarding malo-

naldehyde (MDA) quantification and some inflammatory cytokine levels [32], micronuclei

frequency (DNA damage evaluation) [33] and lipid peroxidation [32]. In these previous stud-

ies, power analysis based on a pilot study determined that at least 20 patients in each group

would be sufficient to assess differences in those molecules with 90% power and 95% confi-

dence interval.

Biochemical, physical and periodontal evaluations. Clinical criteria to include each

patient in the studied group are presented in what follows. Subjects were submitted to physical

and anthropometric examination for evaluating obesity such as abdominal circumference

(cm), height (m), weight (kg), waist (cm), hip (cm) and body mass index [33].

After a 12-hour overnight fast, each subject was referred to a clinical analysis laboratory

that collected a blood sample for evaluating: glycated haemoglobin (HbA1c) by enzymatic

immunoturbidimetry, fasting plasma glucose (mg/dL) by the modified Bondar & Mead

method, high-sensitivity C-reactive protein by the nephelometric method and insulin levels

by the chemiluminescence method (U/L). The homeostasis model assessment (HOMA) was

evaluated to calculate insulin resistance (IR). The diagnosis of T2DM was made by an endocri-

nologist who monitored the glycemic levels of each patient by evaluation of HbA1c; being

patients considered poorly controlled (HbA1c�8.0%) or well-controlled (HbA1c�7.0%).

Normoglycemic (nondiabetic) individuals presented fasting glucose levels <100 mg/dL and

HbA1c <5.7% [34–36].

The lipid profile [triglycerides (TG), total cholesterol (TC), and high density lipoprotein

(HDL)] was performed by enzymatic methods. Low density lipoprotein (LDL) was determined

by the Friedewald formula. Individuals with transitory DLP were not included here by consid-

ering the highest cutoff values: TC�240 mg/dL, LDL�160 mg/dL, HDL <40 mg/dL, and

TGs�200 mg/dL, according to the 2018 AHA / ACC / AACVPR / AAPA / ABC / ACPM /

ADA / AGS / APhA / ASPC / NLA / PCNA Guideline on the Management of Blood Choles-

terol [37]. It was also considered in this analysis the non-HDL-cholesterol (N-HDL-C), given

by N-HDL-C = TC—HDL, being the abnormal cutoff value�130 mg/dL, which is considered

to be a good predictor of cardiovascular disease (CVD) risk [38].

Diagnosis of periodontitis in at least 4 non-adjacent teeth, including local signs of inflam-

mation, loss of the connective tissue attachment of gingiva to teeth (clinical attachment loss,

CAL�4mm), and tissue destruction (presence of deep periodontal pockets�6mm) was

adopted according to the American Academy of Periodontology [39]. Each subject underwent

a periodontal clinical examination performed at 6 sites per tooth. The presence of deep
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periodontal pockets�6mm with CAL�5mm and bleeding on probing in at least 8 sites dis-

tributed in different quadrants of the dentition were the criteria of severe periodontitis [40].

Regarding the mutagenesis analysis, the description of the peripheral blood sampling, cell

culture and cytokinesis-block micronucleus (CBMN) assay can be found in Corbi et al. [33].

Table 1 summarizes the clinical features collected from the 143 investigated subjects. The

clinical feature dataset is available in S1 File.

Isolation of peripheral blood mononuclear cells, RNA extraction and microarray analy-

sis. Patients with greater glycemic, lipid and periodontal homogeneity parameters had their

transcriptome investigated (30 subjects in total) from peripheral blood mononuclear cells

(PBMCs), divided into: Group 1 (number of subjects = 5), Group 2 (number of subjects = 7),

Group 3 (number of subjects = 6), Group 4 (number of subjects = 6) and Group 5 (number of

subjects = 6). PBMCs were isolated, and total RNA was extracted using TRizol (Invitrogen,

Rockville, MD, USA) and purified by an RNeasy Protection Mini Kit (Qiagen, Hilden, Ger-

many) according to the manufacturer’s instructions. RNA was quantified by a NanoVue Spec-

trophotometer (GE Healthcare Life Sciences, Oslo, Norway), and its integrity was assessed by

agarose gel electrophoresis (1%). Only RNA samples in the λ(260/280) and λ(260/230) reasons

between 1.8 and 2.2 were used for microarray and quantitative real-time PCR analyses. Micro-

array data were generated from 500 nanograms of RNA as the initial input of each sample in

the GeneChip IVT Labeling Kit and hybridized to the U133 Plus 2.0 (Affymetrix Inc., Santa

Clara, CA, USA) arrays, which comprise 54,675 human transcripts. The U133 Plus 2.0 arrays

were scanned twice using the GeneChip Scanner 3000 7G (Affymetrix Inc., Santa Clara, CA,

USA). The Robust Multichip Average (RMA) strategy was used to preprocess raw .CEL files

[41, 42]. This strategy performs background correction through a normal-exponential convo-

lution model, quantile normalizes the probe intensities and summarizes them into probeset-

level quantities using an additive model fit through the median-polish strategy [43]. The gene

expression dataset is available in S2 File.

Association rule mining

Let An×m be a binary data matrix with the row index set X = {1, 2, . . ., n} and the column index

set Y = {1, 2, . . ., m}. Each row represents a transaction, and each column represents an item.

Each element aij 2 A holds the binary relationship between transaction i and item j. Let (X, Y)

denote the entire matrix A and (I, J) denote a submatrix of A with I� X and J� Y.

Definition 1 A subset J = {j1, . . ., js}� Y is called an itemset.
For a subset J� Y, we define J# = {x 2 X|axj = 1, 8j 2 J} as the set of transactions common to

all the items in J. The support of an itemset J is given by σ(J) = |J#|.
The problem of mining all frequent itemsets can be described as follows: determine all sub-

sets J� Y such that σ(J)�minSup, where minSup is a user-defined parameter.

To reduce the computational cost of the frequent itemset (pattern) mining problem, some

algorithms mine only the maximal frequent itemsets, i.e., those frequent itemsets from which

all supersets are infrequent and all subsets are frequent. The problem of this approach is that it

leads to loss of information since the supports of the subsets of the maximal frequent itemsets

are not available. An option to reduce the computational cost of the frequent pattern mining

problem without loss of information is to mine only the closed frequent itemsets. A frequent

itemset J is called closed if there exists no superset H âŠƒ J with H# = J#. Remarkably, the set of

closed frequent itemsets uniquely determines the exact frequency of all frequent itemsets, and

it can be orders of magnitude smaller than the set of all frequent itemsets [44]. Therefore, this

approach drastically reduces the number of rules that have to be presented to the user, without

any information loss [45].
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Table 1. Description of the clinical features of the 143 subjects enrolled in this study (%ts stands for % of tooth sites).

Characteristic # Attribute Alias Unit Domain

Demographic 1 Sex Sex 1. Female

2. Male

2 Age Age yr. 1.�50

2. >50

Cardiovascular and obesity risk 3 Body Mass Index BMI m/kg2 1. Underweight: <18.5

2. Normal weight: [18.5, 25)

3. Overweight: [25, 30)

4. Obesity class I: [30, 35)

5. Obesity class II e III:�35

4 Waist / Hip Ratio WHR cm/cm (see Table 2)

5 Abdominal Circumference AC cm (see Table 3)

Type 2 Diabetes Mellitus 6 Fasting Plasma Glucose FPG mg/dL 1. Normoglycemic: <100

2. Prediabetes or high-risk: [100, 126)

3. Established diabetes:�126

7 Insulin INS U/L 1. Normal:�25

2. Altered: >25

8 Glycated Haemoglobin HbA1c % 1. Normoglycemic: <5.7

2. Prediabetes or high-risk: [5.7, 6.5)

3. Decompensation (transitory): [6.5, 8)

4. Decompensation (defined):�8

9 HOMA-IR HOMA-IR 1. Normal:�2.15

2. Altered: >2.15

Dyslipidemia 10 Total Cholesterol TC mg/dL 1.<150 (Optimal)

2. [150, 200)

3. [200, 240)

4.�240

11 HDL cholesterol HDL mg/dL 1. <40 (Low)

2. [40, 60]

3. >60

12 LDL cholesterol LDL mg/dL 1. <100 (Optimal)

2. [100, 130)

3. [130, 160)

4. [160, 190)

5.�190

13 Triglycerides TG mg/dL 1. <150 (Optimal)

2. [150, 200)

3.�200

14 Non-HDL-Cholesterol N-HDL-C mg/dL 1. <130 (Optimal)

2. [130, 160)

3. [160, 190)

4. [190, 220)

5.�220

(Continued)
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Table 1. (Continued)

Characteristic # Attribute Alias Unit Domain

Periodontal 15 Visible Plaque VP %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

16 Gingival Index bleeding GI %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

17 Bleeding on probing BOP %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

18 Total Number of Teeth TNT 1. low number teeth:�20

2. high number teeth: >20

19 Interproximal periodontal pocket depth (PPDi)�3mm PPDi3mm %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

20 PPDi = 4—5mm PPDi4-5mm %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

21 PPDi� 6mm PPDi6mm %ts 1. Low: <30

2. Medium and High:�30

22 Interproximal clinical attachment loss (CALi)�2mm CALi2mm %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

23 CALi = 3-4mm CALi3-4mm %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

24 CALi � 5mm CALi5mm %ts 1. Low: <30

2. Medium: [30, 50]

3. High: >50

25 Suppuration SUPP %ts 1. Abscence: <1

2. Moderate: [1, 16)

3. Severe:�16

Mutagenesis 26 Nuclear Division Index NDI 1. Low: <1.87

2. Moderate: [1.87, 2.08)

3. High:�2.08

27 Frequency of Binucleated cells with Micronuclei MNCF % 1. Low: <3.05

2. Moderate: [3.05, 7.2)

3. High:�7.2

28 Micronucleus Frequency MNF % 1. Low: <3.5

2. Moderate: [3.5, 6.1)

3. High:�6.1

29 Frequency of Nucleoplasmic Bridges FNB % 1. Low: <1.21

2. Moderate: [1.21, 2.7)

3. High:�2.7

https://doi.org/10.1371/journal.pone.0240269.t001
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Definition 2 An association rule (AR) is an expression of the form J)H, where J and H are
itemsets, H \ J = ;. J is called antecedent (or head) and H is called consequent (or tail) of the
rule.

The support of an association rule J) H is the number of transactions that contain the

itemset J[H: σ(J)H) = σ(J[H). The confidence of an association rule J)H measures its pre-

dictive accuracy and is given by conf(J)H) = σ(J)H)/σ(J). A rule is considered a strong rule
if conf(J) H)�minConf, where minConf is a user-defined parameter. The completeness (or

recall) is given by comp(J) H) = σ(J)H)/σ(H). Remark that confidence and completeness

are not symmetric measures because by definition they are conditional on the antecedent and

consequent, respectively. The metric lift measures the degree of surprise of a rule and is given

by lift(J)H) = σ(J) H)/(σ(J) × σ(H)).

A user can be interested in a more specific set of association rules, where the consequents of

the rules describe a target attribute. These rules are known as class association rules (CARs).

Definition 3 A class association rule (CAR) is an expression of the form J) c, where J is an
itemset and c is a class label (a target item).

In this work, each item is given by an attribute-value pair. Thus, for instance, FPG = 3 is an

item; {AC = 3, FPG = 3, HbA1c = 4} is an itemset; and {AC = 3, FPG = 3, HbA1c = 4})

{GI = 3, BOP = 3} is an association rule.

Given that the result to be presented to the user is more parsimonious, we will focus on

closed frequent itemsets here. The patterns will be mined using the RIn-Close_CVCP algo-

rithm [46, 47], which is a fast algorithm and avoids the necessity of the itemization step [47].

Its implementation is available at https://github.com/rveroneze/rinclose.

Association rule mining from the clinical features alone. T2DM, DLP, and PD have

their own specific characteristics (features or attributes) generally taken as decision variables

to perform a diagnosis. However, given the increasing incidence of patients affected by differ-

ent interplays of T2DM-DLP-PD, we originally used ARM to assess whether there are joint

attributes present in patients with these comorbidities that might indicate the biological inter-

relationship among them.

Fig 1 shows a flowchart that summarizes the process of association rule mining from the

dataset containing solely clinical features. From the clinical features collected from the investi-

gated patients (presented in Table 1), we selected the most clinically relevant to diagnose

T2DM, DLP and PD diseases isolated. We did not use the mutagenesis attributes because they

are not applied in a clinical routine for disease diagnosis. The following 17 clinical features

were selected for this analysis: BMI, WHR, AC, FPG, HbA1c, HOMA-IR, TC, HDL, LDL, TG,

N-HDL-C, GI, BOP, PPDi6mm, CALi34mm, CALi5mm and SUPP. Thus, the dataset to be

analyzed has 143 subjects and 17 attributes. BMI, WHR and AC attributes represent character-

istics that confer cardiovascular and obesity risk, according to the World Health Organization

[19, 48]. The N-HDL-C attribute is considered a good predictor of CVD risk [38]. The glyce-

mic parameters: FPG, HbA1c and HOMA-IR (Homeostasis Model Assessment to calculate

the insulin resistance) are considered essential for the diagnosis of T2DM and its metabolic

control [35, 36]. TC, HDL, LDL and TG are important lipid parameters to diagnose DLP [37].

Regarding periodontitis, the American Academy of Periodontology (AAP) utilizes the clinical

periodontal parameters: GI, BOP, PPDi6mm, CALi3-4mm, CALi5mm and SUPP [39, 40].

The parameters used in ARM were: minSup = 14 and minConf = 70%. A rule was consid-

ered interesting whenever at least one of the following attributes is present: PPDi6mm = 2; GI,

BOP, CALi34mm, CALi5mm, SUPP 2{2, 3}. We followed those clinical periodontal parame-

ters, as recommended by the AAP, because they indicate periodontal disease activity. Those

selected attributes are considered relevant to identify individuals undoubtedly affected by

moderate or severe periodontitis, allowing us to check if there is an evident association
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between both systemic diseases (T2DM and DLP) and PD. In this way, we corroborate the

existence of a T2DM-DLP-PD biological interrelationship.

In addition, we performed an analysis focusing on the cardiovascular and obesity risk attri-

butes to determine whether they are associated with periodontal disease. Therefore, we per-

formed an analysis with only the cardiovascular and obesity risk attributes in the antecedent

part of the rule (BMI, WHR, AC, FPG, N-HDL-C), and the same attributes in the consequent

part of the rule. We also performed an analysis comprising only T2DM patients presenting

diabetic dyslipidemia, which are the 10 patients from Groups 1 and 2 having TG�204 mg/dL

and HDL <38 mg/dL [49, 50].

The results of these analysis will be presented and discussed in Section Results and

Discussion.

Association rule mining from the clinical features and gene expression datasets in con-

junction. The transcriptome of the patients studied here obtained from PBMCs by microar-

ray was analyzed utilizing bioinformatics and statistical tools, as described in topic Isolation of

peripheral blood mononuclear cells, RNA extraction and microarray analysis. Those analyses,

developed as regularly, produced a list of differentially expressed genes (DEGs). However, in

that kind of analysis the gene expression profile obtained by the probesets did not consider the

patient’s clinical features (CFs). In conventional bioinformatics and statistical tools, adequate

clinical diagnosis of each group of patients is used to determine whether a DEG is related to a

specific pathological condition. Here, we used ARM to identify the joint interplay of CFs and

DEGs, having the advantage of taking together CFs and genetic markers to identify each com-

bination of T2DM-DLP-PD complex diseases. This approach might contribute to better iden-

tifying new targets for the diagnosis of each combination of those complex diseases, as well as

for modeling the patient’s chance to develop them.

Fig 2 shows a flowchart that summarizes the process of class association rule mining from

the dataset containing both CFs and DEGs. First, we performed the preprocessing of the

Fig 1. Flowchart that summarizes the process of association rule mining from the dataset containing solely clinical features.

https://doi.org/10.1371/journal.pone.0240269.g001
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original gene expression dataset (GED), which has the gene expression profile of 54,675 genes

obtained from the transcriptome of the 30 subjects, in the following three steps:

1. Gene selection: we filtered out genes with small profile variance, in specific we filtered

out gene expression profiles with variation less than 0.1 when considering the difference

between its maximum and minimum values. It was done because gene profiling experi-

ments typically include genes that exhibit little variation in their profile and these genes are

usually uninteresting. Thus, these genes are commonly removed from the analysis. With

this filter, 50.441 genes were removed, leaving 4.234 genes for the subsequent analysis.

2. Normalization: we used zero-mean normalization to adjust the values measured on different

scales to a common scale. Let g be the gene expression profile of a gene g for the 30 subjects

of our study. The normalized gene expression profile ĝ is given by ĝ ¼ ðg � avgðgÞÞ=stdðgÞ,
where avg(g) and std(g) are, respectively, the sample average and the sample standard devia-

tion of g.

3. Discretization: if a normalized gene expression value was above 1.0, it was considered

over-expressed (and it is represented by the value 1 in our results); if a normalized gene

expression value was below -1.0, it was considered under-expressed (and it is represented

by the value -1 in our results); otherwise the gene expression value was considered uninter-

esting and was ignored.

Fig 2. Flowchart that summarizes the process of class association rule mining from the dataset containing both clinical features (CFs) and

differentially expressed genes (DEGs).

https://doi.org/10.1371/journal.pone.0240269.g002
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We performed the mining of CARs in this preprocessed GED with the following parame-

ters: minSup = 3 and minConf = 90%. The group of each individual (Groups 1 to 5) is the tar-

get attribute. The result, containing 118 CARs, was used for a new phase of gene selection as

described in what follows. The 118 CARs have a coverage of 1081 genes (this means that

1081 genes are presented in these rules). Of these 1081 genes, 17 genes are present in con-

flicting rules, exhibiting the same value for the control group (Group 5) and for the other

groups (Groups 1 to 4). Therefore, these 17 genes were discarded. Thus, 1081 − 17 = 1064

genes were selected for the new phase of analysis, together with the 29 CFs listed in Table 1.

In this new phase of analysis, we performed the mining of CARs with the same parameters,

i.e., minSup = 3 and minConf = 90%. The results will be presented and discussed in Section

Results and Discussion.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)

Real-Time Analysis

To biologically validate the genes selected from the CARs considering the CFs+DEGs, we con-

ducted RT-qPCR analyses in all 143 patients (including the 30 patients who were analyzed

by microarray) distributed into the 5 groups, according to the subitem Studied population.

Reverse transcription reactions were performed utilizing the High Capacity Kit (Thermo

Fisher Scientific). Complementary DNA (cDNA) was used to perform qPCR reactions for the

selected DEGs, which are represented as probe sets in Table 7. To investigate the expression of

the probe (or gene) identified by the rule selected for each group of patients, the TaqMan1

gene expression assay specific for each of these “target” genes was utilized. Each target gene is

normalized by a gene considered an endogenous control of the qPCR reactions, in this case,

we utilized the GAPDH -Glyceraldehyde-3-Phosphate Dehydrogenase gene (Hs02758991_g1),

due to its housekeeping expression pattern.

All reactions were performed in duplicate utilizing the 7500 Real-Time PCR-System

(Thermo Fisher Scientific, Foster City, CA, USA). To calculate gene expression, Expression

Suite Software was used (Thermo Fisher Scientific, Foster City, CA, USA), which employs the

comparative Cycle Threshold (ΔCt) method for multivariate data analysis. Statistical analysis

to find differences in the gene expression by the values of 2−ΔCt between the groups was per-

formed by the Mann-Whitney test, utilizing GraphPad Prism software, version 5.0, and con-

sidering a significance level of 0.05 [51].

Results and discussion

Association rules for the dataset of clinical features (CFs)

It was obtained 78 rules comprising the CF dataset, which are presented in S1 Table. The peri-

odontists and geneticist experts analyzed those rules to select examples of rules of high clinical

relevance to demonstrate the T2DM-DLP-PD interrelationship. To select the rules, the follow-

ing requirements were established in decreasing order of relevance:

1. In the antecedent part of the rule, the joint presence of attributes with altered values in

these characteristics of Tables 1, 2 and 3: cardiovascular and obesity risk; T2DM; and DLP;

2. The highest confidence value.

The rules of Table 4 present, in general, WHR = 4 and AC = 3, which represent very high

cardiovascular and obesity risk for all ages of both male and female (see Tables 2 and 3);

FPG = 3, HbA1c = 4 and HOMA-IR = 2 represent the worst glycemic parameters, evidencing

that those patients have established T2DM with defined metabolic decompensation and
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insulin resistance; the patients are also dyslipidemic as demonstrated by the highest levels of

total cholesterol (TC = 4) and triglycerides (TG = 3). The consequent part of those rules is

BOP = 3, which means that more than 50% of tooth sites bleed during the periodontal exam,

demonstrating wide and active inflammation of the periodontal tissues including the gingiva.

There are 4 rules showing as consequent SUPP = 2, meaning that those patients have a moder-

ate suppuration, since it affects 1% to 16% of tooth sites, indicating the presence of an estab-

lished periodontitis. The seventh and eighth rules of Table 4 show TC = 4 and N-HDL-C = 5,

meaning that individuals with the highest levels of TC and N-HDL-C have 78% of confidence

of presenting BOP = 3 or SUPP = 2, demonstrating wide and active inflammation of the peri-

odontal tissues and an established periodontitis.

Table 2. Waist / hip ratio domain.

Female

Age� 39 39 < Age� 49 Age > 49

1. Low <0.72 <0.73 <0.74

2. Moderate [0.72, 0.79) [0.73, 0.80) [0.74, 0.82)

3. High [0.79, 0.84] [0.80, 0.87] [0.82, 0.88]

4. Very High > 0.84 > 0.87 > 0.88

Male

Age� 39 39 < Age� 49 Age > 49

1. Low <0.84 <0.88 <0.90

2. Moderate [0.84, 0.92) [0.88, 0.96) [0.90, 0.97)

3. High [0.92, 0.96] [0.96, 1] [0.97, 1.02]

4. Very High > 0.96 > 1 > 1.02

https://doi.org/10.1371/journal.pone.0240269.t002

Table 3. Table caption Nulla mi mi, venenatis sed ipsum varius, volutpat euismod diam.

Female Male

1. Low risk < 80 < 94

2. High risk [80, 88) [94, 102)

3. Very high risk � 88 � 102

https://doi.org/10.1371/journal.pone.0240269.t003

Table 4. Association rules for the clinical feature dataset.

Rule σrule σhead σtail %Conf. Lift

WHR = 4, FPG = 3, HbA1c = 4, TG = 3) BOP = 3 14 14 74 100.00 1.93

AC = 3, FPG = 3, HbA1c = 4, HOMA-IR = 2, TG = 3) BOP = 3 15 15 74 100.00 1.93

AC = 3, FPG = 3, HOMA-IR = 2, TG = 3) BOP = 3 22 26 74 84.62 1.64

WHR = 4, AC = 3, FPG = 3, HOMA-IR = 2, TG = 3) BOP = 3 19 23 74 82.61 1.60

WHR = 4, FPG = 3, TG = 3) BOP = 3 21 26 74 80.77 1.56

WHR = 4, FPG = 3, HOMA-IR = 2, TG = 3) BOP = 3 20 25 74 80.00 1.55

AC = 3, HOMA-IR = 2, TC = 4, TG = 3) SUPP = 2 15 19 67 78.95 1.68

TC = 4, N-HDL-C = 5) BOP = 3 18 23 74 78.26 1.51

TC = 4, N-HDL-C = 5) SUPP = 2 18 23 67 78.26 1.67

AC = 3, HOMA-IR = 2, TC = 4) SUPP = 2 23 31 67 74.19 1.58

WHR = 4, AC = 3, HOMA-IR = 2, TC = 4) SUPP = 2 18 25 67 72.00 1.54

https://doi.org/10.1371/journal.pone.0240269.t004
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There was interest in verifying the association of cardiovascular and obesity parameters

with the presence of periodontitis. In that analysis we also included the N-HDL-C attribute,

which predicts CVD risk even better than LDL [52]. The rules obtained by focusing on only

those 11 attributes are presented in Table 5. We highlighted the rules: BMI = 3, WHR = 4,

AC = 3) SUPP = 2 and N-HDL-C = 5) BOP = 3, as supporting the evidence of an associa-

tion between cardiovascular risk factors and periodontitis. The obtained rules support the

clear association between N-HDL-C and parameters of periodontitis. The N-HDL-C was the

best predictor among all cholesterol measures, both for coronary artery disease events and for

strokes [53]. More recently, this was confirmed, since the highest N-HDL-C concentrations in

blood (�220 mg/dL, which is equivalent to�5.7 mmol/L) were associated with the highest

long-term risk of atherosclerotic cardiovascular disease [54]. Here we observed exactly this

highest level of N-HDL-C in the rules of Table 5. Interestingly, there are good reasons for

the usefulness of N-HDL-C in monitoring patients, since unlike LDL, N-HDL-C does not

require the triglyceride concentration to be 4.5 mmol/L (400 mg/dL), and has an additional

advantage of not requiring patients to fast before blood sampling. Therefore, it is certainly a

better measure than calculated LDL for patients with increased plasma triglyceride concentra-

tions [38, 53].

In general, these rules demonstrate the interplay between cardiovascular and obesity risk,

T2DM, DLP and PD, which is in line with some studies as reviewed by Soory [22] and Khu-

maedi et al. [8]. These diseases manifest persistent elevation of systemic inflammatory media-

tors, characterizing chronic inflammation [8]. It is known to be one of the atherosclerosis non-

traditional risk factors and has a role in every phase of atherogenesis [8]. Atherogenic dyslipi-

demia is expressive among T2DM individuals, for example, in 10 − 15% of the European popu-

lation [49, 50]. Therefore, we performed an analysis comprising only our 10 T2DM patients

presenting diabetic dyslipidemia [49, 50]. The rules found for this pathologic condition are

presented in Table 6. We highlighted the rule: FPG = 3, HOMA-IR = 2, TC = 2, HDL = 1,

TG = 3) BOP = 3, as it demonstrated that diabetic dyslipidemia was associated with

more than 50% of tooth sites bleeding, one of the main significant signals of periodontium

Table 5. Association rules for the clinical feature dataset—Cardiovascular risk.

Rule σrule σhead σtail %Conf. Lift

WHR = 4, AC = 3, FPG = 3) BOP = 3 24 28 74 85.71 1.66

FPG = 3) BOP = 3 35 41 74 85.37 1.65

AC = 3, FPG = 3) BOP = 3 28 33 74 84.85 1.64

WHR = 4, FPG = 3) BOP = 3 26 31 74 83.87 1.62

N-HDL-C = 5) BOP = 3 18 23 74 78.26 1.51

N-HDL-C = 5) SUPP = 2 18 23 67 78.26 1.67

BMI = 3, WHR = 4, AC = 3) SUPP = 2 18 24 67 75.00 1.60

BMI = 3, WHR = 4) SUPP = 2 20 28 67 71.43 1.52

https://doi.org/10.1371/journal.pone.0240269.t005

Table 6. Association rules for the clinical feature dataset—Diabetic dyslipidemia.

Rule σrule σhead σtail %Conf. Lift

AC = 3, FPG = 3, HOMA-IR = 2, HDL = 1, TG = 3) GI = 3 6 6 6 100.00 1.67

AC = 3, FPG = 3, HOMA-IR = 2, TC = 2, HDL = 1, TG = 3) GI = 3, BOP = 3 5 5 5 100.00 2.00

FPG = 3, HOMA-IR = 2, TC = 2, HDL = 1, TG = 3) BOP = 3 6 6 6 100.00 1.67

AC = 3, FPG = 3, HOMA-IR = 2, HDL = 1, TG = 3) GI = 3, PPDi6mm = 1 5 6 5 83.33 1.67

https://doi.org/10.1371/journal.pone.0240269.t006
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inflammation. Periodontitis is the most common cause of chronic inflammation in diabetic

patients. Both periodontitis and diabetes have detrimental effects on each other in terms of

alveolar bone destruction and poor metabolic control, by continuous inflammatory mediator

activation [8].

Association rules for the datasets of clinical features and differentially

expressed genes in conjunction

Remark that we used ARM to obtain rules with joint patterns of CFs and DEGs, having the

advantage of taking together the clinical characteristics and the genetic markers to identify

each T2DM-DLP-PD combination of complex diseases. Also different from the rules consider-

ing only CFs (Table 4), the CF+DEG-rules were obtained for identifying specifically a group of

patients. Therefore, both CFs and DEGs were considered in the antecedent part of the rules,

and the consequent part of the rules is given by the number representing the groups (Groups 1

to 5). It was obtained 161 CF+DEG-rules, which are presented in S2 Table.

Because of the importance of biologically validating the CF+DEG-rules, Periodontists and

Geneticist experts selected only one discriminant rule for each of the five groups, as presented

in Table 7. The Periodontists and Geneticist experts make the decision of the CF+DEG-rules’s

choice following these criteria in decreasing order of relevance:

1. The joint presence of attributes showing values as altered as possible (according to the

reference values presented in Tables 1, 2 and 3) referring to the cardiovascular and obe-

sity risk, T2DM, DLP, PD, and also, at lower relevance, mutagenesis and demographic

characteristics;

2. The presence of one probe representing an over-expressed gene, such as ‘229026_at = 1’;

3. The highest confidence value;

4. The highest completeness value.

All the selected rules in Table 7 have 100% of confidence, which means that all subjects who

give support to a rule are from the same group.

Specifically to Group 1 of patients (poorly controlled T2DM with DLP and PD), the selected

rule means that 80% of the patients of Group 1 have high abdominal circumference (AC = 3),

meaning high CHD risk; altered glycemic parameters (FPG = 3, HbA1c = 4, HOMA-IR = 2),

evidencing that those patients have established T2DM with defined metabolic decompensation

Table 7. Association rules for the clinical feature and gene expression datasets in conjunction.

Rule %Comp. %Conf. Lift

AC = 3, FPG = 3, INS = 1, HbA1c = 4, HOMA-IR = 2, HDL = 2, TG = 3, VP = 3, BOP = 3,

PPDi6mm = 1, CALi2mm = 1, SUPP = 2, 223130_s_at = -1, 229026_at = 1) 1

80.00 100.00 6.00

HOMA-IR = 2, TC = 4, TG = 3, N-HDL-C = 5, 208485_x_at = 1, 212386_at = -1) 2 71.00 100.00 4.29

FPG = 1, HDL = 2, PPDi3mm = 3, PPDi6mm = 1, MNCF = 2, 223422_s_at = 1,

224902_at = 1) 3

67.00 100.00 5.00

BMI = 2, FPG = 1, INS = 1, HbA1c = 1, HOMA-IR = 1, HDL = 2, TG = 1, TNT = 2,

PPDi6mm = 1, CALi2mm = 1, CALi3-4mm = 3, N-HDL-C = 1, 1560999_a_at = 1,

228766_at = -1, 244413_at = 1) 4

67.00 100.00 5.00

Age = 1, FPG = 1, INS = 1, HbA1c = 1, TG = 1, VP = 1, GI = 1, BOP = 1, TNT = 2,

PPDi3mm = 3, PPDi4-5mm = 1, PPDi6mm = 1, CALi5mm = 1, SUPP = 1, NDI = 2,

MNCF = 1, MNF = 1, FNB = 1, 236395_at = 1) 5

67.00 100.00 5.00

https://doi.org/10.1371/journal.pone.0240269.t007
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and insulin resistance; high triglyceride level (TG = 3); established severe periodontitis as

denoted by VP = 3 (more than 50% of tooth sites showing poor oral hygiene), BOP = 3 (more

than 50% of tooth sites bleeding), PPDi6mm = 1 (up to 30% of tooth sites with deep periodon-

tal pockets), and SUPP = 2 (suppuration at maximum of 16% of tooth sites). Though the fol-

lowing attributes did not contribute to the identification of Group 1, they also did not disturb

it: INS = 1, HDL = 2 and CALi2mm = 1.

The rule selected for Group 2 (well-controlled T2DM with DLP and PD) means that 71%

of the patients of Group 2 have insulin resistance demonstrated by HOMA-IR = 2; and the

highest levels of total cholesterol (TC = 4), triglycerides (TG = 3) and non-HDL-cholesterol

(N-HDL-C = 5). Surprisingly, considering the first criterion for selecting these 5 rules, for

identifying Group 2 of patients, a few rules were obtained. Because of this, in the selected rule

there were no attributes regarding the cardiovascular and obesity risk and PD. Moreover, it

should be taken into account that the rules obtained for Group 2 of patients should reflect

the clinical criteria defined to select the patients. For example, in comparison with Group 1,

Group 2 of patients differs only by the better metabolic control of T2DM.

The rule selected for Group 3 (DLP and PD) means that 67% of the patients have normal

fasting plasma glucose (FPG = 1) which is expected since they are not affected by T2DM; they

present altered HDL levels (HDL = 2), and they are affected by PD, since up to 30% of tooth

sites present very deep periodontal pockets (PPDi6mm = 1). Moreover, in this rule the moder-

ate frequency of binucleated cells with micronuclei (MNCF = 2) means that the circulating

blood of the patients is affected by a moderate level of mutagenesis, probably as a consequence

of the altered lipid metabolism of the patients. Indeed, a previous study of our research group

enrolling the same patients showed significantly higher mRNA levels of leptin in dyslipidemic

individuals (Groups 1, 2 and 3). Moreover, those leptin mRNA levels were significantly corre-

lated with periodontal parameters such as BOP, suppuration and mainly CALi� 5 mm [55].

Regarding Group 4 (systemically healthy individuals with PD), the selected rule means that

67% of the patients of this group are not obese, diabetic or dyslipidemic, as expected by the

underlined clinical criteria for selecting them. Those patients are only affected by generalized

periodontitis with pronounced alveolar bone loss, since they present more than 50% of tooth

sites with 3 to 4 mm of clinical attachment loss (CALi34mm = 3), and up to 30% of tooth sites

with very deep periodontal pockets (PPDi6mm = 1).

The rule selected for Group 5 (systemically and periodontally healthy individuals, or control

group) means that 67% of the patients of this group are not characterized by obesity, T2DM or

DLP, as expected by the underlined clinical criteria for selecting them. In addition, they did

not present active PD because it was not present in the rule any domain of bleeding or inflam-

mation, and the presence of the shallow periodontal pockets (PPDi3mm = 3) in at least 50% of

tooth sites is not an indicator of periodontal disease. Conversely, the occurrence of up to 30%

of tooth sites with PPDi45mm, PPDi6mm = 1, and clinical attachment loss (CALi5mm = 1)

suggests that those patients were previously affected by localized PD. Moreover, although the

rule includes the mutagenic parameters, their values are not altered.

To proceed to the biological validation of DEGs, we chose to validate by RT-qPCR (see Sub-

section Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) Real-Time

Analysis) one highly expressed gene in each of the five rules. Certainly, more rules with more

probes/DEGs could be selected for validation, but we had limitations in the volume of the bio-

logical sample of the patients (RNA obtained from PBMCs).

For Group 1, we selected the probe 229026_at = 1, whose gene is CDC42SE2 (Cell Division
Cycle 42 Small Effector 2), detected by the TaqMan assay Hs00184113_m1. Although there is

another gene in the rule of Group 1 (23130_s_at), this gene was down-regulated, and therefore

did not meet the criteria of choice. The CDC42SE2 gene has diverse biological functions, such
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as the organization of the actin cytoskeleton by acting downstream of CDC42SE2, inducing

actin filament assembly, and it may play a role in early contractile events in phagocytosis in

macrophages. Accordingly, the CDC42SE2 gene alters CDC42-induced cell shape changes. In

activated T-cells, the CDC42SE2 gene may play a role in CDC42-mediated F-actin accumula-

tion at the immunological synapse [56]. The CDC42 (Cell Division Cycle 42) gene encodes a

small GTPase protein belonging to the Rho-subfamily, which regulates signaling pathways that

control diverse cellular functions including cell morphology, migration, endocytosis and cell

cycle progression [56].

In Fig 3(A), it can be observed that the CDC42SE2 gene was down-regulated in the decom-

pensated T2DM, dyslipidemic and PD patients (Group 1) (p-value� 0.0001) in comparison

to the healthy patients (Group 5). Actually, this finding obtained by qPCR is contrary to the

expected by the rule based on the microarray data (denoted by the positive 1 value of the

‘229026_at’). Therefore, the qPCR method showed discordant gene expression levels from

those detected by the microarray. Actually, it is not uncommon to find discrepant results of

gene expression between qPCR and microarray, either because the gene expression between

the diseased and control groups did not reach statistical difference or because conflicting

results were found between the qPCR and microarray methods [51]. The discordant

CDC42SE2 gene expression between qPCR and microarray (not validation) means more a lim-

itation of the method for identification of gene expression levels than a limitation of CAR min-

ing. In addition, considering that Group 2 of patients only differs from Group 1 in patients’

metabolic control, we also investigated the CDC42SE2 gene expression in the well-controlled

T2DM-DLP-PD (Group 2) patients, and we observed significantly lower levels in Group 1 but

no significant difference in Group 2 in comparison to the control Group 5. Therefore, when

we performed the CDC42SE2 gene expression comparison involving Groups 1, 2 and 5, we

observed the lowest expression in the worst metabolic condition of patients (Group 1), while

the patients with adequate metabolic control (Group 2) had similar CDC42SE2 expression

when compared with the healthy patients of Group 5.

For Group 2, the selected probe is 208485_x_at = 1, which is the CFLAR (CASP8 and FADD
Like Apoptosis Regulator) gene, detected by the TaqMan assay Hs01117851_m1. The protein

encoded by the CFLAR gene is a regulator of apoptosis which may function as a crucial link

Fig 3. Validation results by RT-qPCR of the genes considering the different Group (G) comparisons. All mRNA

levels of the investigated genes were normalized to the GAPDH endogenous control gene. (A) CDC42SE2 gene

expression, �p� 0.0001; (B) CFLAR gene expression, no statistical difference among the groups; (C) PDPR gene

expression, �p� 0.0002; (D) Validation of the CLECL1 gene expression, �p� 0.0064; (E) Validation of the MEF2C
gene expression, �p� 0.0425. Data represent the mean ± SEM 2−ΔCt of all patients in that group (Mann–Whitney U

test; α = 5%).

https://doi.org/10.1371/journal.pone.0240269.g003
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between cell survival and cell death pathways. Additionally, this protein acts as an inhibitor of

TNF receptor superfamily member 6 (TNFRSF6) mediated apoptosis [56]. Considering the

rule, an over-expression of the CFLAR gene was expected in Group 2 compared to Group 5.

However, there was a similarly high expression of the CFLAR gene in both Groups 2 and 5 (see

Fig 3(B)). We also performed the analysis of the CFLAR gene expression for Groups 1, 2 and 5,

observing no significant difference among them, although a lower gene expression can be

found in the patients with the worst metabolic condition (Group 1).

For Group 3, the rule has 2 highly expressed genes/probes, and we selected the 224902_at

probe for further analysis, which is the PDPR (Pyruvate Dehydrogenase Phosphatase Regulatory
Subunit) gene, detected by the TaqMan assay Hs01663324_m1, because it takes part in a more

interesting metabolic pathway. This gene acts on the pyruvate dehydrogenase complex by cata-

lyzing the oxidative decarboxylation of pyruvate and linking glycolysis to the tricarboxylic acid

cycle and to the synthesis of fatty acids [56]. The observed significant down-regulation of the

PDPR gene in Group 3 (DLP-PD) in comparison with the healthy Group 5 (p-value� 0.0002)

by qPCR was discordant from those detected by the microarray, as shown in Fig 3(C).

Regarding Group 4 (patients affected by only PD), the rule also has 2 highly expressed

genes/probes: the IL12RB2 gene (1560999_a_at), and the CLECL1 gene (244413_at), which

was chosen to validate the gene expression by using the TaqMan assay Hs00416849_m1. The

CLECL1 (C-Type Lectin Like 1) gene acts as a co-stimulating molecule of T cells and plays a

role in the interaction of dendritic cells with T cells and the cells of the adaptive immune

response [56]. In the comparison between Group 4 and Group 5, there was a highly statistically

significant (p-value� 0.0064) expression of the CLECL1 gene in Group 4, validating the DEG

detected by microarray, as shown in Fig 3(D).

For Group 5 (healthy patients), the only highly expressed gene is the MEF2C (Myocyte
Enhancer Factor 2C) gene (identified by the 236395_at probe), and detected by the TaqMan

assay Hs00231149_m1. The MEF2C gene is involved in several normal pathways of muscular,

vascular, neural, megakaryocyte and platelet development, bone marrow B lymphopoiesis, B

cell survival and proliferation in response to BCR stimulation, efficient responses of IgG1 anti-

bodies to T cell dependent antigens and normal induction of B cells from the germinal center

[56]. The MEF2C gene expression by qPCR validated the DEG detected by microarray, as sig-

nificantly highly expressed in Group 5 when compared with Group 1 (p-value� 0.0425) (see

Fig 3(E)). It is interesting to compare PBMC gene expression between patients with the most

opposite healthy conditions, such as Groups 1, 2 and 5, in which the worst metabolic condition

(Group 1) showed the lowest level of MEF2C gene expression.

To our knowledge, this is the first initiative to investigate the expression of CDC42SE2 and

CLECL1 genes in the context of T2DM, DLP and PD, demonstrating the innovative character

of this study. Regarding CFLAR gene expression, only one study was reported in the literature

investigating the relationship between body composition and BMI in children and DNA meth-

ylation. CFLAR gene expression was positively regulated in PBMCs of obese children [57].

Similarly, only one study investigated the PDPR gene with the genetic risk for DM, but the

authors focused on type 1 DM, not allowing direct comparison with the T2DM results [58].

Two previous studies reported changes in the function of the MEF2C gene: Yuasa et al. [59]

found MEF2C transcriptional repression in patients with T2DM, and Davegårdh et al. [60]

verified a down-regulation of MEF2C related to obesity. Such results are in agreement with the

findings of our study, with MEF2C being more highly expressed in patients in Group 5 (sys-

temically and periodontally healthy individuals) than in Groups 1 and 2 (individuals with met-

abolic and periodontal involvement).

Although we originally utilized the ARM to investigate CFs and DEGs relevant in the con-

text of T2DM, DLP and PD, it is important to attest that:
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1. We just considered the periodontitis parameters as the consequent part of the rules because

the literature demands more evidences regarding the association between systemic diseases

like T2DM and DLP, with PD;

2. Regarding the CF+DEG rules, more rules could be selected for each patient group, permit-

ting biological validation of up- or down-regulated probesets/genes, but we had limitations

in the volume of biological samples of the patients (RNA obtained from PBMCs) necessary

for the RT-qPCR technique.

Conclusion

We demonstrated that ARM is a powerful data analysis technique to identify consistent pat-

terns between the clinical and molecular profiles of patients affected by specific pathological

panels. In addition, ARM was able to evidence relevant associations among important parame-

ters of the periodontal, glycemic, lipid, cardiovascular and obesity risk conditions of the

patients. Considering the qPCR validation results of the DEGs prospected by the CARs of each

group of patients, four of the five genes revealed significant differences in comparison to the

control group; two of them CLECL1 and MEF2C genes validated the previous microarray find-

ings. These last genes were referred to groups without systemic metabolic impairment (Group

4 and Group 5). Further studies will investigate other DEGs and other rules. Additionally, as

an alternative to other commonly used techniques, ARM can be applied as a highly-interpret-

able mining approach to analyze the gene expression signal, with the advantage of including

the patient’s clinical features. Moreover, the combination of CFs and DEGs can be utilized to

further estimate the patient’s chance of developing complex diseases, such as those studied

here.
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