Supplementary Information

Mn(I)-Catalyzed Sigmatropic Rearrangment of β, γ-Unsaturated Alcohols

Can Yang¹, Xiaoyu Zhou², Lixing Shen¹, Zhuofeng Ke²*, Huanfeng Jiang¹, and Wei Zeng¹*

I. Supplementary Methods	2
1.1. General experimental information	
1.2. Experimental procedures for the preparation of starting materials	3
1.3. Optimization of reaction conditions	20
1.4. Detail characterization for the sigmatropic rearrangement products 3 and 5	21
1.5. Detail characterization for the sigmatropic rearrangement products 7	29
1.6. Post-synthetic applications of the 3a , 3q and 7a	35
1.7. Control experiments for the mechanism studies	38
1.8. Single crystal structure and data	41
1.9. Computational detail	44
II. ¹ H NMR and ¹³ C NMR Spectrum of All Products	50
III. HR-MS Spectrum of the New Products	189
IV. Supplementary References	288

¹ Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China

² School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, Guangzhou 510275, China

^{*}Corresponding author. Email: kezhf3@mail.sysu.edu.cn (Z. K.); zengwei@scut.edu.cn (W. Z.)

I. Supplementary Methods

1.1. General experimental information

All reactions were carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experiments were performed under argon atmosphere. Reagents were purchased from Accela, Acros, Aladdin, Adamas, Energy Chemical or TCI. All solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. Purifications of reaction products were carried out by flash chromatography using the silica gel (300-400 mesh) from Qingdao Haiyang Chemical Co. Ltd. Infrared spectra (IR) were recorded on a Brucker TENSOR 27 FTIR spectrophotometer and are reported as wavelength numbers (cm⁻¹). Infrared spectra were recorded by preparing a KBr pellet containing the title compounds. ¹H NMR and ¹³C NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature on a Bruker Avance III 400 MHz or 500 MHz for ¹H NMR and 100 MHz or 126 MHz for ¹³C NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), doublet (d), triplet (t), doublet of doublet (dd), quartet (q). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). High resolution mass spectra (HRMS) were recorded on an IF-TOF spectrometer (Micromass).

1.2. Experimental procedures for the preparation of starting materials

General procedure for the synthesis of alcohols

$$R^{2} \xrightarrow{R^{3}} + \bigoplus_{R^{1}}^{Br} \xrightarrow{\text{Method A}} R^{2} \xrightarrow{R^{3}} \xrightarrow{\text{Method B or Method C}} R^{2} \xrightarrow{R^{3}} \bigoplus_{R^{4}}^{R^{4}} \xrightarrow{\text{Method D or Method E}} R^{2} \xrightarrow{R^{3}} \bigoplus_{R^{4}}^{R^{4}} \bigoplus_{R^{5}}^{R^{5}} \bigoplus_{R^{5}$$

Method A:

$$R^{2} \stackrel{\textstyle \bigcap}{\longleftarrow} R^{3} + R^{1} \stackrel{\textstyle Br}{\longleftarrow} N \xrightarrow{DMSO, Ar, 120 \, {}^{\circ}C} R^{2} \stackrel{\textstyle \bigcap}{\longleftarrow} N$$

Synthetic procedure of substituted *N***-pyridyl indoles** $S1^{[1]}$: A pressure tube was charged with the corresponding indoles (10 mmol), KOH (3.0 eq.), 2-bromopyridines (2.0 eq.), and DMSO (10.0 mL) under Ar atmosphere. The resulting mixture was stirred in an oil bath at 120 °C until the end of the reaction. The mixture was quenched with a saturated solution of NH₄Cl and extracted with ethyl acetate. The organic phase was dried over MgSO₄, followed by evaporation under reduced pressure to remove the solvent. The product was purified by column chromatography on silica gel (petroleum ether /ethyl acetate = 100: 1 - 50: 1) to afford the corresponding indoles S1.

1-(5-Chloropyridin-2-yl)-3-methyl-1H-indole (S1-1): white solid; m.p. 44.1 - 46.2 °C; 1.33 g, 55% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, J = 2.3 Hz, 1H), 8.18 (d, J = 8.3 Hz, 1H), 7.71 (dd, J = 8.7, 2.5 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 8.14 0.8 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 2.36 (d, J = 1.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.9, 147.4, 138.0, 135.3, 131.2, 126.7, 123.5, 122.9, 121.2, 119.2, 115.5, 114.5, 113.2, 9.7; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: $C_{14}H_{12}$ ClN₂: 243.0684, found: 243.0681; IR (KBr): 3048, 1578, 1473, 1449, 1395, 1349, 1214, 1111, 918, 741 cm⁻¹.

3-Methyl-1-(5-(trifluoromethyl)pyridin-2-yl)-1H-indole (S1-2): light yellow solid; m.p. 58.3 – 59.6 °C; 2.15 g, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.81 (dd, J = 1.5, 0.8 Hz, 1H), 8.45 – 8.40 (m, 1H), 7.97 – 7.90 (m, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.50 (s, 1H), 7.41 (dd, J = 17.2, 8.8 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 2.41 (d, J = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 146.1 (q, J = 4.6 Hz, ³ J_{CF}), 135.5, 135.4 (q, J = 3.6 Hz, ³ J_{CF}), 131.6, 123.9, 123.4 (d, J = 338.4 Hz, ¹ J_{CF}),122.4, 121.8, 121.3, 119.2, 116.7, 114.3, 112.2, 9.7; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₅H₁₂F₃N₂: 277.0947, found: 277.0941; IR (KBr): 2922, 1738, 1604, 1497, 1454, 1403, 1324, 1120, 1079, 1014, 742 cm⁻¹.

1-(Pyridin-2-yl)-6-(trifluoromethyl)-1H-indole (S1-3): light yellow solid; m.p. 114.2-115.7 °C; 1.97 g, 75% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.63 (d, J=4.9 Hz, 2H), 7.90-7.86 (m, 1H), 7.83 (d, J=3.5 Hz, 1H), 7.76 (d, J=8.3 Hz, 1H), 7.48 (d, J=8.3 Hz, 2H), 7.25 (dd, J=7.3, 4.9 Hz, 1H), 6.79 (d, J=3.4 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 152.1, 149.1, 138.7, 134.2, 132.7, 128.3, 125.2 (d, J=272.7 Hz, $^1J_{CF}$), 125.2 (d, J=32.3 Hz, $^2J_{CF}$), 121.3, 120.7, 118.0 (q, J=4.1 Hz, $^3J_{CF}$), 114.5, 111.1 (q, J=4.6 Hz, $^3J_{CF}$), 105.5; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₄H₁₀F₃N₂: 263.0791, found: 263.0785; IR (KBr): 2955, 2916, 2849, 1590, 1477, 1452, 1352, 1329, 1213, 1145, 1103, 893, 818, 772, 732 cm⁻¹.

Method B:

Synthetic procedure of substituted *N*-**pyridyl 2-formylindoles S2:** The following starting materials **S2** were prepared according to the literature procedure ^[2]. To a 100 mL dry Schlenk tube with a stirring bar, $Mn(CO)_5Br$ (5 mmol %), NaOAc (10 mmol %), $(CH_2O)_n$ (3.0 eq.), and *N*-pyridyl indoles **S1** (5 mmol) were added under air. After that, the reaction vessel was then evacuated and filled with argon for three times. Afterwards, dioxane (15 mL, anhydrous) was added sequentially under an argon atmosphere. The tube was sealed and the mixture was stirred at 80 °C for 15 h. After the reaction was cooled down to room temperature, $Fe(NO_3)_3$ 9H₂O (10 mol %), TEMPO (10 mol %), and NaCl (10 mol %) were added into the reaction mixture, and the reaction vessel was then quickly evacuated and filled with oxygen using a balloon. The reaction was run for additional 6 h at room temperature. The reaction mixture was evaporated and purified *via* column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) afforded the pure desired products **S2**.

3-Phenyl-1-(pyridin-2-yl)-1H-indole-2-carbaldehyde (S2-1): white solid; m.p. 147.3 - 149.5 °C; 983.0 mg, 66% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 8.69 (dd, J = 4.9, 1.2 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.70 – 7.65 (m, 2H), 7.60 – 7.55 (m, 2H), 7.54 – 7.42 (m, 5H), 7.30 – 7.36 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 182.4, 151.2, 149.2, 139.8, 138.2, 133.6, 131.6, 131.4, 130.9, 128.7, 128.3, 128.3, 126.7, 123.1, 122.3, 122.3, 122.3, 111.9; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₀H₁₅N₂O: 299.1179, found: 299.1188; IR (KBr): 3054, 2842, 1667, 1587, 1469, 1406, 1379, 1338, 1239, 1180, 1149, 1024, 926, 773, 749, 702 cm⁻¹.

3-(4-Chlorophenyl)-1-(pyridin-2-yl)-1H-indole-2-carbaldehyde (S2-2): light yellow oil; 650.0 mg, 39% yield; 1 H NMR (500 MHz, CDCl₃) δ 9.88 (s, 1H), 8.66 (d, J = 3.8 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.58 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 7.46 – 7.39 (m, 4H), 7.28 – 7.25 (m, 1H); 13 C NMR (126 MHz, CDCl₃) δ 181.9, 151.0, 149.3, 139.6, 138.3, 134.5, 132.1, 131.4, 130.1, 129.0, 128.4, 126.5, 123.2, 122.5, 122.2, 121.9, 111.9; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₀H₁₄ClN₂O: 333.0789, found: 333.0787; IR (KBr): 2924, 1734, 1662, 1585, 1467, 1442, 1379, 1236, 917, 743 cm⁻¹.

1-(Pyridin-2-yl)-3-(*p*-tolyl)-1H-indole-2-carbaldehyde (S2-3): light yellow oil; 730.0 mg, 47% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 8.70 – 8.68 (m, 1H), 7.96 – 7.92 (m, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.48 – 7.37 (m, 6H), 7.29 – 7.25 (m, 1H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.4, 151.3, 149.2, 139.8, 138.3, 138.1, 133.8, 131.4, 130.9, 130.8, 129.5, 128.8, 128.6, 128.2, 126.7, 123.0, 122.3, 122.3, 122.2, 111.9, 21.4.; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₁H₁₇N₂O: 313.1335, found: 313.1329; IR (KBr): 2931, 1734, 1675, 1663, 1677, 1577, 1466, 1438, 1379, 1350, 1187, 930, 747 cm⁻¹.

5-Methyl-1-(pyridin-2-yl)-1H-indole-2-carbaldehyde (S2-4): yellow solid; m.p. 90.0 – 91.4 °C; 826.0 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 8.69 – 8.64 (m, 1H), 7.94 – 7.90 (m, 1H), 7.58 (s, 1H), 7.46 – 7.37 (m, 4H), 7.25 (dd, J = 8.7, 1.3 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.6, 150.7, 149.2, 138.7, 138.2, 136.2, 131.7, 129.6, 127.2, 122.6, 121.5, 117.1, 111.7, 21.3; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₅H₁₃N₂O: 237.1022, found: 237.1010; IR (KBr): 2922, 1735, 1700, 1685, 1676, 1587, 1560, 1469, 1439, 1371, 1293, 1118, 989, 915, 774 cm⁻¹.

5-Methoxy-1-(pyridin-2-yl)-1H-indole-2-carbaldehyde (S2-5): light yellow solid; m.p. 105.9 - 107.1 °C; 504.00 mg, 40% yield; ¹H NMR (400 MHz, CDCl₃) 89.93 (s, 1H), 8.65 (dd, J = 4.5, 1.3 Hz, 1H), 7.94 - 7.88 (m, 1H), 7.47 - 7.41 (m, 3H), 7.40 - 7.36 (m, 1H), 7.16 (d, J = 2.4 Hz, 1H), 7.08 (dd, J = 9.1, 2.5 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) 8181.6, 155.6, 150.6, 149.2, 138.3, 136.4, 135.6, 127.4, 122.7, 121.4, 119.2, 116.7, 113.1, 103.0, 55.7; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₅H₁₃N₂O₂: 253.0972, found: 253.0965; IR (KBr): 2920, 1672, 1587, 1524, 1468, 1437, 1399, 1335, 1207, 1173, 1125, 1027, 912, 772, 739 cm⁻¹.

5-Fluoro-1-(pyridin-2-yl)-1H-indole-2-carbaldehyde (S2-6): light yellow solid; m.p. 100.4 - 101.5 °C; 768.0 mg, 64% yield; 1 H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 8.66 (dd, J = 4.8, 1.1 Hz, 1H), 7.95 - 7.91 (m, 1H), 7.50 - 7.40 (m, 5H), 7.19 - 7.14 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 181.6, 158.8 (d, J = 240.4 Hz, $^{1}J_{\text{CF}}$), 150.4, 149.3, 138.4, 137.2, 136.7, 127.1 (d, J = 11.1 Hz, $^{2}J_{\text{CF}}$), 123.0, 121.6, 116.7 (d, J = 27.3 Hz, $^{2}J_{\text{CF}}$), 116.6 (d, J = 6.1 Hz, $^{3}J_{\text{CF}}$), 113.3 (d, J = 9.1 Hz, $^{3}J_{\text{CF}}$), 107.5 (d, J = 24.4 Hz, $^{2}J_{\text{CF}}$); HR-MS [ESI-MS(+)] calcd for [M + H]⁺: $C_{14}H_{10}FN_{2}O$: 241.0772, found: 241.0763; IR (KBr): 3062, 2922, 1677, 1588, 1523, 1466, 1455, 1399, 1344, 1285, 1206, 1175, 1120, 1023, 911, 858, 766, 738 cm⁻¹.

1-(Pyridin-2-yl)-6-(trifluoromethyl)-1H-indole-2-carbaldehyde (S2-7): light yellow solid; m.p. 103.8 - 105.0 °C; 770.0 mg, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.70 (dd, J = 5.1, 1.5 Hz, 1H), 7.99 - 7.95 (m, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.80 (s, 1H), 7.53 (s, 1H), 7.51 - 7.44 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.7, 149.9, 149.6, 138.8, 138.7, 137.9, 129.1(d, J = 32.3 Hz, ² J_{CF}), 128.9, 124.4 (d, J = 273.7 Hz, ¹ J_{CF}), 124.1, 123.4, 121.6, 118.7 (q, J = 3.0 Hz, ³ J_{CF}), 116.1, 109.9 (q, J = 5.1 Hz, ³ J_{CF}); HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₅H₁₀F₃N₂O: 291.0740, found: 291.0732; IR (KBr): 2956, 2918, 2847, 1678, 1587, 1521, 1468, 1443, 1363, 1159, 1112, 1020, 968, 876, 853, 790, 741 cm⁻¹.

3-Methyl-1-(5-methylpyridin-2-yl)-1H-indole-2-carbaldehyde (S2-8): light yellow solid; m.p. 100.0-103.2 °C; 837.0 mg, 67% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 8.47 (s, 1H), 7.77 (d, J=8.0 Hz, 1H), 7.71 (d, J=7.9 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.32 (d, J=8.0 Hz, 1H), 7.25 (t, J=7.1 Hz, 1H), 2.75 (s, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.7, 149.6, 148.6, 139.2, 138.8, 132.3, 131.9, 128.0, 127.7, 127.0, 121.4, 121.3, 120.9, 111.6, 18.1, 9.3; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₆H₁₅N₂O: 251.1179, found: 251.1171; IR (KBr): 2918, 1867, 1828, 1668, 1540, 1477, 1446, 1384, 1339, 1224, 1138, 1024, 932, 884, 824, 741 cm⁻¹.

3-Methyl-1-(6-methylpyridin-2-yl)-1H-indole-2-carbaldehyde (S2-9): light yellow solid; m.p. 66.6-68.1 °C; 688.0 mg, 55% yield; ¹H NMR (500 MHz, CDCl₃) δ 10.11 (s, 1H), 7.79-7.71 (m, 2H), 7.45 (d, J=8.5 Hz, 1H), 7.40-7.35 (m, 1H), 7.24-7.17 (m, 3H), 2.72 (s, 3H), 2.60 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 182.1, 158.8, 150.1, 138.8, 138.4, 131.9, 128.1, 127.7, 126.7, 122.0, 121.5, 121.4, 118.2, 111.6, 24.3, 9.4; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: $C_{16}H_{15}N_2O$: 251.1179, found: 251.1175; IR (KBr): 3058, 2920, 1664, 1593, 1569, 1536, 1455, 1337, 1220, 1143, 992, 933, 883, 785, 737 cm⁻¹.

1-(5-Chloropyridin-2-yl)-3-methyl-1H-indole-2-carbaldehyde (S2-10): light yellow solid; m.p. 131.2 – 132.1 °C; 1.22 g, 90% yield; ¹H NMR (500 MHz, CDCl₃) δ 10.12 (s, 1H), 8.56 (d, J = 2.3 Hz, 1H), 7.84 (dd, J = 8.5, 2.5 Hz, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.33 (d, J = 8.5 Hz, 1H), 7.26 (d, J = 5.4 Hz, 1H), 2.72 (s,

3H); 13 C NMR (126 MHz, CDCl₃) δ 181.0, 149.3, 148.0, 139.2, 137.9, 131.6, 130.5, 128.6, 128.3, 128.1, 122.2, 121.9, 121.5, 111.6, 9.2; HR-MS [ESI-MS(+)] calcd for [M + H] $^+$: C₁₅H₁₂ClN₂O: 271.0633 , found: 271.0629; IR (KBr): 3052, 2924, 1700, 1541, 1466, 1411, 1382, 1338, 1112, 1012, 934, 888, 827, 742 cm $^{-1}$.

1-(5-Bromopyridin-2-yl)-3-methyl-1H-indole-2-carbaldehyde (S2-11): yellow solid; m.p. 118.6 – 120.3 °C; 635.0 mg, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 8.68 (d, J = 2.4 Hz, 1H), 7.99 (dd, J = 8.4, 2.4 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.27 (dd, J = 14.5, 6.8 Hz, 2H), 2.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 150.2, 149.7, 140.7, 139.1, 131.6, 128.6, 128.3, 128.1, 122.7, 121.9, 121.5, 118.8, 111.6, 9.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₅H₁₂BrN₂O: 315.0128, found: 315.0128; IR (KBr): 2921, 2855, 1644, 1541, 1462, 1378, 1338, 1093, 742 cm⁻¹.

3-Methyl-1-(5-(trifluoromethyl)pyridin-2-yl)-1H-indole-2-carbaldehyde (S2-12): white solid; m.p. 93.0 - 95.1 °C; 1.14 g, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.91 - 8.86 (m, 1H), 8.10 (dd, J = 8.5, 2.1 Hz, 1H), 7.79 (d, J = 8.0 Hz, s2-12 °CF₃ 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.50 - 7.44 (m, 2H), 7.30 (dd, J = 12.2, 5.1 Hz, 1H), 2.75 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.8, 153.9, 146.2 (q, J = 4.0 Hz, ³ J_{CF}), 139.0, 135.3 (q, J = 3.0 Hz, ³ J_{CF}), 131.6, 129.8, 128.6, 128.4,124.8 (d, J = 33.3 Hz, ² J_{CF}), 123.4 (d, J = 273.7 Hz, ¹ J_{CF}), 122.3, 121.6, 121.0, 111.8, 9.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₆H₁₂F₃N₂O: 305.0896, found: 305.0883; IR (KBr): 2922, 2830, 1668, 1601, 1541, 1488, 1454, 1397, 1324, 1128, 1077, 1013, 743 cm⁻¹.

1-(Pyridin-2-yl)-1H-pyrrole-2-carbaldehyde (S2-13): yellow oil; 200.0 mg, 23% yield; 1 H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 8.55 – 8.51 (m, 1H), 7.86 – 7.81 (m, 1H), 7.48 – 7.44 (m, 2H), 7.35 – 7.29 (m, 1H), 7.22 (dd, J = 3.8, 1.6 Hz, 1H), 6.44 (dd, J = 3.8, 2.7 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 179.5, 150.9, 148.7, 138.3, 132.2, 130.2, 124.5, 122.7, 119.1, 111.4; HR-MS [ESI-MS(+)] calcd for [M + H] $^{+}$: C₁₀H₉N₂O: 173.0709, found: 173.0712; IR (KBr): 3115, 2924, 1667, 1588, 1528, 1473, 1450, 1438, 1414, 1391, 1337, 1316, 1151, 1107, 1034, 989, 885, 787, 740 cm $^{-1}$.

Method C:

Synthetic procedure of substituted *N*-pyridyl 2-acylindoles S3: The following starting materials S3 were prepared according to the literature procedures $^{[1]}$. An oven-dried sealed tube charged with $Pd(OAc)_2$ (5.0 mol %), 70% TBHP aqueous solution (200 mol %), indole S1 (3.0 mmol) and aldehydes (6.0 mmol), toluene (5.0 mL) were added under Ar atmosphere. The reaction mixture was then allowed to stir at 100 °C for 11 h. The corresponding reaction mixture was filtered through a pad of celite, washed with dichloromethane and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (20:1 ~ 10:1) as eluent to afford the desired products S3.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)propan-1-one (S3-1): light yellow solid; m.p. 89.1 - 90.1 °C; 875.0 mg, 66% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.59 (m, 1H), 7.92 – 7.87 (m, 1H), 7.75 – 7.71 (m, 1H), 7.47 – 7.39 (m, 2H), 7.37 – 7.33 (m, 1H), 7.32 – 7.29 (m, 1H), 7.27 – 7.23 (m, 1H), 2.69 – 2.64 (m, 2H), 2.64 (s, 3H),

1.13 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 152.5, 149.4, 138.3, 135.1, 128.8, 126.3, 121.9, 121.4, 121.0, 120.9, 120.3, 111.2, 36.0, 10.6, 8.4; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₇H₁₇N₂O: 265.1335, found: 265.1333; IR (KBr): 2917, 1682, 1590, 1474, 1437, 1343, 1243, 1220, 1142, 993, 956, 784, 741 cm⁻¹.

Cyclohexyl(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)methanone (S3-2): white solid; m.p. 98.2 - 100.7 °C; 1.2 g, 75% yield; 1 H NMR (500 MHz, CDCl₃) δ 8.56 (d, J = 4.4 Hz, 1H), 7.85 (t, J = 7.7 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.39 - 7.30 (m, 2H), 7.23 (dd, J = 14.6, 7.0 Hz, 2H), 2.54 (s, 3H), 2.52 - 2.44 (m, 1H), 1.73 (t, J = 14.2 Hz, 4H), 1.62 - 1.56 (m, 1H), 1.45 - 1.37 (m, 2H), 1.18 - 1.04 (m, 3H); 13 C NMR (126 MHz, CDCl₃) δ 199.9, 152.3, 149.4, 138.3, 137.7, 134.8, 129.1, 126.0, 121.6, 121.4, 120.9, 120.4, 119.6, 111.2, 50.2, 28.9, 25.9, 25.8, 10.0; HR-MS [ESI-MS(+)] calcd for [M + H] $^{+}$: C₂₁H₂₃N₂O: 319.1805, found: 319.1804; IR (KBr): 2929, 1734, 1701, 1654, 1577, 1560, 1466, 1438, 1350, 1270, 1130, 744 cm $^{-1}$.

(S3-3): light yellow solid; m.p. 134.9 - 136.1 °C; 942.0 mg, 55% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.45 - 8.40 (m, 1H), 7.89 - 7.83 (m, 2H), 7.79 - 7.69 (m, 3H), 7.43 - 7.37 (m, 1H), 7.35 - 7.27 (m, 2H), 7.12 - 7.07 (m, 1H), 6.90 - 6.85 (m, 2H), 3.85 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.4, 163.4, 151.5, 149.1, 137.9, 137.4, 134.0, 132.0, 131.8, 129.1, 125.8, 121.4, 121.1, 120.6, 120.4, 119.5, 113.7, 111.4, 55.5, 10.2; HR-MS [ESI-MS(+)] calcd for [M + H] $^+$: C₂₂H₁₉N₂O₂: 343.1441, found: 343.1439; IR (KBr): 2929, 1734, 1654, 1577, 1560, 1438, 1150, 1280, 979, 747 cm $^{-1}$.

[4-Fluorophenyl)(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)methanone (S3-4): light yellow solid; m.p. 137.4 - 140.2 °C; 1.17 g, 71% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.40 - 8.38 (m, 1H), 7.89 - 7.83 (m, 2H), 7.77 - 7.70 (m, 3H), 7.44 - 7.28 (m, 3H), 7.12 - 7.02 (m, 3H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.1, 165.4 (d, J = 255.5 Hz, ¹J_{CF}), 151.3, 149.2, 138.0, 137.4, 135.4 (d, J = 3.0 Hz, ³J_{CF}), 133.6, 132.1 (d, J = 9.1 Hz, ³J_{CF}), 129.0, 126.2, 121.6, 121.5, 121.2, 120.9, 119.4, 115.5 (d, J = 22.2 Hz, ²J_{CF}), 111.32, 10.19; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₁H₁₆FN₂O: 331.1241, found: 331.1238; IR (KBr): 2925, 1734, 1685, 1675, 1654, 1617, 1598, 1438, 1268, 1230, 1150, 742 cm⁻¹.

(2-(1H-Pyrazol-1-yl)phenyl)(4-fluorophenyl)methanone (S3-5): light yellow oil; 0.60 g, 75% yield; 1 H NMR (400 MHz, CDCl₃) δ 7.69 – 7.63 (m, 4H), 7.62 – 7.57 (m, 2H), 7.53 – 7.48 (m, 1H), 7.42 (d, J = 1.5 Hz, 1H), 7.00 – 6.94 (m, 2H), 6.23 – 6.20 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 194.3, 165.5 (d, J = 255.5 Hz, $^{1}J_{CF}$), 141.3, 138.5, 133.6, 133.3 (d, J = 3.0 Hz, $^{3}J_{CF}$), 131.7, 131.6, 131.4, 129.6 (d, J = 22.2 Hz, $^{2}J_{CF}$), 127.6, 123.2, 115.3 (d, J = 21.2 Hz, $^{2}J_{CF}$), 107.8.HR-MS [ESI-MS(+)] calcd for [M + H]⁺: $C_{16}H_{12}FN_2O$: 267.0928, found: 267.0926; IR (KBr): 3117, 2924, 1669, 1598, 1519, 1451, 1409, 1306, 1274, 1236, 1149, 1046, 931, 758, 617 cm⁻¹.

Method D:

Synthetic procedure of α -(2-indolyl) allylic alcohols 1 and 4: 2-Acylindoles (which were

prepared according to the previous literatures) $^{[1,3]}$ (1.0 mmol) was dissolved in anhydrous THF (10 mL) in an oven dried round bottom flask under Ar environment. The solution was then cooled to 0 °C and a solution of vinylmagnesium bromide in THF (2.0 mL, 2.0 mmol, 1.0 M) was added dropwise. The reaction was warmed to room temperature and stirred overnight, then was quenched by saturated NH₄Cl (aq), extracted by EtOAc for three times (3 × 5 mL), dried over anhydrous Na₂SO₄, and evaporated in vacuum to afford the crude product, which was further purified by flash chromatography on silica gel with petroleum ether/EtOAc (50: 1 ~ 10: 1) to give the corresponding alcohols 1 or 4.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1a): light yellow oil; 238.0 mg, 90% yield; 1 H NMR (500 MHz, CDCl₃) δ 8.49 (dd, J = 5.0, 1.1 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.61 (dd, J = 6.2, 2.7 Hz, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.45 (dd, J = 6.4, 2.3 Hz, 1H), 7.27 – 7.19 (m, 3H), 6.82 (d, J = 10.1 Hz, 1H), 5.80 – 5.73 (m, 1H), 5.57 (d, J = 9.5 Hz, 1H), 5.01 (d, J = 17.3 Hz, 1H), 4.77 (d, J = 10.6 Hz, 1H), 2.43 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 152.0, 148.0, 139.1, 138.9, 136.9, 136.0, 129.7, 123.4, 121.5, 121.0, 119.9, 119.7, 113.9, 112.9, 110.0, 66.1, 9.1; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₁₇H₁₅N₂: 247.1230, found: 247.1226; IR (KBr): 3723, 3634, 3056, 2921, 1591, 1475, 1456, 1439, 1363, 1319, 1223, 1150, 1111, 988, 779, 740 cm⁻¹.

1-(1-(Pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1b): light yellow solid; m.p. 60.6 - 61.6 °C; 223.0 mg, 89% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.60 - 8.56 (m, 1H), 7.99 - 7.95 (m, 1H), 7.70 - 7.64 (m, 2H), 7.55 - 7.51 (m, 1H), 7.36 - 7.32 (m, 1H), 7.27 - 7.19 (m, 2H), 6.70 (s, 1H), 6.54 (d, J = 4.9 Hz, 1H), 6.19 - 6.11 (m, 1H), 5.46 - 5.41 (m, 1H), 5.30 (s, 1H), 5.22 - 5.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 148.5, 142.3, 139.2, 137.1, 136.7, 128.6, 123.1, 121.7, 121.5, 121.4, 119.9, 115.5, 110.3, 104.8, 67.2; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₁₆H₁₃N₂: 233.1073, found: 233.1064; IR (KBr): 3671, 3646, 2921, 1866, 1681, 1647, 1541, 1454, 1434, 1373, 1338, 1206, 1145, 736 cm⁻¹.

1-(3-Phenyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1c): light yellow oil; 218.0 mg, 67 % yield; 1 H NMR (400 MHz, CDCl₃) δ 8.58 (dd, J = 5.0, 1.2 Hz, 1H), 7.99 – 7.95 (m, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 8.0 Hz, 3H), 7.55 (dd, J = 12.5, 5.1 Hz, 3H), 7.42 (t, J = 7.4 Hz, 1H), 7.36 – 7.23 (m, 3H), 6.76 (d, J = 9.5 Hz, 1H), 5.77 – 5.69 (m, 1H), 5.58 (s, 1H), 4.97 (d, J = 17.3 Hz, 1H), 4.76 – 4.69 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 151.9, 148.2, 139.2, 138.9, 137.4, 136.2, 133.9, 130.3, 128.7, 128.3, 127.1, 123.7, 122.0, 121.7, 120.5, 120.2, 120.1, 113.8, 110.1, 66.6; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O] $^{+}$: C₂₂H₁₇N₂: 309.1386, found: 309.1380; IR (KBr): 3729, 3629, 3055, 1591, 1472, 1438, 1369, 1149, 987, 921, 771, 742, 702 cm $^{-1}$.

1-(1-(Pyridin-2-yl)-3-(*p*-tolyl)-1H-indol-2-yl)prop-2-en-1-ol (1d): light yellow oil; 262.0 mg, 77% yield; ; ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.56 (m, 1H), 7.98 – 7.93 (m, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.34 – 7.24 (m, 3H), 6.79 (dd, J = 10.9, 1.2 Hz, 1H), 5.82 – 5.69 (m, 1H), 5.62 (dd, J = 10.9, 2.0 Hz, 1H), 4.99 (d, J = 17.2 Hz, 1H), 4.73 (d, J = 10.6 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 148.2, 139.2, 138.9, 137.3, 136.8, 136.2, 130.9, 130.2, 129.4, 128.4, 123.7, 121.9, 121.6, 120.6, 120.2, 120.1, 113.8, 110.1, 66.7, 21.4; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₂₃H₁₉N₂: 323.1543, found: 323.1535; IR (KBr): 3049, 3022, 2920, 1591, 1473, 1455, 1439, 1319, 1229, 1108, 989, 831, 784, 743 cm⁻¹.

1-(3-(4-Chlorophenyl)-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1e): light yellow solid; m.p. 120.3 - 123.4 °C; 220.0 mg, 61% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (dd, J = 5.0, 1.2 Hz, 1H), 7.99 - 7.95 (m, 1H), 7.73 - 7.60 (m, 4H), 7.54 (dd, J = 15.1, 8.2 Hz, 3H), 7.38 - 7.24 (m, 3H), 6.72 (d, J = 10.9 Hz, 1H), 5.76 - 5.68 (m, 1H), 5.58 - 5.47 (m, 1H), 4.99 (d, J = 17.3 Hz, 1H), 4.78 - 4.71 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 148.3, 139.3, 138.6, 137.6, 136.2, 133.0, 132.5, 131.6, 128.9, 128.0, 124.0, 122.2, 121.9, 120.3, 120.2, 118.9, 114.1, 110.3, 66.6; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₂H₁₈ClN₂O: 361.1102, found: 361.1112; IR (KBr): 3661, 3621, 2926, 1654, 1467, 1438, 1382, 1368, 740 cm⁻¹.

1-(5-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1f): light yellow solid; m.p. 90.5 - 91.5 °C; 262.0 mg, 77% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.58 - 8.52 (m, 1H), 7.97 - 7.89 (m, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.47 - 7.40 (m, 2H), 7.30 (dd, J = 7.4, 5.0 Hz, 1H), 7.08 (dd, J = 8.5, 1.3 Hz, 1H), 6.66 - 6.61 (m, 2H), 6.21 - 6.12 (m, 1H), 5.48 - 5.42 (m, 1H), 5.34 - 5.27 (m, 1H), 5.23 - 5.20 (m, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 148.3, 142.3, 139.2, 137.2, 135.0, 130.8, 128.9, 124.6, 121.5, 121.2, 119.7, 115.4, 110.1, 104.6, 67.2, 21.4; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₁₇H₁₅N₂: 247.1230, found: 247.1223; IR (KBr): 3652, 3017, 2919, 1593, 1578, 1474, 1439, 1371, 1340, 1300, 1215, 1174, 1129, 1021, 989, 875, 779, 744 cm⁻¹.

1-(5-Methoxy-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1g): yellow oil; 196.0 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.53 (m, 1H), 7.98 – 7.92 (m, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.42 (d, J = 9.0 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.11 (d, J = 2.5 Hz, 1H), 6.88 (dd, J = 9.0, 2.5 Hz, 1H), 6.60 (d, J = 8.3 Hz, 2H), 6.18 – 6.10 (m, 1H), 5.45 – 5.40 (m, 1H), 5.27 (s, 1H), 5.22 – 5.18 (dt, J = 10.6, 1.7 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 151.4, 148.4, 142.8, 139.2, 137.0, 131.7, 129.3, 121.5, 119.5, 115.4, 112.9, 111.2, 104.7, 103.2, 67.2, 55.8; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₁₇H₁₅N₂O: 263.1179, found: 263.1172; IR (KBr): 3745, 3071, 2921, 2850, 1583, 1475, 1450, 1377, 1203, 1172, 1120, 1132, 781 cm⁻¹.

1-(5-Fluoro-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1h): light yellow oil; 200.0 mg, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.59 – 8.57 (m, 1H), 8.01 – 7.94 (m, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.43 (dd, J = 9.0, 4.3 Hz, 1H), 7.37 – 7.34 (m, 1H), 7.29 (dd, J = 9.2, 2.4 Hz, 1H), 7.00 – 6.95 (m, 1H), 6.64 (s, 1H), 6.42 (d, J = 5.2 Hz, 1H), 6.17 – 6.09 (m, 1H), 5.46 – 5.41 (m, 1H), 5.26 (dd, J = 5.8, 4.0 Hz, 1H), 5.23 – 5.20 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.6 (d, J = 237.4 Hz, ¹J_{CF}), 151.1, 148.6, 143.7, 139.4, 136.7, 133.2, 129.2 (d, J = 10.1 Hz, ³J_{CF}), 121.9, 119.7, 115.7, 111.3 (d, J = 15.2 Hz, ²J_{CF}), 111.1, 106.4 (d, J = 23.2 Hz, ²J_{CF}), 104.6 (d, J = 4.0 Hz, ³J_{CF}), 67.1; HR-MS [ESI-MS(+)] calcd for [M + Na]⁺: C₁₆H₁₃FN₂ONa: 291.0904, found: 291.0909; IR (KBr): 3732, 2922, 1582, 1472, 1488, 1373, 1173, 1106, 986, 927, 853, 771 cm⁻¹.

1-(5-Bromo-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1i): yellow solid; m.p. 110.5 - 112.5 °C; 170.0 mg, 52% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 4.3 Hz, 1H), 8.00 - 7.96 (m, 1H), 7.76 (d, J = 1.7 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.38 - 7.35 (m, 2H), 7.32 - 7.28 (m, 1H), 6.61 (s, 1H), 6.36 (d, J = 5.2 Hz, 1H), 6.16 - 6.08 (m, 1H), 5.46 - 5.41 (m, 1H), 5.26 (t, J = 4.9 Hz, 1H), 5.23 - 5.20 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 148.6, 143.5, 139.4, 136.7, 135.4, 130.3 125.9, 123.9, 122.2, 119.8, 115.8, 114.4, 111.8, 104.0, 67.0; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺:

 $C_{16}H_{12}BrN_2$: 311.0178, found: 311.0168; IR (KBr): 3740, 3064, 1573, 1555, 1400, 1367, 1338, 1288, 1201, 1142, 984, 922, 865, 768 cm⁻¹.

1-(1-(Pyridin-2-yl)-6-(trifluoromethyl)-1H-indol-2-yl)prop-2-en-1-ol (1j): brown oil; 216.0 mg, 68% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.64 – 8.59 (m, 1H), 8.05 – 8.02 (m, 1H), 7.74 (d, J = 11.1 Hz, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.47 – 7.39 (m, 2H), 6.74 (s, 1H), 6.29 (d, J = 5.3 Hz, 1H), 6.17 – 6.09 (m, 1H), 5.47 – 5.42 (m, 1H), 5.30 (t, J = 4.9 Hz, 1H), 5.26 – 5.19 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 150.6, 148.8, 145.0, 139.7, 136.5, 135.8, 131.0, 125.1 (d, J = 32.3 Hz, $^{2}J_{CF}$), 125.0 (d, J = 272.7 Hz, $^{1}J_{CF}$), 122.5, 121.8, 120.0, 118.1 (q, J = 4.0 Hz, $^{3}J_{CF}$), 115.9, 107.8 (q, J = 4.0 Hz, $^{3}J_{CF}$), 104.5, 67.0; HR-MS [ESI-MS(+)] calcd for [M + Na]⁺: C₁₇H₁₃F₃N₂ONa: 341.0872, found: 341.0875; IR (KBr): 3317, 3069, 2922, 2852, 1592, 1474, 1439, 1347, 1323, 1163, 1115, 1050, 992, 968, 870, 828, 786 cm⁻¹.

1-(3-Methyl-1-(5-methylpyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1k): light yellow solid; m.p. 77.4 - 78.6 °C; 222.0 mg, 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.73 - 7.71 (m, 1H), 7.67 - 7.60 (m, 1H), 7.50 - 7.43 (m, 2H), 7.29 - 7.21 (m, 2H), 6.88 (d, J = 10.0 Hz, 1H), 5.84 - 5.76 (m, 1H), 5.58 (d, J = 7.4 Hz, 1H), 5.05 (d, J = 17.3 Hz, 1H), 4.82 (d, J = 10.5 Hz, 1H), 2.46 (s, 3H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 148.0, 139.7, 139.0, 136.9, 136.1, 131.3, 129.6, 123.2, 120.7, 119.6, 119.4, 113.9, 112.4, 110.0, 66.2, 18.0, 9.1; HR-MS [ESI-MS(+)] calcd for [M + H – 18.0] + 18.0 C18.0 C18.0

1-(3-Methyl-1-(6-methylpyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1l): light yellow solid; m.p. 90.4 - 91.8 °C; 214.0 mg, 77% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (t, J = 7.8 Hz, 1H), 7.61 - 7.60 (m, 1H), 7.48 - 7.43 (m, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.23 - 7.17 (m, 2H), 7.09 (d, J = 7.6 Hz, 1H), 7.03 (d, J = 9.9 Hz, 1H), 5.80 - 5.73 (m, 1H), 5.56 (d, J = 7.6 Hz, 1H), 5.01 (d, J = 17.3 Hz, 1H), 4.78 (d, J = 10.5 Hz, 1H), 2.59 (s, 3H), 2.43 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.5, 151.3, 139.2, 139.2, 137.0, 136.1, 129.7, 123.2, 120.9, 120.8, 119.6, 116.7, 113.7, 112.7, 110.1, 66.1, 23.9, 9.1; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₁₈H₁₇N₂: 261.1386, found: 261.1378; IR (KBr): 3647, 2918, 1573, 1541, 1455, 1359, 1223, 1152, 1109, 984, 919, 737 cm⁻¹.

1-(1-(5-Chloropyridin-2-yl)-3-methyl-1H-indol-2-yl)prop-2-en-1-ol (1m): light yellow solid; m.p. 133.1 - 134.3 °C; 238.0 mg, 80% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.45 (d, J = 2.5 Hz, 1H), 7.86 - 7.84 (m, 1H), 7.62 - 7.61 (m, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.41 - 7.39 (m, 1H), 7.24 - 7.20 (m, 2H), 6.15 (d, J = 10.3 Hz, 1H), 5.82 - 5.76 (m, 1H), 5.58 - 5.54 (m, 1H), 5.07 - 4.99 (m, 1H), 4.87 - 4.79 (m, 1H), 2.42 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.3, 146.8, 138.9, 138.9, 136.6, 136.0, 129.8, 129.2, 123.6, 121.2, 120.6, 119.8, 114.2, 113.5, 109.8, 66.0, 9.1; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₁₇H₁₄CIN₂: 281.0840, found: 281.0835; IR (KBr): 3671, 3646, 3564, 3054, 2919, 1681, 1541, 1488, 1470, 1417, 1395, 1116, 986, 924, 743 cm⁻¹.

1-(1-(5-Bromopyridin-2-yl)-3-methyl-1H-indol-2-yl)prop-2-en-1-ol (1n): white solid; m.p. 107.4 - 112.7 °C; 140.0 mg, 41% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 2.1 Hz, 1H), 8.02 - 7.99 (m, 1H), 7.66 - 7.64 (m, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.44 - 7.43 (m, 1H), 7.29 - 7.24 (m, 2H), 6.19 (d, J = 10.1 Hz, 1H), 5.87 - 5.79 (m, 1H), 5.60 (d, J = 7.3 Hz, 1H), 5.07 (d, J = 17.3 Hz, 1H), 4.88 (d, J = 10.5 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 149.1, 141.7, 138.8, 136.6, 135.9, 129.8, 123.7,

121.3, 121.1, 119.8, 117.1, 114.3, 113.6, 109.8, 66.1, 9.2; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₁₇H₁₄BrN₂: 325.0335, found: 325.0327; IR (KBr): 3445, 2920, 1648, 1547, 1467, 1386, 1316, 1220, 1099, 1011, 924, 740 cm⁻¹.

1-(3-Methyl-1-(5-(trifluoromethyl)pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1o): light yellow solid; m.p. 137.0 – 139.0 °C; 133.0 mg, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.79 – 8.78 (m, 1H), 8.15 – 8.12 (m, 1H), 7.73 (d, J = 8.5 Hz, 1H), 7.68 – 7.65 (m, 1H), 7.54 – 7.48 (m, 1H), 7.32 – 7.27 (m, 2H), 6.30 (d, J = 10.3 Hz, 1H), 5.88 – 5.80 (m, 1H), 5.66 – 5.61 m, 1H), 5.09 – 5.03 (m, 1H), 4.88 – 4.85 (m, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 145.4 (q, J = 4.0 Hz, ³J_{CF}), 138.9, 136.7, 136.4 (q, J = 3.0 Hz, ³J_{CF}), 135.8, 130.2, 124.0 (d, J = 34.3 Hz, ²J_{CF}), 123.9, 123.2 (d, J = 272.7 Hz, ¹J_{CF}), 121.8, 119.9, 119.4, 114.7, 114.3, 109.9, 66.0, 9.2; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₁₈H₁₄F₃N₂: 315.1098 , found: 315.1093; IR (KBr): 3646, 3615, 2923, 1647, 1541, 1488, 1455, 1327, 1164, 1128, 747 cm⁻¹.

(*E*)-1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-ol (1p): light yellow oil; 150.0 mg, 54% yield; 1 H NMR (500 MHz, CDCl₃) δ 8.56 – 8.53 (m, 1H), 7.95 – 7.92 (m, 1H), 7.63 – 7.59 (m, 2H), 7.47 – 7.45 (m, 1H), 7.31 – 7.28 (m, 1H), 7.23 – 7.18 (m, 2H), 6.76 (d, J = 10.3 Hz, 1H), 5.80 – 5.77 (m, 1H), 5.27 – 5.17 (m, 2H), 2.47 (s, 3H), 1.50 (d, J = 6.2 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 152.2, 148.3, 139.2, 138.0, 135.9, 131.9, 129.8, 125.3, 123.2, 121.5, 120.9, 119.9, 119.6, 112.1, 109.9, 62.4, 13.0, 9.1; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₁₈H₁₇N₂: 261.1386, found: 261.1383; IR (KBr): 3699, 3631, 2923, 1852, 1585, 1438, 1352, 1216, 970, 740 cm⁻¹.

1-(3-Methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (1q): light yellow solid; m.p. 94.4 - 96.7 °C; 123.0 mg, 46% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.73 (d, J = 4.8 Hz, 2H), 8.38 (d, J = 8.3 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.33 – 7.23 (m, 2H), 7.11 (t, J = 4.8 Hz, 1H), 6.95 (d, J = 10.8 Hz, 1H), 5.97 – 5.91 (m, 1H), 5.68 – 5.65 (m, 1H), 5.03 (d, J = 17.4 Hz, 1H), 4.87 (d, J = 10.6 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.8, 157.7, 139.9, 136.5, 135.7, 130.4, 124.4, 122.2, 119.2, 116.7, 116.6, 114.4, 114.2, 66.1, 9.4; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₁₆H₁₄N₃: 248.1182, found: 248.1171; IR (KBr): 3671, 3647, 2921, 1563, 1541, 1488, 1455, 1429, 1339, 1010, 744 cm⁻¹.

1-(1-(Pyridin-2-yl)-1H-pyrrol-2-yl)prop-2-en-1-ol (1r): brown oil; 55.0 mg, 28% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.43 (d, J = 4.7 Hz, 1H), 7.89 – 7.78 (m, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.24 – 7.22 (m, 1H), 7.05 (s, 1H), 6.67 (d, J = 5.1 Hz, 1H), 6.29 – 6.27 (m, 2H), 6.15 – 6.09 (m, 1H), 5.39 (d, J = 17.2 Hz, 1H), 5.23 (s, 1H), 5.16 (d, J = 10.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 152.4, 147.5, 139.6, 137.7, 135.9, 121.4, 121.1, 116.3, 115.0, 111.5, 110.3, 66.7; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₁₂H₁₁N₂: 183.0917, found: 183.0916; IR (KBr): 3647, 2924, 2855, 1867, 1714, 1681, 1647, 1472, 1440, 1417, 1338, 1154, 993 cm⁻¹.

1-(1-Phenyl-1H-indol-2-yl)prop-2-en-1-ol (1u): yellow soild; m.p. 95.7 – 99.3 °C; 154.4 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.66 (m, 1H), 7.59 – 7.48 (m, 5H), 7.20 – 7.13 (m, 3H), 6.68 (s, 1H), 6.23 – 6.14 (m, 1H), 5.35 – 5.31 (m, 1H), 5.27 – 5.24 (m, 1H), 5.24 – 5.20 (m, 1H), 1.85 (d, J = 6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 138.7, 138.1, 137.5, 129.5, 128.5, 128.2, 127.4, 122.5, 120.8, 120.4, 115.7, 110.6,

101.3, 67.5; HR-MS [ESI-MS(+)] calcd for $[M + H - H_2O]^+$: $C_{17}H_{14}N_2$: 232.1121, found: 232.1118; IR (KBr): 3057, 2921, 1595, 1498, 1454, 1338, 1217, 1017, 988, 929, 750, 698 cm⁻¹.

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)hex-1-en-3-ol (4a): yellow solid; m.p. 58.7 - 60.3 °C; 202.0 mg, 66% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.52 (m, 1H), 7.94 - 7.89 (m, 1H), 7.67 - 7.63 (m, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.35 - 7.31 (m, 1H), 7.23 - 7.17 (m, 3H), 6.66 (s, 1H), 6.02 - 5.95 (m, 1H), 5.09 - 5.04 (m, 1H), 4.82 - 4.79 (m, 1H), 4.8

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)pent-1-en-3-ol (4b): yellow solid; m.p. 64.0 - 65.2 °C; 102.0 mg, 35% yield; 1 H NMR (500 MHz, CDCl₃) δ 8.49 (d, J = 4.4 Hz, 1H), 7.87 (t, J = 7.7 Hz, 1H), 7.64 - 7.59 (m, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.32 - 7.27 (m, 1H), 7.21 - 7.14 (m, 3H), 6.68 (s, 1H), 5.92 - 5.87 (m, 1H), 5.01 (d, J = 17.3 Hz, 1H), 4.78 (d, J = 10.7 Hz, 1H), 2.54 (s, 3H), 2.18 - 2.11 (m, 1H), 1.99 - 1.92 (m 1H), 0.89 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 153.5, 148.0, 142.4, 139.1, 139.0, 136.9, 130.3, 123.1, 122.3, 122.3, 120.6, 119.2, 112.6, 111.2, 109.6, 75.5, 33.5, 11.3, 8.3; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C_{19} H₁₉N₂: 275.1543, found: 275.1536; IR (KBr): 3671, 3646, 3055, 2921, 2855, 1589, 1556, 1472, 1455, 1434, 1351, 1143, 963, 919, 738 cm⁻¹.

1-Cyclohexyl-1-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (4c): yellow oil; 243.0 mg, 70% yield; 1 H NMR (500 MHz, CDCl₃) δ 8.55 – 8.50 (m, 1H), 7.94 – 7.91 (m, 1H), 7.61 – 7.56 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.34 – 7.32 (m, 1H), 7.18 – 7.12 (m, 3H), 6.19 – 6.13 (m, 1H), 5.92 (s, 1H), 5.38 – 5.35 (m, 1H), 5.12 – 5.09 (m, 1H), 2.49 (s, 3H), 1.76 (d, J = 10.6 Hz, 1H), 1.69 – 1.65 (m, 1H), 1.59 (s, 1H), 1.52 (d, J = 11.5 Hz, 2H), 1.41 (d, J = 11.0 Hz, 1H), 1.02 – 0.87 (m, 5H); 13 C NMR (126 MHz, CDCl₃) δ 154.0, 148.5, 139.5, 139.0, 138.8, 137.1, 130.2, 122.9, 122.4, 122.3, 120.5, 119.0, 113.6, 111.9, 109.6, 77.7, 46.3, 28.7, 26.9, 26.7, 26.6, 26.6, 11.5; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O] ${}^{+}$: C₂₃H₂₅N₂: 329.2012, found: 329.2005; IR (KBr): 3699, 3632, 2926, 2853, 1654, 1588, 1467, 1437, 1351, 1301, 1210, 930, 741 cm ${}^{-1}$.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1-phenylprop-2-en-1-ol (4d): white solid; m.p. 138.2 - 139.5 °C; 100.0 mg, 30% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J = 4.5 Hz, 1H), 7.77 (s, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.21 - 7.13 (m, 3H), 7.10 (d, J = 7.5 Hz, 2H), 7.05 - 7.01 (m, 1H), 7.00 - 6.89 (m, 4H), 6.43 - 6.38 (m, 1H), 5.44 (d, J = 17.0 Hz, 1H), 5.09 (d, J = 10.5 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.5, 147.7, 146.3, 143.4, 138.8, 138.6, 136.5, 130.0, 127.5, 126.1, 125.6, 123.4, 122.1, 121.6, 120.7, 119.5, 113.5, 111.6, 109.5, 76.4, 11.1; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₂₃H₁₉N₂: 323.1543, found: 323.1535; IR (KBr): 3632, 3597, 2928, 1654, 1617, 1577, 1560, 1438, 1122, 744 cm⁻¹.

1-(4-Methoxyphenyl)-1-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (4e): yellow oil; 110.0 mg, 30% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.39 – 8.38 (m, 1H), 7.78 (d, J = 1.0 Hz, 1H), 7.69 – 7.59 (m, 2H), 7.23 – 7.19 (m, 3H), 7.11 – 7.03 (m, 4H), 6.56 (d, J = 8.8 Hz, 2H), 6.44 – 6.41 (m, 1H), 5.42 – 5.37 (m, 1H), 5.10 –

5.07 (m, 1H), 3.70 (s, 3H), 2.46 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 157.9, 152.6, 147.6, 143.6, 139.0, 138.6, 138.4, 136.6, 130.0, 126.9, 123.4, 122.0, 121.6, 120.6, 119.4, 113.3, 113.0, 111.3, 109.5, 76.0, 55.2, 11.0; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₂₄H₂₁N₂O: 353.1648, found: 353.1646; IR (KBr): 3239, 3056, 2925, 2834, 1591, 1506, 1473, 1457, 1438, 1359, 1300, 1246, 1169, 1034, 921, 833, 774, 741 cm⁻¹.

1-(4-Fluorophenyl)-1-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (4f): yellow solid; m.p. 123.7 - 125.8 °C; 133.0 mg, 37% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.36 (m, 1H), 7.86 (d, J = 1.2 Hz, 1H), 7.71 – 7.60 (m, 2H), 7.26 – 7.20 (m, 3H), 7.14 – 7.04 (m, 4H), 6.74 – 6.66 (m, 2H), 6.45 – 6.38 (m, 1H), 5.46 – 5.41 (m, 1H), 5.15 – 5.12 (m, 1H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2 (d, J = 246.4 Hz, ¹ J_{CF}), 152.4, 147.7, 143.3, 142.1 (d, J = 3.0 Hz, ³ J_{CF}), 138.7, 138.5, 136.5, 130.0, 127.4 (d, J = 8.1 Hz, ³ J_{CF}), 123.6, 121.9, 121.7, 120.8, 119.5, 114.3 (d, J = 21.2 Hz, ² J_{CF}), 113.6, 111.9, 109.6, 76.0, 11.1; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₂₃H₁₈FN₂: 341.1449, found: 341.1444; IR (KBr): 3661, 3632, 2925, 1734, 1685, 1654, 1629, 1437, 1351, 1217, 1148, 905, 840, 741 cm⁻¹.

2-(2-(1H-Pyrazol-1-yl)phenyl)but-3-en-2-ol (4g): yellow oil; 164 mg, 77% yield; ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.75 – 7.66 (m, 2H), 7.59 (d, J = 2.0 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.28 – 7.25 (m, 1H), 6.81 (s, 1H), 6.43 (t, J = 2.1 Hz, 1H), 5.75 (dd, J = 17.3, 10.7 Hz, 1H), 4.88 (dd, J = 17.3, 1.0 Hz, 1H), 4.61 (dd, J = 10.7, 1.1 Hz, 1H), 1.59 (s, 3H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 143.7, 141.5, 139.7, 139.40, 131.3, 128.7, 128.4, 127.8, 127.2, 110.1, 107.3, 73.2, 28.3; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: $C_{13}H_{13}N_2$: 197.1073, found: 197.1075; IR (KBr): 2982, 2929, 1518, 1493, 1451, 1396, 1325, 1195, 1107, 1053, 925, 761, cm⁻¹.

1-(2-(1H-Pyrazol-1-yl)phenyl)-1-phenylprop-2-en-1-ol (4h): yellow oil; 180.0 mg, 65% yield; 1 H NMR (500 MHz, CDCl₃) δ 7.71 – 7.67 (m, 1H), 7.48 (d, J = 1.5 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.33 (s, 1H), 7.21 – 7.17 (m, 1H), 7.08 – 6.98 (m, 6H), 6.20 (dd, J = 17.0, 10.6 Hz, 1H), 6.02 (t, J = 1.9 Hz, 1H), 5.36 (d, J = 17.0 Hz, 1H), 5.13 (d, J = 10.6 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 145.6, 142.8, 142.6, 139.6, 139.4, 130.9, 130.2, 128.6, 128.5, 127.5, 127.4, 126.1, 125.0, 112.7, 107.0, 78.0; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O] $^{+}$: C₁₈H₁₅N₂: 259.1230, found: 259.1234; IR (KBr): 3061, 3022, 1518, 1490, 1451, 1396, 1326, 1194, 1051, 944, 922, 763, 703 cm $^{-1}$.

1-(2-(1H-Pyrazol-1-yl)phenyl)-1-(p-tolyl)prop-2-en-1-ol (4i): white solid; m.p. 103.0 - 106.2 °C; 200 mg, 69% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.61 (m, 1H), 7.47 (s, 1H), 7.40 – 7.34 (m, 2H), 7.29 (s, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.10 (d, J = 2.2 Hz, 1H), 6.97 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 6.17 (dd, J = 17.0, 10.6 Hz, 1H), 6.04 (s, 1H), 5.31 (d, J = 17.0 Hz, 1H), 5.07 (d, J = 10.6 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.0, 142.7, 142.6, 139.6, 139.4, 135.6, 131.0, 130.2, 128.6, 128.5, 128.2, 127.4, 125.1, 112.3, 107.0, 77.9, 21.0; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₁₉H₁₇N₂: 273.1386, found: 273.1399; IR (KBr): 3253, 3104, 2920, 1508, 1427, 1397, 1326, 1185, 1104, 1052, 994, 922, 818, 761 cm⁻¹.

1-(2-(1H-Pyrazol-1-yl)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-ol (4j): white solid; m.p. 147.8 – 149.6 °C; 202 mg, 66% yield; 1 H NMR (400 MHz, CDCl₃) δ 7.68 – 7.64 (m, 1H), 7.54 (d, J = 1.6 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.36 (d, J = 1.1 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.16 (d, J = 2.2 Hz, 1H), 7.07 – 7.03 (m, 2H), 6.68 – 6.63 (m, 2H), 6.25 – 6.17 (m, 1H), 6.11 (t, J = 2.2 Hz, 1H), 5.31 (dd, J = 17.1, 1.5 Hz, 1H), 5.11 (dd, J = 10.5,

1.5 Hz, 1H), 3.74 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 157.9, 143.0, 142.7, 139.6, 139.4, 137.7, 131.0, 130.3, 128.6, 128.5, 127.4, 126.3, 113.0, 112.3, 107.1, 77.7, 55.2; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: $C_{19}H_{17}N_2O$: 289.1335, found: 289.1340; IR (KBr): 3242, 3114, 2842, 1607, 1508, 1453, 1395, 1295, 1249, 1172, 1108, 1052, 1028, 997, 944, 922, 832, 769, 673 cm⁻¹.

1-(2-(1H-Pyrazol-1-yl)phenyl)-1-(4-fluorophenyl)prop-2-en-1-ol (**4k**): white solid; m.p. 134.3 - 139.0 °C; 220.0 mg, 75% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.65 (m, 1H), 7.49 (s, 1H), 7.44 – 7.38 (m, 2H), 7.21 (d, J = 7.2 Hz, 1H), 7.10 (d, J = 2.1 Hz, 1H), 7.06 – 7.03 (m, 2H), 6.74 (t, J = 8.6 Hz, 2H), 6.20 – 6.07 (m, 1H), 6.07 (s, 1H), 5.33 (d, J = 17.0 Hz, 1H), 5.14 (d, J = 10.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.3 (d, J = 244.4 Hz, ¹ J_{CF}), 142.7, 142.3, 141.5 (d, J = 3.8 Hz, ³ J_{CF}), 139.6, 139.3, 130.9, 130.1, 128.7 (d, J = 23.9 Hz, ² J_{CF}), 127.4, 126.7, 126.6, 114.2 (d, J = 21.4 Hz, ² J_{CF}), 112.9, 107.2, 77.7; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₁₈H₁₄FN₂: 277.1136, found: 277.1138; IR (KBr): 3194, 3105, 1597, 1500, 1451, 1399, 1329, 1296, 1208, 1156, 1097, 1055, 994, 925, 837, 764, 714 cm⁻¹.

9-(Pyridin-2-yl)-1-vinyl-2,3,4,9-tetrahydro-1H-carbazol-1-ol (4l): light yellow solid; m.p. 96.9 - 99.4 °C; 183.0 mg, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.47 - 8.47 (m, 1H), 7.92 - 7.88 (m, 1H), 7.64 - 7.57 (m, 2H), 7.51 - 7.49 (m, 1H), 7.29 - 7.21 (m, 3H), 7.09 (d, J = 1.3 Hz, 1H), 5.84 - 5.77 (m, 1H), 4.93 - 4.89 (m, 1H), 4.65 - 4.62 (m, 1H), 2.97 - 2.91 (m, 1H), 2.79 - 2.70 (m, 1H), 2.24 - 2.10 (m, 2H), 1.99 - 1.83 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 147.9, 144.1, 139.0, 138.3, 136.2, 128.2, 123.3, 121.3, 121.0, 119.7, 119.4, 116.2, 112.3, 110.0, 70.1, 39.6, 21.9, 19.6; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₁₉H₁₇N₂: 273.1386, found: 273.1383; IR (KBr): 3282, 2925, 2850, 1592, 1477, 1444, 1374, 1341, 1307, 1117, 991, 968, 927, 775, 740 cm⁻¹.

5-(Pyridin-2-yl)-6-vinyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indol-6-ol (4m): white solid; m.p. 78.2 - 82.5 °C; 216.0 mg, 71% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.52 - 8.48 (m, 1H), 7.90 - 7.86 (m, 1H), 7.69 - 7.64 (m, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.42 - 7.33 (m, 2H), 7.30 - 7.20 (m, 3H), 5.86 - 5.79 (m, 1H), 4.75 (d, J = 17.4 Hz, 1H), 4.55 (d, J = 10.7 Hz, 1H), 3.11 - 3.05 (m, 1H), 2.96 - 2.89 (m, 1H), 2.20 - 2.13 (m, 3H), 2.10 - 2.05 (m, 1H), 2.00 - 1.91 (m, 1H), 1.81 - 1.76 (m, 1H); 1^3 C NMR (101 MHz, CDCl₃) δ 152.9, 147.8, 144.9, 139.8, 139.0, 136.4, 129.0, 123.0, 121.8, 121.3, 120.8, 119.2, 119.1, 111.5, 109.9, 74.6, 37.7, 25.8, 20.8, 20.5; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C_{20} H₁₉N₂: 287.1543, found: 287.1539; IR (KBr): 3725, 3630, 3052, 2929, 2857, 1590, 1569, 1473, 1456, 1439, 1355, 1310, 1222, 1150, 1127, 989, 915, 776, 740 cm⁻¹.

Method E:

Synthetic procedure of substituted α-(2-indolyl)propargyl alcohols 6 ^[4]: To a solution of alkynes (2.0 mmol, 2.0 eq.) in anhydrous THF (10 mL) at -78 °C under Ar atmosphere was added n-BuLi (1.6 M, 1.3 mL, 2.0 eq.) dropwise. Then the reaction was stirred at room temperature for 1 h. After cooling to -78 °C, aldehydes (1.0 mmol, 1.0 eq.) in THF (5 mL) was added to the mixture dropwise. The reaction mixture was warmed up to room temperature gradually, and was stirred overnight. The reaction was quenched with aqueous NH₄Cl. The mixture was extracted with EtOAc (10 mL \times 3). The combined organic phases were washed with brine and dried over

anhydrous Na₂SO₄, then concentrated under reduced pressure. The residue was purified by column chromatography to give the desired products **6**.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylprop-2-yn-1-ol (6a): yellow oil; 253.0 mg, 75% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.64 – 8.62 (m, 1H), 7.99 – 7.95 (m, 1H), 7.75 – 7.66 (m, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 11.0 Hz, 1H), 7.35 – 7.16 (m, 6H), 6.99 (d, J = 7.1 Hz, 2H), 6.02 (d, J = 11.0 Hz, 1H), 2.53 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 152.2, 148.4, 139.2, 135.9, 135.5, 131.5, 129.5, 128.2, 128.0, 123.9, 122.6, 121.5, 121.2, 120.0, 119.7, 112.6, 110.1, 88.3, 85.1, 56.0, 9.1; HR-MS [ESI-MS(+)] calcd for [M + H] $^{+}$: C₂₃H₁₉N₂O: 339.1492, found: 339.1489; IR (KBr): 3286, 3080, 2916, 2200, 1591, 1473, 1440, 1362, 1219, 1150, 1092, 1010, 963, 775, 739 cm $^{-1}$.

Me 1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-(p-tolyl)prop-2-yn-1-ol (6b): yellow solid; m.p. 118.1 - 119.7 °C; 244.0 mg, 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.64 - 8.62 (m, 1H), 7.98 - 7.94 (m, 1H), 7.76 - 7.65 (m, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 11.0 Hz, 1H), 7.34 - 7.25 (m, 3H), 7.00 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 8.0 Hz, 2H), 6.02 (d, J = 11.0 Hz, 1H), 2.53 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 148.4, 139.2, 138.3, 135.9, 135.6, 131.4, 129.5, 128.8, 123.8, 121.5, 121.2, 120.0, 119.7, 119.5, 112.5, 110.1, 87.6, 85.2, 56.1, 21.4, 9.0; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₂₄H₁₉N₂: 335.1543, found: 335.1531; IR (KBr): 3247, 3078, 2911, 2210, 1588, 1474, 1438, 1362, 1091, 1006, 962, 817, 780, 740 cm⁻¹.

3-(4-Methoxyphenyl)-1-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-yn-1-ol (6c): yellow oil; 121.0 mg, 33% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 3.6 Hz, 1H), 7.99 – 7.95 (m, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 7.4 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 11.0 Hz, 1H), 7.34 – 7.24 (m, 3H), 6.89 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.7 Hz, 2H), 5.96 (d, J = 10.9 Hz, 1H), 3.77 (s, 3H), 2.50 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.4, 152.2, 148.4, 139.1, 135.9, 135.6, 132.9, 129.5, 123.7, 121.4, 121.1, 119.9, 119.6, 114.6, 113.6, 112.5, 110.0, 86.8, 84.9, 56.0, 55.2, 9.0; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₂₄H₁₉N₂O: 351.1492, found: 351.1486; IR (KBr): 3242, 3054, 2921, 2836, 2201, 1591, 1508, 1474, 1455, 1439, 1364, 1287, 1247, 1172, 1031, 966, 832, 779, 741 cm⁻¹.

3-(4-Fluorophenyl)-1-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-yn-1-ol (6d): brown solid; m.p. 113.9 - 114.9 °C; 192.0 mg, 54% yield; 1H NMR (500 MHz, CDCl₃) δ 8.59 - 8.54 (m, 1H), 7.92 - 7.89 (m, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.42 (d, J = 11.0 Hz, 1H), 7.27 - 7.20 (m, 3H), 6.93 - 6.86 (m, 2H), 6.82 (t, J = 8.7 Hz, 2H), 5.93 (d, J = 11.0 Hz, 1H), 2.45 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.3 (d, J = 250.7, $^{1}J_{CF}$), 152.2, 148.4, 139.2, 135.9, 135.3, 133.3 (d, J = 7.6 Hz, $^{3}J_{CF}$), 129.5, 123.9, 121.4, 121.3, 120.0, 119.6, 118.6 (d, J = 2.5 Hz, $^{3}J_{CF}$), 115.3 (d, J = 22.7 Hz, $^{2}J_{CF}$), 112.7, 110.1, 88.0, 84.0, 55.9, 9.0; HR-MS [ESI-MS(+)] calcd for [M + H] $^{+}$: $C_{23}H_{18}FN_{2}O$: 357.1398, found: 357.1397; IR (KBr): 3056, 2953, 2923, 2854, 2220, 1591, 1506, 1474, 1455, 1439, 1364, 1232, 1154, 1093, 1014, 967, 835, 779, 741 cm $^{-1}$.

T-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-(4-(trifluoromethyl)phenyl)pr op-2-yn-1-ol (6e): yellow oil; 210.0 mg, 52% yield; 1 H NMR (500 MHz, CDCl₃) δ 8.65 – 8.57 (m, 1H), 7.96 – 7.93 (m, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 11.0 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.02 (d, J = 8.1 Hz, 2H), 5.95 (d, J = 10.9 Hz, 1H),

2.47 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 152.1, 148.4, 139.2, 135.9, 134.9, 131.6, 129.9 (d, J= 7.6 Hz, ${}^{3}J_{CF}$), 129.4, 126.3, 125.0 (q, J = 3.8 Hz, ${}^{3}J_{CF}$), 122.7, 124.0, 121.4, 121.3, 120.03, 119.5, 113.0, 110.1, 90.8, 83.6, 55.9, 9.0; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{24}H_{18}F_3N_2O$: 407.1366, found: 407.1370; IR (KBr): 3715, 3060, 2924, 1507, 1473, 1455, 1324, 1166, 1125, 1067, 1017, 842, 742 cm⁻¹.

742, 705 cm⁻¹.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-(thiophen-2-yl)prop-2-yn-1-ol(**6f):** brown solid; m.p. 65.7 - 67.2 °C; 130.0 mg, 38% yield; ¹H NMR (400 MHz, $CDCl_3$) $\delta 8.62 - 8.61$ (m, 1H), 8.02 - 7.98 (m, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.66(d, J = 7.2 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 11.1 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.30 - 7.24 (m, 2H), 7.13 - 7.12 (m, 1H), 6.92 - 6.75 (m, 2H), 5.97(d, J = 11.0 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 148.3, 139.3, 135.9, 135.2, 131.9, 129.4, 127.0, 126.7, 123.9, 122.4, 121.6, 121.2, 120.0, 119.7, 112.6, 110.0, 92.1, 78.3, 56.1, 9.0; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{21}H_{17}N_2OS$: 345.1056, found: 345.1055; IR (KBr): 3725, 3071, 2922, 1654, 1589, 1504, 1474, 1438, 1364, 1323, 1265, 1153, 1011, 850,

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-yn-1-ol (6g): brown solid; m.p. 145.0 - 146.2 °C; 126.0 mg, 48% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, J = 4.7 Hz, 1H), 7.94 (t, J = 7.7 Hz, 1H), 7.65 – 7.61 (m, 2H), 7.52 (d, J = 8.2 Hz, 1H), 7.43 (d, J = 11.0 Hz, 1H), 7.31 - 7.29 (m, 1H), 7.27 - 7.19 (m, 2H), 5.76 - 5.73 (m, 1H), 2.43 (s, 3H), 2.04 (d, J = 2.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 151.9, 148.1, 139.2, 135.8, 134.8, 129.4, 123.9, 121.5, 121.2, 120.0, 119.6, 112.8, 110.1, 82.6, 72.7, 55.3, 9.0; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{17}H_{15}N_2O$: 263.1179, found: 263.1170; IR (KBr): 3555, 3288, 2922, 1591, 1474, 1455, 1439, 1363, 1319, 1283, 1093, 1017, 778, 740 cm⁻¹.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-yn-1-ol (6h): yellow solid; m.p. 135.3 - 138.0 °C; 192.3 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J =5.0, 1.2 Hz, 1H, 7.99 - 7.94 (m, 1H), 7.69 - 7.61 (m, 2H), 7.53 (d, J = 7.6 Hz, 1H),7.33 - 7.21 (m, 4H), 5.72 (dd, J = 10.8, 2.2 Hz, 1H), 2.46 (s, 3H), 1.45 (d, J = 2.3Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 148.4, 139.0, 135.9, 135.8, 129.4, 123.7, 121.4, 121.1, 119.9, 119.7, 112.1, 110.0, 81.4, 78.3, 55.7, 8.9, 3.3; HR-MS [ESI-MS(+)] calcd for [M + $H-H_2O_1^+: C_{18}H_{15}N_2: 259.1230$, found: 259.1231; IR (KBr): 3251, 3057, 2919, 1592, 1474, 1441, 1364, 1231, 1146, 1091, 997, 916, 742 cm⁻¹.

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1-phenylpent-1-yn-3-ol (6i): brown oil; 120.0 mg, 33% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.63 – 8.62 (m, 1H), 7.92 -7.87 (m, 1H), 7.75 - 7.68 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.37 - 7.30 (m, 2H), 7.27 - 7.17 (m, 5H), 7.05 - 7.03 (m, 2H), 2.66 (s, 3H), 2.58 - 2.46 (m, 2H), 1.33 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 148.4, 139.1, 137.4, 136.6, 131.4, 130.2, 128.0, 127.9, 123.5, 122.8, 122.0, 121.9, 120.8, 119.5, 110.8, 109.8, 91.5, 85.7, 69.9, 34.2, 11.0, 9.7; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{25}H_{23}N_2O$: 367.1805, found: 367.1801; IR (KBr): 3280, 3055, 2970, 2928, 1664, 1584, 1534, 1457, 1381, 1276, 1145, 1008, 924, 740, 700 cm⁻¹.

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1-phenylhex-1-yn-3-ol (6j): brown solid; m.p. 130.3 - 132.6 °C; 155.0 mg, 41% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, J = 4.7 Hz, 1H), 7.87 - 7.80 (m, 1H), 7.65 - 7.63 (m, 1H), 7.58 (d, J = 8.2Hz, 2H), 7.30 - 7.25 (m, 2H), 7.22 - 7.14 (m, 5H), 7.00 (d, J = 7.2 Hz, 2H), 2.61 (s, 3H), 2.45 - 2.31 (m, 2H), 1.88 - 1.81 (m, 1H), 1.72 - 1.65 (m, 1H), 1.05 (t, J = 7.4 Hz, 3H); 13 C

NMR (126 MHz, CDCl₃) δ 153.4, 148.4, 139.1, 137.5, 136.6, 131.4, 130.2, 127.9, 127.9, 123.5, 122.8, 122.0, 121.9, 120.8, 119.5, 110.8, 109.7, 91.9, 85.6, 69.4, 43.5, 18.5, 14.3, 11.0; HR-MS [ESI-MS(+)] calcd for $[M+H]^+$: $C_{26}H_{25}N_2O$: 381.1961, found: 381.1963; IR (KBr): 3782, 3057, 2958, 2924, 2869, 1654, 1591, 1472, 1458, 1438, 1357, 1313, 1282, 1209, 1147, 967, 756, 741 cm⁻¹.

1151, 1028, 958, 756, 691 cm⁻¹.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1,3-diphenylprop-2-yn-1-ol (6k): yellow oil; 283.0 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.58 (m, 1H), 8.38 (s, 1H), 7.84 - 7.75 (m, 3H), 7.62 (d, J = 7.3 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.38 - 7.30 (m, 4H), 7.27 - 7.19 (m, 6H), 7.11 (d, J = 7.0 Hz, 2H), 1.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 148.1, 143.5, 139.1, 137.7, 136.4, 131.4, 130.0, 128.1, 128.0, 128.0, 127.6, 126.9, 123.8, 122.7, 121.9, 121.7, 120.9, 119.7, 113.3, 109.7, 92.5, 86.3, 69.9, 9.5; HR-MS [ESI-MS(+)] calcd for $[M + H]^{+}$: $C_{29}H_{23}N_{2}O$: 415.1805, found: 415.1808; IR (KBr):

3-Mhenyl-1-(1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-yn-1-ol (6l): light yellow oil; 227.0 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.64 – 8.63 (m, 1H), 8.02 – 7.97 (m, 1H), 7.76 - 7.70 (m, 2H), 7.59 (d, J = 8.3 Hz, 1H), 7.38 - 7.32 (m, 2H), 7.30 - 7.28 (m, 2H), 7.27 - 7.24 (m, 2H), 7.23 (t, J = 1.8 Hz, 1H), 7.16 - 7.14 (m, 2H), 6.91 (s, 1H), 5.82 (d, J = 8.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 148.5, 140.0, 139.3, 136.8, 131.6, 128.4, 128.3, 128.1, 128.1, 123.6, 121.8, 121.7, 121.7, 119.6, 110.4, 105.7, 87.5, 85.3, 58.7; HR-MS [ESI-MS(+)] calcd for $[M + H - H_2O]^+$: $C_{22}H_{15}N_2$: 307.1230, found: 307.1234; IR (KBr): 3745, 3240, 3057, 2921, 2200, 1593, 1489, 1454, 1439, 1347, 1283, 1213,

3240, 3065, 2922, 2856, 1654, 1572, 1534, 1458, 1277, 1147, 1011, 924, 741, 700 cm⁻¹.

1-(5-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylprop-2-yn-1-ol yellow oil; 220.0 mg, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.62 – 8.60 (m, 1H), 7.99 - 7.95 (m, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.35-7.30 (m, 2H), 7.26 - 7.23 (m, 3H), 7.17 - 7.09 (m, 3H), 6.83 (s, 1H), 5.80 (d, J = 8.5 Hz, 1H), 2.49 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 151.7, 148.4, 140.0, 139.3, 135.1, 131.8, 131.6, 131.1, 128.7, 128.3, 128.1, 125.1, 122.6, 121.6, 121.4, 119.4, 110.1, 105.4, 87.6, 85.2, 58.7, 21.4; HR-MS [ESI-MS(+)] calcd for $[M + H - H_2O]^+$: $C_{23}H_{17}N_2$: 321.1386, found: 321.1378; IR (KBr): 3745, 3252, 3058, 2917, 2202, 1595, 1474, 1440, 1375, 1340, 1305, 1174, 1029, 959, 874, 783, 775, 691 cm⁻¹.

1-(5-Methoxy-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylprop-2-yn-1-ol yellow oil; 242.0 mg, 68% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 4.7Hz, 1H), 7.95 (t, J = 7.7 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 9.0 Hz, 1H), 7.34 – 7.29 (m, 1H), 7.25 – 7.16 (m, 4H), 7.14 – 7.05 (m, 3H), 6.91 – 6.89 (m, 1H), 6.80 (s, 1H), 5.75 (d, J = 8.2 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 151.6, 148.4, 140.5, 139.3, 131.8, 131.6, 129.1, 128.3, 128.1, 122.5, 121.6, 119.2, 113.4, 111.3, 105.6, 103.3, 87.5, 85.3, 58.7, 55.8; HR-MS [ESI-MS(+)] calcd for $[M + H]^{+}$: $C_{23}H_{19}N_{2}O_{2}$: 355.1441, found: 355.1442; IR (KBr): 3249, 3062, 2927, 2831, 1618, 1596, 1583, 1475, 1449, 1380, 1304, 1280, 1204, 1172, 1031, 758, 692 cm⁻¹.

1-(5-Fluoro-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylprop-2-yn-1-ol (60): brown oil; 150.0 mg, 44% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, J = 4.8Hz, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.46 – 7.44 (m, 1H), 7.36 - 7.28 (m, 2H), 7.25 - 7.18 (m, 3H), 7.11 (d, J = 7.3 Hz, 2H), 7.03 (d, J = 8.6 Hz, 1H), 7.00 - 6.96 (m, 1H), 6.83 (s, 1H), 5.75 (d, J = 8.6 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 158.7 (d, J = 236.9, $^{1}J_{CF}$), 151.3, 148.6, 141.5, 139.5, 133.3, 131.8, 131.6, 128.4, 128.1, 122.4, 122.0, 119.5, 111.7 (d, J = 25.2, $^{2}J_{CF}$), 111.3 (d, J = 10.1, $^{3}J_{CF}$), 106.6 (d, J = 23.9, $^{2}J_{CF}$), 105.4 (d, J = 5.0, $^{3}J_{CF}$), 87.2, 85.5, 58.6; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₂₂H₁₄FN₂: 325.1136, found: 325.1128; IR (KBr): 3745, 3274, 2923, 2200, 1587, 1475, 1450, 1381, 1301, 1174, 1029, 954, 858, 786, 757, 691 cm⁻¹.

1-(5-Bromo-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylprop-2-yn-1-ol (6p): yellow solid; m.p. 155.9 - 157.4 °C; 150.0 mg, 37% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.63 (m, 1H), 8.03 – 7.99 (m, 1H), 7.81 (d, J = 1.8 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.43 – 7.34 (m, 3H), 7.28 – 7.21 (m, 3H), 7.15 – 7.13 (m, 2H), 7.03 (d, J = 8.7 Hz, 1H), 6.83 (s, 1H), 5.79 (d, J = 8.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 148.7, 141.1, 139.5, 135.5, 131.6, 130.1, 128.4, 128.1, 126.4, 124.2, 122.3, 122.2, 119.6, 114.6, 111.9, 104.9, 87.0, 85.6, 58.6; HR-MS [ESI-MS(+)] calcd for [M + H – H₂O]⁺: C₂₂H₁₄BrN₂: 385.0335, found: 385.0329; IR (KBr): 3743, 3264, 3064, 2921, 2854, 2210, 1588, 1473, 1444, 1376, 1339, 1299, 1208, 1143, 1024, 873, 758, 690 cm⁻¹.

3-Phenyl-1-(1-(pyridin-2-yl)-6-(trifluoromethyl)-1H-indol-2-yl)prop-2-yn-1-ol (6q): light pink solid; m.p. 117.1 - 119.3 °C; 221.0 mg, 56% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.68 - 8.67 (m, 1H), 8.08 - 8.04 (m, 1H), 7.82 (s, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.49 (d, J = 8.3 Hz, 1H), 7.46 - 7.42 (m, 1H), 7.30 - 7.21 (m, 3H), 7.17 - 7.15 (m, 2H), 6.97 (d, J = 8.8 Hz, 2H), 5.84 (d, J = 8.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 148.9, 142.7, 139.8, 135.9, 131.6, 130.8, 128.5, 128.2, 124.9 (d, J = 272.7, ¹J_{CF}), 125.6 (d, J = 32.3, ²J_{CF}), 122.6, 122.2, 122.1, 119.7, 118.3 (q, J = 3.0, ³J_{CF}),107.9 (q, J = 6.0, ³J_{CF}), 105.4, 86.9, 85.7, 58.6; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₂₃H₁₄F₃N₂: 375.1104, found: 375.1098; IR (KBr): 3745, 3056, 2923, 1592, 1474, 1440, 1344, 1324, 1304, 1164, 1116, 1050, 1024, 971, 829, 757, 691 cm⁻¹.

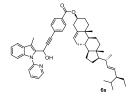
1-(Phenylethynyl)-9-(pyridin-2-yl)-2,3,4,9-tetrahydro-1H-carbazol-1-ol (6t): light yellow solid; m.p. 96.9 - 99.4 °C; 211.0 mg, 56% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.58 - 8.57 (m, 1H), 7.92 - 7.89 (m, 1H), 7.68 - 7.64 (m, 2H), 7.60 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.28 - 7.20 (m, 3H), 7.18 - 7.10 (m, 3H), 6.92 - 6.85 (m, 2H), 2.93 (d, J = 16.1 Hz, 1H), 2.79 - 2.70 (m, 1H), 2.56 (d, J = 13.1 Hz, 1H), 2.31 - 2.13 (m, 2H), 2.05 - 1.97 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1, 148.4, 139.1, 137.1, 136.0, 131.4, 128.1, 127.9, 123.7, 122.7, 121.3, 121.2, 119.7, 119.3, 115.3, 110.1, 92.3, 83.2, 62.8, 39.8, 21.7, 19.4; HR-MS [ESI-MS(+)] calcd for [M + H - H₂O]⁺: C₂₅H₁₉N₂: 347.1543, found: 347.1555; IR (KBr): 3281, 3056, 2928, 2840, 1592, 1474, 1443, 1371, 1346, 1263, 1137, 973, 917, 831, 788, 755, 740, 691 cm⁻¹.

6-(Phenylethynyl)-5-(pyridin-2-yl)-5,6,7,8,9,10-hexahydrocyclohepta[b]indol-6 -ol (6u): light yellow oil; 243.0 mg, 64% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.63 - 8.62 (m, 1H), 8.09 (d, J = 1.2 Hz, 1H), 7.93 - 7.89 (m, 1H), 7.70 - 7.67 (m, 2H), 7.49 - 7.47 (m, 1H), 7.34 - 7.24 (m, 3H), 7.24 - 7.14 (m, 3H), 6.96 - 6.93 (m, 2H), 3.15 - 2.93 (m, 2H), 2.71 - 2.49 (m, 2H), 2.31 - 2.17 (m, 1H), 2.09 - 2.01 (m, 2H), 1.98 - 1.88 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 152.9, 148.3, 139.2, 138.5, 136.2, 131.4, 128.8, 127.9, 123.5, 122.7, 121.7, 121.0, 120.9, 119.4, 117.8, 110.0, 92.8, 84.1, 68.0, 37.6, 25.4, 20.6, 20.5; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₆H₂₁N₂: 361.1699, found: 361.1694; IR (KBr): 3260, 3056, 2931, 2860, 1591, 1570, 1474, 1456, 1440, 1365, 1313, 1021, 1005, 915, 777, 757, 740, 691 cm⁻¹.

Method F:

Synthetic procedure of α -(2-indolyl)propargyl alcohols 6r and 6s: The following starting materials S4 were prepared according to the literature procedures ^[23]. To an oven-dried 50 mL flask, 4-ethynyl-benzoic acid (6.0 mmol), alcohol (5.5 mmol), DMAP (1.1 mmol) and DCM (30 mL) were added sequentially under Ar at 0 °C. Then DCC (6 mmol) was added and stirred for 10 min at this temperature and stirred at room temperature overnight. The reaction mixture filtered through a short pad of silica gel and washed by DCM. The filtrate was concentrated in vacuo before it was purified by flash chromatography on silica gel to afford the desired compound S4. After obtaining S4, we also used the **method E** to synthesize 6r and 6s.

(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-ethynylbenzoate (S4-1) [5]:


¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 4.99 – 4.92 (m, 1H), 3.24 (s, 1H), 2.16 – 2.13 (m, 1H), 2.00 – 1.92 (m, 1H), 1.80 – 1.69 (m, 2H), 1.64 – 1.49 (m, 2H), 1.20 – 1.07 (m, 2H), 0.96 – 0.93 (m, 7H), 0.81 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 132.0, 130.9, 129.4, 126.5, 82.9, 79.9, 75.2, 47.3, 41.0, 34.3, 31.5, 26.5, 23.6, 22.1, 20.8, 16.5;

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-y l)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-c yclopenta[a]phenanthren-3-yl 4-ethynylbenzoate (S4-2): white solid; m.p. 158.4 – 161.8 °C; 2.50 g, 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 5.44 (d, *J* = 4.2 Hz, 1H), 5.22 – 5.16 (m, 1H), 5.08 – 5.02 (m, 1H), 4.93 – 4.81 (m, 1H), 3.24 (s, 1H), 2.48 (d, *J* = 7.7 Hz, 2H), 2.10 – 1.92 (m, 5H), 1.80 – 1.70 (m, 2H), 1.63 – 1.42 (m, 8H), 1.37 – 1.12 (m, 6H), 1.09 (s, 3H), 1.05 (d, *J* = 6.6 Hz, 5H), 0.88 (d, *J* = 6.3 Hz, 3H), 0.85 (s, 1H), 0.83 (d, *J* = 6.9 Hz, 5H), 0.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 139.5, 138.3, 132.0, 130.9, 129.4, 129.3, 126.5, 122.9, 82.9, 79.9, 74.9, 56.8, 56.0, 51.3, 50.1, 42.2, 40.5, 39.7, 38.2, 37.0, 36.7, 31.9, 31.9, 28.9, 27.9, 25.4, 24.4, 21.3, 21.1, 21.0, 19.4, 19.0, 12.3, 12.1; HR-MS [ESI-MS(+)] calcd for [M + Na]⁺: C₃₈H₅₂NaO₂: 563.3860, found: 563.3866; IR (KBr): 3250, 2949, 2864, 2104, 1705, 1605, 1460, 1307, 1269, 1173, 1120, 1106, 1019, 974, 859, 769 cm⁻¹.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-(3-hydroxy-3-(3-methyl-1-(pyridin-2-yl)-

1H-indol-2-yl)prop-1-yn-1-yl)benzoate (**6r**): brown solid; m.p. 110.7 - 114.6 °C; 140.0 mg, 27% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 4.8 Hz, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.86 (d, J = 7.5 Hz, 2H), 7.72 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 9.8 Hz, 1H), 4.96 - 4.90 (m, 1H), 2.51 (s, 3H), 2.11 (d, J = 12.1 Hz, 1H), 1.96 - 1.91 (m, 1H), 1.75 (d, J = 11.5 Hz, 2H), 1.55 (t, J = 11.7 Hz, 2H), 1.18 - 1.04 (m, 2H), 0.95 - 0.92 (m, 7H), 0.80 (d, J = 6.9 Hz, 3H); 1.70 NMR (101 MHz, CDCl₃) δ 165.5, 152.1, 148.4, 139.2, 135.8, 135.1, 131.3, 130.2,

 $C_{34}H_{37}N_2O_3$: 521.2799, found: 521.2796; IR (KBr): 2955, 2922, 2857, 1712, 1597, 1505, 1457, 1377, 1273, 1175, 1106, 1018, 965, 745 cm⁻¹.

 $(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydr\\ o-1H-cyclopenta[a]phenanthren-3-yl$

4-(3-hydroxy-3-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)prop-1-yn-1-yl)benzoate (6s): light yellow solid; m.p. 152.7 – 153.5 °C; 220.0 mg, 28%

yield; ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 8.63 (dd, J = 5.0, 1.3 Hz, 1H), 7.98 – 7.94 (m, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.1 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.49 (d, J = 11.0 Hz, 1H), 7.34 – 7.24 (m, 3H), 7.00 (d, J = 8.4 Hz, 2H), 5.99 (d, J = 11.0 Hz, 1H), 5.43 (d, J = 4.0 Hz, 1H), 5.22 – 5.16 (m, 1H), 5.08 – 5.02 (m, 1H), 4.90 – 4.78 (m, 1H), 2.50 (s, 3H), 2.45 (d, J = 7.7 Hz, 2H), 2.09 – 1.90 (m, 5H), 1.75 – 1.70 (m, 2H), 1.61 – 1.44 (m, 8H), 1.27 – 1.18 (m, 6H), 1.10 – 1.03 (m, 8H), 0.88 (d, J = 6.2 Hz, 3H), 0.86 (s, 1H), 0.83 (d, J = 7.0 Hz, 5H), 0.73 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 165.3, 152.1, 148.4, 139.5, 139.2, 138.3, 135.9, 135.0, 131.2, 130.2, 129.4, 129.3, 129.1, 126.9, 123.9, 122.9, 121.5, 121.3, 120.0, 119.6, 112.9, 110.1, 100.0, 91.2, 84.3, 77.3, 74.8, 56.8, 55.9, 51.3, 50.1, 42.2, 40.5, 39.6, 38.2, 37.0, 36.7, 31.9, 29.7, 28.9, 27.9, 25.4, 24.4, 21.3, 21.1, 21.0, 19.4, 19.0, 12.3, 12.1, 9.0; HR-MS [ESI-MS(+)] calcd for [M + H] $^{+}$: C₅₃H₆₅N₂O₃: 777.4990, found: 777.4984; IR (KBr): 2952, 2864, 1716, 1591, 1475, 1439, 1365, 1271, 1174, 1112, 1017, 969, 856, 772, 740 cm $^{-1}$.

1.3. Optimization of reaction conditions

Supplementary Table 1 | Mn-catalysts screening for the reaction ^a

entry	catalysts	yield 2a/3a (%) ^b
1	$MnCl_2$	0/0
2	$Mn(OTf)_2$	0/0
3	$Mn(OAc)_3H_2O$	0/0
4	$Mn_2(CO)_{10}$	0/23
5	Mn(CO) ₅ Br	3/27

^a All the reactions were carried out employing allylic alcohol **1a** (0.20 mmol), different Mn catalysts (0.01 mmol, 5 mol %) and PhMe (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 25 °C for 24 h, followed by flash chromatography on SiO₂. ^b Isolated yield.

Supplementary Table 2 | The effect of the temperature for the reaction ^a

entry	T(°C)	yield 2a/3a (%) ^b
1	25	3/27
2	45	4/56

3	75	7/61
4	85	5/54

^a All the reactions were carried out employing allylic alcohol **1a** (0.20 mmol), Mn(CO)₅Br (0.01 mmol, 5 mol %) and PhMe (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at different temperature for 24 h, followed by flash chromatography on SiO₂. ^b Isolated yield.

Supplementary Table 3 | Various solvents screening for the reaction ^a

entry	solvent	yield 2a/3a (%) ^b
1	Toluene	7/61
2	Benzotrifluoride	0/43
3	THF	0/17
4	DMF	0/38
5	CH ₃ CN	0/0
6	DCE	0/80

^a All the reactions were carried out employing allylic alcohol **1a** (0.20 mmol), Mn(CO)₅Br (0.01 mmol, 5 mol %) and solvent (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 24 h, followed by flash chromatography on SiO₂. ^b Isolated yield.

Supplementary Table 4 | Other transition-metal catalysts screening for the reaction ^a

entry	catalysts	yield 2a/3a (%) ^b
1	$Cp*Co(CO)I_2$	0/5
2	$Cp*Rh(CH_3CN)_3(SbF_6)_2$	47/25

^aAll the reactions were carried out employing allylic alcohol **1a** (0.20 mmol), catalyst (0.01 mmol, 5 mol %) and DCE (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 24 h, followed by flash chromatography on SiO₂. ^bIsolated yield.

1.4. Detail characterization for the sigmatropic rearrangement products 3 and 5

An oven-dried sealed tube charged allylic alcohols 1 or 4 (0.20 mmol), $Mn(CO)_5Br$ (0.01 mmol, 5 mol %) and DCE (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 24 h. After the reaction mixture was cooled down, the corresponding reaction mixture

was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether (1: 10) as eluent to afford the desired products 2a, 3 or 5.

3-Methyl-1-(pyridin-2-yl)-1H-indole (2a) ^[6]: ¹H NMR (400 MHz, CDCl₃) δ 8.59 – 8.56 (m, 1H), 8.28 (d, J = 8.3 Hz, 1H), 7.83 – 7.77 (m, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.56 (s, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.37 – 7.34 (m, 1H), 7.29 – 7.26 (m, 1H), 7.15 – 7.12 (m, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.6, 148.9, 138.3, 135.4, 131.1, 123.3, 123.2, 120.9, 119.5, 119.1, 114.8, 114.0, 113.1, 9.7;

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)propanal (3a): The title compound was prepared from allylic alcohol 1a (0.20 mmol, 52.8 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow solid; m.p. 68.3 - 71.1 °C; 42.0 mg, 80% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.70 (s, 1H), 8.60 (dd, J = 4.7, 1.4 Hz, 1H), 7.89 – 7.85 (m, 1H), 7.55 – 7.53 (m, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.33 – 7.31 (m, 1H), 7.29 – 7.27 (m, 1H), 7.17 – 7.13 (m, 2H), 3.21 – 3.16 (m, 2H), 2.71 – 2.66 (m, 2H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.5, 151.6, 149.6, 138.4, 136.4, 135.0, 129.4, 122.2, 121.8, 120.7, 120.5, 118.4, 110.5, 109.9, 43.9, 17.9, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₇H₁₇N₂O: 265.1335, found: 265.1339; IR (KBr): 3050, 2921, 1747, 1722, 1715, 1471, 1434, 1361, 1338, 991, 740 cm⁻¹.

3-(1-(Pyridin-2-yl)-1H-indol-2-yl)propanal (3b) ^[7]: The title compound was prepared from allylic alcohol 1b (0.20 mmol, 50.0 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 33.0 mg, 66% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.81 (t, J = 1.3 Hz, 1H), 8.69 – 8.65 (m, 1H), 7.95 – 7.90 (m, 1H), 7.62 – 7.58 (m, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.38 – 7.33 (m, 2H), 7.19 – 7.15 (m, 2H), 6.47 (d, J = 0.7 Hz, 1H), 3.21 (t, J = 7.5 Hz, 2H), 2.88 – 2.84 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 201.4, 151.2, 149.8, 139.4, 138.5, 137.3, 128.5, 122.2, 122.1, 121.0, 120.9, 120.2, 110.1, 102.6, 42.9, 20.4.

3-(3-Phenyl-1-(pyridin-2-yl)-1H-indol-2-yl)propanal (3c): The title compound was prepared from allylic alcohol 1c (0.20 mmol, 62.5 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 46.3 mg, 71% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.52 (s, 1H), 8.65 (dd, J = 4.8, 1.3 Hz, 1H), 7.94 – 7.91 (m, 1H), 7.59 (d, J = 7.3 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.37 – 7.34 (m, 3H), 7.21 – 7.14 (m, 2H), 3.32 – 3.26 (m, 2H), 2.56 (t, J = 7.7 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 201.1, 151.3, 149.9, 138.6, 136.7, 135.4, 134.6, 129.9, 128.7, 128.3, 126.7, 122.7, 122.4, 121.2, 121.1, 119.3, 118.0, 110.1, 43.9, 18.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₂H₁₉N₂O: 327.1492, found: 327.1488 ; IR (KBr): 3053, 2900, 1715, 1558, 1470, 1456, 1435, 1371, 1338, 1189, 743 cm⁻¹.

3-(1-(Pyridin-2-yl)-3-(p-tolyl)-1H-indol-2-yl)propanal (3d): The title compound was prepared from allylic alcohol 1d (0.20 mmol, 68.0 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a brown solid; m.p. 62.4 - 65.1 °C; 51.0 mg, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.69 (dd, J = 4.8, 1.3 Hz, 1H), 7.98 – 7.94 (m, 1H), 7.64 – 7.62 (m, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.41 – 7.33 (m, 4H), 7.25 – 7.18 (m, 2H), 3.36 – 3.29 (m, 2H), 2.62 – 2.58 (m, 2H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.2, 151.3, 149.8, 138.6, 136.6, 136.4, 135.2, 131.6, 129.8, 129.5, 128.4, 122.7, 122.4, 121.2, 121.1, 119.4, 117.9, 110.1, 43.9, 21.3, 18.3; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₂₁N₂O: 341.1648, found: 341.1643;

IR (KBr): 3051, 2923, 2854, 1721, 1586, 1567, 1470, 1457, 1437, 1370, 1317, 1190, 1148, 821, 786, 743 cm⁻¹.

1-(3-(4-Chlorophenyl)-1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (3e): The title compound was prepared from allylic alcohol **1e** (0.20 mmol, 72.0 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 50.4 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.72 – 8.67 (m, 1H), 7.99 – 7.95 (m, 1H), 7.60 – 7.55 (m, 2H), 7.52 – 7.45 (m, 4H), 7.42 – 7.37 (m, 2H), 7.26 – 7.18 (m, 2H), 3.35 – 3.27 (m, 2H), 2.61 – 2.57 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 151.1, 149.9, 138.7, 136.7, 135.6, 133.2, 132.6, 131.2, 129.0, 128.0, 122.89, 122.6, 121.4, 121.2, 119.0, 116.7, 110.2, 43.8, 18.1; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₂H₁₈ClN₂O: 361.1102, found: 361.1097; IR (KBr): 2923, 2852, 1734, 1654, 1617, 1577, 1571, 1467, 1437, 1420, 1382, 745 cm⁻¹.

3-(5-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)propanal (3f): The title compound was prepared from allylic alcohol 1f (0.20 mmol, 52.8 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a brown solid; m.p. 86.7 – 88.7 °C; 38.5 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.80 (t, J = 1.3 Hz, 1H), 8.67 – 8.64 (m, 1H), 7.93 – 7.89 (m, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.39 (s, 1H), 7.35 – 7.32 (m, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.01 – 6.99 (m, 1H), 6.38 (s, 1H), 3.21 (t, J = 7.5 Hz, 2H), 2.87 – 2.83 (m, 2H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.5, 151.4, 149.7, 139.5, 138.4, 135.6, 130.2, 128.8, 123.6, 122.0, 120.7, 120.0, 109.8, 102.3, 42.9, 21.4, 20.5; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₇H₁₇N₂O: 265.1335, found: 265.1335; IR (KBr): 2920, 2855, 1719, 1587, 1470, 1437, 1378, 1298, 786 cm⁻¹.

3-(5-Methoxy-1-(pyridin-2-yl)-1H-indol-2-yl)propanal (3g): The title compound was prepared from allylic alcohol 1g (0.20 mmol, 56.0 mg) and was purified by column chromatography (8:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 39.8 mg, 71% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.65 (dd, J = 4.9, 1.2 Hz, 1H), 7.92 – 7.87 (m, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.27 (d, J = 8.9 Hz, 1H), 7.07 (d, J = 2.4 Hz, 1H), 6.82 (dd, J = 8.9, 2.5 Hz, 1H), 6.39 (s, 1H), 3.87 (s, 3H), 3.20 (t, J = 7.5 Hz, 2H), 2.86 – 2.82 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 201.4, 154.9, 151.3, 149.7, 140.0, 138.5, 132.3, 129.1, 122.0, 120.6, 111.7, 111.0, 102.6, 102.3, 55.8, 42.9, 20.5; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₇H₁₇N₂O₂: 281.1285, found: 281.1276; IR (KBr): 2929, 2831, 1720, 1616, 1583, 1474, 1450, 1438, 1389, 1205, 1173, 1033, 843, 786, 746 cm⁻¹.

3-(5-Fluoro-1-(pyridin-2-yl)-1H-indol-2-yl)propanal (3h): The title compound was prepared from allylic alcohol 1h (0.20 mmol, 53.6 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 38.7 mg, 72% yield; 1 H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.68 – 8.66 (m, 1H), 7.95 – 7.91 (m, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.29 – 7.21 (m, 2H), 6.92 – 6.87 (m, 1H), 6.41 (s, 1H), 3.18 (t, J = 7.4 Hz, 2H), 2.88 – 2.84 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 201.1, 158.5 (d, J = 236.3, $^{1}J_{CF}$), 151.0, 149.8, 141.1, 138.6, 133.8, 128.9 (d, J = 10.1, $^{3}J_{CF}$), 122.5, 120.9, 110.9 (d, J = 9.1, $^{3}J_{CF}$), 110.1 (d, J = 26.3, $^{2}J_{CF}$), 105.2 (d, J = 23.2, $^{2}J_{CF}$), 102.5 (d, J = 4.0, $^{3}J_{CF}$), 42.8, 20.3; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₆H₁₄FN₂O: 269.1085, found: 269.1078; IR (KBr): 3065, 2924, 1724, 1584, 1471, 1449, 1437, 1387, 1177, 1108, 955, 855, 781 cm⁻¹.

Br CHO

3-(5-Bromo-1-(pyridin-2-yl)-1H-indol-2-yl)propanal (**3i):** The title compound was prepared from allylic alcohol **1i** (0.20 mmol, 65.6 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a yellow oil; 42.8 mg, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 4.8 1.0 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.70 (d, I = 1.5 Hz, 1H), 7.44 (d, I = 7.6

1H), 8.67 (dd, J = 4.8, 1.0 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.70 (d, J = 1.5 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.25 – 7.18 (m, 2H), 6.38 (s, 1H), 3.17 (t, J = 7.4 Hz, 2H), 2.85 (t, J = 7.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 150.8, 149.9, 140.8, 138.7, 135.9, 130.1, 124.8, 122.6, 120.9, 114.0, 111.6, 101.9, 42.7, 20.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₆H₁₄BrN₂O: 329.0284, found: 329.0279; IR (KBr): 2921, 1719, 1584, 1468, 1438, 1382, 1338, 1204, 1144, 1049, 864, 782, 740 cm⁻¹.

F₃C CHO

3-(1-(Pyridin-2-yl)-6-(trifluoromethyl)-1H-indol-2-yl)propanal (3j): The title compound was prepared from allylic alcohol **1j** (0.20 mmol, 63.6 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate)

to give a brown oil; 46.00 mg, 70% yield; ^1H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.71 (dd, J = 4.9, 1.2 Hz, 1H), 8.00 - 7.96 (m, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.58 (s, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.44 - 7.39 (m, 2H), 6.52 (s, 1H), 3.19 (t, J = 7.4 Hz, 2H), 2.88 (t, J = 7.4 Hz, 2H); ^{13}C NMR (101 MHz, CDCl₃) δ 200.8, 150.4, 150.1, 142.4, 138.9, 136.3, 130.8, 125.2 (d, J = 272.7, $^{1}J_{\text{CF}}$), 124.1 (d, J = 31.3, $^{2}J_{\text{CF}}$), 123.0, 121.1, 120.4, 117.6 (q, J = 4.0, $^{3}J_{\text{CF}}$), 107.7 (q, J = 4.0, $^{3}J_{\text{CF}}$), 102.5, 42.7, 20.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: $C_{17}H_{14}F_{3}N_{2}O$: 319.1058, found: 319.0146; IR (KBr): 2927, 2854, 1724, 1588, 1547, 1472, 1450, 1349, 1323, 1162, 1114, 1059, 956, 824, 787, 745, 659 cm⁻¹.

3-(3-Methyl-1-(5-methylpyridin-2-yl)-1H-indol-2-yl)propanal (3k): The title compound was prepared from allylic alcohol 1k (0.20 mmol, 55.6 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a yellow solid; m.p. 61.7 - 62.7 °C; 37.0 mg, 67% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.68 (s, 1H), 8.41 (s, 1H), 7.67 (dd, J = 8.0, 1.9 Hz, 1H), 7.54 - 7.52 (m, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 - 7.24 (m, 1H), 7.15 - 7.12 (m, 2H), 3.16 - 3.12 (m, 2H), 2.66 (t, J = 7.6 Hz, 2H), 2.41 (s, 3H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.7, 149.8, 149.1, 139.0, 136.6, 134.9, 131.7, 129.2, 122.0, 120.3, 120.2, 118.3, 110.1, 109.9, 43.9, 18.1, 17.9, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₈H₁₉N₂O: 279.1492, found: 279.1491; IR (KBr): 3045, 2922, 1867, 1715, 1484, 1457, 1387, 1361, 1316, 1221, 1135, 1025, 830, 740 cm⁻¹.

Me CHO

3-(3-Methyl-1-(6-methylpyridin-2-yl)-1H-indol-2-yl)propanal (3l): The title compound was prepared from allylic alcohol **1l** (0.20 mmol, 55.6 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 36.7 mg, 66% yield; 1 H NMR (400 MHz, CDCl₃) δ 9.77 (s,

1H), 7.79 (t, J = 7.7 Hz, 1H), 7.59 – 7.56 (m, 1H), 7.38 – 7.34 (m, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.20 – 7.16 (m, 3H), 3.23 – 3.18 (m, 2H), 2.79 (t, J = 7.6 Hz, 2H), 2.60 (s, 3H), 2.35 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 201.7, 158.9, 150.7, 138.6, 136.36, 134.9, 129.3, 122.1, 121.3, 120.3, 118.4, 117.5, 110.3, 110.0, 44.1, 24.3, 18.0, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₈H₁₉N₂O: 279.1492, found: 279.1491; IR (KBr): 2922, 1867, 1715, 1541, 1488, 1456, 1360, 1338, 1148, 989, 740 cm⁻¹.

Me N CHO

3-(1-(5-Chloropyridin-2-yl)-3-methyl-1H-indol-2-yl)propanal (**3m**): The title compound was prepared from allylic alcohol **1m** (0.20 mmol, 59.6 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give

a yellow oil; 42.0 mg, 70% yield; 1 H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 8.57 (d, J = 2.6 Hz, 1H), 7.89 – 7.89 (m, 1H), 7.59 – 7.56 (m, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.22 – 7.18 (m, 2H), 3.21 – 3.16 (m, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.34 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 201.4, 149.7, 148.4, 138.2, 136.2, 134.9, 129.7, 129.5, 122.5, 121.2, 120.8, 118.6, 111.1, 109.7, 43.9, 17.9, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H] $^{+}$: C₁₇H₁₆ClN₂O: 299.0946, found: 299.0944; IR (KBr): 3052, 2923, 2315, 1714, 1681, 1648, 1470, 1434, 1417, 1114, 1011, 742, 680 cm $^{-1}$.

3-(1-(5-Bromopyridin-2-yl)-3-methyl-1H-indol-2-yl)propanal (3n): The title compound was prepared from allylic alcohol 1n (0.20 mmol, 68.4 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a yellow oil; 45.0 mg, 66% yield; 1 H NMR (500 MHz, CDCl₃) δ 9.72 (s, 1H), 8.63 (d, J = 2.2 Hz, 1H), 7.97 – 7.95 (m, 1H), 7.55 – 7.52 (m, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.18 – 7.15 (m, 2H), 3.15 (t, J = 7.6 Hz, 2H), 2.71 (t, J = 7.6 Hz, 2H), 2.30 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 201.3, 150.6, 150.1, 141.0, 136.2, 134.9, 129.6, 122.5, 121.6, 120.8, 118.6, 118.0, 111.2, 109.8, 43.9, 17.9, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₇H₁₆BrN₂O: 343.0441, found: 343.0438; IR (KBr): 2920, 1747, 1730, 1714, 1681, 1556, 1506, 1488, 1417, 1455, 742 cm⁻¹.

3-(3-Methyl-1-(5-(trifluoromethyl)pyridin-2-yl)-1H-indol-2-yl)propanal (3o): The title compound was prepared from allylic alcohol 1o (0.20 mmol, 66.4 mg) and was purified by column chromatography (20:1 = petroleum ether: ethyl acetate) to give a yellow solid; m.p. 64.9 - 69.2 °C; 45.3 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 8.84 (s, 1H), 8.10 - 8.07 (m, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.57 - 7.53 (m, 1H), 7.43 - 7.38 (m, 1H), 7.22 - 7.17 (m, 2H), 3.23 - 3.18 (m, 2H), 2.80 - 2.74 (m, 2H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.2, 154.2, 146.7 (q, J = 4.0, ³J_{CF}), 135.9, 135.7 (q, J = 4.0, ³J_{CF}), 135.0, 129.9, 124.0 (d, J = 34.3, ²J_{CF}), 123.5 (d, J = 272.7, ¹J_{CF}), 122.8, 121.3, 119.5, 118.8, 112.2, 109.9, 44.0, 18.1, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₈H₁₆F₃N₂O: 333.1209, found: 333.1203; IR (KBr): 2924, 1715, 1556, 1540, 1506, 1488, 1455, 1325, 1120, 1110, 740 cm⁻¹.

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)butanal (3p): The title compound was prepared from allylic alcohol 1p (0.20 mmol, 55.6 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a yellow oil; 34.5 mg, 62% yield; 1 H NMR (400 MHz, CDCl₃) δ 9.74 – 9.67 (m, 1H), 8.67 (dd, J = 4.9, 1.2 Hz, 1H), 7.96 – 7.91 (m, 1H), 7.60 – 7.56 (m, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.39 – 7.36 (m, 1H), 7.22 – 7.15 (m, 3H), 3.80 – 3.66 (m, 1H), 3.11 – 3.04 (m, 1H), 2.85 – 2.79 (m, 1H), 2.45 (s, 3H), 1.39 (d, J = 7.2 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 201.8, 151.8, 149.7, 138.9, 138.4, 136.5, 129.7, 122.4, 122.2, 122.2, 120.3, 118.1, 109.9, 109.3, 49.9, 26.2, 19.9, 9.6; HR-MS [ESI-MS(+)] calcd for [M + H] $^{+}$: C₁₈H₁₉N₂O: 279.1492, found: 279.1489; IR (KBr): 3052, 2967, 2925, 2722, 1721, 1587, 1568, 1470, 1458, 1437, 1361, 1310, 1225, 1198, 1148, 1012, 779, 742 cm $^{-1}$.

3-(3-Methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl)propanal (3q) ^[7]: The title compound was prepared from allylic alcohol 1q (0.20 mmol, 53.0 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow solid; 40.3 mg, 76% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.81 (s, 1H), 8.71 (d, J = 4.8 Hz, 2H), 8.34 (d, J = 7.9 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.27 – 7.20 (m, 2H), 7.07 (t, J = 4.8 Hz, 1H), 3.45 – 3.39 (m, 2H), 2.84 (t, J = 7.5 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (126 MHz,

CDCl₃) δ 202.0, 158.1, 136.1, 135.0, 130.4, 123.2, 121.8, 118.1, 116.7, 114.3, 113.7, 44.3, 19.5, 8.8.

3-(1-(Pyridin-2-yl)-1H-pyrrol-2-yl)propanal (3r): The title compound was prepared from allylic alcohol 1r (0.20 mmol, 40.0 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a brown oil; 14.0 mg, 35% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.79 (s, 1H), 8.49 (d, J = 3.8 Hz, 1H), 7.81 – 7.78 (m, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.22 – 7.20 (m, 1H), 7.02 – 6.99 (m, 1H), 6.24 (t, J = 3.2 Hz, 1H), 6.08 (s, 1H), 3.21 (t, J = 7.5 Hz, 2H), 2.80 (t, J = 7.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 152.8, 148.7, 138.5, 132.2, 121.2, 120.8, 117.1, 109.5, 109.4, 43.6, 20.7; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₂H₁₃N₂O: 201.1022, found: 201.1028; IR (KBr): 2925, 1747, 1731, 1715, 1697, 1541, 1506, 1488, 1455, 742 cm⁻¹.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)hexan-3-one (5a): The title compound was prepared from tertiary allylic alcohol 4a (0.20 mmol, 61.2 mg) and was purified by column chromatography (20:1 = petroleum ether: ethyl acetate) to give a yellow oil; 52.0 mg, 85% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, *J* = 4.6 Hz, 1H), 7.87 – 7.84 (m, 1H), 7.53 (d, *J* = 6.8 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.17 – 7.11 (m, 2H), 3.13 – 3.07 (m, 2H), 2.64 – 2.60 (m, 2H), 2.30 (s, 3H), 2.26 (t, *J* = 7.3 Hz, 2H), 1.55 – 1.50 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 210.3, 151.7, 149.6, 138.4, 136.5, 135.7, 129.4, 122.0, 121.8, 120.8, 120.3, 118.4, 110.3, 109.9, 44.7, 42.5, 19.5, 17.3, 13.7, 8.7; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₀H₂₃N₂O: 307.1805, found: 307.1789; IR (KBr): 2960, 2928, 1709, 1585, 1469, 1458, 1437, 1359, 1220, 1150, 1000, 783, 740 cm⁻¹.

1-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)pentan-3-one (5b): The title compound was prepared from tertiary allylic alcohol 4b (0.20 mmol, 58.4 mg) and was purified by column chromatography (20:1 = petroleum ether: ethyl acetate) to give a brown solid; m.p. 62.9 – 65.0 °C; 46.6 mg, 77% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.65 – 8.63 (m, 1H), 7.92 – 7.88 (m, 1H), 7.59 – 7.57 (m, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.21 – 7.16 (m, 2H), 3.18 – 3.11 (m, 2H), 2.69 – 2.64 (m, 2H), 2.37 – 2.31 (m, 5H), 1.03 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.7, 151.7, 149.6, 138.4, 136.5, 135.7, 129.5, 122.0, 121.8, 120.8, 120.3, 118.4, 110.3, 109.9, 42.0, 35.9, 19.6, 8.7, 7.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₉H₂₁N₂O: 293.1648, found: 293.1649; IR (KBr): 2925, 1713, 1584, 1556, 1470, 1456, 1435, 1360, 1110, 780, 740 cm⁻¹.

1-Cyclohexyl-3-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)propan-1-one (5c):
The title compound was prepared from tertiary allylic alcohol 4c (0.20 mmol, 69.2 mg) and was purified by column chromatography (20:1 = petroleum ether: ethyl acetate) to give a yellow oil; 44.7 mg, 65% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.59 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.54 – 7.52 (m, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.16 – 7.11 (m, 2H), 3.09 – 3.05 (m, 2H), 2.69 – 2.65 (m, 2H), 2.30 (s, 3H), 2.21 (t, *J* = 10.4 Hz, 1H), 1.72 (d, *J* = 9.9 Hz, 4H), 1.64 (s, 1H), 1.28 – 1.16 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 213.25, 151.7, 149.6, 138.3, 136.5, 135.9, 129.5, 121.9, 121.7, 120.8, 120.3, 118.3, 110.1, 109.9, 50.8, 40.4, 28.4, 25.9, 25.6, 19.5, 8.7; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₂₇N₂O: 347.2118, found: 347.2112; IR (KBr): 2928, 2853, 1705, 1585, 1472, 1459, 1437, 1363, 1205, 1146, 1010, 779, 740 cm⁻¹.

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1-phenylpropan-1-one (**5d**): The title compound was prepared from tertiary allylic alcohol **4d** (0.20 mmol, 68.0 mg) and was purified by column chromatography (20:1 = petroleum ether: ethyl acetate) to give a brown oil; 55.6 mg, 82% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.64 – 8.62 (m, 1H), 7.94 – 7.88 (m, 3H), 7.62 – 7.54 (m, 2H), 7.53 – 7.43 (m, 3H), 7.40 – 7.36 (m, 1H), 7.32 – 7.29 (m, 1H), 7.24 – 7.18 (m, 2H), 3.32 (s, 4H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.4, 151.7, 149.7, 138.4, 136.7, 136.5, 135.8, 133.1, 129.5, 128.6, 128.1, 122.1, 121.9, 120.9, 120.4, 118.4, 110.4, 109.9, 38.9, 20.2, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₂₁N₂O: 341.1648, found: 341.1644; IR (KBr): 3055, 2921, 1682, 1585, 1471, 1437, 1362, 1223, 1205, 1148, 972, 780, 739, 690 cm⁻¹.

1-(4-Methoxyphenyl)-3-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)propan-1one (5e): The title compound was prepared from tertiary allylic alcohol 4e
(0.20 mmol, 74.0 mg) and was purified by column chromatography (20:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 54.8 mg, 74% yield;

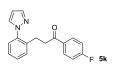
¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, *J* = 4.9, 1.8 Hz, 1H), 7.92 – 7.86 (m, 3H), 7.60 – 7.56 (m, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.36 (m, 1H), 7.32 – 7.28 (m, 1H), 7.22 – 7.16 (m, 2H), 6.93 – 6.88 (m, 2H), 3.87 (s, 3H), 3.31 – 3.26 (m, 2H), 3.25 – 3.20 (m, 2H), 2.37 (s, 3H);

¹β C NMR (101 MHz, CDCl₃) δ 198.0, 163.4, 151.7, 149.7, 138.4, 136.5, 135.9, 130.3, 129.9, 129.5, 122.0, 121.8, 120.9, 120.4, 118.4, 113.7, 110.4, 109.9, 55.5, 38.5, 20.3, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₄H₂₃N₂O₂: 371.1754, found: 371.1749; IR (KBr): 2925, 1710, 1654, 1468, 1437, 1357, 1257, 1167, 739 cm⁻¹.

1-(4-Fluorophenyl)-3-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)propan-1-on e (**5f**): The title compound was prepared from tertiary allylic alcohol **4f** (0.20 mmol, 71.6 mg) and was purified by column chromatography (20:1 = petroleum ether: ethyl acetate) to give a brown solid; m.p. 78.2 – 79.8 °C; 59.1 mg, 83% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (dd, J = 4.8, 1.3 Hz, 1H), 7.97 – 7.88 (m, 3H), 7.60 – 7.58 (m, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.40 – 7.34 (m, 1H), 7.32 – 7.28 (m, 1H), 7.23 – 7.17 (m, 2H), 7.14 – 7.08 (m, 2H), 3.29 (s, 4H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 165.7 (d, J = 255.5, ¹ J_{CF}), 151.7, 149.7, 138.4, 136.5, 135.6, 133.2 (d, J = 3.0, ³ J_{CF}), 130.7 (d, J = 10.1, ³ J_{CF}), 129.5, 122.1, 121.9, 120.9, 120.4, 118.4, 115.6 (d, J = 21.2, ² J_{CF}), 110.5, 109.9, 38.8, 20.2, 8.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₂₀FN₂O: 359.1554, found: 359.1551; IR (KBr): 3056, 2922, 1685, 1595, 1472, 1458, 1437, 1363, 1226, 1204, 1156, 977, 845, 779, 741 cm⁻¹.

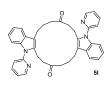
4-(2-(1H-Pyrazol-1-yl)phenyl)butan-2-one (5g) ^[25]: The title compound was prepared from tertiary allylic alcohol 4g (0.20 mmol, 42.8 mg), The reaction mixture was allowed to stir at 100 °C for 24 h and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow oil; 36.0 mg, 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 1.4 Hz, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.32 – 7.28 (m, 2H), 6.46 (t, J = 2.1 Hz, 1H), 2.84 (t, J = 7.7 Hz, 2H), 2.61 (t, J = 7.7 Hz, 2H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.8, 140.4, 139.7, 137.3, 130.7, 130.6, 128.8, 127.1, 126.6, 106.5, 44.4, 29.8, 25.9;

3-(2-(1H-Pyrazol-1-yl)phenyl)-1-phenylpropan-1-one (5h) ^[26]: The title compound was prepared from tertiary allylic alcohol 4h (0.20 mmol, 55.2 mg), The reaction mixture was allowed to stir at 100 °C for 24 h and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a light yellow oil;


39.2 mg, 71% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.73 (d, J = 1.6 Hz, 1H), 7.66 (d, J = 2.3 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.47 – 7.37 (m, 4H), 7.35 – 7.31 (m, 2H), 6.47 (t, J = 2.1 Hz, 1H), 3.20 - 3.15 (m, 2H), 3.04 - 2.99 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 199.3, 140.5, 139.9, 137.5, 136.7, 133.0, 130.8, 130.7, 128.9, 128.5, 128.1, 127.1, 126.6, 106.6, 39.8, 26.6;

3-(2-(1H-Pyrazol-1-yl)phenyl)-1-(p-tolyl)propan-1-one (5i): The title compound was prepared from tertiary allylic alcohol 4i (0.20 mmol, 58.0 mg), The reaction mixture was allowed to stir at 100 $\,^\circ\mathrm{C}$ for 24 h and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate)

to give a light yellow oil; 44.0 mg, 76% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 7.9 Hz, 2H), 7.70 (s, 1H), 7.62 (s, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.30 (d, J = 4.2 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 6.43 (s, 1H), 3.13 – 3.09 (m, 2H), 3.00 – 2.95 (m, 2H), 2.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 143.8, 140.5, 139.9, 137.6, 134.2, 130.8, 130.7, 129.2, 128.8, 128.3, 127.1, 126.6, 106.5, 39.7, 26.7, 21.6; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: $C_{19}H_{19}N_2O$: 291.1492, found: 291.1492; IR (KBr): 3037, 2925, 1678, 1606, 1513, 1452, 1394, 1289, 1182, 1046, 976, 939, 821, 761 cm⁻¹.


3-(2-(1H-Pyrazol-1-yl)phenyl)-1-(4-methoxyphenyl)propan-1-one (5j): The title compound was prepared from tertiary allylic alcohol 4j (0.20 and was purified by column chromatography (5:1 = petroleum ether: ethyl

acetate) to give a light yellow oil; 43.5 mg, 71% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J =8.7 Hz, 2H), 7.70 (s, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.30 (d, J = 4.1 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.43 (s, 1H), 3.83 (s, 3H), 3.10 – 3.06 (m, 2H), 2.99 – 2.95 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 163.4, 140.4, 139.8, 137.7, 130.8, 130.8, 130.4, 129.8, 128.9, 127.0, 126.6, 113.7, 106.5, 55.5, 39.4, 26.8; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{10}H_{10}N_2O_2$: 307.1441, found: 307.1444; IR (KBr): 3124, 2939, 2845, 1672, 1595, 1508, 1445, 1312, 1260, 1211, 1161, 1022, 977, 938, 836, 768 cm⁻¹.

3-(2-(1H-Pyrazol-1-yl)phenyl)-1-(4-fluorophenyl)propan-1-one (5k): The title compound was prepared from tertiary allylic alcohol 4k (0.20 mmol, 58.8 mg), The reaction mixture was allowed to stir at 100 °C for 24 h and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to

give a light yellow oil; 50.5 mg, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.90 (m, 2H), 7.73 (d, J = 1.7 Hz, 1H), 7.66 (d, J = 2.3 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.35 – 7.30 (m, 2H), 7.10 $(t, J = 8.6 \text{ Hz}, 2\text{H}), 6.47 (t, J = 2.1 \text{ Hz}, 1\text{H}), 3.17 - 3.12 (m, 2\text{H}), 3.02 - 2.97 (m, 2\text{H}); {}^{13}\text{C NMR}$ (101 MHz, CDCl₃) δ 197.7, 165.7 (d, J = 255.5, ${}^{1}J_{CF}$), 140.5, 139.8, 137.4, 133.1 (d, J = 3.0, ${}^{3}J_{CF}$), 130.9 (d, J = 6.1, ${}^{3}J_{CF}$), 130.8 (d, J = 2.0, ${}^{3}J_{CF}$), 128.9, 127.2, 126.6, 115.7, 115.5, 106.6, 39.8, 26.7; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{18}H_{16}FN_2O$: 295.1241, found: 295.1248; IR (KBr): 3123, 3064, 2915, 1683, 1594, 1506, 1399, 1296, 1205, 1155, 980, 939, 842, 767 cm⁻¹.

5,16-Di(pyridin-2-yl)-5,6,7,9,10,11,16,17,18,20,21,22-dodecahydrocyclohex adeca[1,2-b:9,10-b']diindole-8,19-dione (5l): The title compound was prepared from tertiary allylic alcohol 41 (0.20 mmol, 58.0 mg) and was purified by column chromatography (5:1 = petroleum ether: ethyl acetate) to give a white solid; m.p. 197.1 – 198.7 °C; 23.2 mg, 40% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.64 -8.58 (m, 2H), 7.89 - 7.86 (m, 2H), 7.53 - 7.51 (m, 2H), 7.41 (d, J = 7.9 Hz, 2H), 7.32 - 7.30 (m,

2H), 7.29 - 7.26 (m, 2H), 7.14 - 7.09 (m, 4H), 3.14 - 3.07 (m, 4H), 2.82 (t, J = 7.4 Hz, 4H), 2.60 - 2.54 (m, 4H), 2.41 (t, J = 6.4 Hz, 4H), 2.01 - 1.95 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 209.5, 151.5, 149.8, 138.5, 136.9, 136.2, 128.5, 122.1, 121.0, 120.3, 119.5, 118.6, 114.0, 110.0, 42.8, 41.5, 24.5, 23.6, 19.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₃₈H₃₇N₄O₂: 581.2911, found: 581.2907; IR (KBr): 2924, 2854, 1709, 1585, 1472, 1459, 1437, 1369, 1321, 1225, 1147, 993, 782, 741 cm⁻¹.

N S S S

5,17-Di(pyridin-2-yl)-6,7,10,11,12,17,18,19,21,22,23,24-dodecahydrocyclooc tadeca[1,2-b:10,11-b']diindole-8,20(5H,9H)-dione (**5m):** The title compound was prepared from tertiary allylic alcohol **4m** (0.20 mmol, 60.8 mg) and was purified by column chromatography (5:1 = petroleum ether: ethyl acetate) to

give a white solid; m.p. 234.8 - 236.0 °C; 37.7 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.5 Hz, 2H), 7.90 (t, J = 7.6 Hz, 2H), 7.59 - 7.51 (m, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.35 - 7.29 (m, 4H), 7.15 - 7.13 (m, 4H), 3.16 - 3.07 (m, 4H), 2.79 (t, J = 6.9 Hz, 4H), 2.58 - 2.49 (m, 4H), 2.34 (t, J = 7.0 Hz, 4H), 1.71 - 1.64 (m, 4H), 1.63 (d, J = 11.3 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 151.6, 149.7, 138.4, 136.8, 136.1, 128.6, 122.0, 121.9, 120.9, 120.2, 118.6, 114.3, 109.9, 42.7, 42.4, 29.5, 24.0, 23.9, 18.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₄₀H₄₁N₄O₂: 609.3224, found: 609.3218; IR (KBr): 3050, 2920, 1867, 1790, 1747, 1714, 1681, 1555, 1540, 1471, 1455, 1434, 1361, 1338, 1147, 992, 777, 741 cm⁻¹.

Ph Me

1-(3-Phenyl-1-(pyridin-2-yl)-1H-indol-2-yl)hexan-3-one (**5n):** brown oil; 11.5 mg, 31% yield; 1 H NMR (500 MHz, CDCl₃) δ 8.65 (dd, J = 4.7, 1.5 Hz, 1H), 7.95 - 7.91 (m, 1H), 7.62 - 7.56 (m, 1H), 7.55 - 7.50 (m, 3H), 7.47 (t, J = 7.6 Hz, 2H), 7.38 - 7.32 (m, 3H), 7.21 - 7.13 (m, 2H), 3.23 - 3.17 (m, 2H), 2.54 - 2.48 (m, 2H),

2.14 (t, J = 7.4 Hz, 2H), 1.47 – 1.39 (m, 2H), 0.78 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 209.7, 151.4, 149.8, 138.6, 136.7, 136.1, 134.8, 129.9, 128.6, 128.3, 126.6, 122.5, 122.4, 121.4, 121.0, 119.2, 117.6, 110.1, 44.4, 42.6, 19.7, 17.3, 13.6; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: $C_{25}H_{25}N_2O$: 369.1961, found: 369.1948; IR (KBr): 3054, 2959, 2926, 2872, 1711, 1588, 1470, 1458, 1436, 1370, 1189, 1148, 1023, 771, 743, 703 cm⁻¹.

1.5. Detail characterization for the sigmatropic rearrangement products 7

An oven-dried sealed tube charged propargyl alcohols 6 (0.20 mmol), Mn(CO)₅Br (0.02 mmol, 10 mol %) and DCE (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 48 h. After the reaction mixture was cooled down, the corresponding reaction mixture was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether (1: 10) as eluent to afford the desired products **7.**

Me Ph CHO

(*E*)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylacrylaldehyde (7a): The title compound was prepared from propargyl alcohol **6a** (0.20 mmol, 67.6 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow solid; m.p. 135.1 - 137.6 °C; 49.3 mg, 73% yield; ¹H NMR (400

MHz, CDCl₃) δ 9.68 (s, 1H), 8.45 (d, J = 4.8 Hz, 1H), 7.72 – 7.68 (m, 2H), 7.65 (d, J = 7.7 Hz, 1H), 7.58 (s, 1H), 7.34 (d, J = 8.5 Hz, 3H), 7.31 – 7.28 (m, 2H), 7.25 (t, J = 7.5 Hz, 3H), 7.14 – 7.11 (m, 1H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.7, 151.4, 150.5, 149.0, 137.8,

136.8, 134.4, 132.9, 130.6, 130.3, 129.5, 128.8, 128.5, 123.4, 121.0, 120.6, 119.5, 119.3, 114.1, 111.2, 9.3; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{23}H_{19}N_2O$: 339.1492, found: 339.1479; IR (KBr): 3447, 3055, 2920, 2852, 2713, 1686, 1587, 1470, 1448, 1437, 1363, 1321, 1224, 1149, 1083, 778, 740, 695 cm⁻¹.

(*E*)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-(*p*-tolyl)acrylaldehyde (7b):

The title compound was prepared from propargyl alcohol **6b** (0.20 mmol, 70.4 mg), the reaction mixture was then allowed to stir at 75 °C for 72 h and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow oil; 59.1 mg, 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 8.46 (d, *J* = 4.8 Hz, 1H), 7.74 – 7.64 (m, 3H), 7.56 (s, 1H), 7.31 – 7. 24 (m, 5H), 7.15 – 7.10 (m, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 2.33 (s, 3H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.9, 151.4, 151.2, 149.0, 141.5, 137.8, 136.9, 131.9, 131.5, 130.5, 129.6, 129.5, 128.7, 123.3, 121.0, 120.6, 119.4, 119.3, 113.9, 111.3, 21.6, 9.3; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₄H₂₁N₂O: 353.1648, found: 353.1632; IR (KBr): 2922, 2854, 1681, 1661, 1558, 1470, 1455, 1437, 1363, 1331, 1224, 1184, 1149, 741 cm⁻¹.

(*E*)-3-(4-Methoxyphenyl)-2-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)acrylaldehy de (7c): The title compound was prepared from propargyl alcohol 6c (0.20 mmol, 73.6 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow solid; m.p. 151.9 - 154.2 °C; 51.5 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 8.46 (d, J = 4.5 Hz, 1H), 7.74 – 7.65 (m, 3H), 7.53 (s, 1H), 7.32 – 7.24 (m, 5H), 7.13 (t, J = 6.1 Hz, 1H), 6.78 (d, J = 7.9 Hz, 2H), 3.79 (s, 3H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.9, 161.8, 151.4, 151.3, 148.9, 137.8, 136.9, 132.5, 130.5, 129.5, 128.8, 126.8, 123.2, 121.1, 120.6, 119.4, 119.4, 114.4, 113.8, 111.4, 55.4, 9.3.; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₄H₂₁N₂O₂: 369.1598, found: 369.1563; IR (KBr): 3054, 2932, 2837, 2714, 1681, 1598, 1509, 1470, 1457, 1438, 1363, 1306, 1259, 1224, 1176, 1155, 1097, 1028, 831, 778, 741 cm⁻¹.

(*E*)-3-(4-Fluorophenyl)-2-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)acrylaldehyde (7d): The title compound was prepared from propargyl alcohol 6d (0.20 mmol, 71.2 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow oil; 44.9 mg, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 8.43 (dd, J = 4.8, 1.1 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.66 (t, J = 8.1 Hz, 2H), 7.53 (s, 1H), 7.34 – 7.24 (m, 5H), 7.15 – 7.12 (m, 1H), 6.94 (t, J = 8.7 Hz, 2H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 163.8 (d, J = 254.5, ¹J_{CF}), 151.3, 149.1, 149.0, 137.9, 136.8, 132.6 (d, J = 2.0, ³J_{CF}), 132.5, 132.4, 130.5 (d, J = 4.0, ³J_{CF}), 129.4, 128.3, 123.5, 121.1, 120.7, 119.4 (d, J = 20.0, ²J_{CF}), 116.0 (d, J = 21.2, ²J_{CF}), 114.1, 111.1, 9.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₁₈FN₂O: 357.1398, found: 357.1386; IR (KBr): 3057, 2921, 2855, 1687, 1597, 1506, 1470, 1457, 1438, 1363, 1234, 1157, 1081, 779 cm⁻¹.

(*E*)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-(4-(trifluoromethyl)phenyl)ac rylaldehyde (7e): The title compound was prepared from propargyl alcohol 6e (0.20 mmol, 81.2 mg), the reaction mixture was then allowed to stir at 75 °C for 72 h and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a brown oil; 44.7 mg, 55% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.66 (s, 1H), 8.38 (d, J = 4.4 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.62 (t, J = 7.6 Hz, 2H), 7.54 (s, 1H), 7.46 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H),

7.14 – 7.08 (m, 1H), 2.01 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 192.2, 151.2, 149.0, 147.2, 138.0, 137.8, 136.7, 134.9, 131.5 (d, J = 33.1, $^{2}J_{CF}$), 130.2, 129.4, 128.1, 125.6 (q, J = 3.8, $^{3}J_{CF}$), 123.7 (d, J = 273.4, $^{1}J_{CF}$), 123.7, 121.1, 120.9, 119.6, 119.1, 114.4, 110.9, 9.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₄H₁₈F₃N₂O: 407.1366, found: 407.1351; IR (KBr): 3055, 2923, 1691, 1588, 1471, 1457, 1439, 1364, 1323, 1225, 1168, 1126, 1068, 1015, 899, 831, 778 cm⁻¹.

(*E*)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-(thiophen-2-yl)acrylaldehyd e (7f): The title compound was prepared from propargyl alcohol 6f (0.20 mmol, 68.8 mg) and was purified by column chromatography (10:1 = petroleum ether: ethyl acetate) to give a yellow solid; m.p. 179.3 - 182.1 °C; 51.6 mg, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 8.47 (dd, J = 4.9, 1.2 Hz, 1H), 7.82 (s, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.38 (d, J = 5.0 Hz, 1H), 7.34 – 7.27 (m, 4H), 7.15 – 7.11 (m, 1H), 7.01 – 6.99 (m, 1H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 151.2, 149.0, 142.9, 137.9, 137.1, 134.7, 133.6, 129.8, 129.7, 127.5, 127.3, 123.6, 121.1, 120.7, 119.5, 119.1, 115.3, 111.5, 9.3; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₁H₁₇N₂OS: 345.1056, found: 345.1044; IR (KBr): 3056, 2920, 2856, 1677, 1587, 1470, 1456, 1437, 1363, 1256, 1223, 1141, 1082, 1048, 857, 778, 741 cm⁻¹.

(*E*)-3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)acrylaldehyde (7g): The title compound was prepared from propargyl alcohol 6g (0.20 mmol, 52.4 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a brown oil; 27.8 mg, 38% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.52 (d, J = 7.7 Hz, 1H), 8.70 (d, J = 4.7 Hz, 1H), 7.94 (t, J = 7.7 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 16.1 Hz, 1H), 7.40 (dd, J = 11.3, 6.5 Hz, 3H), 7.30 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 6.10 (dd, J = 16.1, 7.7 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 151.1, 150.0, 140.8, 139.2, 138.7, 130.6, 129.5, 128.9, 128.3, 126.1, 122.8, 121.7, 121.5, 120.2, 110.9, 10.6; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₇H₁₅N₂O: 263.1179, found: 263.1177; IR (KBr): 2924, 1715, 1618, 1556, 1541, 1506, 1488, 1472, 1455, 1396, 1361, 1338, 1150, 740 cm⁻¹.

(*E*)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-enal (7h): The title compound was prepared from propargyl alcohol 6h (0.20 mmol, 55.2 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a brown oil; 19.4 mg, 35% yield; ¹H NMR (500 MHz, CDCl₃) δ 9.50 (s, 1H), 8.50 (d, J = 4.7 Hz, 1H), 7.75 – 7.72 (m, 1H), 7.62 – 7.61 (m, 2H), 7.26 – 7.15 (m, 4H), 7.01 (q, J = 7.0 Hz, 1H), 2.18 (s, 3H), 1.88 (d, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.2, 153.4, 151.6, 149.1, 137.9, 137.5, 136.9, 129.3, 127.5, 123.2, 121.2, 120.6, 119.6, 119.1, 114.5, 111.0, 16.5, 9.4; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₈H₁₇N₂O: 277.1335, found: 277.1332; IR (KBr): 3054, 2921, 2854, 1689, 1585, 1468, 1361, 1225, 1152, 745 cm⁻¹.

3-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-enal (7h'): The title compound was prepared from propargyl alcohol 6h (0.20 mmol, 55.2 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow oil; 34.3 mg, 62% yield (E: Z = 1: 3.3); ¹H NMR (500 MHz, CDCl₃) δ 10.11 (d, J = 7.9 Hz, 0.33H), 9.67 (d, J = 8.1 Hz, 1H), 8.62 (d, J = 5.0 Hz, 0.33H), 8.60 (d, J = 4.2 Hz, 1H), 7.82 (t, J = 7.3 Hz, 1.37H), 7.69 (d, J = 8.3 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.33 – 7.21 (m, 6H), 6.24 (d, J = 8.1 Hz, 1.33H), 2.42 (s, 1H), 2.30 (s, 3H), 2.10 (s, 1H), 1.89 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.3, 190.8, 152.3, 151.6, 149.6, 138.5, 138.5, 137.5, 132.8, 131.9, 131.1, 129.4, 129.1, 124.8, 124.7, 121.6, 121.4, 121.4, 119.9, 119.7, 119.7,

119.2, 117.1, 111.2, 111.1, 24.8, 18.2, 10.3, 9.9; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₁₈H₁₇N₂O: 277.1335, found: 277.1333; IR (KBr): 3053, 2922, 2852, 1669, 1583, 1466, 1359, 1222, 1163, 1006, 746 cm⁻¹.

(E)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1-phenylpent-1-en-3-one (7i): The title compound was prepared from propargyl alcohol 6i (0.20 mmol, 73.2 mg) and was purified by column chromatography (10: 1 = petroleum ether: acetone) to give a orange solid; m.p. 165.6 – 166.7 °C; 48.3 mg, 66% yield; ¹H NMR (400

MHz, CDCl₃) δ 8.39 (dd, J = 4.9, 1.3 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.61 – 7.57 (m, 1H), 7.33 – 7.21 (m, 4H), 7.19 - 7.11 (m, 4H), 7.06 - 7.01 (m, 1H), 6.70 (s, 1H), 2.62 - 2.41 (m, 2H), 2.26 (s, 1H)3H), 1.03 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.3, 151.3, 148.9, 143.8, 139.4, 137.6, 137.0, 132.8, 129.5, 129.3, 129.2, 128.3, 127.7, 123.9, 120.9, 119.7, 119.5, 115.9, 111.4, 35.3, 9.5, 8.4; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{25}H_{23}N_2O$: 367.1805, found: 367.1792; IR (KBr): 3054, 2970, 2929, 1688, 1657, 1588, 1470, 1455, 1437, 1363, 1223, 1184, 1120, 1041, 779, 742, 694 cm⁻¹.

(*E*)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1-phenylhex-1-en-3-one (7j): The title compound was prepared from propargyl alcohol **6j** (0.20 mmol, 76.0 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a orange solid; m.p. 131.9 – 134.7 °C; 36.5 mg, 48% yield; ¹H

NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 4.4 Hz, 1H), 7.66 (dd, J = 11.5, 8.0 Hz, 2H), 7.56 (t, J = 7.7 Hz, 1H), 7.29 - 7.18 (m, 4H), 7.14 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 7.7 Hz, 2H), 7.02 - 6.98 (m, 1H), 6.65 (s, 1H), 2.56 - 2.47 (m, 1H), 2.38 - 2.32 (m, 1H), 2.22 (s, 3H), 1.60 - 1.51 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 201.6, 151.4, 148.8, 143.8, 139.4, 137.6, 136.9, 132.8, 129.4, 129.2, 129.2, 128.3, 127.8, 123.9, 120.8, 120.8, 119.7, 119.5, 116.0, 111.4, 44.2, 17.8, 13.8, 9.6; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{26}H_{25}N_2O$: 381.1961, found: 381.1948; IR (KBr): 2958, 2924, 1680, 1588, 1470, 1455, 1437, 1362, 1224, 1183, 1054, 779, 742 cm⁻¹.

(E)-2-(3-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-1,3-diphenylprop-2-en-1-one

(7k): The title compound was prepared from propargyl alcohol 6k (0.20 mmol, 82.8 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a brown oil; 63.7 mg, 77% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 3.2 Hz, 1H), 8.02 (d, J = 7.9 Hz, 2H), 7.74 - 7.71 (m, 1H), 7.61 - 7.54 (m, 2H), 7.51 -7.47 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.35 (d, J = 0.8 Hz, 1H), 7.26 (s, 2H), 7.24 – 7.19 (m, 5H), 6.99 - 6.96 (m, 1H), 2.17 (d, J = 0.9 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 191.2, 151.7, 148.6, 146.1, 139.7, 137.9, 137.6, 137.1, 133.1, 132.7, 129.6, 129.4, 129.2, 128.5, 128.4, 127.9, 126.2, 123.8, 120.7, 120.6, 120.2, 119.4, 115.8, 111.5, 9.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₉H₂₃N₂O: 415.1805, found: 415.1798; IR (KBr): 3055, 2922, 1656, 1588, 1470, 1448, 1437, 1380, 1363, 1266, 1223, 1017, 777, 743, 695 cm⁻¹.

(E)-3-Phenyl-2-(1-(pyridin-2-yl)-1H-indol-2-yl)acrylaldehyde (71): The title compound was prepared from propargyl alcohol 61 (0.20 mmol, 64.8 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow solid; m.p. 127.8 – 130.4 °C; 34.3 mg, 53% yield; ¹H NMR (500 MHz,

 $CDCl_3$) δ 9.69 (s, 1H), 8.37 (dd, J = 4.8, 1.2 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.63 – 7.59 (m, 2H), 7.42 (s, 1H), 7.27 - 7.23 (m, 2H), 7.22 - 7.19 (m, 1H), 7.19 - 7.15 (m, 5H), 7.10 - 7.07 (m, 1H), 6.70 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 192.6, 150.8, 150.3, 148.9, 137.7, 137.1, 133.9, 133.3, 131.4, 130.4, 130.4, 128.8, 128.8, 123.2, 121.3, 121.3, 121.2, 119.7, 111.3, 107.0; HR-MS [ESI-MS(+)] calcd for [M + H] $^+$: C₂₂H₁₇N₂O: 325.1335, found: 325.1342; IR (KBr): 3056, 2924, 2853, 1687, 1586, 1469, 1446, 1437, 1374, 1314, 1213, 1166, 1017, 775, 744 cm $^{-1}$.

Me Ph CHO

(*E*)-2-(5-Methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylacrylaldehyde (7m): The title compound was prepared from propargyl alcohol **6m** (0.20 mmol, 67.6 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a brown oil; 35.2 mg, 52% yield; ¹H NMR (400 MHz, CDCl₃) δ

9.73 (s, 1H), 8.40 (dd, J = 4.9, 1.2 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.48 (s, 1H), 7.44 (s, 1H), 7.31 – 7.27 (m, 1H), 7.22 – 7.17 (m, 5H), 7.12 – 7.08 (m, 2H), 6.66 (s, 1H), 2.51 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 192.6, 151.0, 149.9, 148.9, 137.6, 135.4, 134.0, 133.4, 131.4, 130.5, 130.4, 129.1, 128.5, 124.8, 121.1, 120.9, 119.5, 111.0, 106.7, 21.4; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₁₉N₂O: 339.1492, found: 339.1487; IR (KBr): 3019, 2920, 2856, 1686, 1587, 1470, 1437, 1376, 1215, 1179, 1143, 1100, 1005, 771, 744, 691 cm⁻¹.

MeO Ph CHO (*E*)-2-(5-Methoxy-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylacrylaldehyde (7n): The title compound was prepared from propargyl alcohol **6n** (0.20 mmol, 70.8 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow oil; 42.5 mg, 60% yield; ¹H NMR (400 MHz, CDCl₃) δ

9.73 (s, 1H), 8.39 (dd, J = 4.8, 1.2 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.55 (d, J = 9.0 Hz, 1H), 7.44 (s, 1H), 7.31 – 7.27 (m, 1H), 7.23 – 7.18 (m, 4H), 7.16 – 7.07 (m, 3H), 6.94 – 6.91 (m, 1H), 6.65 (s, 1H), 3.90 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 192.6, 155.1, 150.9, 150.2, 148.9, 137.7, 133.9, 133.3, 132.2, 131.6, 130.4, 130.4, 129.3, 128.6, 121.1, 119.4, 113.4, 112.2, 106.8, 102.7, 55.8; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₁₉N₂O₂: 355.1441, found: 355.1430; IR (KBr): 2923, 2843, 1687, 1588, 1470, 1488, 1403, 1338, 1204, 1175, 1147, 1031, 769 cm⁻¹.

(E)-2-(5-Fluoro-1-(pyridin-2-yl)-1H-indol-2-yl)-3-phenylacrylaldehyde (70): The title compound was prepared from propargyl alcohol 60 (0.20 mmol, 68.4 mg)

and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a brown oil; 34.9 mg, 51% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 8.40 (dd, J = 4.8, 1.1 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.56 (dd, J = 9.0, 4.4 Hz, 1H), 7.46 (s, 1H), 7.34 – 7.20 (m, 2H), 7.24 – 7.12 (m, 6H), 7.04 – 6.08 m, 1H), 6.67 (s, 1H); ¹³C NMP

7.46 (s, 1H), 7.34 – 7.29 (m, 2H), 7.24 – 7.12 (m, 6H), 7.04 – 6.98 m, 1H), 6.67 (s, 1H); 13 C NMR (101 MHz, CDCl₃) δ 192.5, 158.6 (d, J = 237.4, $^{1}J_{\text{CF}}$), 151.1, 150.7, 149.0, 137.8, 133.7, 133.1, 132.8, 130.7, 130.4, 129.1 (d, J = 2.0, $^{3}J_{\text{CF}}$), 128.6, 121.5, 119.6, 112.3 (d, J = 10.1, $^{2}J_{\text{CF}}$), 111.5 (d, J = 15.2, $^{2}J_{\text{CF}}$), 106.7 (d, J = 5.1, $^{3}J_{\text{CF}}$), 106.1, 105.9; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₂H₁₆FN₂O: 343.1241, found: 343.1233; IR (KBr): 3062, 2925, 2845, 1686, 1588, 1470, 1447, 1437, 1404, 1379, 1180, 1137, 1005, 773, 745, 691 cm⁻¹.

 $(E)\hbox{-}2\hbox{-}(5\hbox{-}Bromo\hbox{-}1\hbox{-}(pyridin\hbox{-}2\hbox{-}yl)\hbox{-}1H\hbox{-}indol\hbox{-}2\hbox{-}yl)\hbox{-}3\hbox{-}phenylacrylaldehyde} \qquad (7p)\hbox{:}$

The title compound was prepared from propargyl alcohol **6p** (0.20 mmol, 80.4 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow oil; 37.0 mg, 46% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s,

1H), 8.40 (dd, J = 5.5, 1.8 Hz, 1H), 7.81 (d, J = 1.8 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.50 (d, J = 8.8 Hz, 1H), 7.47 (s, 1H), 7.35 – 7.28 (m, 2H), 7.24 – 7.12 (m, 6H), 6.65 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 151.3, 150.4, 149.1, 137.9, 135.7, 133.6, 132.9, 132.5, 130.7, 130.4, 130.6, 128.6, 126.0, 123.6, 121.7, 119.7, 114.3, 112.9, 106.2; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₂H₁₆BrN₂O: 403.0441, found: 403.0429; IR (KBr): 3061, 2923, 2849, 1687, 1586, 1537, 1470, 1443, 1379, 1315, 1208, 1160, 1105, 1001, 869, 745, 692 cm⁻¹.

(*E*)-3-Phenyl-2-(1-(pyridin-2-yl)-6-(trifluoromethyl)-1H-indol-2-yl)acrylaldeh yde (7q): The title compound was prepared from propargyl alcohol 6q (0.20 mmol, 78.4 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a yellow oil; 29.8 mg, 38% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 8.47 – 8.42 (m, 1H), 7.88 (s, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.50 (s, 1H), 7.47 (d, J = 7.4 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.26 – 7.16 (m, 6H), 6.76 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 151.7, 150.2, 149.2, 138.1, 136.1, 134.1, 133.5, 132.8, 130.9, 130.8, 130.4, 128.7, 125.2 (d, J = 32.3, ² J_{CF}), 125.1 (d, J = 237.4, ¹ J_{CF}), 122.0, 121.6, 119.8, 17.9 (q, J = 4.0, ³ J_{CF}), 109.0 (q, J = 5.1, ³ J_{CF}), 106.7; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₂₃H₁₆F₃N₂O: 393.1209, found: 393.1196; IR (KBr): 3063, 2924, 2852, 1688, 1588, 1470, 1439, 1345, 1331, 1301, 1264, 1231, 1162, 1116, 1058, 948, 830, 747 cm⁻¹.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 4-((E)-2-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-oxoprop-1-en-1-yl)benzoate (7r): The title compound was prepared from propargyl alcohol **6r** (0.20 mmol, 104.0 mg) and was purified by column chromatography (5: 1 = petroleum ether: ethyl acetate) to give a yellow oil; 76.0 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.69 (d, J = 8.0 Hz, 1H), 8.45 – 8.42 (m, 1H), 7.94 - 7.89 (m, 2H), 7.77 - 7.73 (m, 1H), 7.69 - 7.63 (m, 2H), 7.60(d, J = 5.9 Hz, 1H), 7.46 - 7.34 (m, 3H), 7.34 - 7.23 (m, 3H), 7.17 - 7.12 (m, 1H),4.95 - 4.89 (m, 1H), 2.12 (d, J = 12.2 Hz, 1H), 2.06 (d, J = 12.2 Hz, 3H), 1.98 - 1.89 (m, 1H), 1.74 (d, J = 10.8 Hz, 2H), 1.59 - 1.50 (m, 2H), 1.16 - 1.04 (m, 2H), 0.96 - 0.91 (m, 7H), 0.80 (d, 2H) $J = 6.9 \text{ Hz}, 3\text{H}; ^{13}\text{C NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 192.4, 165.4, 151.3, 151.2, 149.0, 149.0, 148.1,$ 148.0, 138.5, 138.4, 138.0, 137.9, 136.8, 136.7, 134.6, 134.5, 132.0, 131.9, 123.0, 129.8, 129.8, 129.5, 129.4, 128.4, 128.3, 123.6, 121.1, 121.1, 120.8, 119.6, 119.1, 114.4, 114.3, 111.0, 110.9, 75.2, 47.2, 47.2, 40.9, 34.3, 31.5, 26.5, 26.4, 23.6, 23.6, 22.0, 20.8, 16.5, 16.4, 9.3, 9.2; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{34}H_{37}N_2O_3$: 521.2799, found: 521.2791; IR (KBr): 2923, 2862, 1712, 1694, 1588, 1471, 1456, 1438, 1364, 1274, 1109, 1081, 1016, 959, 773, 738 cm⁻¹.

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-Ethyl-6-methylhept-3
-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetrade
cahydro-1H-cyclopenta[a]phenanthren-3-yl
4-((E)-2-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)-3-oxoprop-1-en1-yl)benzoate (7s): The title compound was prepared from propargyl

alcohol **6s** (0.20 mmol, 155.0 mg) and was purified by column chromatography (5: 1 = petroleum ether: ethyl acetate) to give a yellow solid; m.p. 87.7 - 92.0 °C; 100.1 mg, 64% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 8.43 (dd, J = 4.8, 1.2 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.75 – 7.71 (m, 1H), 7.69 – 7.63 (m, 2H), 7.59 (s, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.37 – 7.24 (m, 3H), 7.15 – 7.12 (m, 1H), 5.44 (d, J = 4.0 Hz, 1H), 5.24 – 5.18 (m, 1H), 5.10 – 5.05 (m, 1H), 4.90 – 4.81 (m, 1H), 2.46 (d, J = 7.4 Hz, 2H), 2.15 – 1.89 (m, 9H), 1.79 – 1.71 (m, 2H), 1.65 – 1.47 (m, 8H), 1.34 – 1.18 (m, 6H), 1.08 (d, J = 5.5 Hz, 7H), 0.90 (d, J = 6.2 Hz, 3H), 0.86 (t, J = 7.2 Hz, 6H), 0.75 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3, 165.2, 151.2, 149.0, 148.0, 139.5, 138.5, 138.4, 137.9, 136.8, 134.6, 131.9, 129.9, 129.8, 129.5, 129.3, 128.3, 123.6, 122.9, 121.1, 120.8, 119.6, 119.1, 114.4, 111.0, 74.9, 56.8, 56.0, 51.3, 50.1, 42.3, 40.5, 39.7, 38.2, 37.0, 36.7, 32.0, 31.9, 29.0, 27.9, 25.5, 24.4, 21.3, 21.2, 21.1, 19.4, 19.1, 12.3, 12.1, 9.3; HR-MS [ESI-MS(+)] calcd for [M + H]⁺: C₅₃H₆₅N₂O₃: 777.4990, found: 777.4979; IR (KBr): 2954, 2867, 1716, 1694, 1588, 1470, 1457, 1438, 1365, 1272, 1226, 1110, 973, 775, 738 cm⁻¹.

(E)-6-Benzylidene-5-(pyridin-2-yl)-6,8,9,10-tetrahydrocyclohepta[b]indol-7(5

H)-one (7t): The title compound was prepared from propargyl alcohol 6t (0.20 mmol, 72.8 mg) and was purified by column chromatography (10: 1 = petroleum ether: ethyl acetate) to give a light yellow solid; m.p. 187.1 – 192.9 °C; 29.1 mg, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 4.9, 1.2 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.55 – 7.50 (m, 1H), 7.47 - 7.42 (m, 1H), 7.32 (s, 1H), 7.27 - 7.23 (m, 2H), 7.14 (t, J = 7.4 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), J = 7.4 Hz, J7.7 Hz, 2H), 6.97 - 6.92 (m, 1H), 6.75 - 6.69 (m, 3H), 3.32 - 3.16 (m, 2H), 3.08 - 2.97 (m, 1H), 2.86 - 2.75 (m, 1H), 2.41 - 2.25 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 203.4, 150.3, 148.4, 137.7, 137.6, 136.8, 134.7, 131.1, 129.7, 129.4, 128.7, 128.7, 127.9, 123.9, 121.0, 120.6, 120.4, 118.7, 117.4, 111.4, 40.6, 23.8, 22.0; HR-MS [ESI-MS(+)] calcd for $[M + H]^+$: $C_{25}H_{21}N_2O$: 365.1648, found: 365.1660; IR (KBr): 3045, 2927, 1688, 1587, 1468, 1438, 1372, 1246, 1127, 930, 745, 694 cm⁻¹.

(E)-6-Benzylidene-5-(pyridin-2-yl)-5,6,8,9,10,11-hexahydro-7H-cycloocta[b]in dol-7-one (7u): The title compound was prepared from propargyl alcohol 6u (0.20 mmol, 75.6 mg) and was purified by column chromatography (10: 1 = petroleum **7u** 2-Py_{Ph} ether: ethyl acetate) to give a yellow solid; m.p. 180.0 – 183.4 °C; 25.7 mg, 34% yield; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.28 \text{ (dd, } J = 4.8, 1.3 \text{ Hz}, 1\text{H}), 7.74 - 7.68 \text{ (m, 1H)}, 7.61 \text{ (s, 1H)}, 7.50 - 7.41$ 2H), 6.71 (d, J = 8.0 Hz, 1H), 3.30 – 3.17 (m, 2H), 2.86 – 2.80 (m, 1H), 2.58 – 2.46 (m, 1H), 2.29 -2.09 (m, 2H), 2.03 - 1.90 (m, 1H), 1.81 - 1.73 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 203.5, 150.4, 148.7, 139.9, 137.0, 136.9, 134.7, 131.3, 130.2, 129.9, 129.3, 128.4, 128.1, 123.4, 120.8, $120.7, 120.2, 118.8, 118.1, 111.0, 39.0, 28.8, 26.1, 24.2; HR-MS [ESI-MS(+)] calcd for [M + H]^+:$ C₂₆H₂₃N₂O: 379.1805, found: 379.1793; IR (KBr): 3055, 2925, 2858, 1681, 1588, 1470, 1438, 1369, 1317, 1223, 1162, 1093, 1016, 748, 693 cm⁻¹.

1.6. Post-synthetic applications of the 3a, 3q and 7a

1) Removal of the pyrimidyl group of 3q [7,8]

A suspension of 3q (79.5 mg, 0.3 mmol), ethylene glycol (186.0 mg, 3 mmol), p-TsOH (10.3 mg, 20 mol %) and HC(OMe)₃ (127.2 mg, 1.2 mmol) in CH₂Cl₂ for 24 h at room temperature, the solvent was removed in vacuo. the crude product was used for the next step without purification. To an oven-dried sealed tube charged with crude product and t-BuOK (202 mg, 1.8 mmol) followed by addition of anhydrous THF (3 mL) through syringe. After stirring at 120 °C for 6 h, saturated NH₄Cl (5 mL) was added and resulting mixture was extracted with EtOAc (3 × 5 mL), and the combined organic layers were dried over Na₂SO₄, the solvent was removed in vacuo and the resultant residue was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether = 1:5 as eluent to afford the desired product 8.

2-(2-(1,3-Dioxolan-2-yl)ethyl)-3-methyl-1H-indole (8): pale yellow oil, 52.0 mg, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.19 – 7.11 (m, 2H), 4.97 (t, J = 4.4 Hz, 1H), 4.10 - 4.06 (m, 2H), 3.96 - 3.93 (m, 2H), 2.92 (t, J = 7.4 Hz, 2H), 2.30 (s, 3H), 2.09 - 2.05 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.3, 134.3, 129.3, 121.0, 118.9, 118.1, 110.3, 106.9, 103.7, 65.1, 33.2, 20.1, 8.4; HR-MS (ESI) calcd for $[M + H]^+$: $C_{14}H_{18}NO_2$: 232.1332, found: 232.1330; IR (KBr): 3398, 3050, 2926, 2885, 1580, 1463, 1407, 1333, 1240, 1141, 1026, 943, 892, 743 cm⁻¹.

2) Alkynylayion of aldehyde 3a with α -diazo-phosphonate $^{[9]}$

$$\begin{array}{c} \text{Me} \\ \text{CHO} \\ \text{N} \\ \text{N} \\ \text{3a} \\ \end{array} + \begin{array}{c} \text{O} \\ \text{O} \\ \text{N} \\ \text{OMe} \\ \end{array} + \begin{array}{c} \text{K}_2\text{CO}_3, \text{MeOH} \\ \text{O} \text{°C to RT., 3h} \\ \end{array} \\ \begin{array}{c} \text{Me} \\ \text{N} \\ \text{N} \\ \text{O} \\ \text{O} \end{array}$$

To a solution of aldehyde 3a (0.079 g, 0.3 mmol) in anhydrous MeOH (1 mL) was added a solution of Ohira-Bestmann Reagent (0.144 g, 0.75 mmol) in MeOH (1 mL) and K_2CO_3 (0.124 g, 0.9 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 3 h before quenched with an aqueous solution of NH₄Cl. The aqueous phase was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to give an oil. Purification by column chromatography (petroleum ether /ethyl acetate = 10: 1) afforded alkyne 9.

2-(But-3-yn-1-yl)-3-methyl-1-(pyridin-2-yl)-1H-indole (**9**): colorless oil, 55.0 mg, 71% yield; 1 H NMR (400 MHz, CDCl3) δ 8.71 – 8.66 (m, 1H), 7.93 – 7.88 (m, 1H), 7.63 – 7.61 (m, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.40 – 7.36 (m, 1H), 7.35 – 7.31 (m, 1H), 7.24 – 7.19 (m, 2H), 3.22 (t, J = 7.7 Hz, 2H), 2.46 – 2.42 (m, 5H), 1.96 - 194 (m, 1H); 13 C NMR (101 MHz, CDCl3) δ 151.6, 149.7, 138.3, 136.5, 135.1, 129.4, 122.2, 121.8, 120.8, 120.4, 118.6, 111.1, 109.9, 83.8, 68.8, 24.6, 19.1, 8.9; HR-MS (ESI) calcd for [M + H] $^{+}$: C₁₈H₁₇N₂: 261.1386, found: 261.1394; IR (KBr): 3292, 3052, 2921, 2120, 1585, 1472, 1458, 1437, 1363, 1316, 1224, 1181, 1148, 780, 742, 639 cm $^{-1}$.

3) Cyanation of aldehyde 7a with acetonitrile [10]

An oven-dried sealed tube charged **7a** (64.8 mg, 0.2 mmol), Cs₂CO₃ (195.0 mg, 0.6 mmol) and CH₃CN (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to refulx for 3 h. After the reaction mixture was cooled down, the corresponding reaction mixture was removed in vacuo and the resultant residue was purified by flash chromatography on silica gel using ethyl acetate/petroleum (1: 20) as eluent to afford the desired products **10**.

(2*E*,4*Z*)-5-Phenyl-4-(1-(pyridin-2-yl)-1H-indol-2-yl)penta-2,4-dienenitrile (10): brown solid, m.p. 144.2 - 146.8 °C; 25.7 mg, 37% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.40 (dd, J = 4.8, 1.3 Hz, 1H), 7.70 - 7.68(m, 1H), 7.61 - 7.55 (m, 2H), 7.32 (d, J = 16.0 Hz, 1H), 7.28 - 7.22 (m, 3H), 7.16 (d, J = 7.3 Hz, 1H), 7.12 - 7.07 (m, 3H), 6.91 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 7.5 Hz, 2H), 6.85 (s, 1H), 6.67 (s, 1H), 5.41 (d, J = 16.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 150.3, 149.0, 141.8, 137.7, 137.0, 134.6, 131.8, 129.1, 129.3, 128.4, 128.4, 123.5, 121.6, 121.5, 121.1, 119.7, 118.6, 111.7, 106.7, 98.5; HR-MS (ESI) calcd for [M + H]⁺: C₂₄H₁₈N₃: 348.1495, found: 348.1502; IR (KBr): 3055, 2923, 2212, 1586, 1468, 1444, 1395, 1314, 965, 780, 744 cm⁻¹.

4) Arylvinylation of aldehyde 7a with diethyl benzylphosphonate [11]

A 50 mL round bottom flask equipped with a magnetic stir bar was charged with diethyl benzylphosphonate (1.1 equiv) and dry THF (0.3 M). The solution was cooled to 0 $^{\circ}$ C with an ice bath followed by NaH addition (1.2 equiv). After stirring for 30 min at 0 $^{\circ}$ C the aldehyde **7a** (0.28 mmol) was slowly added. The reaction was allowed to warm to room temperature and stirred until judged complete by TLC analysis (12 h). The reaction mixture was then cooled to 0 $^{\circ}$ C and quenched with aqueous ammonium chloride. The solution was extracted with ethyl acetate. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using ethyl acetate/petroleum (1: 20) as eluent to afford the desired products **11.**

2-((1*Z*,3*E*)-1,4-Diphenylbuta-1,3-dien-2-yl)-1-(pyridin-2-yl)-1H-indole (11): brown solid, m.p. 171.3 – 174.4 °C; 59.0 mg, 67% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.44 – 8.38 (m, 1H), 7.86 – 7.82 (m, 1H), 7.77 (d, J = 6.8 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.44 – 7.41 (m, 2H), 7.36 – 7.32 (m, 4H), 7.29 – 7.26 (m, 1H), 7.20 – 7.07 (m, 6H), 6.94 – 6.90 (m, 2H), 6.81 (s, 1H), 6.78 (d, J = 0.7 Hz, 1H), 6.65 (d, J = 15.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 148.6, 137.4, 137.3, 137.0, 136.2, 135.2, 134.6, 132.8, 132.0, 131.8, 129.0, 128.8, 128.6, 128.2, 127.7, 127.6, 126.7, 122.9, 121.2, 121.1, 120.8, 119.8, 112.4, 106.4; HR-MS (ESI) calcd for [M + H]⁺: C₂₉H₂₃N₂: 399.1856, found: 399.1857; IR (KBr): 3054, 2956, 1585, 1467, 1452, 1443, 1436, 1390, 1343, 1312, 1208, 1150, 1017, 962, 743, 692 cm⁻¹.

5) Reduction of carbon-carbon double bonds and carbonyl group from 7a [10]

An oven-dried sealed tube charged **7a** (105.0 mg, 0.32 mmol), CH₃CN (65.6 mg, 1.6 mmol), Me₃SiOK (122.9 mg, 0.96 mmol) and PhMe (1.0 mL) under Ar atmosphere. The reaction mixture was then allowed to refulx for 3 h. After the reaction mixture was cooled down, the corresponding reaction mixture was removed in vacuo and the resultant residue was purified by flash chromatography on silica gel using ethyl acetate/petroleum (1: 20) as eluent to afford the desired products **12**.

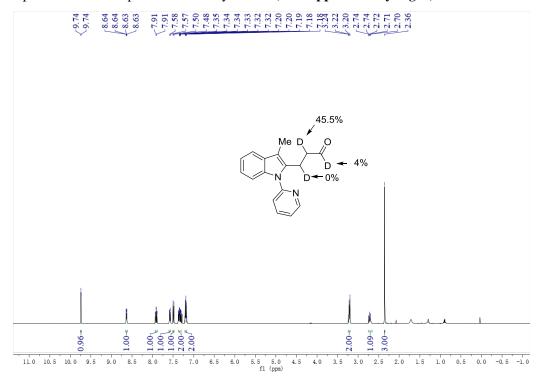
2-Phenethyl-1-(pyridin-2-yl)-1H-indole (12) ^[12]: yellow oil, 39.1 mg, 44% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.72 – 8.68 (m, 1H), 7.92 – 7.88 (m, 1H), 7.65 – 7.59 (m, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.30 – 7.26 (m, 2H), 7.23 – 7.13 (m, 5H), 6.53 (s, 1H), 3.23 – 3.16 (m, 2H), 2.99 – 2.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 149.7, 141.5, 140.8, 138.3, 137.3, 128.6, 128.4, 126.0, 122.1, 121.8, 121.1, 120.7, 120.1, 110.1, 102.5, 35.3, 29.7; HR-MS (ESI) calcd for [M + H]⁺: C₂₁H₁₉N₂: 299.1543, found: 299.1550;

6) Regioselective Reduction of α , β -unsaturated aldehyde 7a by NaBH₄^[13]

A 50 mL round bottom flask equipped with a magnetic stir bar was charged with **7a** (64.8 mg, 0.2 mmol) and CH₃OH (2 mL). The solution was cooled to 0 $^{\circ}$ C with an ice bath followed by NaBH₄ addition (15.0 mg, 2.0 equiv). After stirring for 3 h, the reaction mixture was quenched with water and extracted with ethyl acetate. The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using ethyl acetate/petroleum (1: 6) as eluent to afford the desired products **13**.

(*E*)-3-Phenyl-2-(1-(pyridin-2-yl)-1H-indol-2-yl)prop-2-en-1-ol (13): white solid, m.p.
$$110.9 - 115.5$$
 °C; 59.0 mg, 82% yield; 1H NMR (400 MHz, CDCl₃) δ 8.42 (dd, $J = 4.9$, 1.2 Hz, $1H$), $7.75 - 7.73$ (m, $1H$), $7.57 - 7.53$ (m, $1H$), $7.44 - 7.37$ (m, $1H$), $7.27 - 7.20$ (m, $2H$), $7.15 - 7.10$ (m, $1H$), 7.07 (t, $J = 7.3$ Hz, $1H$), 6.99 (t, $J = 7.4$ Hz, $2H$), 6.93 (d, $J = 8.0$ Hz, $1H$), 6.82 (s, $1H$), 6.67 (d, $J = 7.4$ Hz, $2H$), 6.61 (s, $1H$), 5.23 (s, $1H$), 4.64 (s, $2H$); 13 C NMR (101 MHz, CDCl₃) δ 149.9, 148.1, 137.9, 136.9, 136.4, 135.7, 132.3, 131.6, 129.3, 128.3, 127.9, 127.3, 122.7, 121.4, 121.3, 121.2, 120.2, 110.2, 104.5, 70.3; HR-MS (ESI) calcd for $[M + H]^+$: $C_{22}H_{19}N_2O$: 327.1494 , found: 327.1492 ; IR (KBr): 3748 , 3055 , 2920 , 2854 , 1589 , 1470 , 1452 , 1438 , 1386 , 1345 , 1313 , 1211 , 1151 , 1028 , 779 , 743 , 695 cm⁻¹.

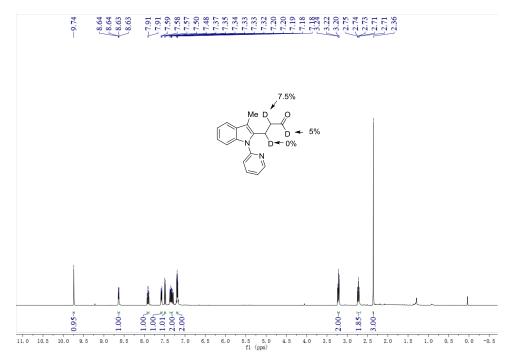
7) Coupling-cyclization of 7a with phenylhydrazine [14]


Into the reaction mixture of **7a** (64.8 mg, 0.2 mmol) and acetonitrile (1 mL) were added phenylhydrazine (21.6 mg, 0.2 mmol). The reaction mixture then was stirred for 10 min. at 30 °C followed by TfOH (30.0 g, 0.4 mmol) were added. The mixture was stirred at the same temperature till completion of the reaction which was monitored by TLC (24 h). After completion of the reaction, the crude was quenched by sat. solution of sodiumbicarbonate and extracted with ethylacetate. The organic layer was separated and dried with anhydrous Na₂SO₄ and then concentrated under reduced pressure to get crude compound. The crude product was purified by flash chromatography on silica gel using ethyl acetate/petroleum (1: 10) as eluent to afford the desired products **14.**

2-(1,5-Diphenyl-1H-pyrazol-4-yl)-1-(pyridin-2-yl)-1H-indole (14): brown solid; m.p.
$$63.7 - 68.6$$
 °C; 37.0 mg, 42% yield; 1 H NMR (400 MHz, CDCl₃) δ 8.38 (dd, $J = 4.6$, 1.4 Hz, 1H), 7.71 (s, 1H), $7.64 - 7.62$ (m, 1H), $7.58 - 7.54$ (m, 1H), $7.52 - 7.50$ (m, 1H), $7.30 - 7.26$ (m, 3H), $7.24 - 7.16$ (m, 5H), $7.14 - 7.07$ (m, 3H), 6.90 (d, $J = 8.0$ Hz, 1H), 6.83 (d, $J = 7.4$ Hz, 2H), 6.64 (s, 1H); 13 C NMR (101 MHz, CDCl₃) δ 151.7, 151.3, 148.9, 141.1, 140.5, 139.7, 137.5, 131.2, 129.7, 129.4, 128.7, 128.7, 128.3, 128.2, 127.4, 122.6, 121.2, 121.1, 121.0, 120.3, 114.3, 111.2, 105.8; HR-MS (ESI) calcd for [M + H] $^{+}$: C₂₈H₂₁N₄: 413.1761, found: 413.1772; IR (KBr): 3055, 2921, 2856, 1588, 1499, 1468, 1454, 1435, 1379, 1315, 1208, 1152, 1069, 1023, 962, 772, 697 cm $^{-1}$.

1.7. Control experiments for the mechanism studies

1) H/D exchange experiment of α-(2-indolyl)alcohol 1a


An oven-dried sealed tube charged allylicalcohol **1a** (26.4 mg, 0.10 mmol), Mn(CO)₅Br (2.0 mg, 5 mol %), D₂O (10.0 mg, 0.50 mmol) and DCE (1.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 24 h. After the reaction mixture was cooled down, the corresponding reaction mixture was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether (1: 10) as eluent to afford the desired products *d*-**3a** in which 45.5 D% was incorporated into the α -position of aldehyde *d*-**3a** (see **Supplementary Fig. 1**).

Supplementary Fig. 1 | The ¹H NMR spectra of *d*-3a.

2) H/D exchange experiment of aldehyde 3a

An oven-dried sealed tube charged 3a (26.4 mg, 0.10 mmol), Mn(CO)₅Br (2.0 mg, 5 mol %), D₂O (10.0 mg, 0.50 mmol) and DCE (1.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 24 h. After the reaction mixture was cooled down, the corresponding reaction mixture was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether (1: 10) as eluent to afford the desired products d2-3a in which 7.5 D% was incorporated into the α -position of aldehyde d2-3a (see Supplementary Fig. 2).

Supplementary Fig. 2 | The ¹H NMR spectra of *d2-3*a.

3) Intramolecular cyclization of α-[2-(N-phenyl) indolyl]allylic alcohol 1u

An oven-dried sealed tube charged allylic alcohol 1u (49.8 mg, 0.20 mmol), $Mn(CO)_5Br$ (0.01 mmol, 5 mol %), and DCE (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 24 h. The intramolecular cyclization product 3u' instead of in-situ group-inversion rearrangement product 3u was obtained. 3u' was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether (1: 50) as eluent to afford the 3u'.

4-Phenyl-1,4-dihydrocyclopenta[b]indole (**3u'**): light yellow solid; m.p. 213.7 – 216.5 °C; 28.2 mg, 61% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.41 (m, 3H), 7.31 – 7.25 (m, 3H), 7.09 – 7.05 (m, 3H), 6.48 (d, J = 16.0 Hz, 1H), 5.76 – 5.69 (m, 1H), 3.66 (d, J = 6.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 138.6, 137.9, 134.5, 134.0, 129.3, 128.2, 127.9, 127.3, 122.3, 119.8, 118.5, 117.9, 112.7, 110.0, 29.6; HR-MS (ESI) calcd for [M + H]+: C₁₇H₁₄N: 232.1121, found: 232.1118; IR (KBr): 3047, 2921, 2855, 1596, 1499, 1452, 1368, 1220, 1019, 963, 739, 697 cm⁻¹.

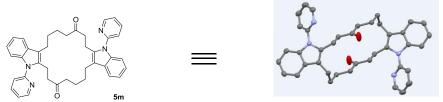
4) Csp^2 - Csp^3 σ bond activation-based carbonylethylation of α -(2-indolyl)allylicalcohol 1a

An oven-dried sealed tube charged allylic alcohol **1a** (52.8 mg, 0.20 mmol), $Mn(CO)_5Br$ (0.01 mmol, 5 mol %), and DCE (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 45 °C for 24 h. After the reaction mixture was cooled down, the corresponding reaction mixture was purified by flash chromatography on silica gel using ethyl acetate/petroleum

ether (1: 10) as eluent to afford the desired products **3a** (39.6 mg, 75% yield).

5) Csp²-H bond activation-based carbonylethylation of 2-unsubstituted indole 7

Me
$$Me$$
 Me Me CHO $DCE, 45 °C, Ar, 24 h N $2-Py$ $3a (15%)$$


An oven-dried sealed tube charged 2-unsubstituted indole 7 (41.6 mg, 0.20 mmol), acrylaldehyde (11.2 mg, 0.20 mmol), $Mn(CO)_5Br$ (0.01 mmol, 5 mol %) and DCE (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 45 °C for 24 h. After the reaction mixture was cooled down, the corresponding reaction mixture was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether (1: 10) as eluent to afford the desired products 3a (7.9 mg, 15% yield).

6) Mn(I)-catalyzed cross-coupling reaction between different α -(2-indolyl)allylicalcohols 1g and 4a

An oven-dried sealed tube charged allylicalcohol **4a** (30.6 mg, 0.10 mmol), **1g** (32.6 mg, 0.10 mmol), Mn(CO)₅Br (3.0 mg, 0.01 mmol) and DCE (2.0 mL) under Ar atmosphere. The reaction mixture was then allowed to stir at 75 °C for 24 h. After the reaction mixture was cooled down, the corresponding reaction mixture was purified by flash chromatography on silica gel using ethyl acetate/petroleum ether (1: 10) as eluent to afford the products **5a** (19.5 mg, 64% yield); **5n** (11.5 mg, 31% yield); **3c** (14.1 mg, 43% yield); **3a** (6.3 mg, 24% yield).

1.8. Single crystal structure and data

1) The single crystal structure and data of 5m

The crystal structure of 5m

Supplementary Fig. 3 | The single crystal structure of **5m** (the ellipsoid contour probability level is 30%).

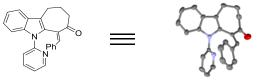
Supplementary Table 5 | Crystal data and structure refinement for 5m

Identification code	5m
Empirical formula	$C_{40}H_{40}N_4O_2\\$
Formula weight	608.76
Temperature/K	149.99(10) K

1.54178 Å Wavelength Crystal system Monoclinic Space group C2/c a/Å 21.8876(11) b/Å 5.8545(3) c/Å 27.6957(16) $\alpha/^{\circ}$ 90 β/° 100.788(6) γ/° 90 Volume/Å³ 3486.2(3) Z, Calculated density $4, 1.160 \text{ Mg/m}^3$ 0.565 mm⁻¹ Absorption coefficient F (000) 1296 Crystal size/mm³ 0.150 * 0.100 * 0.080 Theta range for data collection 3.249 to 73.761 deg Limiting indices -23 <= h <= 26, -7 <= k <= 4, -34 <= l <= 26Reflections collected / unique 5895 / 3386 [R(int) = 0.0398]Completeness to theta = 25.24299.8 % Absorption correction Semi-empirical from equivalents 1.00000 and 0.74784 Max. and min. transmission Full-matrix least-squares on F² Refinement method 3386 / 0 / 208 Data / restraints / parameters Goodness-of-fit on F^2 1.071 R1 = 0.0607, wR2 = 0.1713Final R indices [I>2sigma(I)] R1 = 0.0842, wR2 = 0.1955R indices (all data) **Extinction coefficient** n/a 0.820 and -0.230 e.A⁻³ Largest diff. peak and hole

2) The single crystal structure and data of 7f

The crystal structure of 7f


Supplementary Fig. 4 | The single crystal structure of **7f** (the ellipsoid contour probability level is 30%)

Supplementary Table 6 | Crystal data and structure refinement for 7f

Identification code

Empirical formula	$C_{21}H_{16}N_2OS$
Formula weight	344.42
Temperature/K	199.98(10) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P2(1)/n
a/Å	9.9522(8)
b/Å	17.0333(13)
c/Å	
c/A α/°	10.1226(8)
	90
β/°	96.085(7)
γ/°	90
Volume/Å ³	1706.3(2)
Z, Calculated density	4, 1.341 Mg/m ³
Absorption coefficient	0.200 mm ⁻¹
F (000)	720.0
Crystal size/mm ³	0.140 * 0.130 * 0.120
Theta range for data collection	2.350 to 29.340 deg
Limiting indices	-13<=h<=8, -22<=k<=23, -13<=l<=12
Reflections collected / unique	9813 / 4052 [R(int) = 0.0253]
Completeness to theta = 25.242	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.40333
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4052 / 0 / 227
Goodness-of-fit on F^2	0.996
	R1 = 0.0444, $wR2 = 0.1334$
Final R indices [I>2sigma(I)]	R1 = 0.0595, $wR2 = 0.1490$
R indices (all data)	
Extinction coefficient	n/a
Largest diff. peak and hole	0.233 and -0.343 e.A ⁻³

3) The single crystal structure and data of 7t

The crystal structure of **7t**

Supplementary Fig. 5 | The single crystal structure of **7t** (the ellipsoid contour probability level is 30%).

Supplementary Table 7 Crys	tal data and structure remement for 7t.
Identification code	7t
Empirical formula	$\mathrm{C}_{25}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}$
Formula weight	364.43
Temperature/K	200.01(10) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P2(1)/n
a/Å	8.3992(6)
b/Å	20.9553(16)
c/Å	11.0063
α/°	90
β/°	100.347(7)
γ/°	90
Volume/Å ³	1905.7(2)
Z, Calculated density	4, 1.270 Mg/m^3
Absorption coefficient	$0.078~{\rm mm}^{-1}$
F (000)	768
Crystal size/mm ³	0.140 * 0.130 * 0.120
Theta range for data collection	2.117 to 25.008 deg
Limiting indices	-8<=h<=9, -24<=k<=24, -13<=l<=10
Reflections collected / unique	8289 / 3339 [R(int) = 0.0245]
Completeness to theta $= 25.242$	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.88392
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3339 / 0 / 253
Goodness-of-fit on F^2	0.991
Final R indices [I>2sigma(I)]	R1 = 0.0452, $wR2 = 0.1295$
R indices (all data)	R1 = 0.0583, wR2 = 0.1432
Extinction coefficient	n/a
Largest diff. peak and hole	$0.337 \text{ and } -0.251 \text{ e.A}^{-3}$

1.9. Computational detail

All the calculations were accomplished using Gaussian 09D package^[15]. The geometries were calculated by density functional theory (DFT). All the structures optimization and frequency calculation were performed by the M06-L/Def2-SVP level at 298.15 K and 1 atm^[16-19]. The ultrafine integration grid was used in the structures optimization and frequency calculation. The intrinsic reaction coordinate (IRC)^[20] was prepared at the same level as above. To further accurate energies, the single-point energy calculation with solvation effects was performed by M06-L

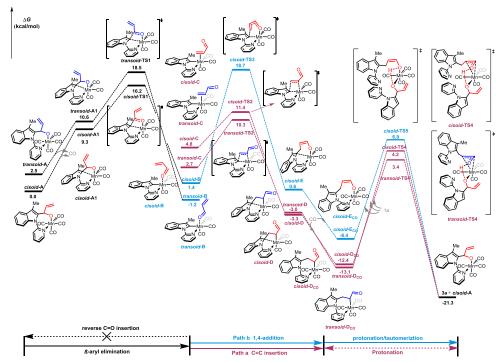
functional. A larger mixed basis set Def2-tzvp^[19, 21] was in used single-point energy calculation. Solvation effects were performed in dichloroethane solvent with SMD method^[22]. Because of the experiment condition at 348.15 K, the entropic contribution has been overrated in the solution. The correction of entropy was considered for all the species^[23]. The orbital figures were performed by Multiwfn and VMD programs^[24].

The general reaction mechanism is firstly proposed in **Supplementary Fig. 6**. Meanwhile, the possible mechanism for the formation of **51** and **5m** was also shown in **Supplementary Fig. 7**, in which the interaction between allylic alcohol **41** or **4m** with $Mn(CO)_5Br$ produced cyclomanganated species **A-4**, followed by chelation-assisted β -aryl elimination to give six-coordination Mn-carbonyl complexes **B-4**. Subsequently, bimolecular migratory insertion of Mn-intermediate **B-4** and protonation of carbon-Mn bonds of complexes **B-5** afforded the macrocyclic products **51** and **5m**.

Supplementary Fig. 6 | **Proposed reaction mechanism. Path a** Mn(I)-catalyzed 1,3-STR *via* intramolecular ligand exchange and migratory insertion. **Path b** Mn(I)-catalyzed 1,3-STR *via* intramolecular Michael-addition.

Supplementary Fig. 7 | Proposed reaction mechanism for the formation of 5l and 5m.

1) Discussion about the influence of different functions


The key intermediates and transition states were calculated using M06-L, M06, B3LYP(D3BJ), PBE0(D3BJ), and MN15 functional. All the structures optimization and frequency calculations were done with the ultrafine integration grid. All the result lead to the same conclusion that the Gibbs activation energies of the β -aryl elimination step via *cisoid*-TS1 or *transoid*-TS1 with are higher, to the same extent, than those of the 1,4-addition and the C=C insertion steps (see table below). For the β -aryl elimination step, the Gibbs activation energies with B3LYP(D3BJ), PBE0(D3BJ), and MN15 functional are slightly higher than that with M06-L, M06(D3) functional. While the Gibbs activation energies of the C=C insertion via the *cisoid*-TS2 and *transoid*-TS2 with B3LYP(D3BJ) functional are slightly higher than that with M06-L, M06(D3), PBE0(D3BJ), and MN15 functional. The Gibbs activation energy of the *cisoid*-TS3 with B3LYP(D3BJ) functional is also lower than that of PBE0(D3BJ) and MN15 functional. The results suggest that Minnesota functional (M06-L, M06, and MN15) can well present the dispersion effect. The calculated results with M06-L, M06, and MN15 functional are consistent with the experimental results.

Overall, the DFT computational results with B3LYP(D3BJ) and PBE0(D3BJ) functional and Minnesota functional with ultrafine integration grid do not change the mechanism and the discussion.

Supplementary Table 8 | The comparison of the Gibbs free energies of the key intermediates and transition states using different functions

	M06-L	M06-L(D3)	B3LYP(D3BJ)	PBE0(D3BJ)	MN15	M06(D3)	M06
cisoid-A	0.0	0.0	0.0	0.0	0.0	0.0	0.0
transoid-A	2.5	2.5	0.5	0.4	1.6	0.4	1.2
cisoid-TS1	16.2	16.6	18.9	18.8	18.2	16.3	15.4
transoid-TS1	18.5	18.8	20.3	19.9	19.4	17.2	16.7
cisoid-B	1.4	1.1	0.5	3.3	4.5	1.4	0.7
transoid-B	-1.2	-0.4	-1.9	1.1	3.8	0.0	-2.0
cisoid-C	4.8	5.2	6.9	5.1	4.6	2.1	1.3
transoid-C	2.7	3.2	4.9	3.5	2.7	0.7	0.2
cisoid-TS2	11.4	10.6	13.9	13.1	12.3	8.0	7.5
transoid-TS2	10.3	11.9	12.3	12.1	10.9	7.0	6.3
cisoid-TS3	18.7	18.8	15.5	25.4	23.0	19.2	18.8

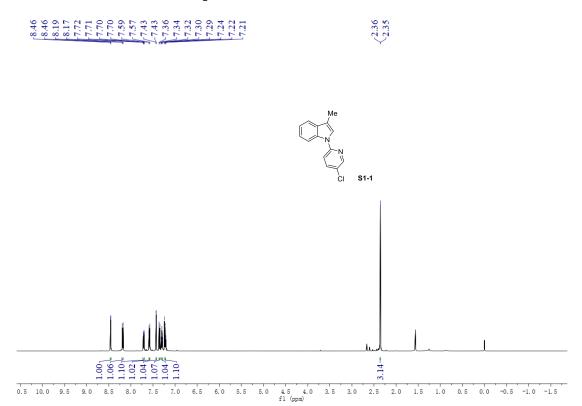
2) The full version of the computed potential energy surface

Supplementary Fig. 8 | Computed potential energy surface for the Mn(I)-catalyzed carbon-skeleton rearrangement via C-C bond activation at the SMD(DCE)/M06L/Def2tzvp//M06L/def2svp level of theory. Energies are in kcal/mol. Purple line The DFT-computed energy surfaces of Path a. Blue line The DFT-computed energy surfaces of Path b.

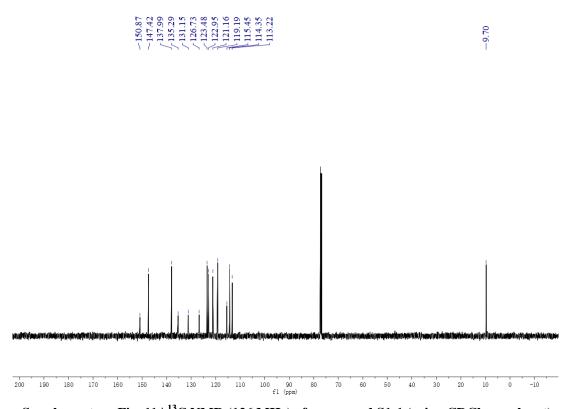
3) Discussion about the formation of the active species from the Mn(CO)₅Br and 1a.

The generation of cyclomanganated complex **A** from the Mn(CO)₅Br and **1a** has been investigated. The first step is the ligand-exchange of Mn(CO)₅Br generating the six-coordination intermediates *cisoid*-**A**_{pre} (-13.4 kcal/mol) or *transoid*-**A**_{pre} (-12.1 kcal/mol), in which the pyridine coordinate with Mn center. Then, with the assistance of the bromide, the alcohol is deprotonated via transition states *cisoid*-**TS6** or *transoid*-**TS6**, respectively. The Gibbs free energy of activation of *cisoid*-**TS6** is 5.8 kcal/mol, which is lower than that of *transoid*-**TS6** by 2.5 kcal/mol. The formation of the active species has to overcome relatively high Gibbs free energy of activation.

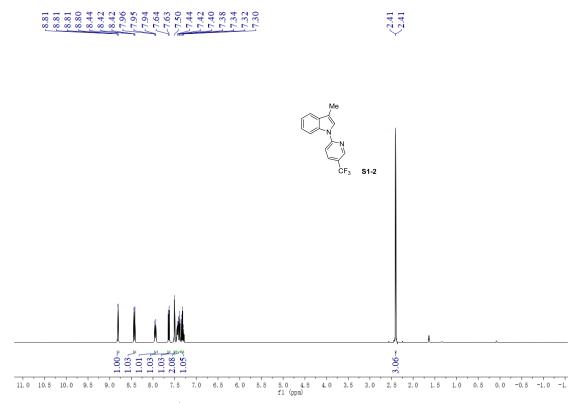
Supplementary Fig. 9 | Computed potential energy surface for the reaction between $Mn(CO)_5Br$ and 1a at the SMD(DCE)/M06L/Def2tvzp//M06L/def2svp level of theory.

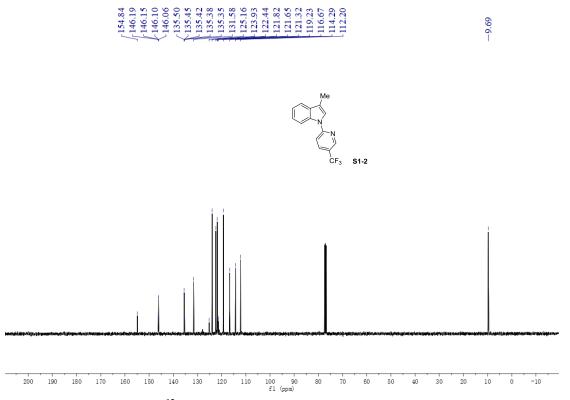

4) Discussion about the formation of the active species from the Mn(CO)₅Br and 1a.

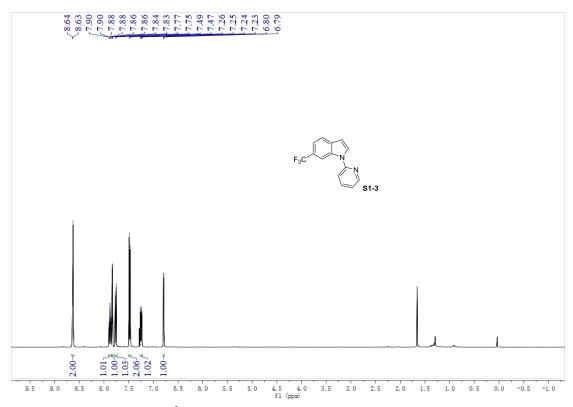
Supplementary Table 9 | Absolute energies of all optimized structures

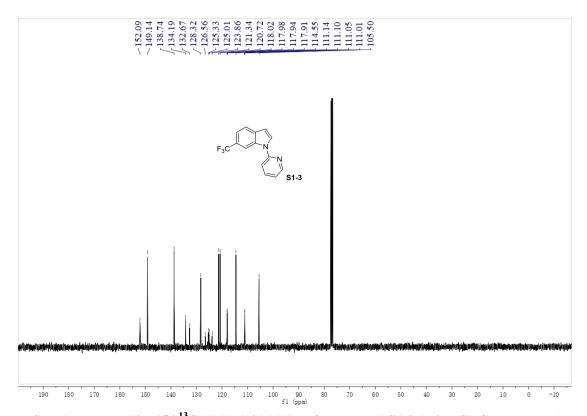

Species	E_{c}	$H_{\rm c}$	$G_{ m c}$	$G_{c(T=348.15K)}$	E/(Hartree)	H/(Hartree)	G/(Hartree)	Solvation Energy/(Hartree)	G _{sol} /(Hartree)
Mn(CO)5Br	0.043528	0.058250	0.002114	-0.007300	-4290.830790	-4290.816068	-4290.872204	-4292.005367	-4292.012668
CO	0.005078	0.008383	-0.014052	-0.017815	-113.203742	-113.200437	-113.222872	-113.338245	-113.356061
HBr	0.006080	0.009385	-0.013143	-0.016920	-2574.346434	-2574.343129	-2574.365656	-2574.668463	-2574.685383
1a	0.292213	0.310442	0.247014	0.236377	-841.146017	-841.127788	-841.191217	-842.351544	-842.115167
3a	0.292301	0.310416	0.246349	0.235606	-841.178914	-841.160799	-841.224866	-842.384847	-842.149241
cisoid-A	0.315735	0.343906	0.257579	0.243101	-2444.385984	-2444.357813	-2444.444140	-2446.291606	-2446.048505
transoid-A	0.316206	0.344215	0.258646	0.244296	-2444.381845	-2444.353836	-2444.439405	-2446.288885	-2446.044589
cisoid-A1	0.308001	0.333271	0.254297	0.241053	-2331.151046	-2331.125776	-2331.204750	-2332.918748	-2332.677695
transoid-A1	0.307914	0.333398	0.253404	0.239989	-2331.146435	-2331.120952	-2331.200946	-2332.915539	-2332.675550
cisoid-TS1	0.305984	0.331287	0.251835	0.238511	-2331.140625	-2331.115323	-2331.194775	-2332.905070	-2332.666560
transoid-TS1	0.306135	0.331263	0.252771	0.239608	-2331.137416	-2331.112288	-2331.190780	-2332.902583	-2332.662975
cisoid- B	0.305878	0.332544	0.248502	0.234408	-2331.158405	-2331.131740	-2331.215782	-2332.924683	-2332.690275
transoid- B	0.305981	0.332568	0.248758	0.234703	-2331.161113	-2331.134525	-2331.218336	-2332.929109	-2332.694406
cisoid-C	0.306832	0.332647	0.252458	0.239010	-2331.155721	-2331.129905	-2331.210095	-2332.923822	-2332.684813
transoid-C	0.306942	0.332716	0.251989	0.238452	-2331.156934	-2331.131161	-2331.211887	-2332.926525	-2332.688073
cisoid-TS2	0.306945	0.331866	0.254124	0.241086	-2331.148320	-2331.123399	-2331.201142	-2332.915325	-2332.674239
transoid-TS2	0.306890	0.331803	0.253791	0.240709	-2331.147688	-2331.122775	-2331.200787	-2332.916802	-2332.676093
cisoid-TS3	0.306280	0.331271	0.253421	0.240366	-2331.141054	-2331.116063	-2331.193912	-2332.902979	-2332.662613
cisoid- D	0.308885	0.333836	0.256265	0.243257	-2331.174379	-2331.149428	-2331.226998	-2332.941030	-2332.697774
cisoid- \mathbf{D}_{CO}	0.317912	0.345275	0.262128	0.248185	-2444.410088	-2444.382725	-2444.465871	-2446.316484	-2446.068299
transoid- D	0.308211	0.333462	0.254535	0.241299	-2331.167321	-2331.142070	-2331.220997	-2332.938458	-2332.697159

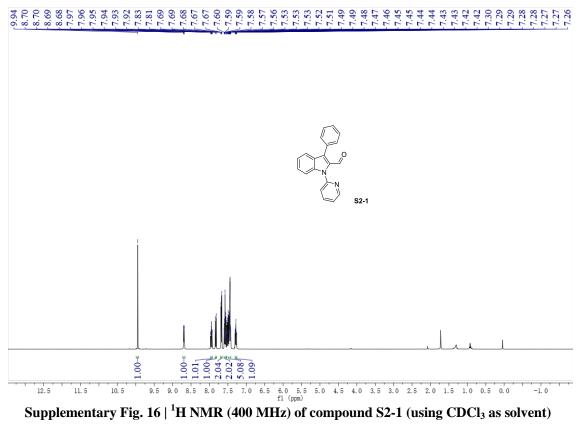
Species	E_{c}	$H_{\rm c}$	$G_{ m c}$	$G_{c(T=348.15K)}$	E/(Hartree)	H/(Hartree)	G/(Hartree)	Solvation Energy/(Hartree)	G _{sol} /(Hartree)
transoid- \mathbf{D}_{CO}	0.317509	0.345033	0.261225	0.247171	-2444.406354	-2444.378831	-2444.462638	-2446.316614	-2446.069443
cisoid- E	0.308292	0.333594	0.254877	0.241676	-2331.169358	-2331.144055	-2331.222772	-2332.933135	-2332.691459
cisoid- \mathbf{E}_{CO}	0.316443	0.344308	0.259317	0.245065	-2444.402086	-2444.374222	-2444.459212	-2446.307026	-2446.061961
cisoid-TS4	0.610282	0.655504	0.532012	0.511302	-3285.568685	-3285.523462	-3285.646955	-3288.668236	-3288.156934
transoid-TS4	0.608329	0.653798	0.528859	0.507906	-3285.569671	-3285.524202	-3285.649141	-3288.666203	-3288.158297
cisoid-TS5	0.606568	0.652351	0.526853	0.505807	-3285.562126	-3285.516343	-3285.641841	-3288.658472	-3288.152665
cisoid-TS6	0.328427	0.358498	0.267291	0.251995	-5018.739804	-5018.709733	-5018.800940	-5020.976572	-5020.724577
$\operatorname{cisoid-}\mathbf{A}_{\operatorname{pre}}$	0.329348	0.360113	0.267567	0.252046	-5018.772845	-5018.742080	-5018.834627	-5021.007271	-5020.755225
transoid-TS6	0.328874	0.358745	0.268699	0.253598	-5018.737661	-5018.707791	-5018.797836	-5020.974321	-5020.720723
transoid- $\mathbf{A}_{\mathrm{pre}}$	0.329534	0.360269	0.267977	0.252500	-5018.770656	-5018.739922	-5018.832213	-5021.005711	-5020.753211

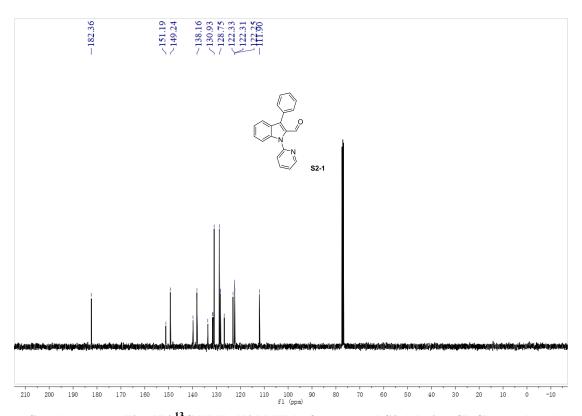

II. ¹H NMR and ¹³C NMR Spectrum of All Products.


Supplementary Fig. 10 \mid ¹H NMR (500 MHz) of compound S1-1 (using CDCl₃ as solvent)

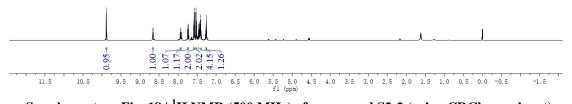

Supplementary Fig. 11 \mid ¹³C NMR (126 MHz) of compound S1-1 (using CDCl₃ as solvent)


Supplementary Fig. 12 \mid ¹H NMR (400 MHz) of compound S1-2 (using CDCl₃ as solvent)

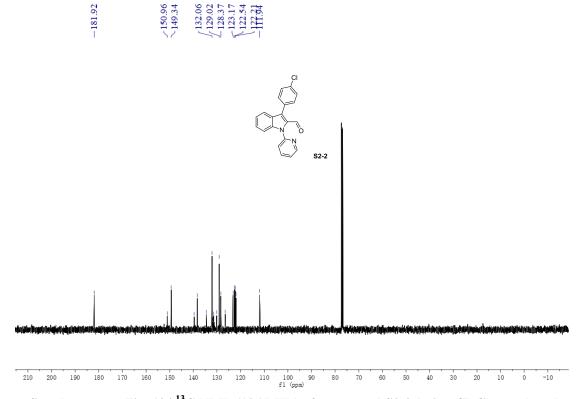

Supplementary Fig. 13 \mid ¹³C NMR (101 MHz) of compound S1-2 (using CDCl₃ as solvent)

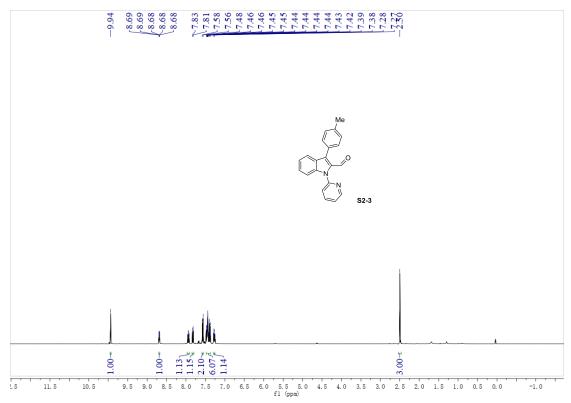


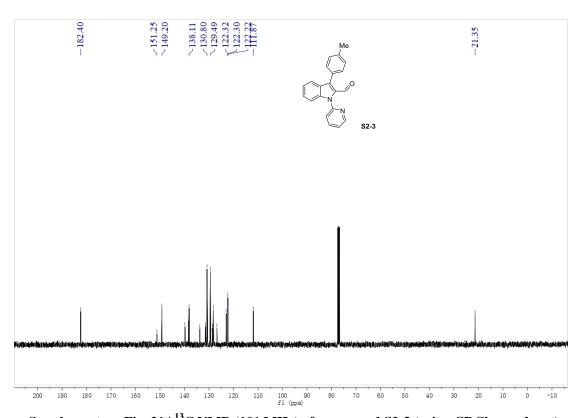
Supplementary Fig. 14 | ¹H NMR (400 MHz) of compound S1-3 (using CDCl₃ as solvent)

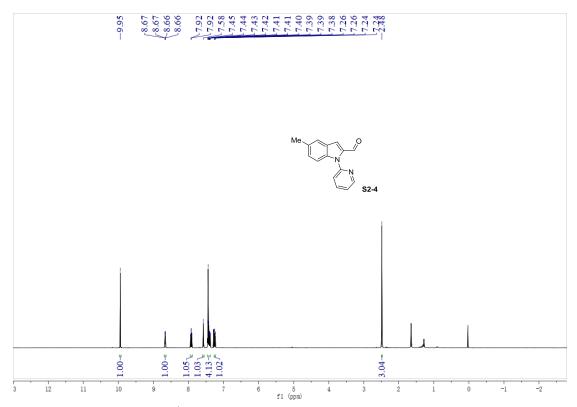


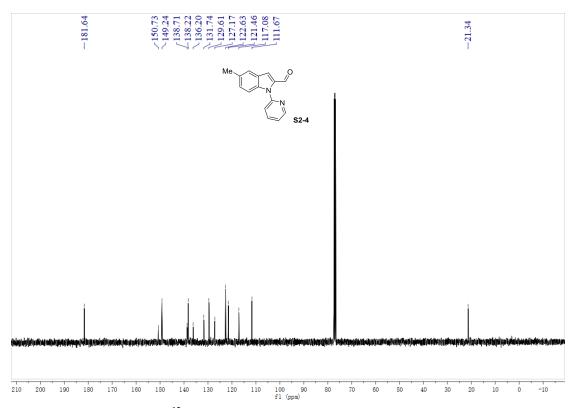
Supplementary Fig. 15 \mid 13 C NMR (101 MHz) of compound S1-3 (using CDCl₃ as solvent)

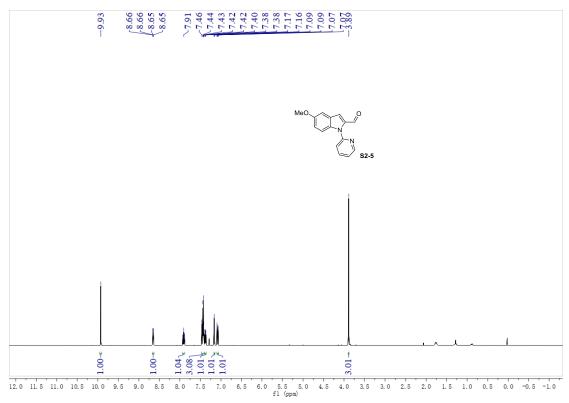


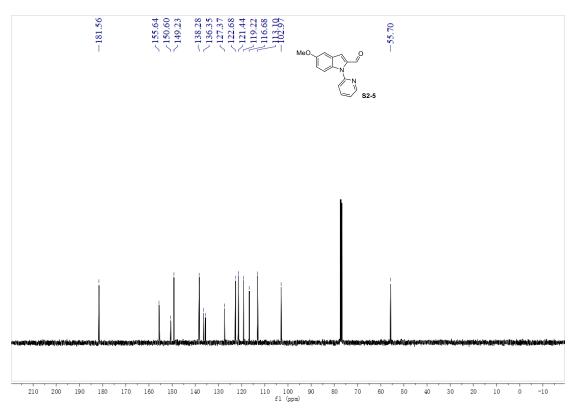

Supplementary Fig. 17 \mid 13 C NMR (101 MHz) of compound S2-1 (using CDCl₃ as solvent)

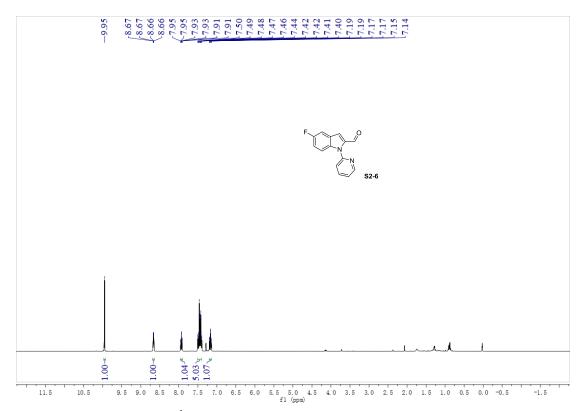

Supplementary Fig. 18 | ¹H NMR (500 MHz) of compound S2-2 (using CDCl₃ as solvent)

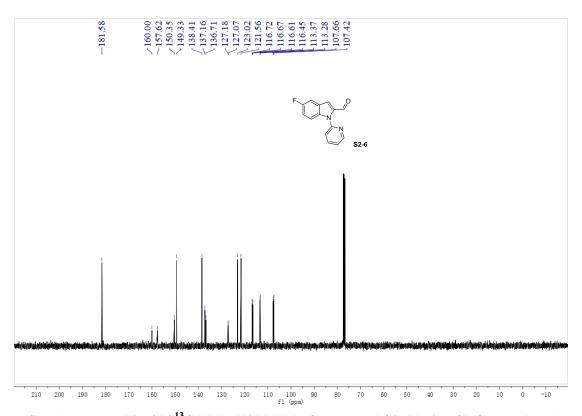

Supplementary Fig. 19 \mid 13 C NMR (126 MHz) of compound S2-2 (using CDCl₃ as solvent)

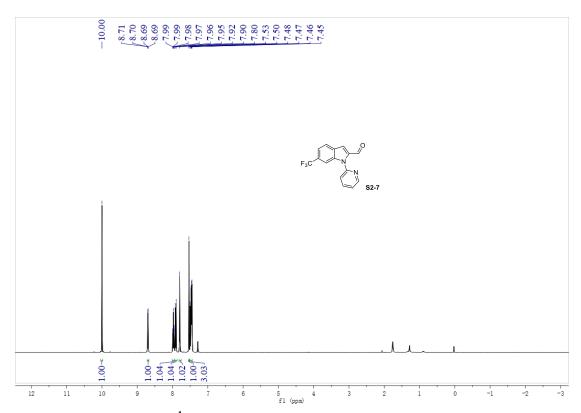

Supplementary Fig. 20 | ¹H NMR (400 MHz) of compound S2-3 (using CDCl₃ as solvent)

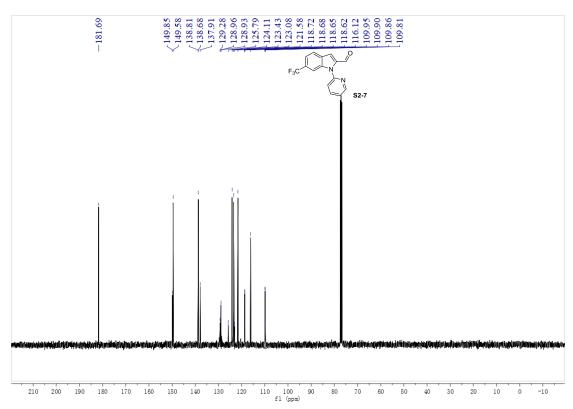

Supplementary Fig. 21 \mid ¹³C NMR (101 MHz) of compound S2-3 (using CDCl₃ as solvent)

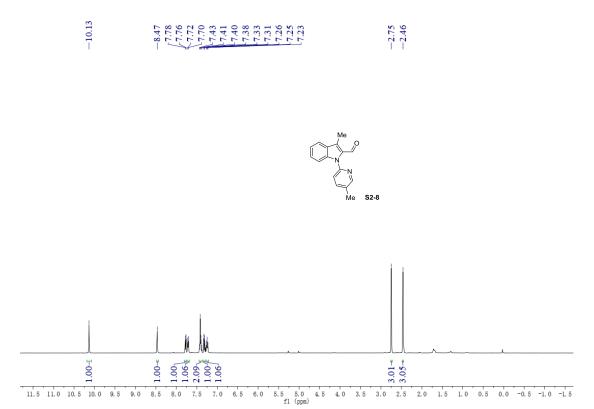

Supplementary Fig. 22 | ¹H NMR (400 MHz) of compound S2-4 (using CDCl₃ as solvent)

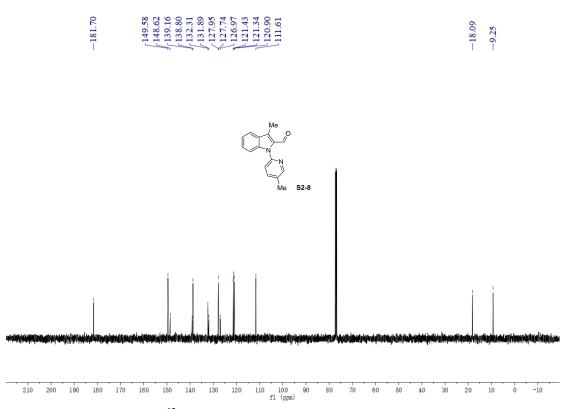

Supplementary Fig. 23 \mid ¹³C NMR (101 MHz) of compound S2-4 (using CDCl₃ as solvent)

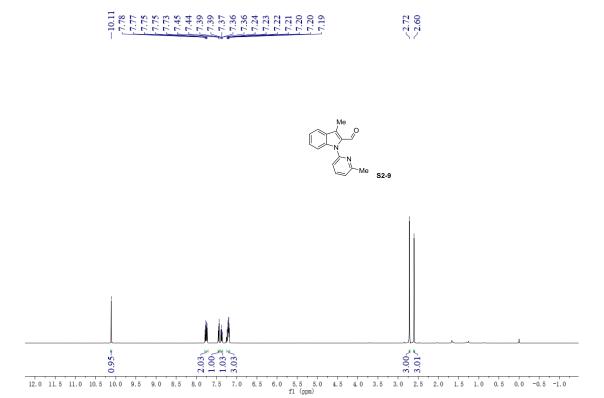

Supplementary Fig. 24 | ¹H NMR (400 MHz) of compound S2-5 (using CDCl₃ as solvent)

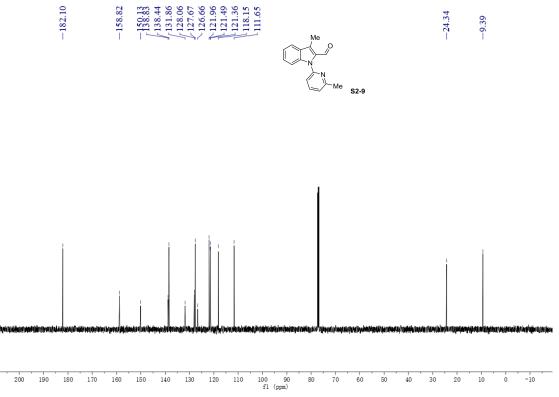

Supplementary Fig. 25 \mid ^{13}C NMR (101 MHz) of compound S2-5 (using CDCl_3 as solvent)

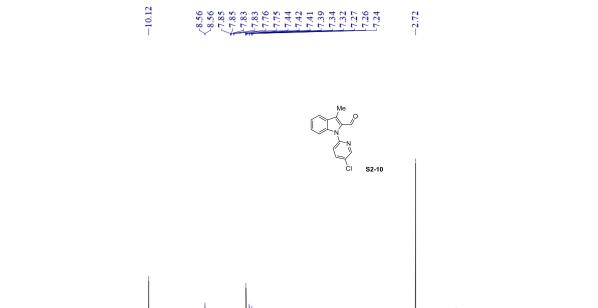

Supplementary Fig. 26 | ¹H NMR (400 MHz) of compound S2-6 (using CDCl₃ as solvent)


Supplementary Fig. 27 \mid 13 C NMR (101 MHz) of compound S2-6 (using CDCl₃ as solvent)

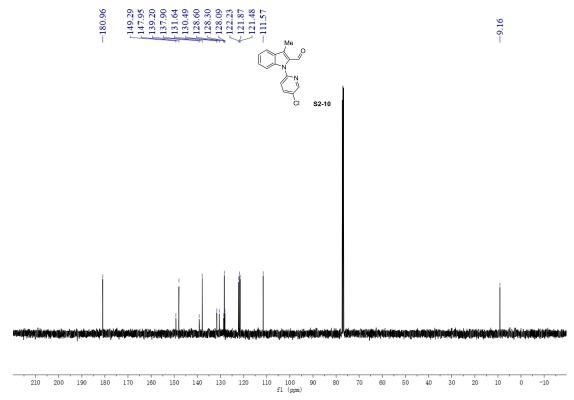

Supplementary Fig. 28 | ¹H NMR (400 MHz) of compound S2-7 (using CDCl₃ as solvent)


Supplementary Fig. 29 \mid 13 C NMR (101 MHz) of compound S2-7 (using CDCl₃ as solvent)

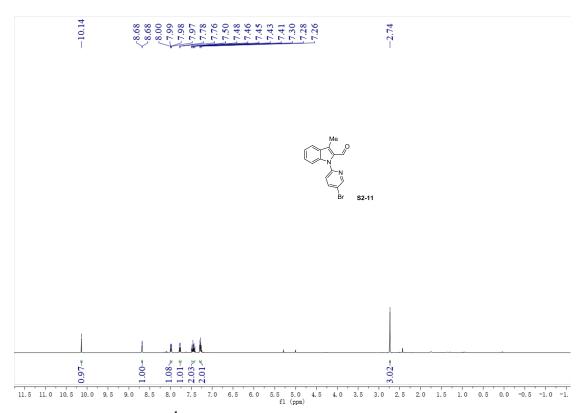

Supplementary Fig. 30 | ¹H NMR (400 MHz) of compound S2-8 (using CDCl₃ as solvent)


Supplementary Fig. 31 \mid ¹³C NMR (101 MHz) of compound S2-8 (using CDCl₃ as solvent)

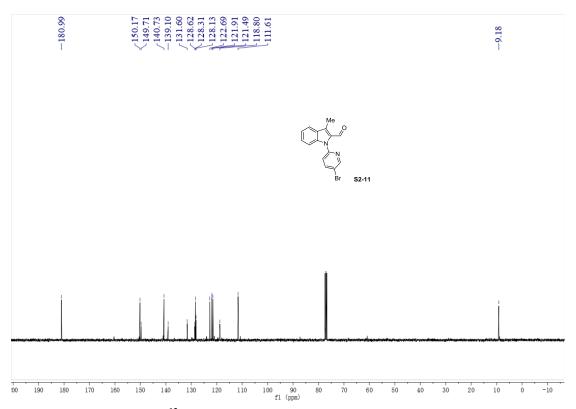
Supplementary Fig. 32 | ¹H NMR (500 MHz) of compound S2-9 (using CDCl₃ as solvent)

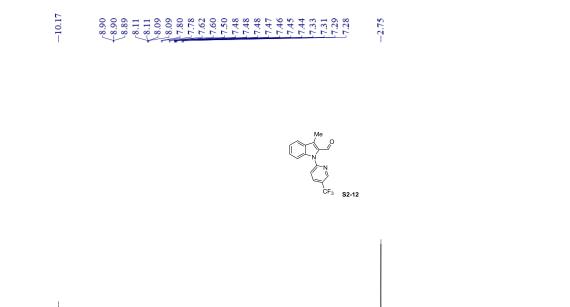


Supplementary Fig. 33 \mid 13 C NMR (126 MHz) of compound S2-9 (using CDCl₃ as solvent)

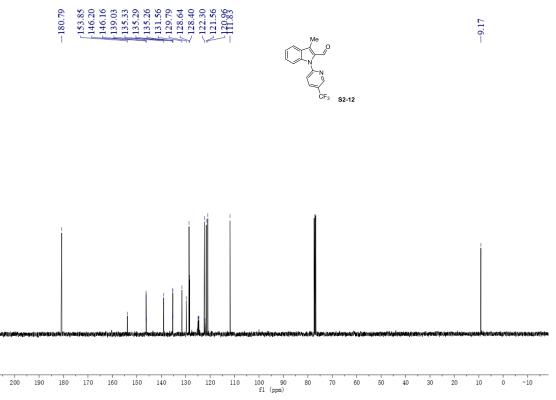


Supplementary Fig. 34 | ¹H NMR (500 MHz) of compound S2-10 (using CDCl₃ as solvent)

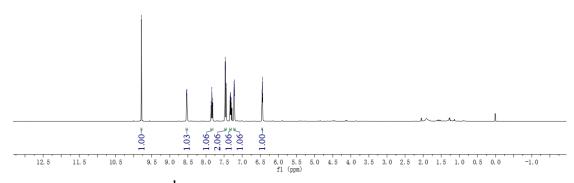

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)


Supplementary Fig. 35 \mid ¹H NMR (126 MHz) of compound S2-10 (using CDCl₃ as solvent)

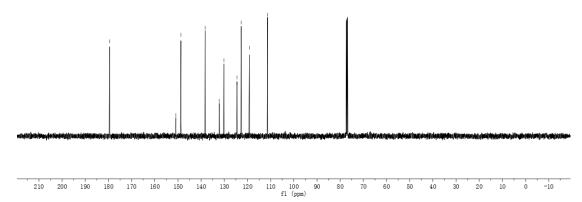
Supplementary Fig. 36 | ¹H NMR (400 MHz) of compound S2-11 (using CDCl₃ as solvent)

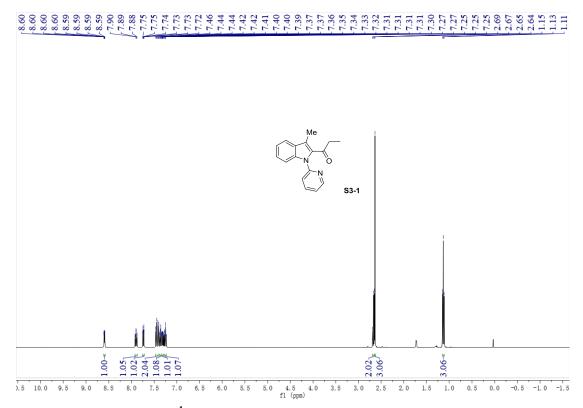


Supplementary Fig. 37 | ¹³C NMR (101 MHz) of compound S2-11 (using CDCl₃ as solvent)

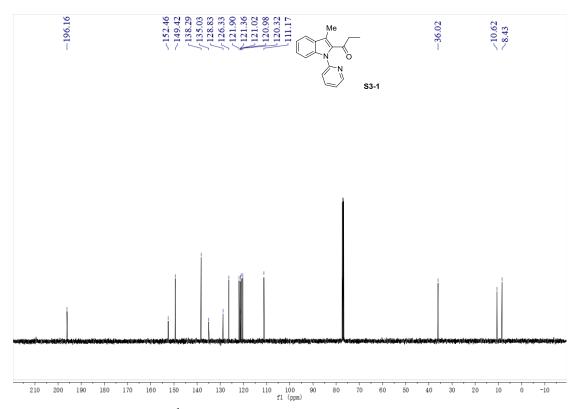

5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

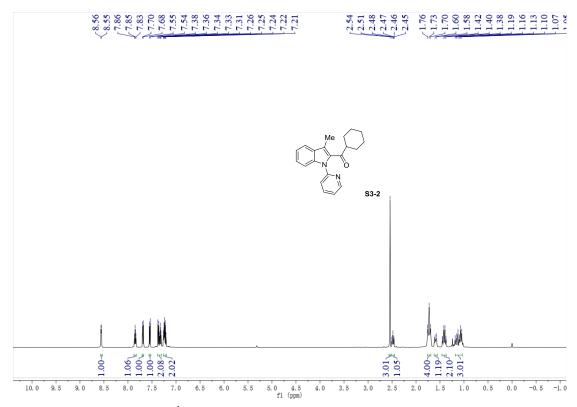
Supplementary Fig. 38 | ¹H NMR (400 MHz) of compound S2-12 (using CDCl₃ as solvent)

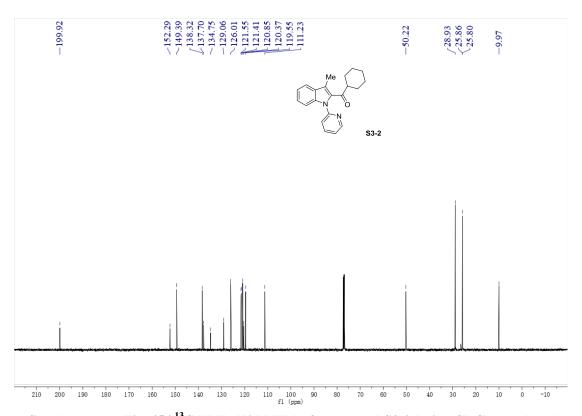

Supplementary Fig. 39 \mid ¹³C NMR (101 MHz) of compound S2-12 (using CDCl₃ as solvent)

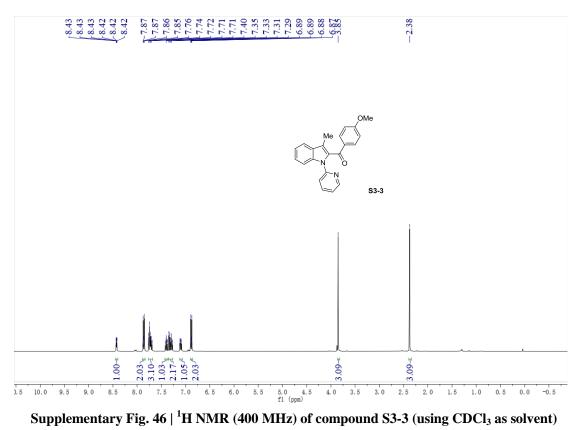


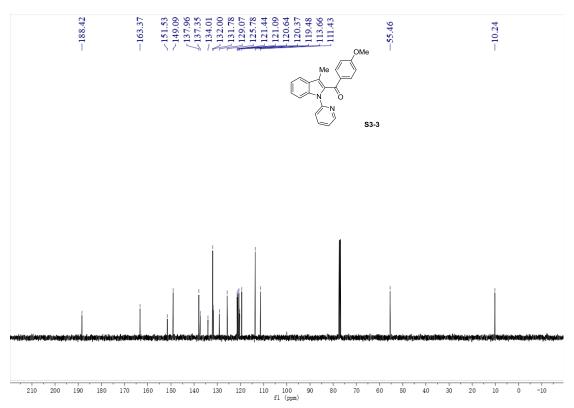
Supplementary Fig. 40 | ¹H NMR (400 MHz) of compound S2-13 (using CDCl₃ as solvent)

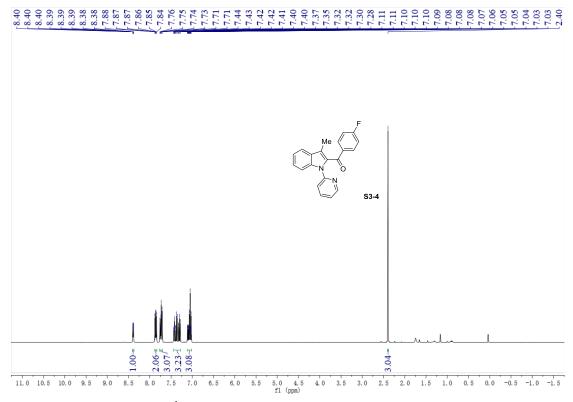


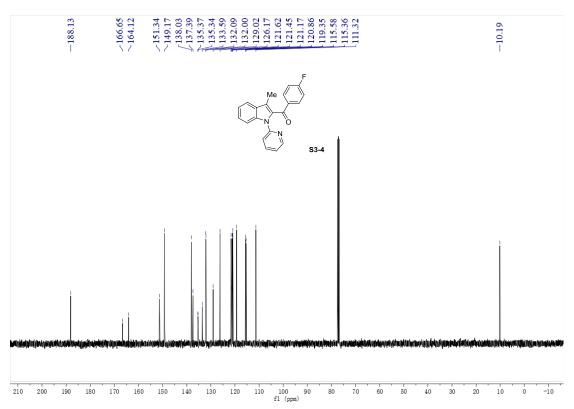

Supplementary Fig. 41 \mid ¹H NMR (101 MHz) of compound S2-13 (using CDCl₃ as solvent)

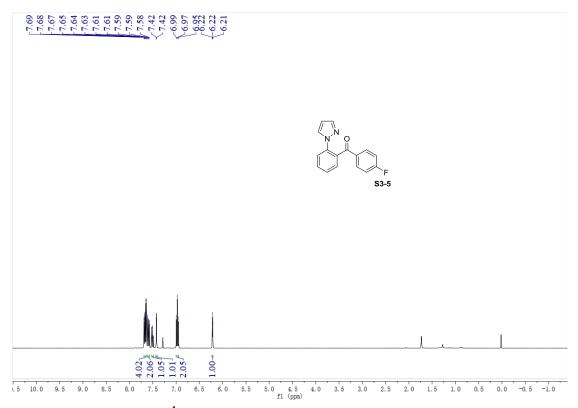

Supplementary Fig. 42 | ¹H NMR (400 MHz) of compound S3-1 (using CDCl₃ as solvent)

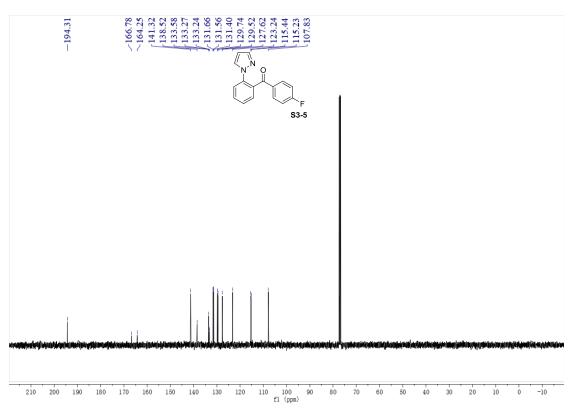

Supplementary Fig. 43 | ¹H NMR (101 MHz) of compound S3-1 (using CDCl₃ as solvent)

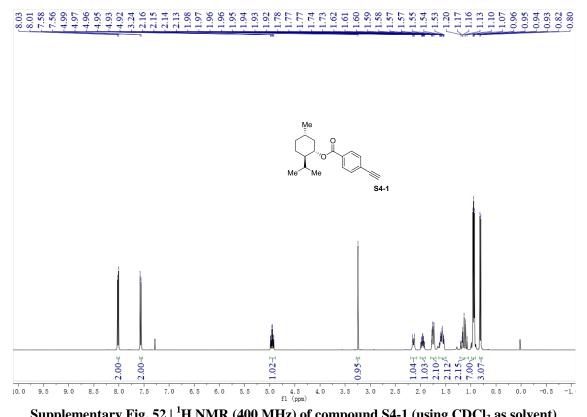

Supplementary Fig. 44 | ¹H NMR (400 MHz) of compound S3-2 (using CDCl₃ as solvent)

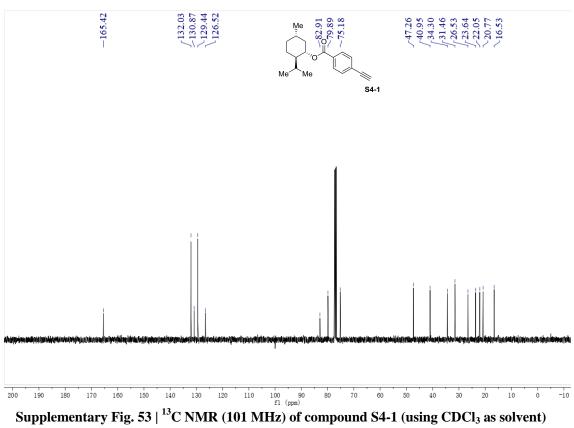

Supplementary Fig. 45 \mid 13 C NMR (101 MHz) of compound S3-2 (using CDCl₃ as solvent)

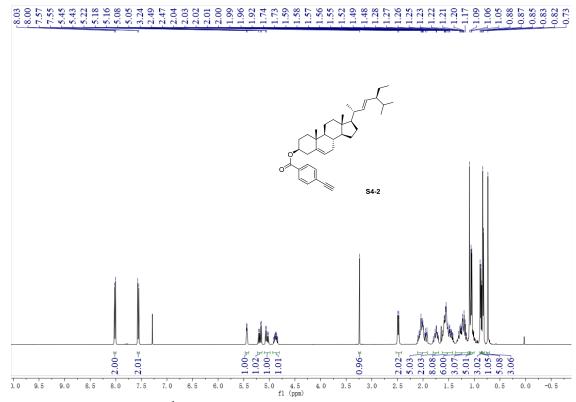

Supplementary Fig. 46 | ¹H NMR (400 MHz) of compound S3-3 (using CDCl₃ as solvent)


Supplementary Fig. 47 \mid ^{13}C NMR (101 MHz) of compound S3-3 (using CDCl_3 as solvent)

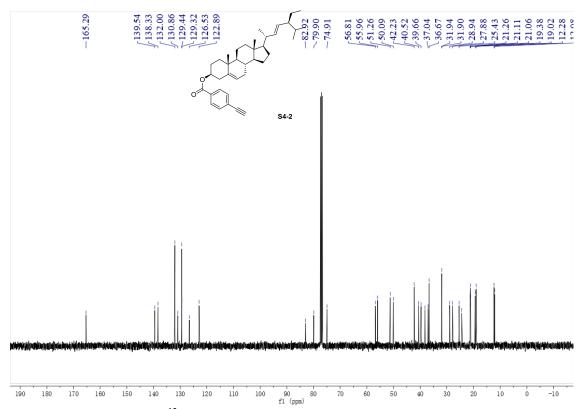

Supplementary Fig. 48 | ¹H NMR (400 MHz) of compound S3-4 (using CDCl₃ as solvent)


Supplementary Fig. 49 \mid 13 C NMR (101 MHz) of compound S3-4 (using CDCl₃ as solvent)

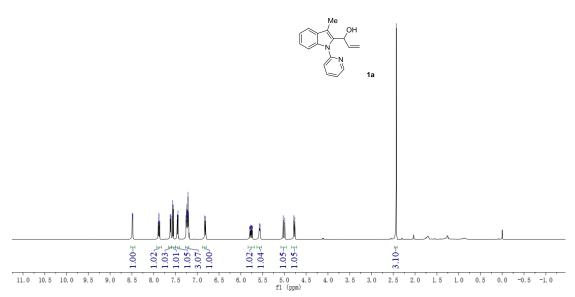

Supplementary Fig. 50 | ¹H NMR (400 MHz) of compound S3-5 (using CDCl₃ as solvent)



Supplementary Fig. 51 \mid 13 C NMR (101 MHz) of compound S3-5 (using CDCl $_3$ as solvent)

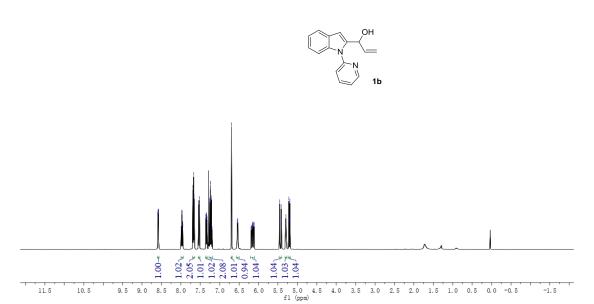


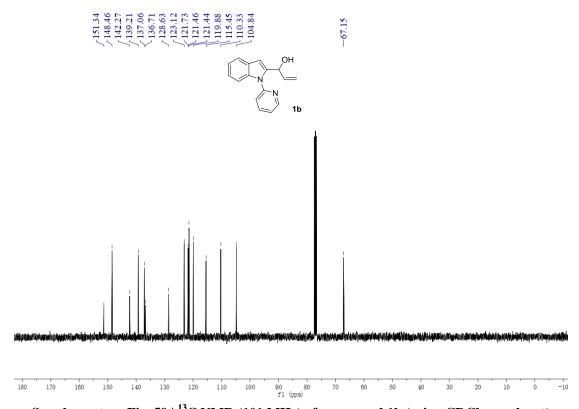
Supplementary Fig. 52 | ¹H NMR (400 MHz) of compound S4-1 (using CDCl₃ as solvent)

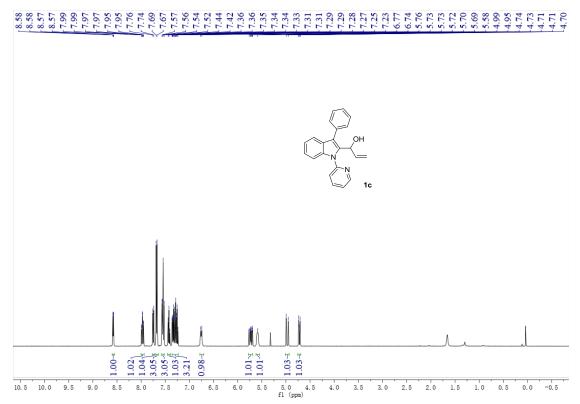


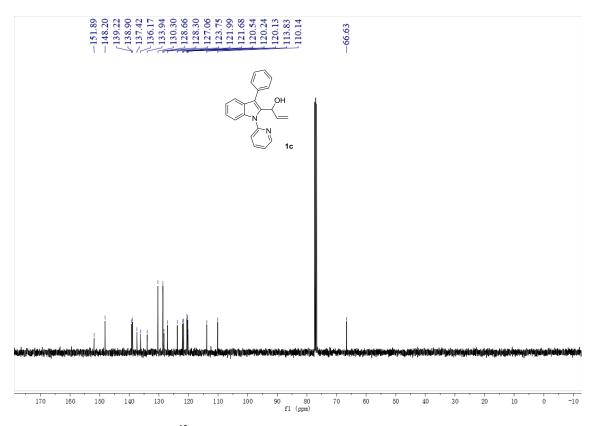
Supplementary Fig. 54 \mid ^{1}H NMR (400 MHz) of compound S4-2 (using CDCl₃ as solvent)

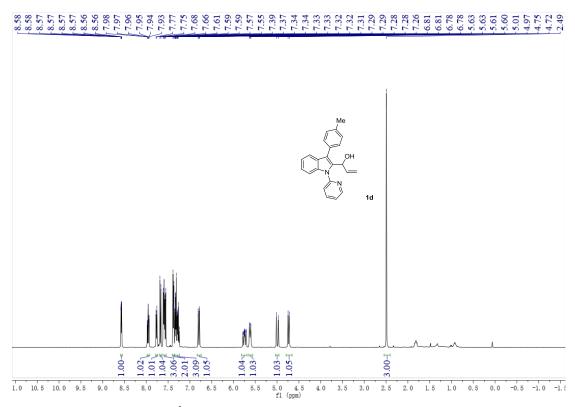
Supplementary Fig. 55 | ¹³C NMR (101 MHz) of compound S4-2 (using CDCl₃ as solvent)

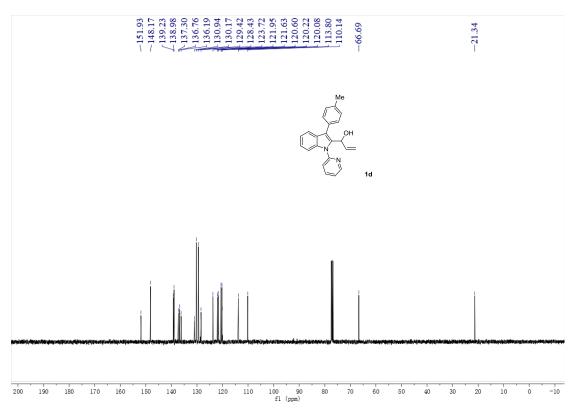



Supplementary Fig. 56 | ¹H NMR (500 MHz) of compound 1a (using CDCl₃ as solvent)

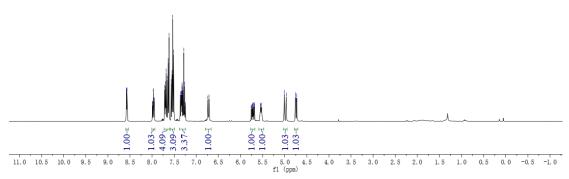

Supplementary Fig. 57 | ¹H NMR (126 MHz) of compound 1a (using CDCl₃ as solvent)


Supplementary Fig. 58 | ¹H NMR (400 MHz) of compound 1b (using CDCl₃ as solvent)

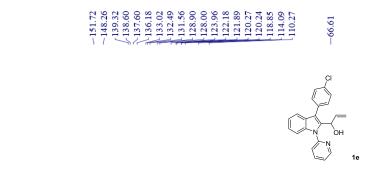

Supplementary Fig. 59 \mid ¹³C NMR (101 MHz) of compound 1b (using CDCl₃ as solvent)

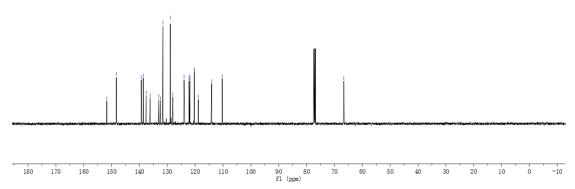

Supplementary Fig. 60 | ¹H NMR (400 MHz) of compound 1c (using CDCl₃ as solvent)

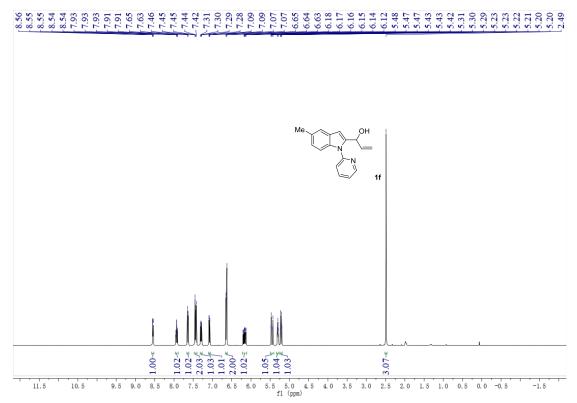
Supplementary Fig. 61 \mid ¹³C NMR (101 MHz) of compound 1c (using CDCl₃ as solvent)



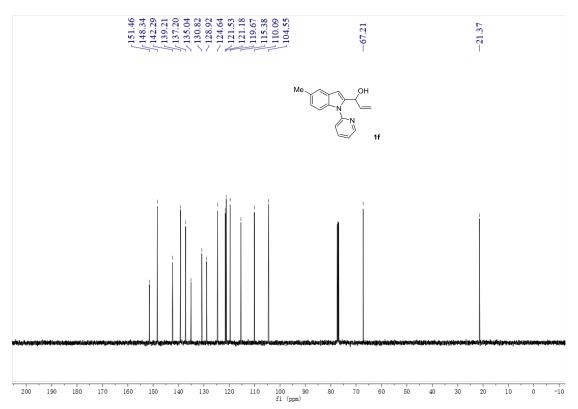
Supplementary Fig. 62 | ¹H NMR (500 MHz) of compound 1d (using CDCl₃ as solvent)

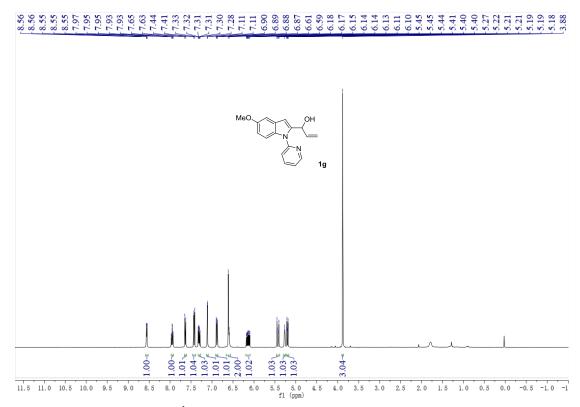


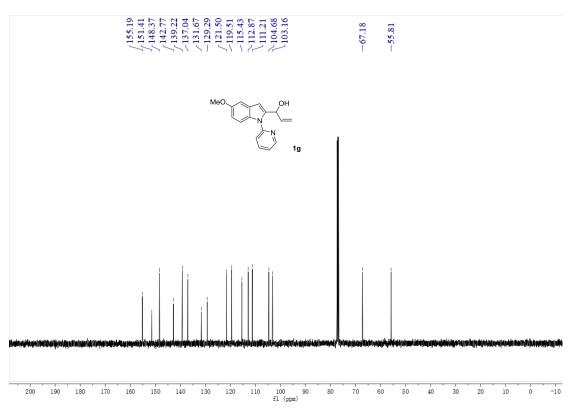

Supplementary Fig. 63 \mid 13 C NMR (126 MHz) of compound 1d (using CDCl $_3$ as solvent)

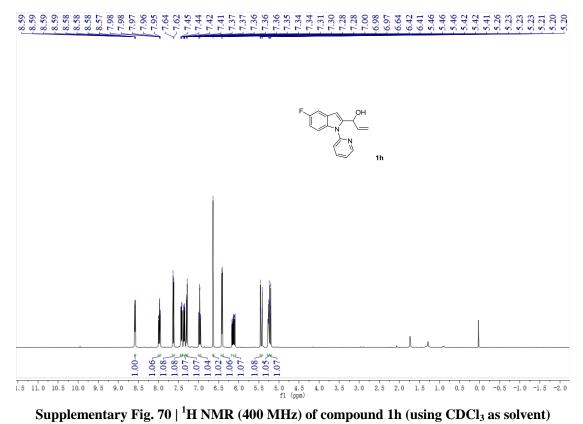


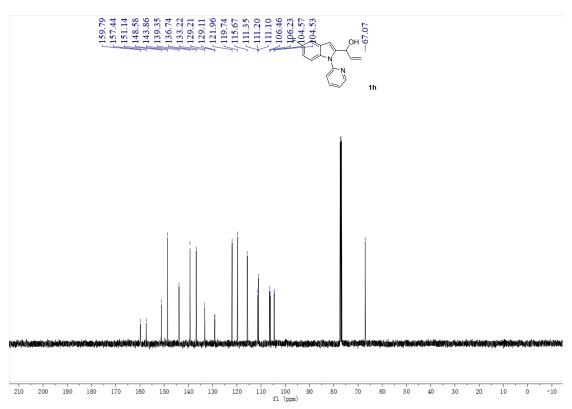
Supplementary Fig. 64 | ¹H NMR (400 MHz) of compound 1e (using CDCl₃ as solvent)



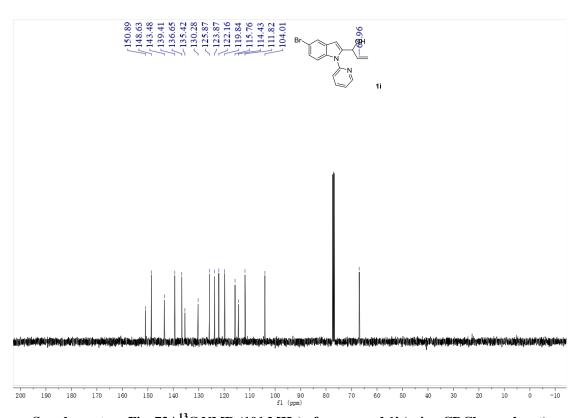

Supplementary Fig. 65 \mid ¹³C NMR (101 MHz) of compound 1e (using CDCl₃ as solvent)

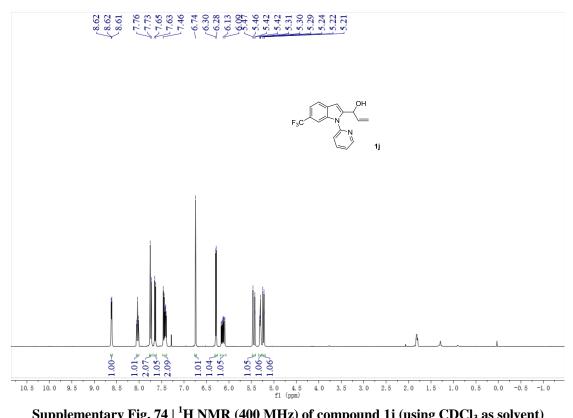

Supplementary Fig. 66 | ¹H NMR (400 MHz) of compound 1f (using CDCl₃ as solvent)

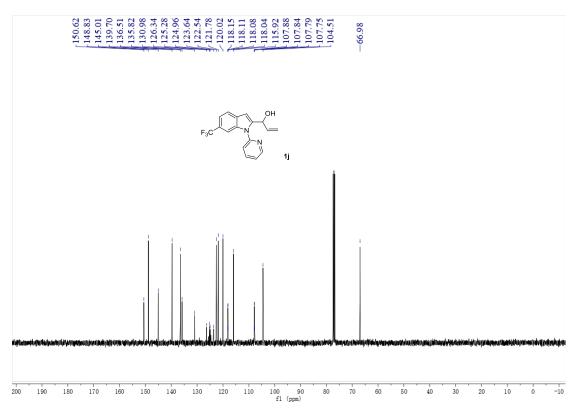

Supplementary Fig. 67 \mid ¹³C NMR (101 MHz) of compound 1f (using CDCl₃ as solvent)


Supplementary Fig. 68 | ¹H NMR (400 MHz) of compound 1g (using CDCl₃ as solvent)

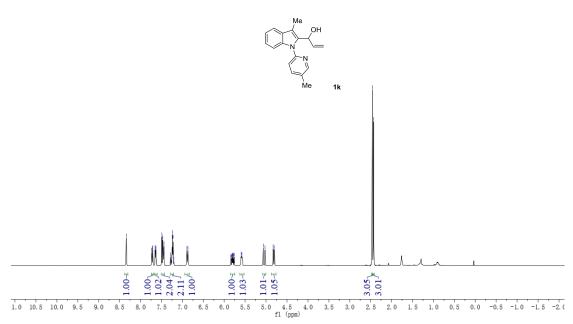
Supplementary Fig. 69 | ¹³C NMR (101 MHz) of compound 1g (using CDCl₃ as solvent)


Supplementary Fig. 70 | ¹H NMR (400 MHz) of compound 1h (using CDCl₃ as solvent)

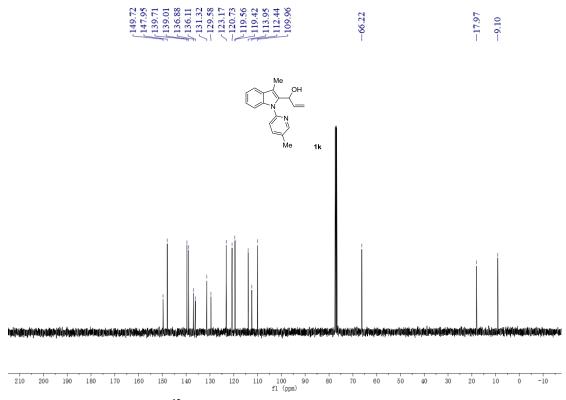

Supplementary Fig. 71 \mid ¹³C NMR (101 MHz) of compound 1h (using CDCl₃ as solvent)


Supplementary Fig. 72 | ¹H NMR (400 MHz) of compound 1i (using CDCl₃ as solvent)

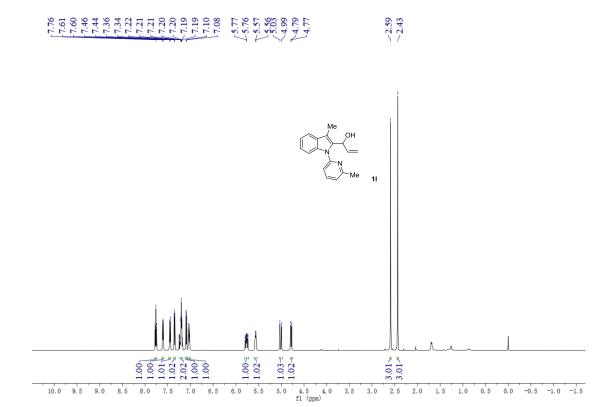
Supplementary Fig. 73 \mid ^{13}C NMR (101 MHz) of compound 1i (using CDCl3 as solvent)

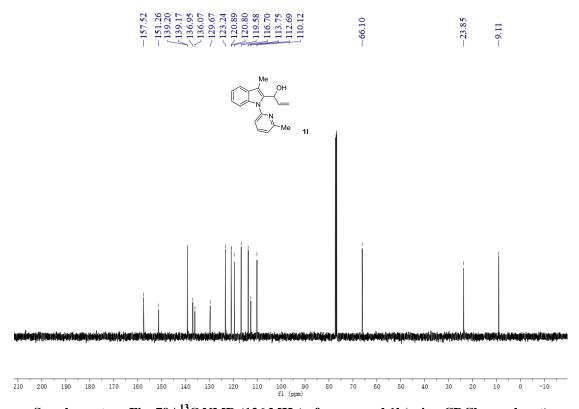


Supplementary Fig. 74 | ¹H NMR (400 MHz) of compound 1j (using CDCl₃ as solvent)

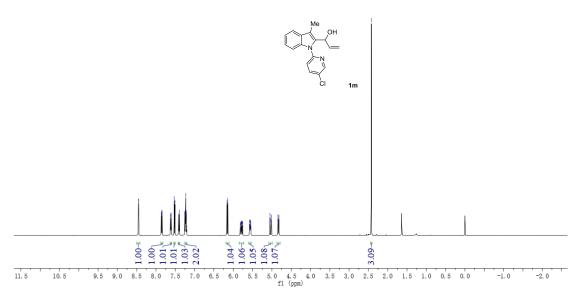


Supplementary Fig. 75 \mid 13 C NMR (101 MHz) of compound 1j (using CDCl₃ as solvent)

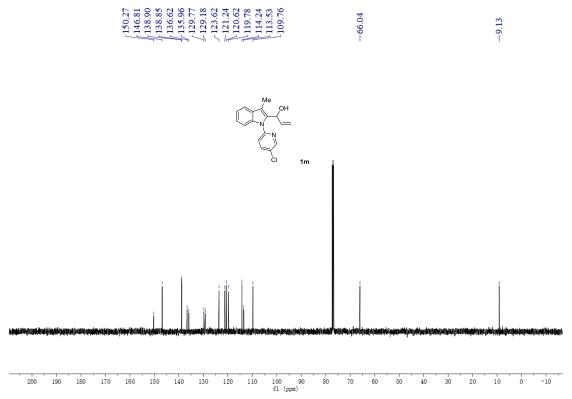



Supplementary Fig. 76 | ¹H NMR (400 MHz) of compound 1k (using CDCl₃ as solvent)

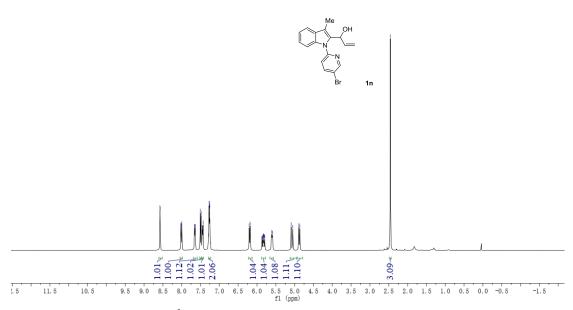
Supplementary Fig. 77 | ¹³C NMR (101 MHz) of compound 1k (using CDCl₃ as solvent)



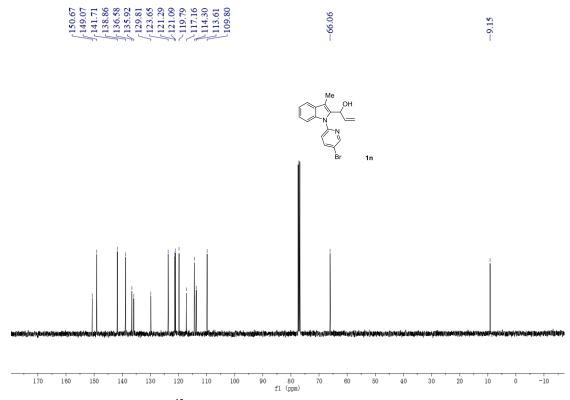
Supplementary Fig. 78 | ¹H NMR (500 MHz) of compound 11 (using CDCl₃ as solvent)



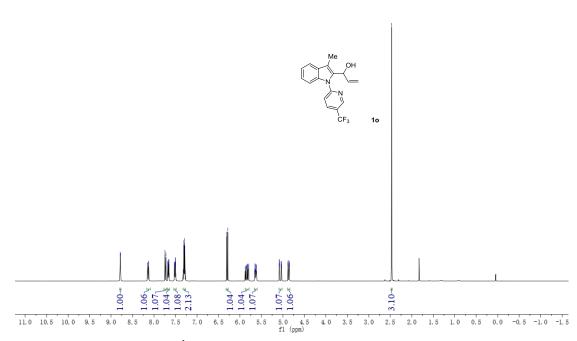
Supplementary Fig. 79 \mid 13 C NMR (126 MHz) of compound 11 (using CDCl₃ as solvent)



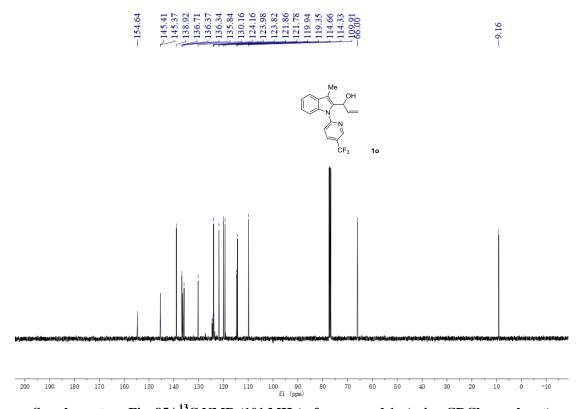
Supplementary Fig. 80 | ¹H NMR (500 MHz) of compound 1m (using CDCl₃ as solvent)



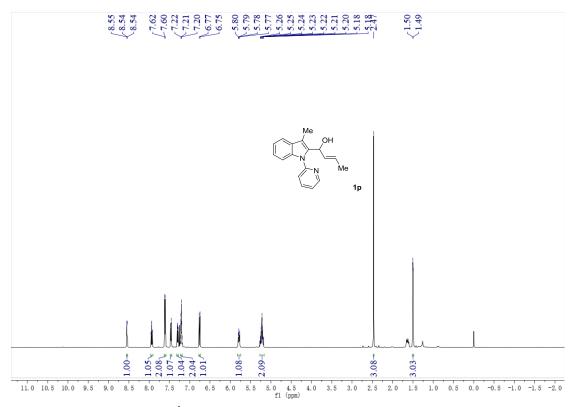
Supplementary Fig. 81 | ¹³C NMR (126 MHz) of compound 1m (using CDCl₃ as solvent)

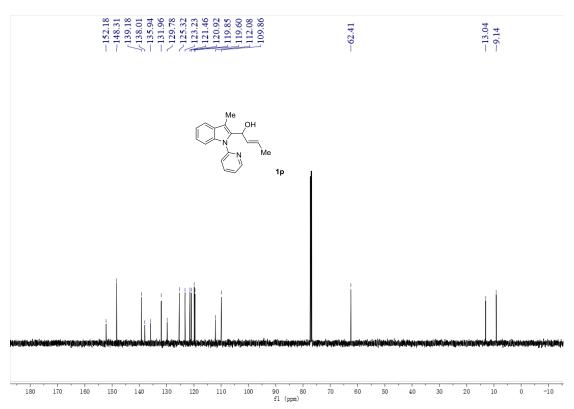


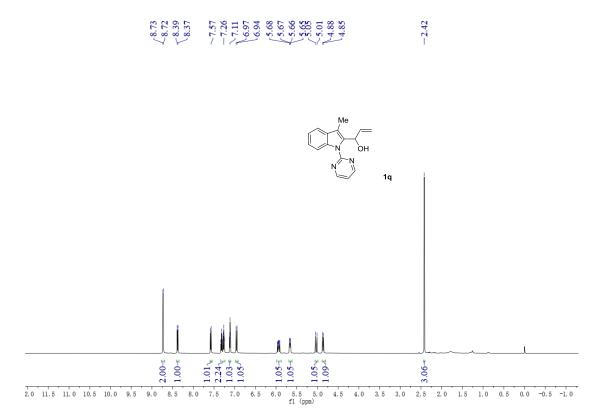
Supplementary Fig. 82 | ¹H NMR (400 MHz) of compound 1n (using CDCl₃ as solvent)

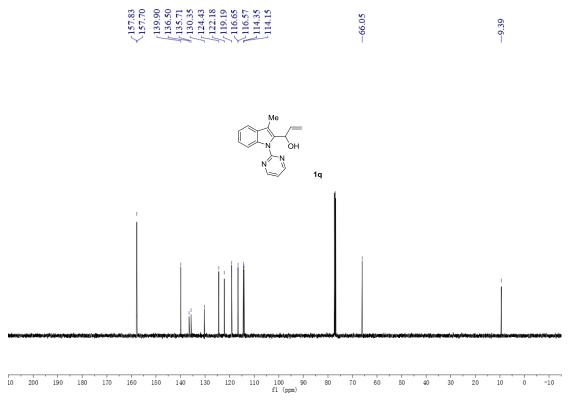


Supplementary Fig. 83 \mid ¹³C NMR (101 MHz) of compound 1n (using CDCl₃ as solvent)

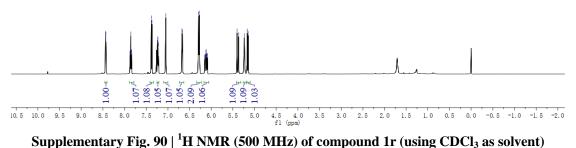



Supplementary Fig. 84 | ¹H NMR (400 MHz) of compound 10 (using CDCl₃ as solvent)

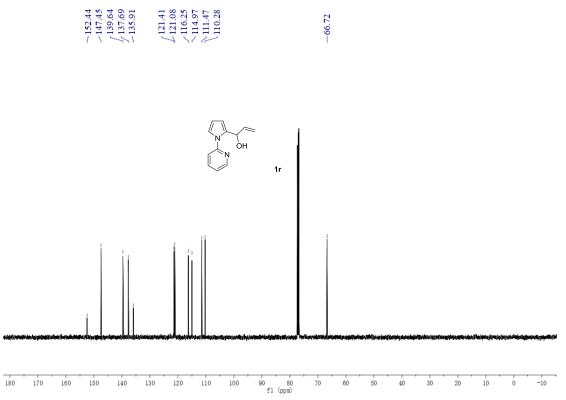

Supplementary Fig. 85 | ¹³C NMR (101 MHz) of compound 10 (using CDCl₃ as solvent)


Supplementary Fig. 86 | ¹H NMR (500 MHz) of compound 1p (using CDCl₃ as solvent)

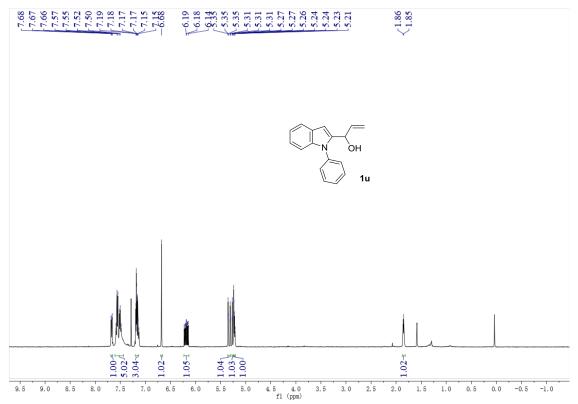
Supplementary Fig. 87 \mid ^{13}C NMR (126 MHz) of compound 1p (using CDCl₃ as solvent)

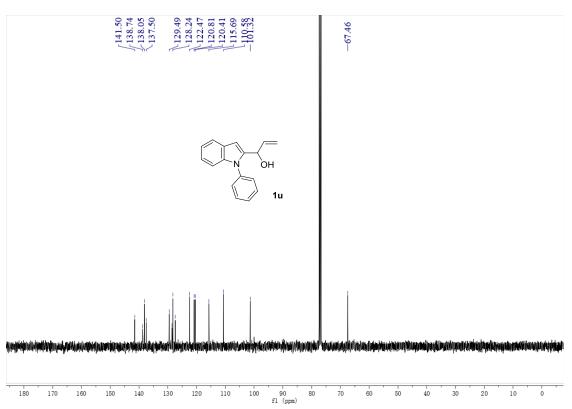


Supplementary Fig. 88 | ¹H NMR (500 MHz) of compound 1q (using CDCl₃ as solvent)

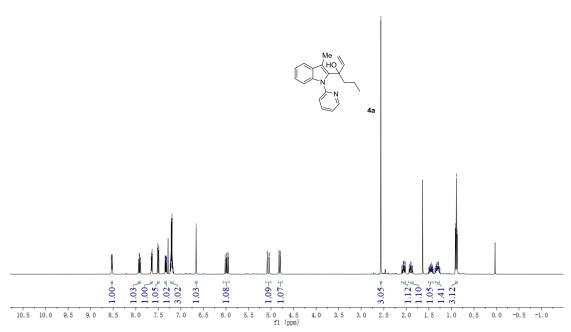


Supplementary Fig. 89 \mid ^{13}C NMR (126 MHz) of compound 1q (using CDCl₃ as solvent)

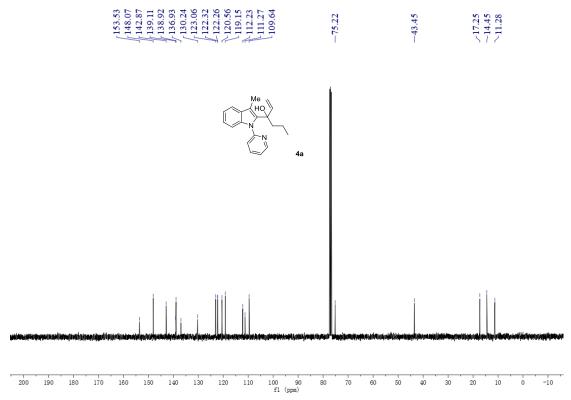



Supplementary Fig. 90 | ¹H NMR (500 MHz) of compound 1r (using CDCl₃ as solvent)

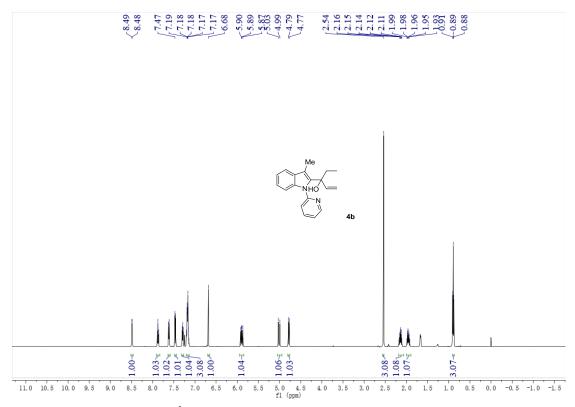
Supplementary Fig. 91 \mid ¹³C NMR (126 MHz) of compound 1r (using CDCl₃ as solvent)

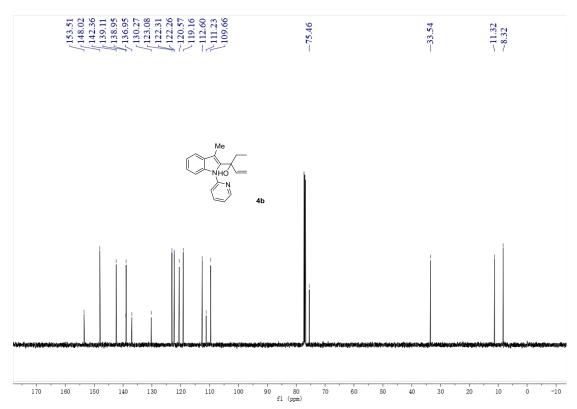


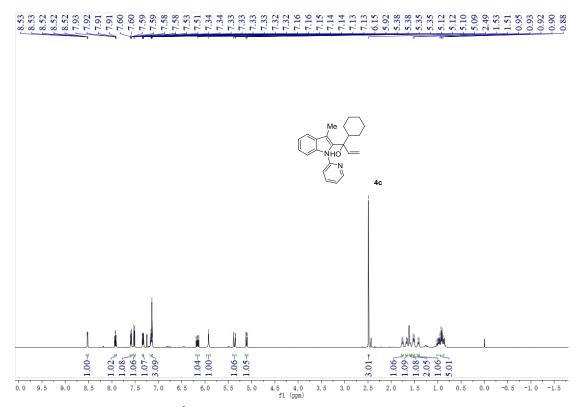
Supplementary Fig. 92 | ¹H NMR (400 MHz) of compound 1u (using CDCl₃ as solvent)

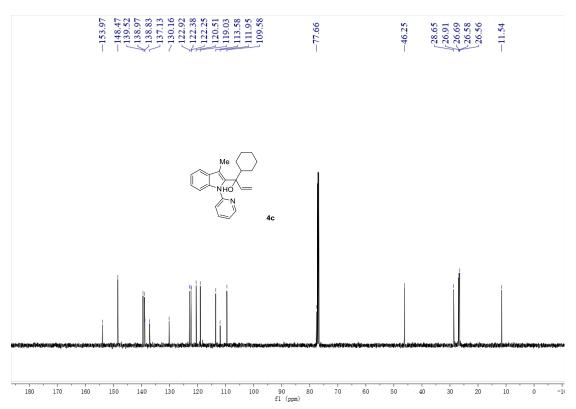


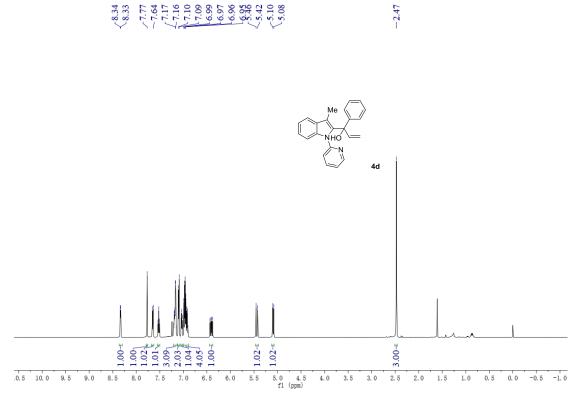
Supplementary Fig. 93 \mid 13 C NMR (101 MHz) of compound 1u (using CDCl₃ as solvent)

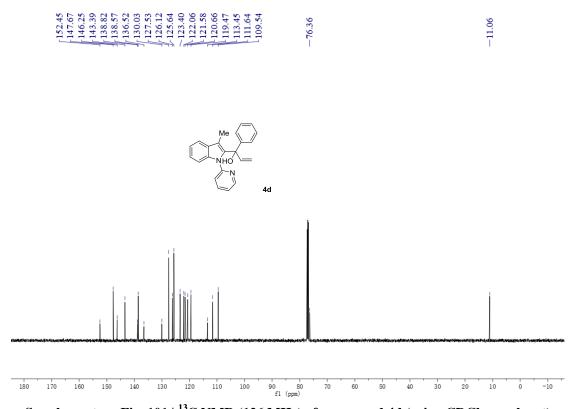


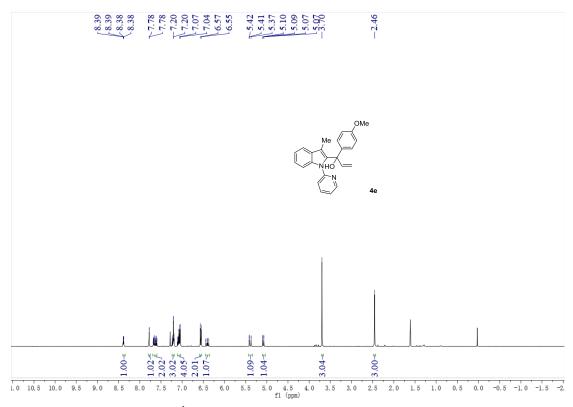

Supplementary Fig. 94 | ¹H NMR (400 MHz) of compound 4a (using CDCl₃ as solvent)

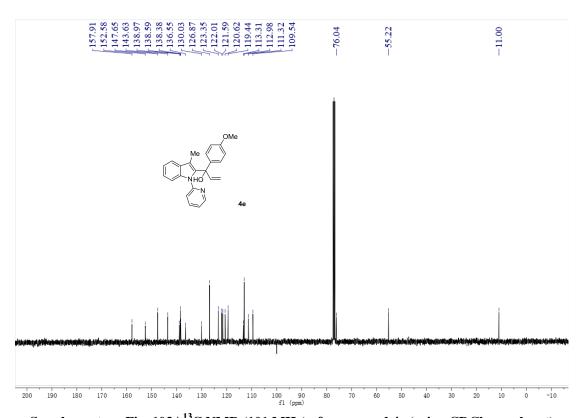

Supplementary Fig. 95 | ¹³C NMR (101 MHz) of compound 4a (using CDCl₃ as solvent)

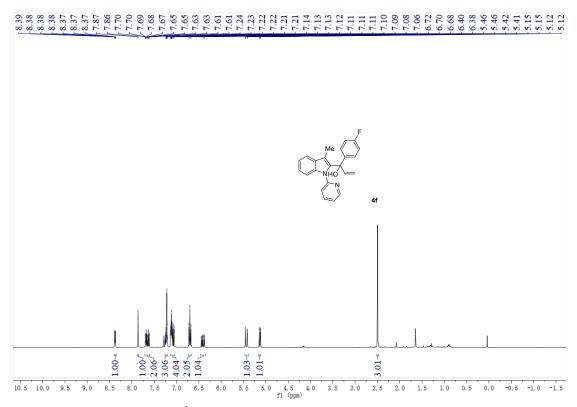

Supplementary Fig. 96 | ¹H NMR (500 MHz) of compound 4b (using CDCl₃ as solvent)

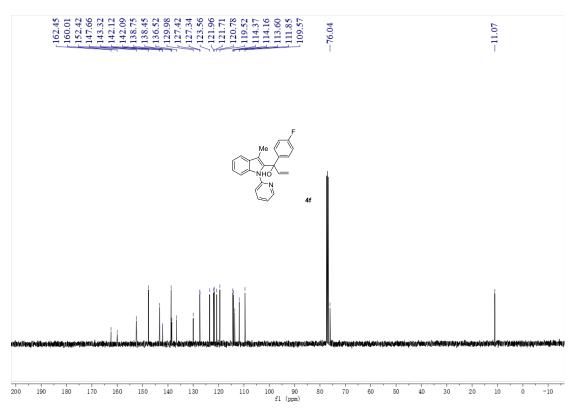

Supplementary Fig. 97 \mid ^{13}C NMR (126 MHz) of compound 4b (using CDCl₃ as solvent)

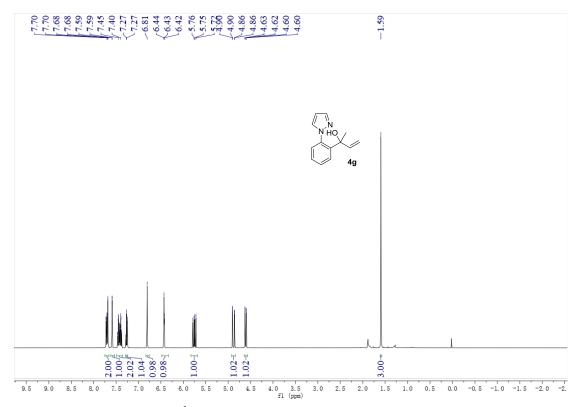

Supplementary Fig. 98 | ¹H NMR (500 MHz) of compound 4c (using CDCl₃ as solvent)

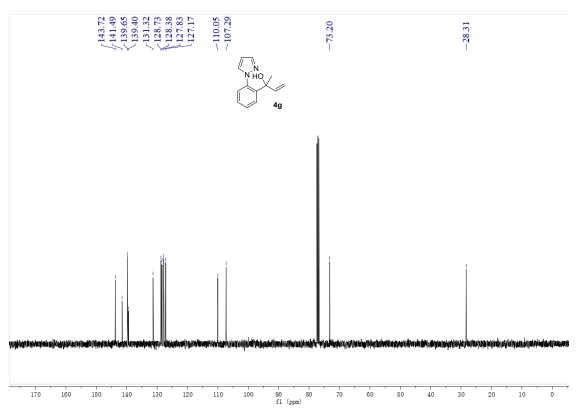

Supplementary Fig. 99 \mid ¹³C NMR (126 MHz) of compound 4c (using CDCl₃ as solvent)

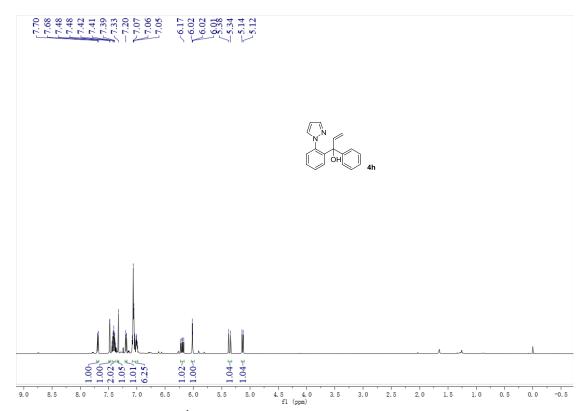

Supplementary Fig. 100 | ¹H NMR (500 MHz) of compound 4d (using CDCl₃ as solvent)

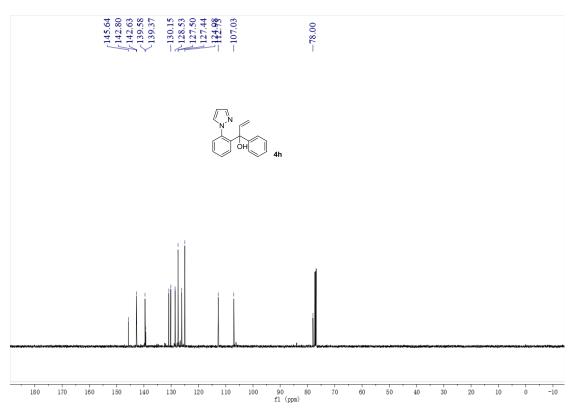

Supplementary Fig. 101 \mid ^{13}C NMR (126 MHz) of compound 4d (using CDCl $_3$ as solvent)

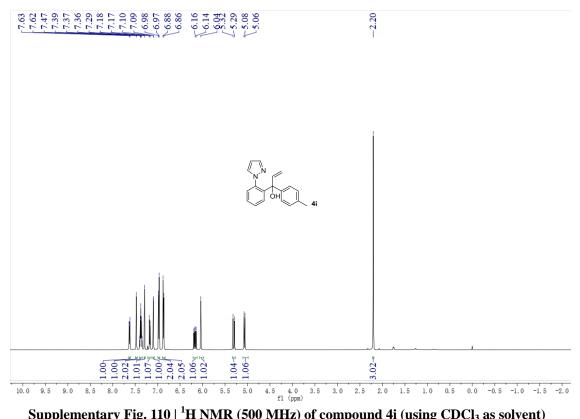

Supplementary Fig. 102 | ¹H NMR (400 MHz) of compound 4e (using CDCl₃ as solvent)

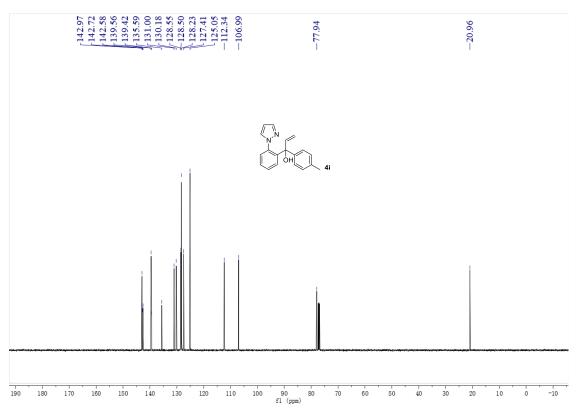

Supplementary Fig. 103 \mid ^{13}C NMR (101 MHz) of compound 4e (using CDCl $_3$ as solvent)

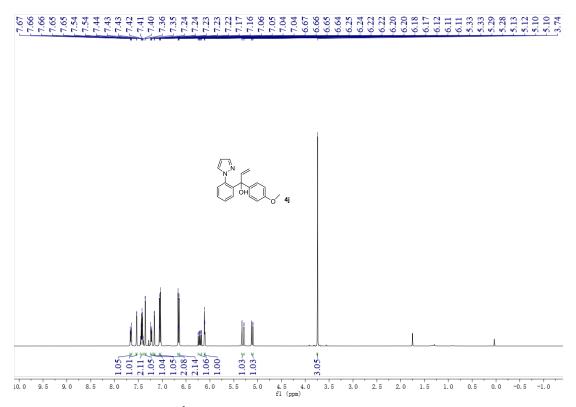

Supplementary Fig. 104 | ¹H NMR (400 MHz) of compound 4f (using CDCl₃ as solvent)

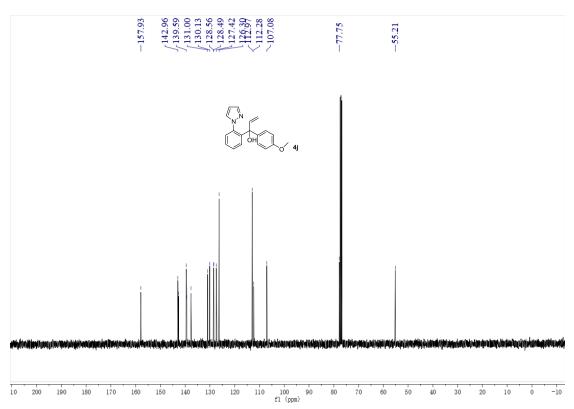

Supplementary Fig. 105 \mid ¹³C NMR (101 MHz) of compound 4f (using CDCl₃ as solvent)

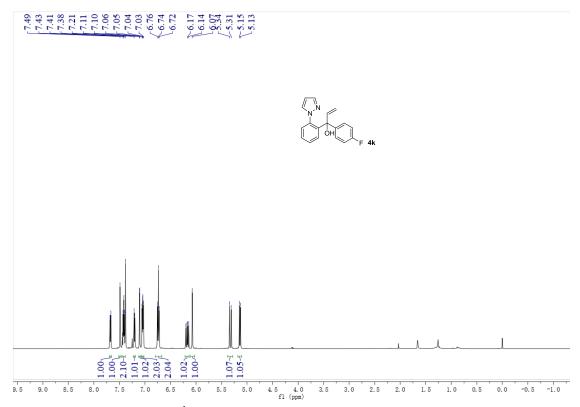

Supplementary Fig. 106 | ¹H NMR (400 MHz) of compound 4g (using CDCl₃ as solvent)

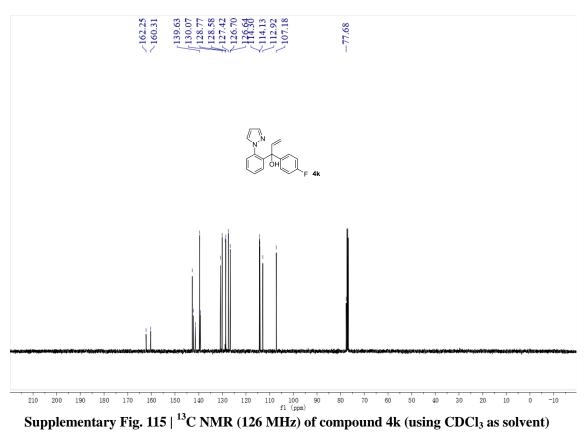

Supplementary Fig. 107 \mid ^{13}C NMR (101 MHz) of compound 4g (using CDCl $_3$ as solvent)

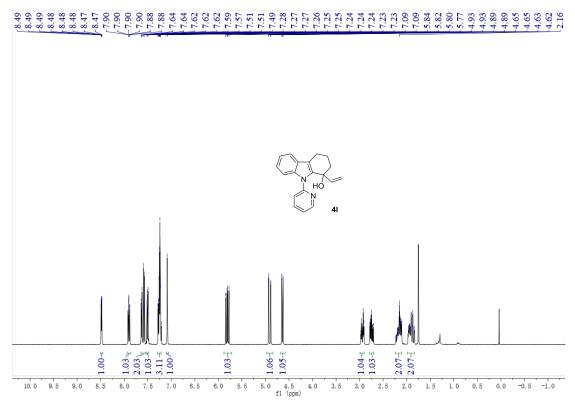

Supplementary Fig. 108 | ¹H NMR (500 MHz) of compound 4h (using CDCl₃ as solvent)


Supplementary Fig. 109 \mid ¹³C NMR (126 MHz) of compound 4h (using CDCl₃ as solvent)

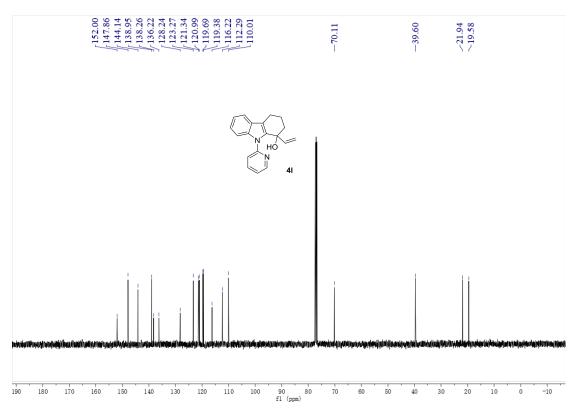

Supplementary Fig. 110 \mid ¹H NMR (500 MHz) of compound 4i (using CDCl₃ as solvent)


Supplementary Fig. 111 \mid ¹³C NMR (126 MHz) of compound 4i (using CDCl₃ as solvent)


Supplementary Fig. 112 \mid ¹H NMR (400 MHz) of compound 4j (using CDCl₃ as solvent)

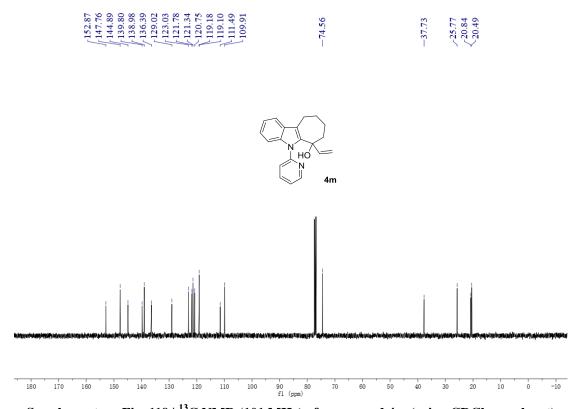


Supplementary Fig. 113 \mid ¹³C NMR (101 MHz) of compound 4j (using CDCl₃ as solvent)

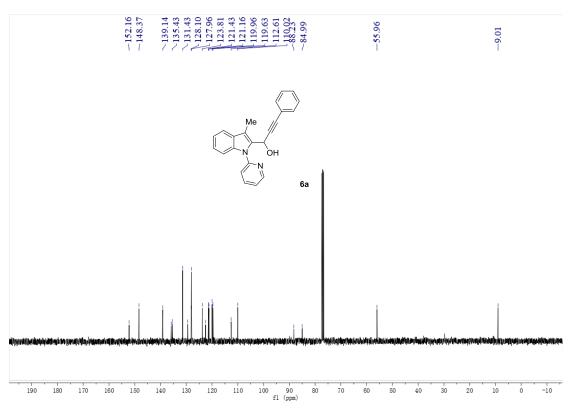


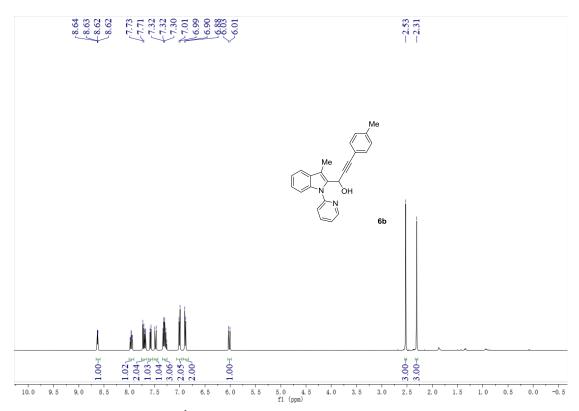
Supplementary Fig. 114 | ¹H NMR (500 MHz) of compound 4k (using CDCl₃ as solvent)

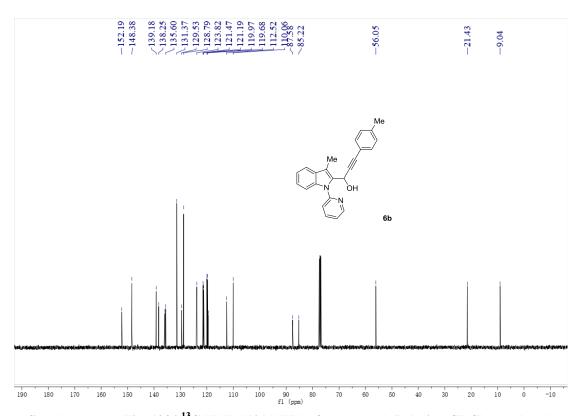
Supplementary Fig. 116 \mid ¹H NMR (400 MHz) of compound 4l (using CDCl₃ as solvent)

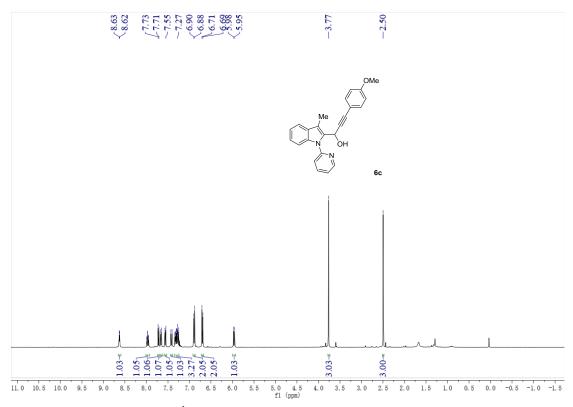


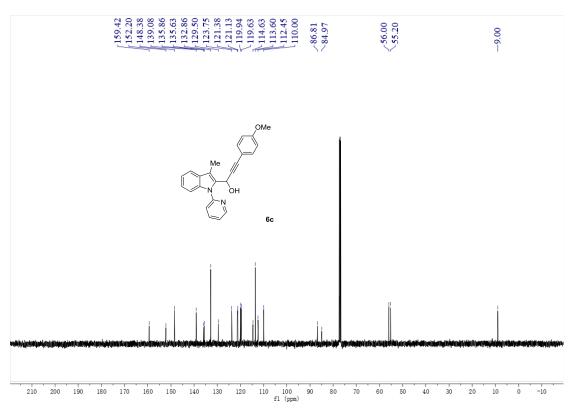
Supplementary Fig. 117 \mid ¹³C NMR (101 MHz) of compound 4l (using CDCl₃ as solvent)

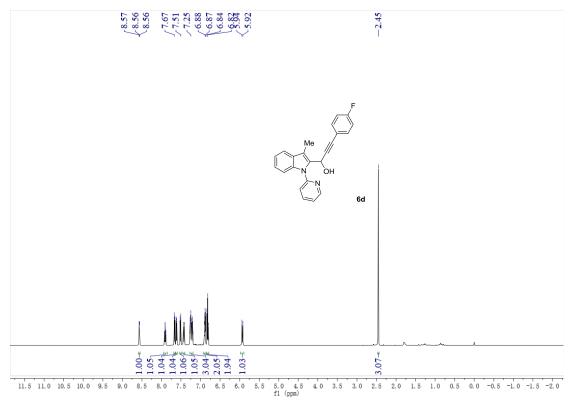

Supplementary Fig. 118 | ¹H NMR (400 MHz) of compound 4m (using CDCl₃ as solvent)

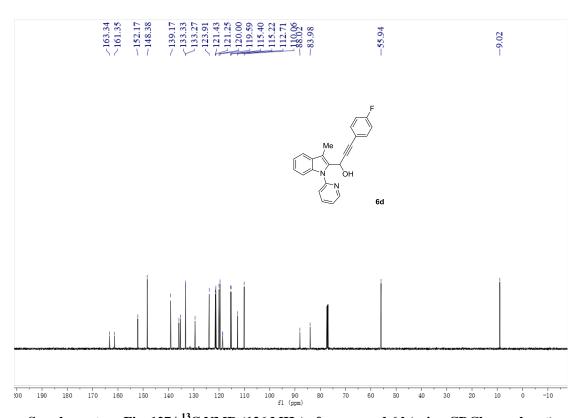

Supplementary Fig. 119 | ¹³C NMR (101 MHz) of compound 4m (using CDCl₃ as solvent)

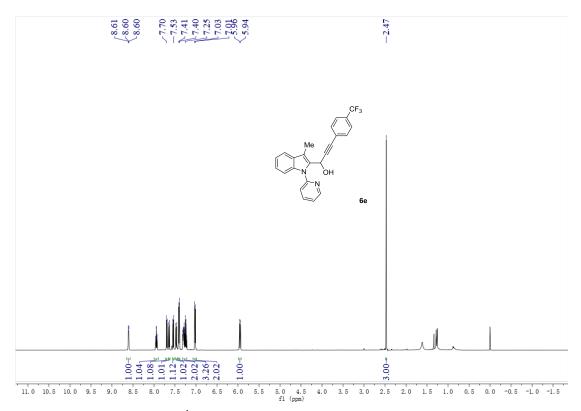

Supplementary Fig. 120 | ¹H NMR (400 MHz) of compound 6a (using CDCl₃ as solvent)

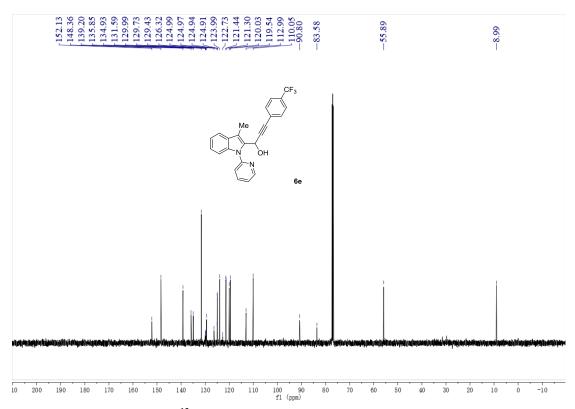

Supplementary Fig. 121 \mid ^{13}C NMR (101 MHz) of compound 6a (using CDCl $_3$ as solvent)

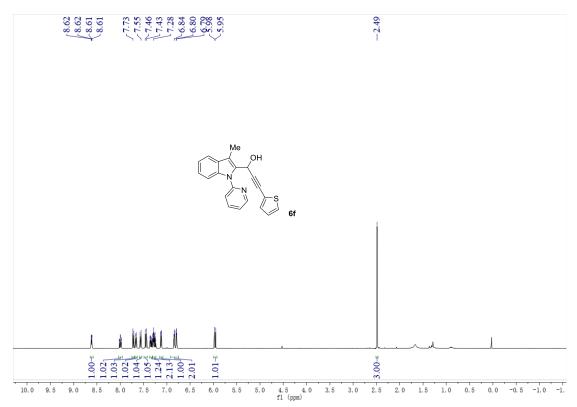

Supplementary Fig. 122 | ¹H NMR (400 MHz) of compound 6b (using CDCl₃ as solvent)

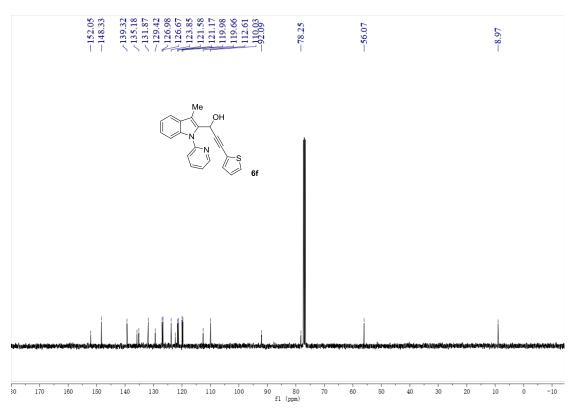

Supplementary Fig. 123 \mid 13 C NMR (101 MHz) of compound 6b (using CDCl $_3$ as solvent)


Supplementary Fig. 124 | ¹H NMR (400 MHz) of compound 6c (using CDCl₃ as solvent)

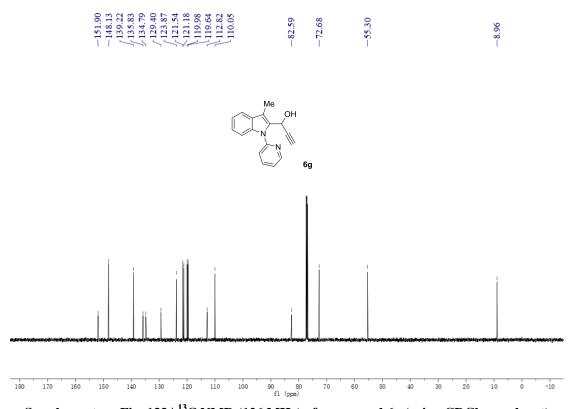

Supplementary Fig. 125 \mid ^{13}C NMR (101 MHz) of compound 6c (using CDCl $_3$ as solvent)

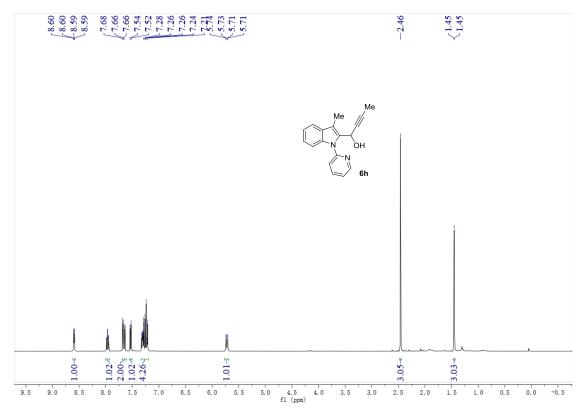

Supplementary Fig. 126 | ¹H NMR (500 MHz) of compound 6d (using CDCl₃ as solvent)

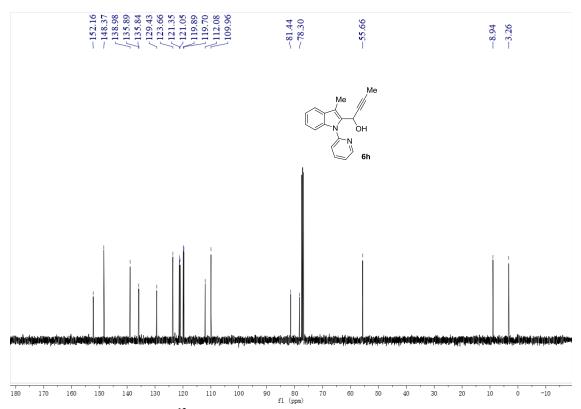

Supplementary Fig. 127 \mid ¹³C NMR (126 MHz) of compound 6d (using CDCl₃ as solvent)

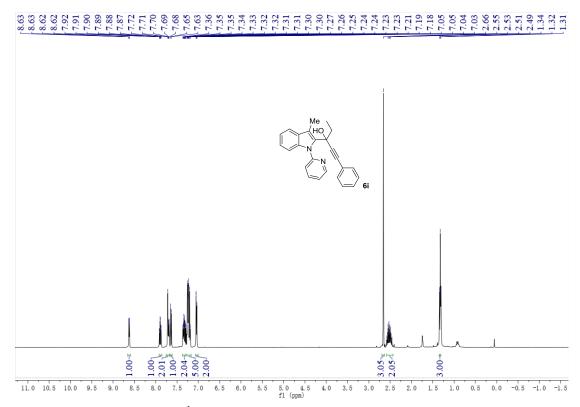

Supplementary Fig. 128 | ¹H NMR (500 MHz) of compound 6e (using CDCl₃ as solvent)

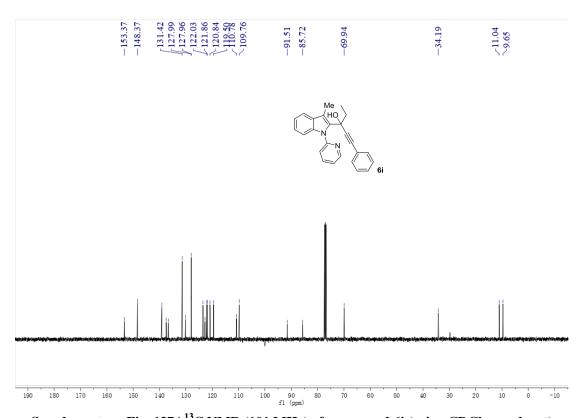
Supplementary Fig. 129 | ¹³C NMR (126 MHz) of compound 6e (using CDCl₃ as solvent)

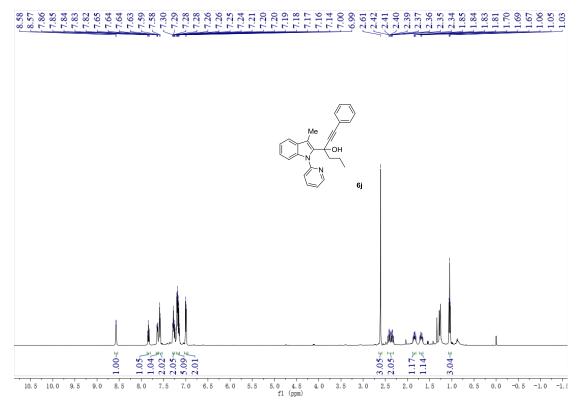

Supplementary Fig. 130 | ¹H NMR (400 MHz) of compound 6f (using CDCl₃ as solvent)

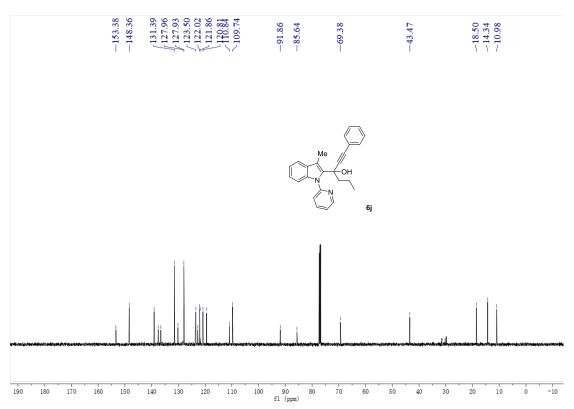

Supplementary Fig. 131 \mid ¹³C NMR (101 MHz) of compound 6f (using CDCl₃ as solvent)

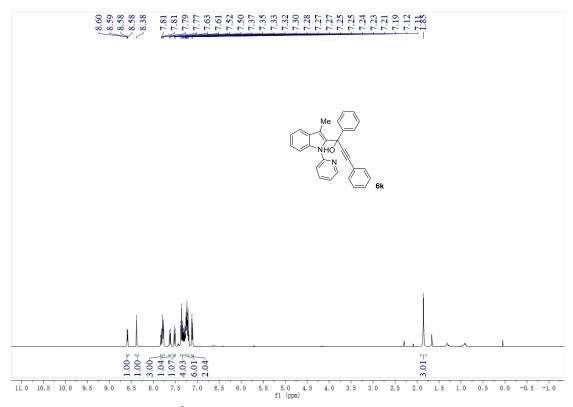

Supplementary Fig. 132 | ¹H NMR (500 MHz) of compound 6g (using CDCl₃ as solvent)

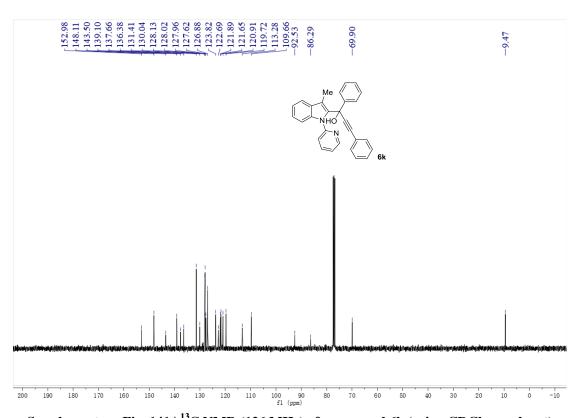

Supplementary Fig. 133 \mid ¹³C NMR (126 MHz) of compound 6g (using CDCl₃ as solvent)

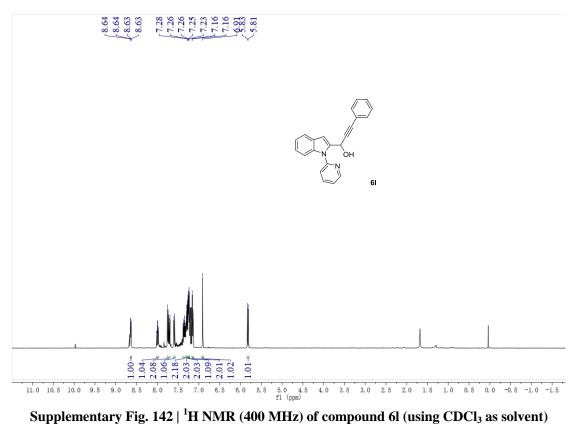

Supplementary Fig. 134 | ¹H NMR (400 MHz) of compound 6h (using CDCl₃ as solvent)

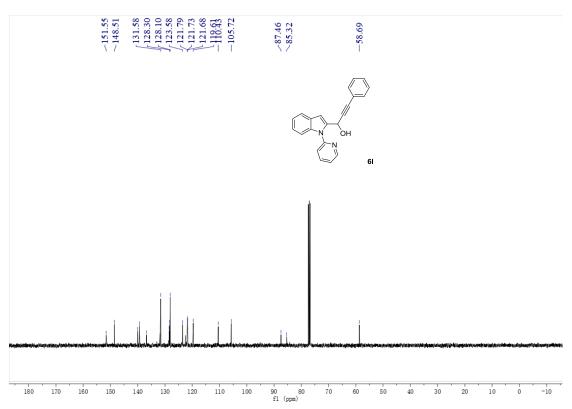

Supplementary Fig. 135 | ¹³C NMR (101 MHz) of compound 6h (using CDCl₃ as solvent)

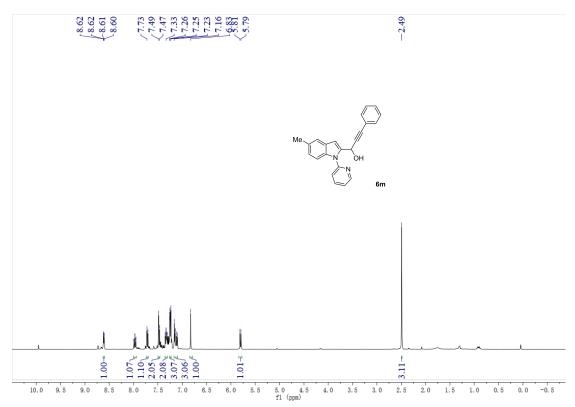

Supplementary Fig. 136 \mid ¹H NMR (400 MHz) of compound 6i (using CDCl₃ as solvent)

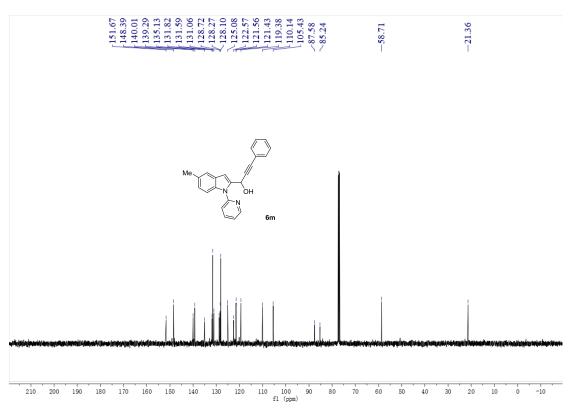

Supplementary Fig. 137 \mid ¹³C NMR (101 MHz) of compound 6i (using CDCl₃ as solvent)

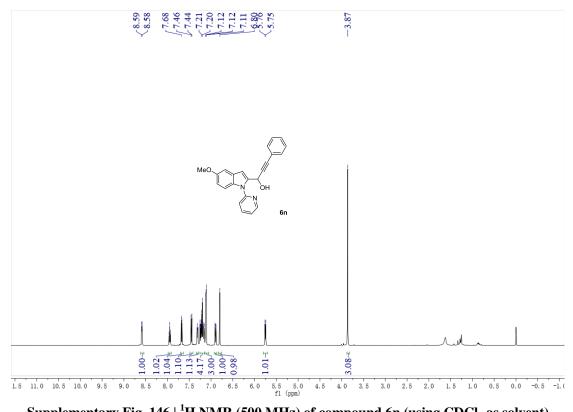

Supplementary Fig. 138 | ¹H NMR (500 MHz) of compound 6j (using CDCl₃ as solvent)

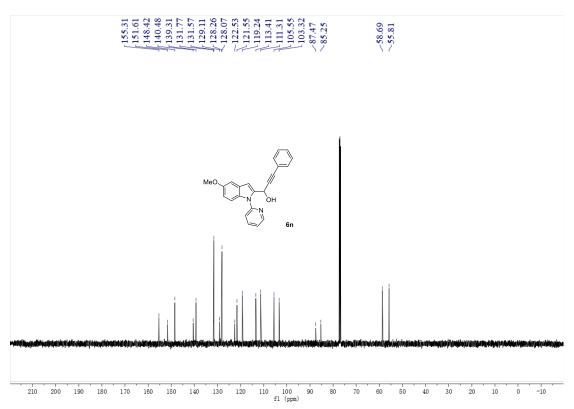

Supplementary Fig. 139 \mid ¹³C NMR (126 MHz) of compound 6j (using CDCl₃ as solvent)

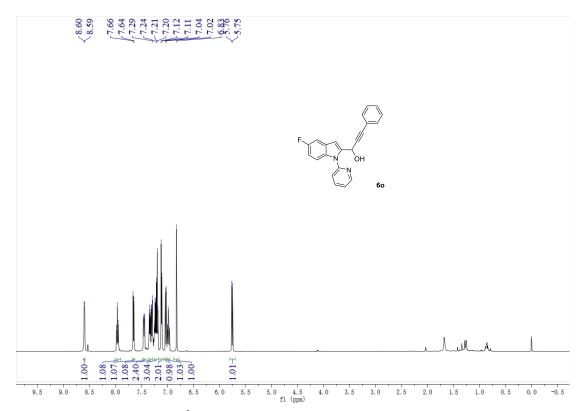

Supplementary Fig. 140 | ¹H NMR (500 MHz) of compound 6k (using CDCl₃ as solvent)

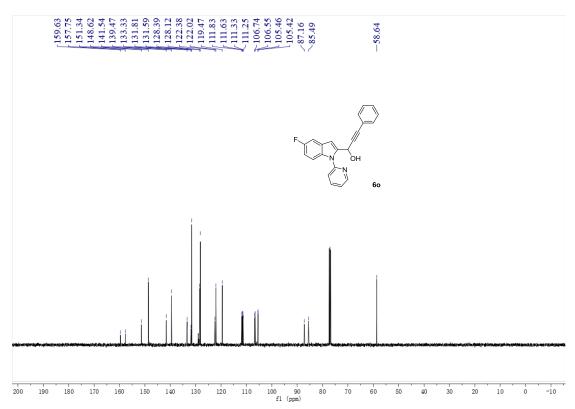

Supplementary Fig. 141 \mid ¹³C NMR (126 MHz) of compound 6k (using CDCl₃ as solvent)

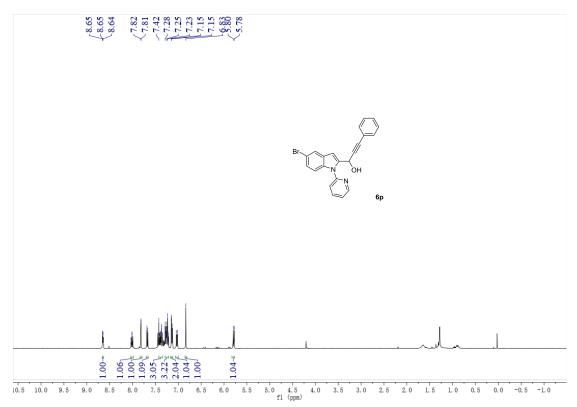

Supplementary Fig. 142 \mid ¹H NMR (400 MHz) of compound 61 (using CDCl₃ as solvent)

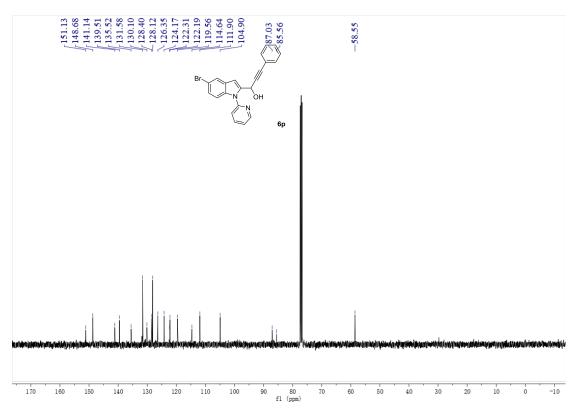

Supplementary Fig. 143 \mid ¹³C NMR (101 MHz) of compound 61 (using CDCl₃ as solvent)

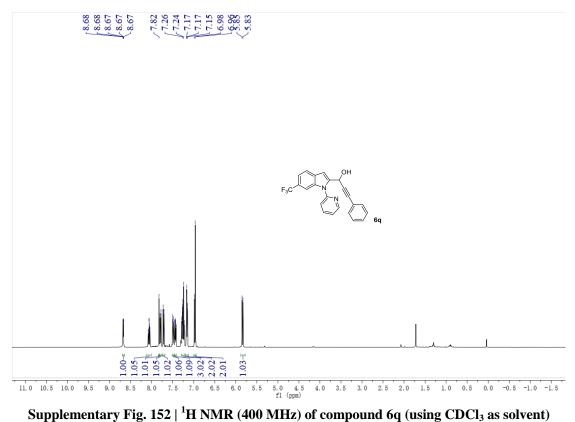

Supplementary Fig. 144 | ¹H NMR (400 MHz) of compound 6m (using CDCl₃ as solvent)

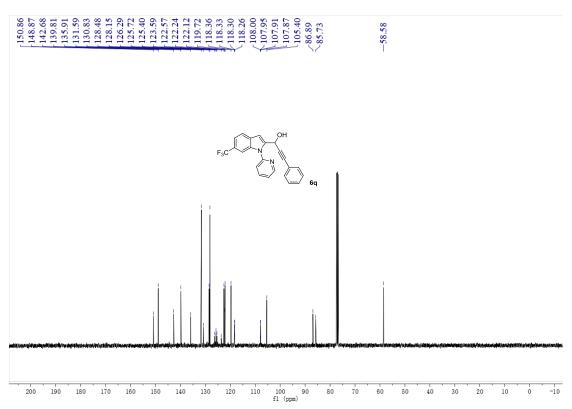

Supplementary Fig. 145 \mid 13 C NMR (101 MHz) of compound 6m (using CDCl $_3$ as solvent)

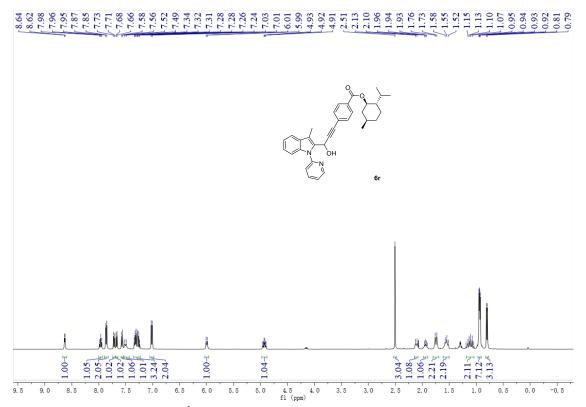

Supplementary Fig. 146 | ¹H NMR (500 MHz) of compound 6n (using CDCl₃ as solvent)

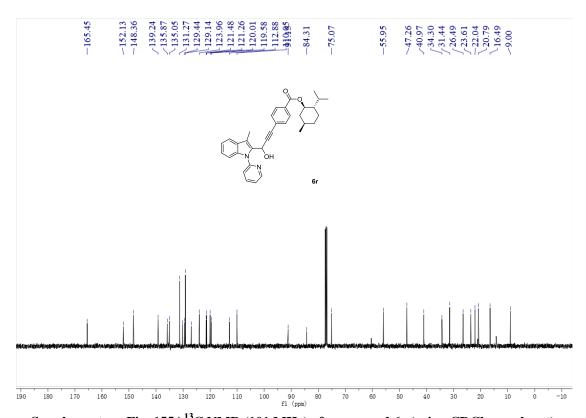

Supplementary Fig. 147 \mid 13 C NMR (126 MHz) of compound 6n (using CDCl₃ as solvent)

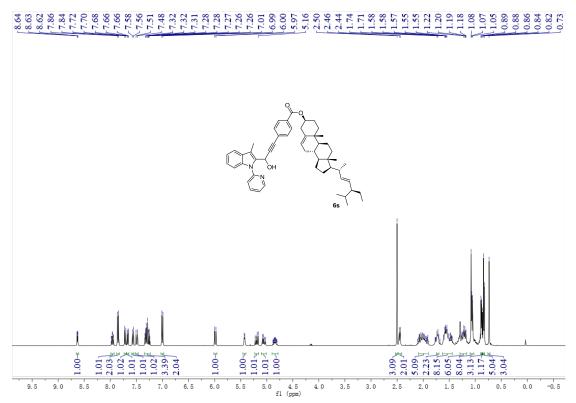

Supplementary Fig. 148 | ¹H NMR (500 MHz) of compound 60 (using CDCl₃ as solvent)

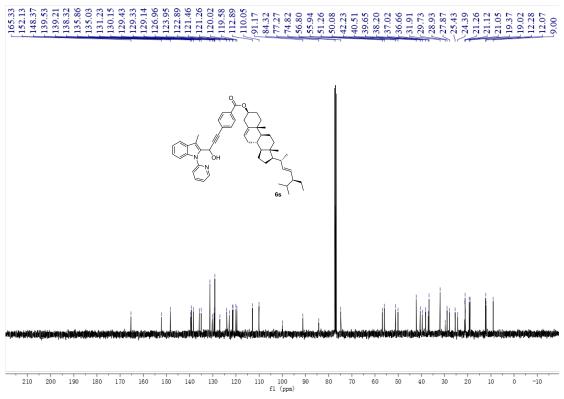

Supplementary Fig. 149 \mid ¹³C NMR (126 MHz) of compound 60 (using CDCl₃ as solvent)

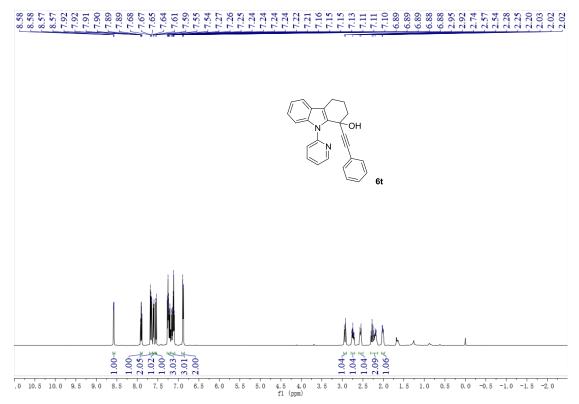

Supplementary Fig. 150 | ¹H NMR (400 MHz) of compound 6p (using CDCl₃ as solvent)

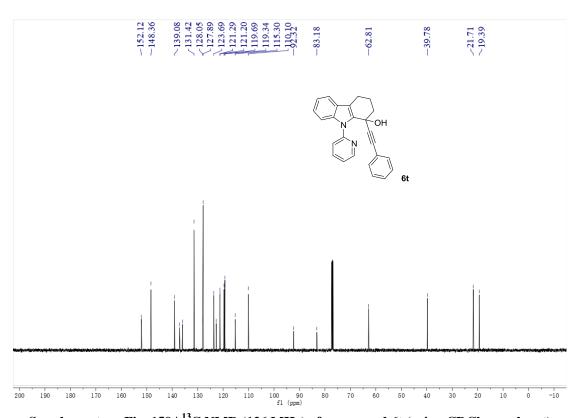

Supplementary Fig. 151 \mid ^{13}C NMR (101 MHz) of compound 6p (using CDCl $_3$ as solvent)

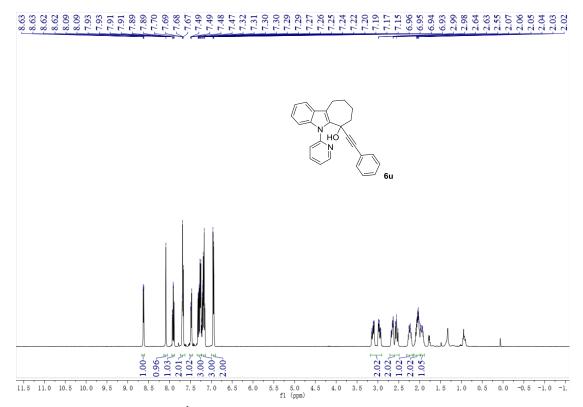

Supplementary Fig. 152 | ¹H NMR (400 MHz) of compound 6q (using CDCl₃ as solvent)


Supplementary Fig. 153 \mid 13 C NMR (101 MHz) of compound 6q (using CDCl₃ as solvent)

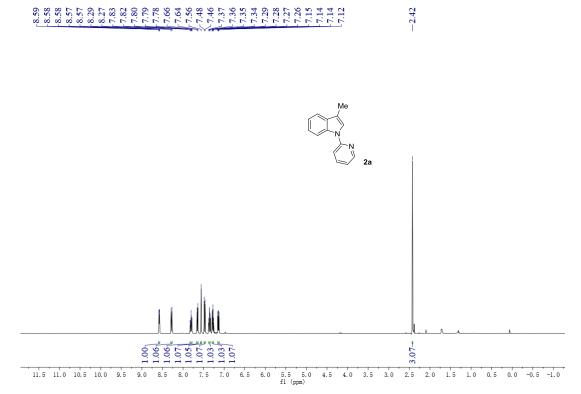

Supplementary Fig. 154 \mid ^{1}H NMR (400 MHz) of compound 6r (using CDCl_{3} as solvent)


Supplementary Fig. 155 \mid ¹³C NMR (101 MHz) of compound 6r (using CDCl₃ as solvent)


Supplementary Fig. 156 | ¹H NMR (400 MHz) of compound 6s (using CDCl₃ as solvent)

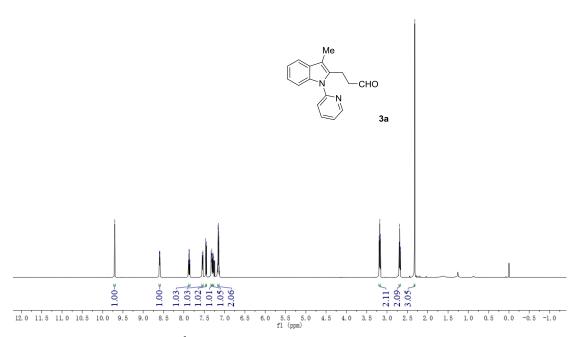

Supplementary Fig. 157 \mid ^{13}C NMR (101 MHz) of compound 6s (using CDCl $_3$ as solvent)


Supplementary Fig. 158 | ¹H NMR (500 MHz) of compound 6t (using CDCl₃ as solvent)

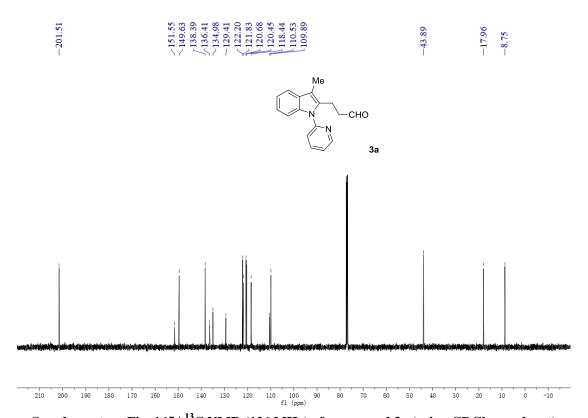

Supplementary Fig. 159 \mid 13 C NMR (126 MHz) of compound 6t (using CDCl $_3$ as solvent)

Supplementary Fig. 160 | ¹H NMR (400 MHz) of compound 6u (using CDCl₃ as solvent)

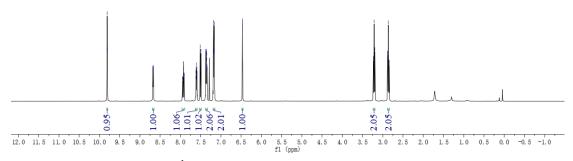
Supplementary Fig. 161 \mid 13 C NMR (101 MHz) of compound 6u (using CDCl₃ as solvent)



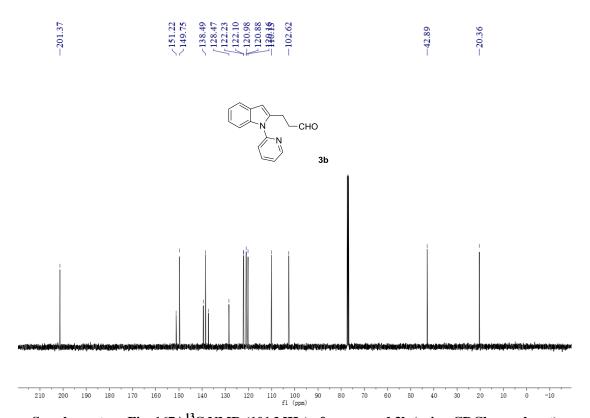
Supplementary Fig. 162 | ¹H NMR (400 MHz) of compound 2a (using CDCl₃ as solvent)



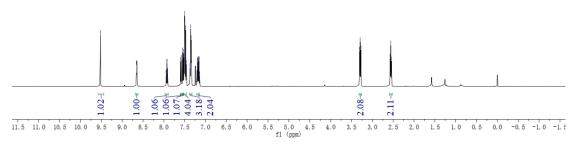
S-126



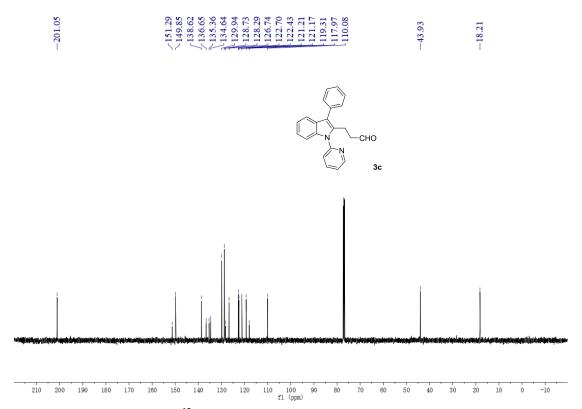
Supplementary Fig. 164 | ¹H NMR (500 MHz) of compound 3a (using CDCl₃ as solvent)



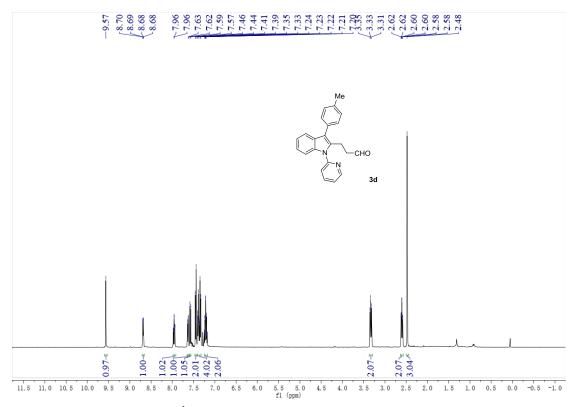
Supplementary Fig. 165 \mid ^{13}C NMR (126 MHz) of compound 3a (using CDCl₃ as solvent)

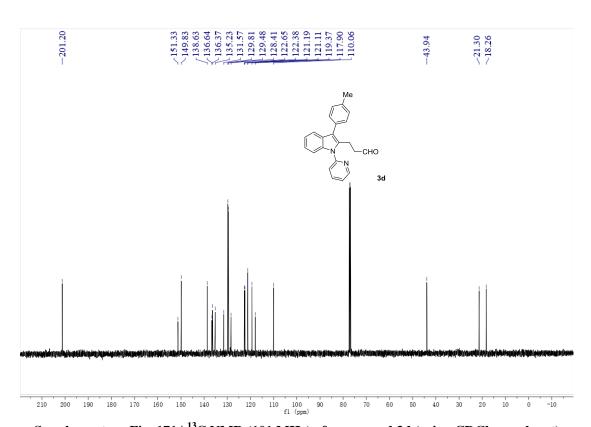


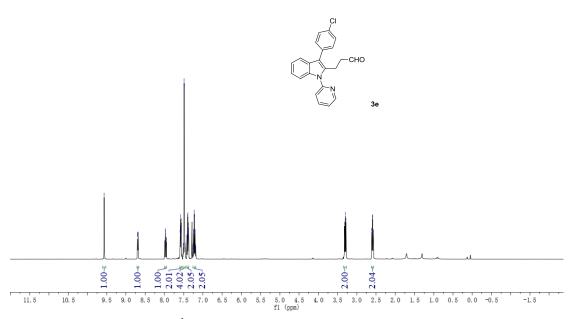
Supplementary Fig. 166 | ¹H NMR (400 MHz) of compound 3b (using CDCl₃ as solvent)

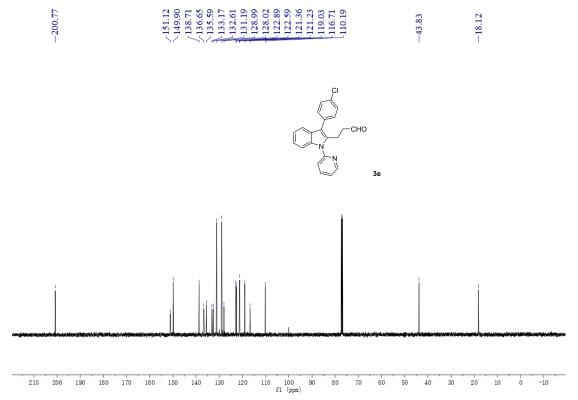


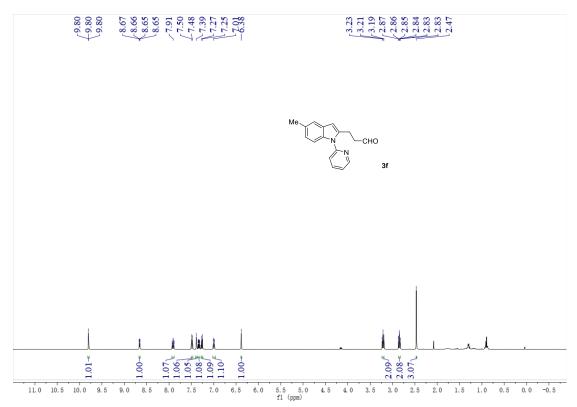
Supplementary Fig. 167 \mid ¹³C NMR (101 MHz) of compound 3b (using CDCl₃ as solvent)

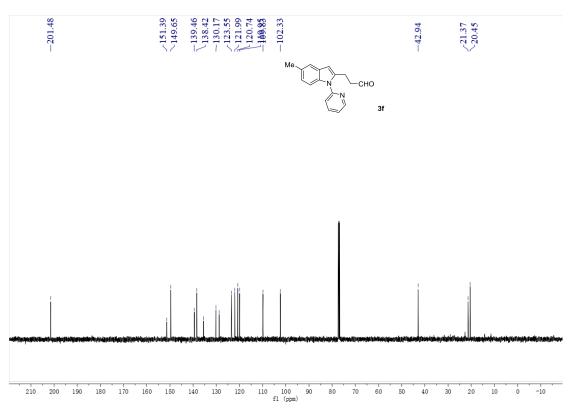


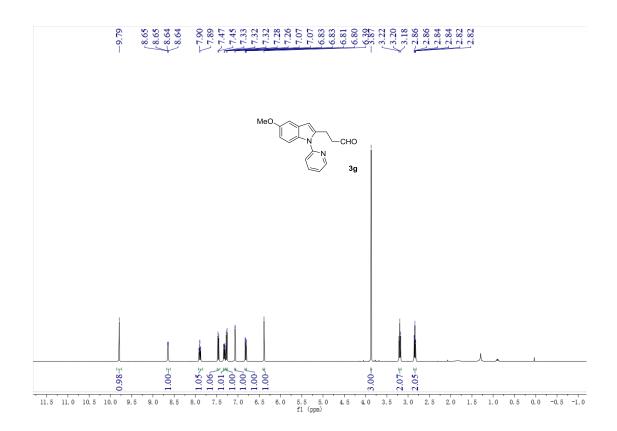

Supplementary Fig. 168 | ¹H NMR (500 MHz) of compound 3c (using CDCl₃ as solvent)

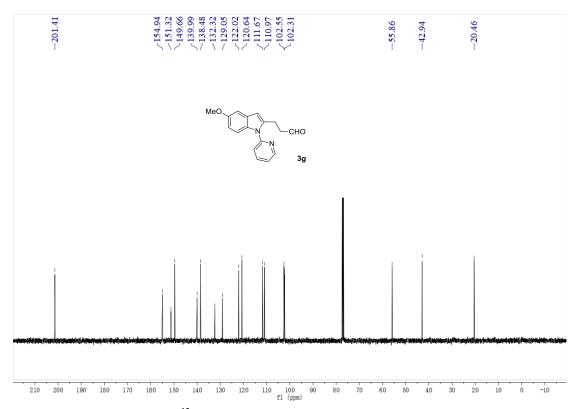

Supplementary Fig. 169 | ¹³C NMR (126 MHz) of compound 3c (using CDCl₃ as solvent)

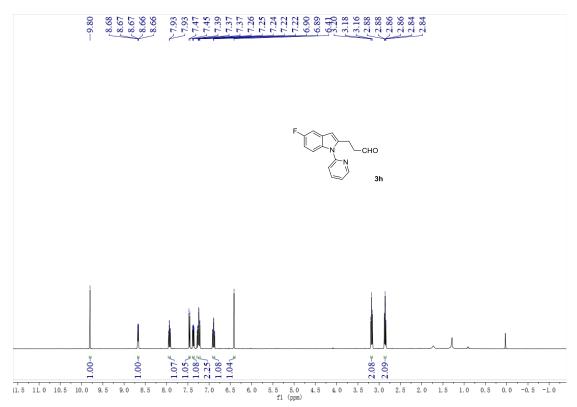

Supplementary Fig. 170 | ¹H NMR (400 MHz) of compound 3d (using CDCl₃ as solvent)

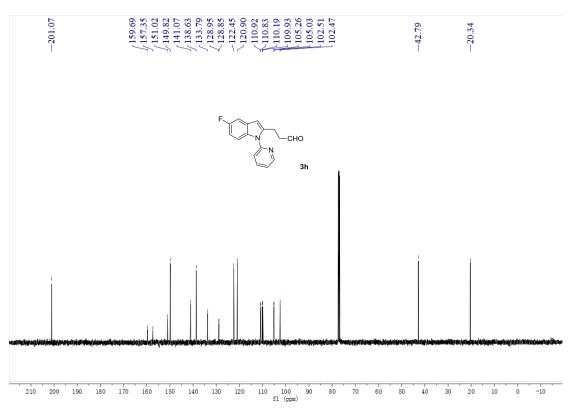

Supplementary Fig. 171 \mid ^{13}C NMR (101 MHz) of compound 3d (using CDCl3 as solvent)

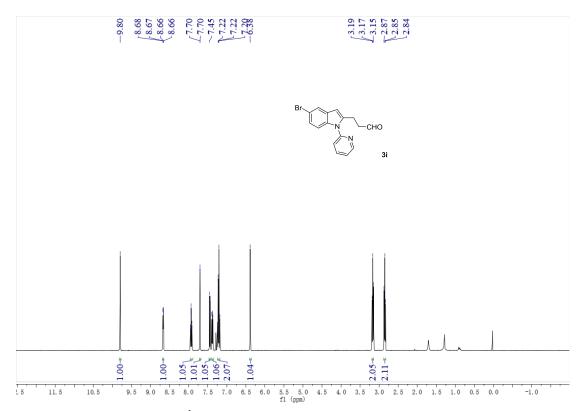

Supplementary Fig. 172 | ¹H NMR (400 MHz) of compound 3e (using CDCl₃ as solvent)

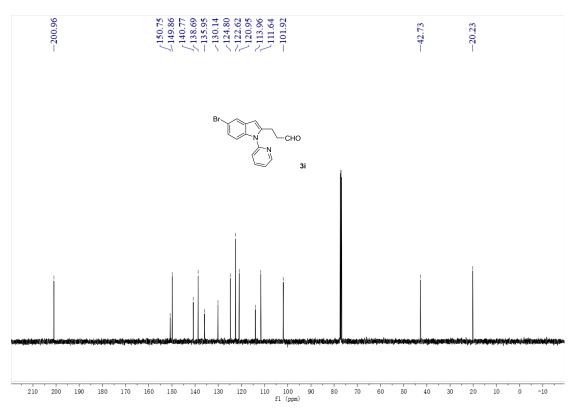

Supplementary Fig. 173 \mid ^{13}C NMR (101 MHz) of compound 3e (using CDCl₃ as solvent)

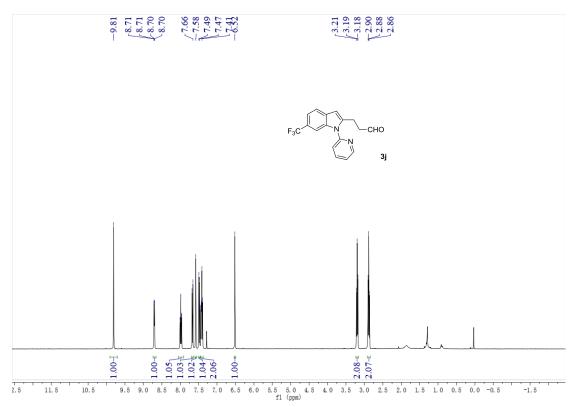

Supplementary Fig. 174 \mid ¹H NMR (400 MHz) of compound 3f (using CDCl₃ as solvent)

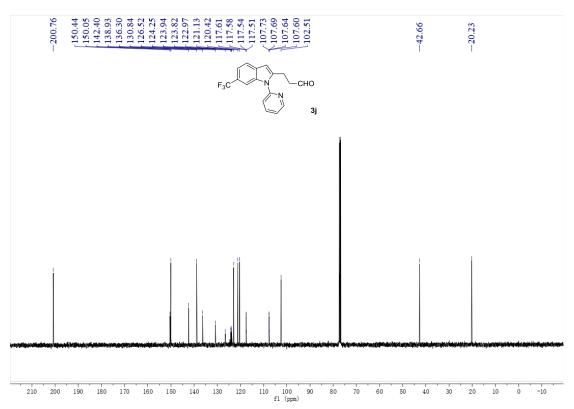

Supplementary Fig. 175 \mid ^{13}C NMR (101 MHz) of compound 3f (using CDCl₃ as solvent)


Supplementary Fig. 176 | ¹H NMR (400 MHz) of compound 3g (using CDCl₃ as solvent)

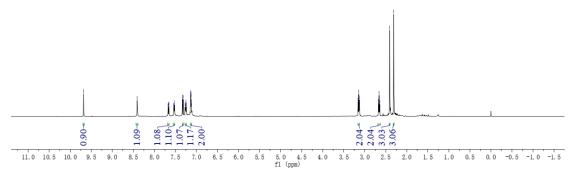

Supplementary Fig. 177 | ¹³C NMR (101 MHz) of compound 3g (using CDCl₃ as solvent)

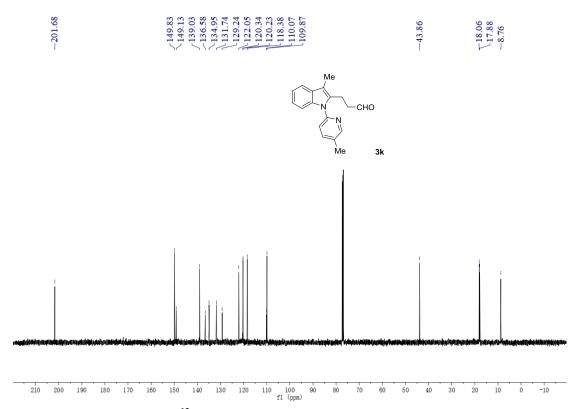

Supplementary Fig. 178 | ¹H NMR (400 MHz) of compound 3h (using CDCl₃ as solvent)

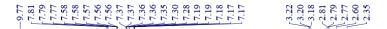

Supplementary Fig. 179 | ¹³C NMR (101 MHz) of compound 3h (using CDCl₃ as solvent)

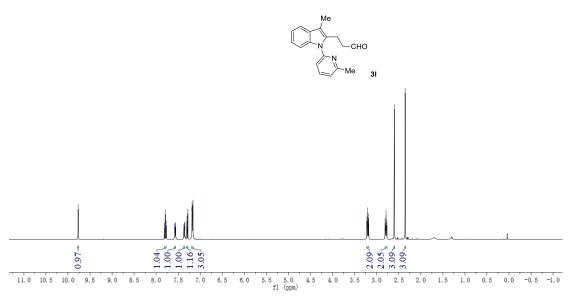

Supplementary Fig. 180 | ¹H NMR (400 MHz) of compound 3i (using CDCl₃ as solvent)

Supplementary Fig. 181 \mid 13 C NMR (101 MHz) of compound 3i (using CDCl $_3$ as solvent)

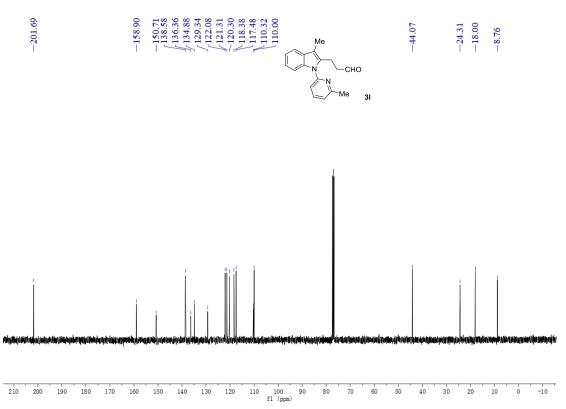

Supplementary Fig. 182 | ¹H NMR (400 MHz) of compound 3j (using CDCl₃ as solvent)


Supplementary Fig. 183 \mid ¹³C NMR (101 MHz) of compound 3j (using CDCl₃ as solvent)

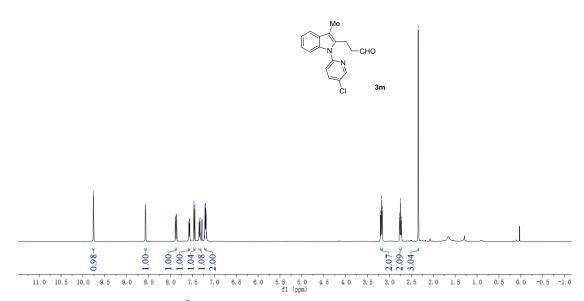


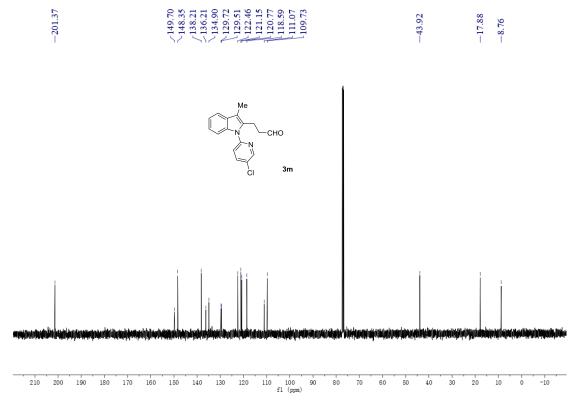


Supplementary Fig. 184 | ¹H NMR (500 MHz) of compound 3k (using CDCl₃ as solvent)

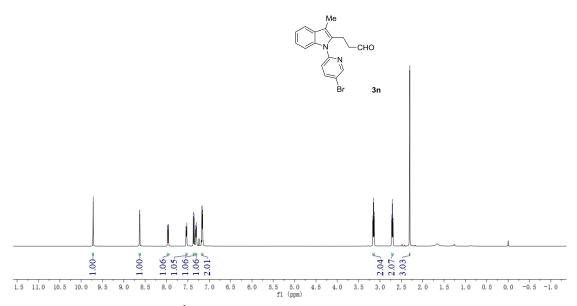


Supplementary Fig. 185 | ¹³C NMR (126 MHz) of compound 3k (using CDCl₃ as solvent)

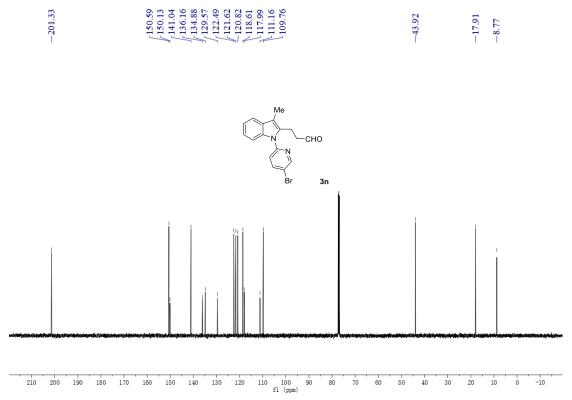



Supplementary Fig. 186 | ¹H NMR (400 MHz) of compound 3l (using CDCl₃ as solvent)

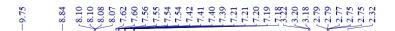
Supplementary Fig. 187 \mid ¹³C NMR (101 MHz) of compound 3l (using CDCl₃ as solvent)

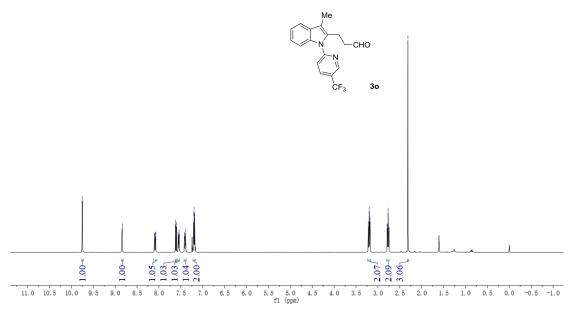


Supplementary Fig. 188 | ¹H NMR (400 MHz) of compound 3m (using CDCl₃ as solvent)

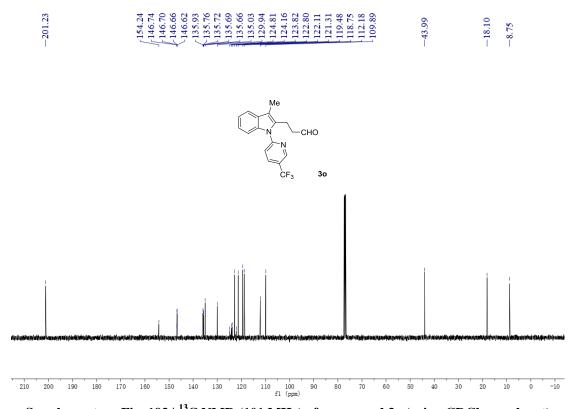


Supplementary Fig. 189 | ¹³C NMR (101 MHz) of compound 3m (using CDCl₃ as solvent)

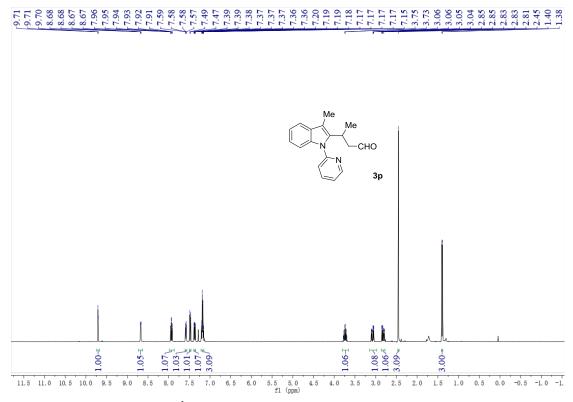


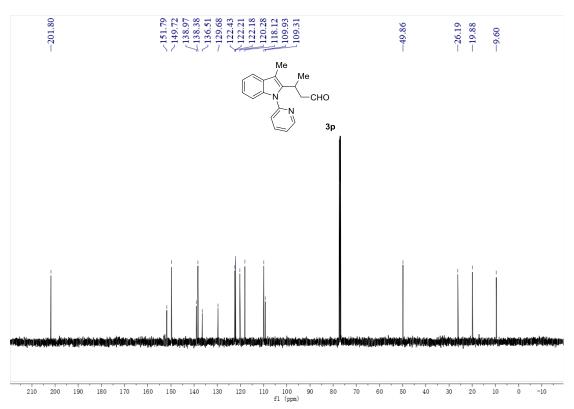


Supplementary Fig. 190 | ¹H NMR (500 MHz) of compound 3n (using CDCl₃ as solvent)

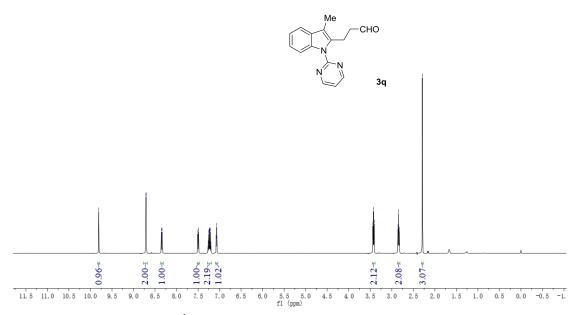


Supplementary Fig. 191 | ¹³C NMR (126 MHz) of compound 3n (using CDCl₃ as solvent)

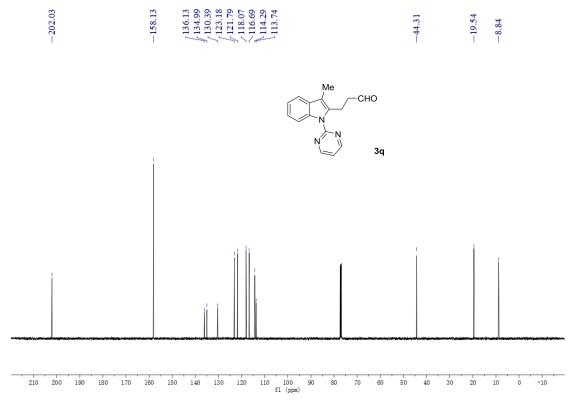



Supplementary Fig. 192 | ¹H NMR (400 MHz) of compound 30 (using CDCl₃ as solvent)

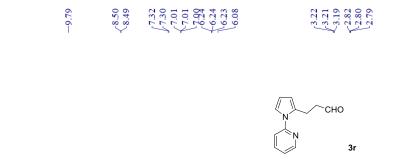
Supplementary Fig. 193 \mid ¹³C NMR (101 MHz) of compound 30 (using CDCl₃ as solvent)

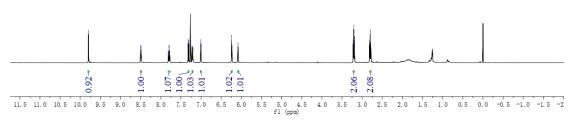


Supplementary Fig. 194 \mid ^{1}H NMR (400 MHz) of compound 3p (using CDCl_{3} as solvent)

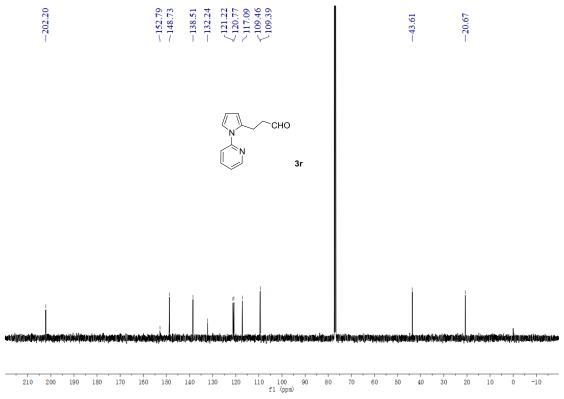


Supplementary Fig. 195 \mid ¹³C NMR (101 MHz) of compound 3p (using CDCl₃ as solvent)

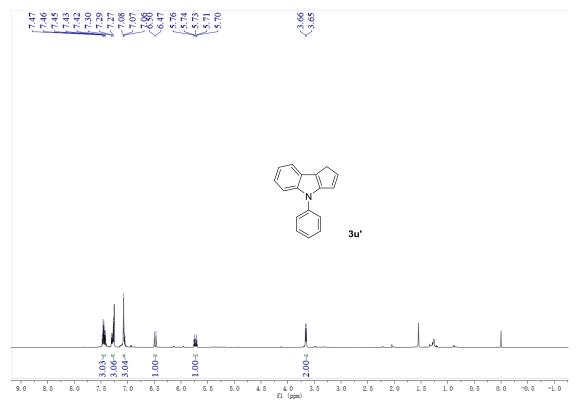


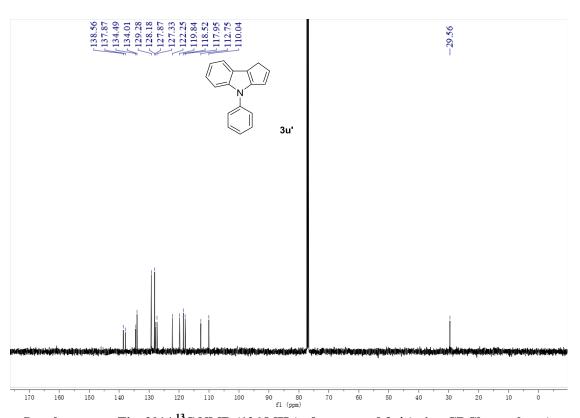


Supplementary Fig. 196 | ¹H NMR (500 MHz) of compound 3q (using CDCl₃ as solvent)

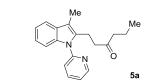


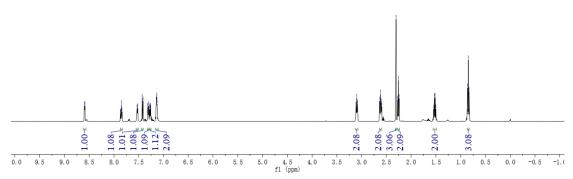
Supplementary Fig. 197 \mid 13 C NMR (126 MHz) of compound 3q (using CDCl₃ as solvent)



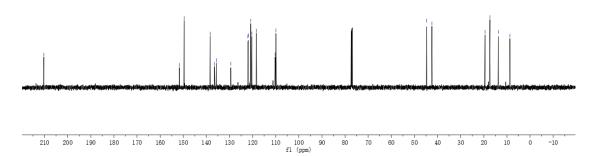

Supplementary Fig. 198 | ¹H NMR (500 MHz) of compound 3r (using CDCl₃ as solvent)

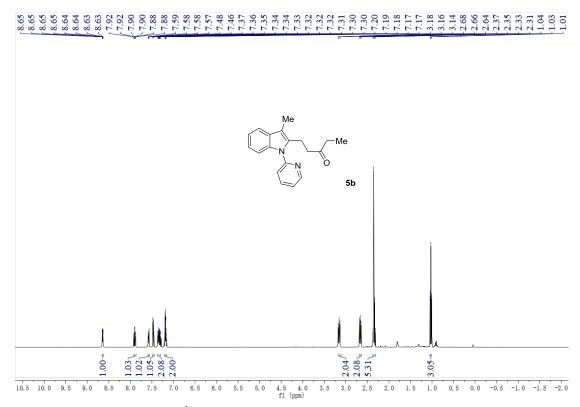
Supplementary Fig. 199 \mid 13 C NMR (126 MHz) of compound 3r (using CDCl₃ as solvent)

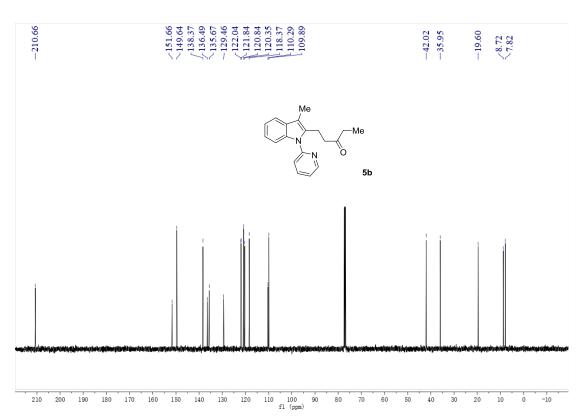


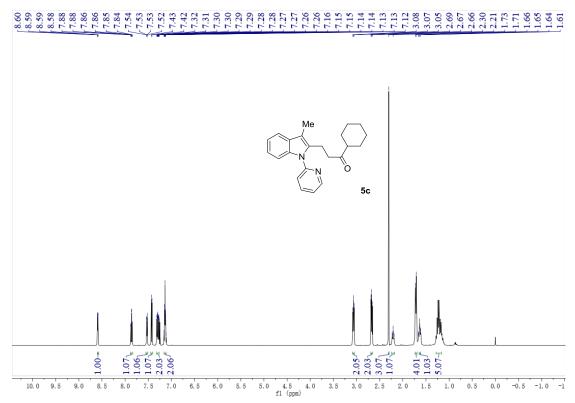

Supplementary Fig. 200 | ¹H NMR (500 MHz) of compound 3u' (using CDCl₃ as solvent)

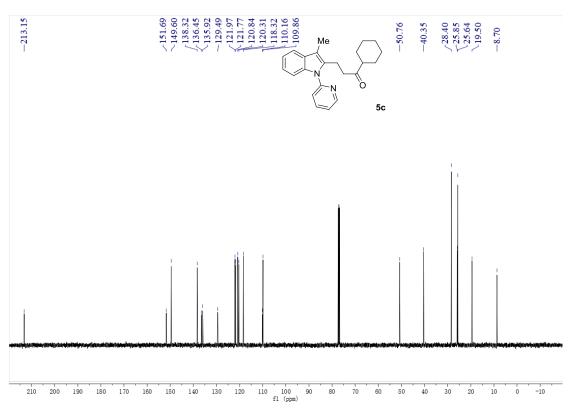
Supplementary Fig. 201 \mid ^{13}C NMR (126 MHz) of compound 3u' (using CDCl3 as solvent)

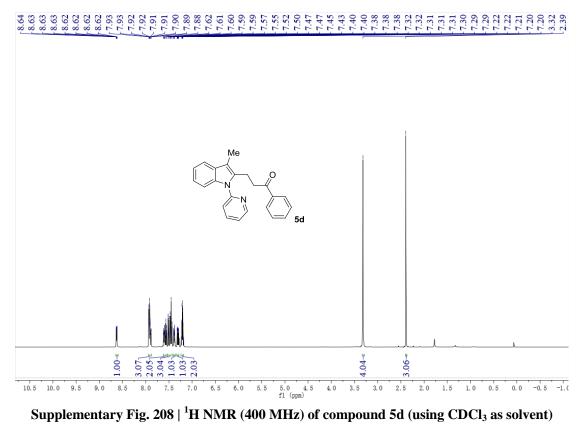


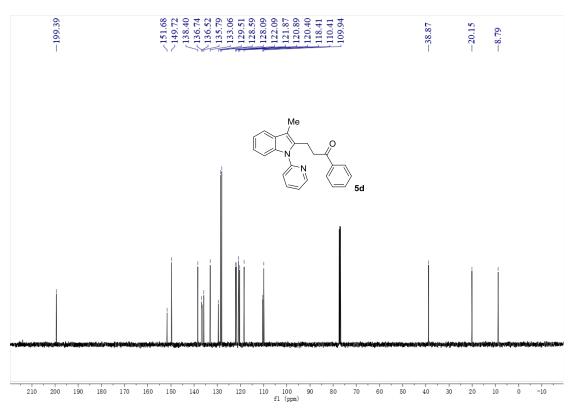

Supplementary Fig. 202 | ¹H NMR (500 MHz) of compound 5a (using CDCl₃ as solvent)

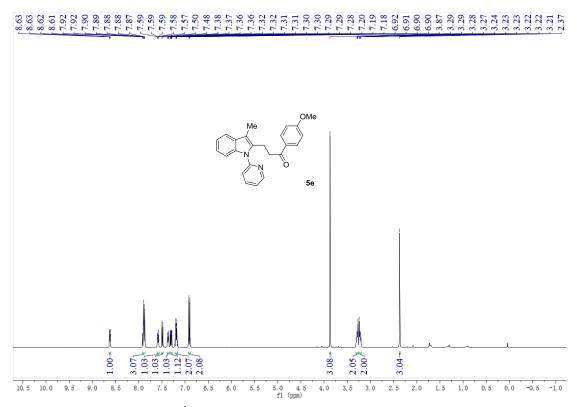


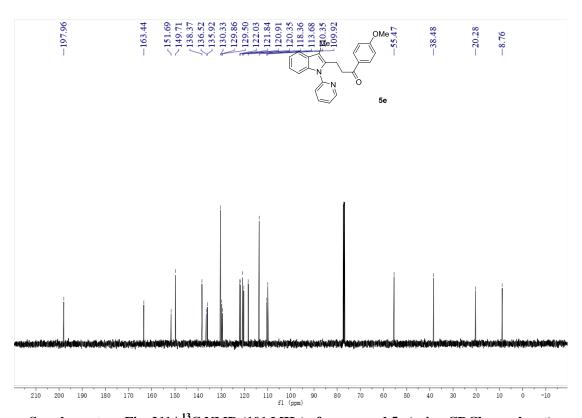

Supplementary Fig. 203 \mid ¹³C NMR (126 MHz) of compound 5a (using CDCl₃ as solvent)

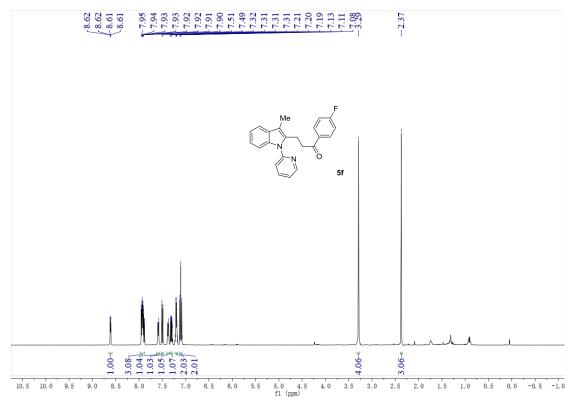

Supplementary Fig. 204 | ¹H NMR (400 MHz) of compound 5b (using CDCl₃ as solvent)

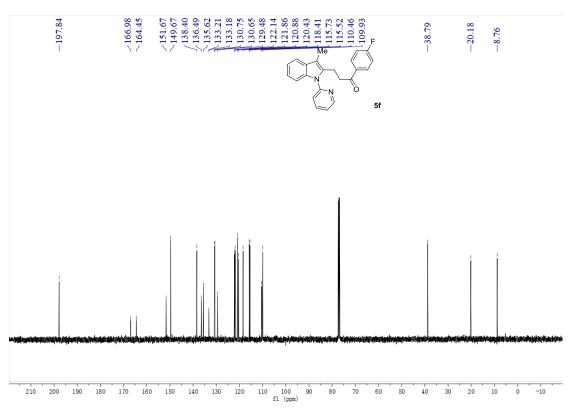

Supplementary Fig. 205 | ¹³C NMR (101 MHz) of compound 5b (using CDCl₃ as solvent)

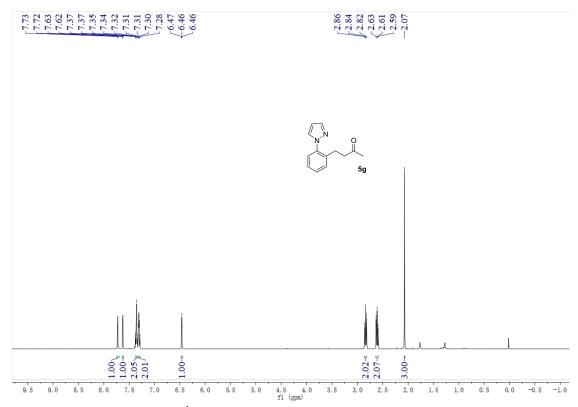

Supplementary Fig. 206 | ¹H NMR (500 MHz) of compound 5c (using CDCl₃ as solvent)

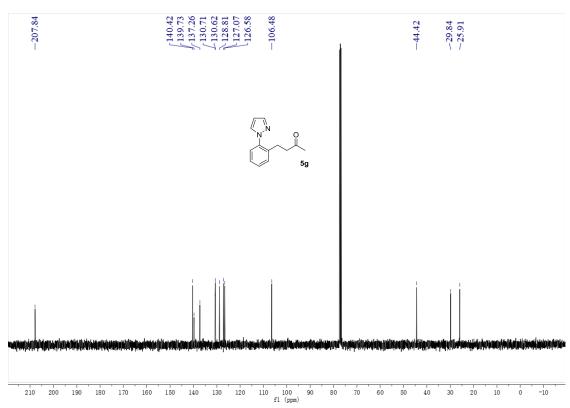

Supplementary Fig. 207 \mid ¹³C NMR (126 MHz) of compound 5c (using CDCl₃ as solvent)

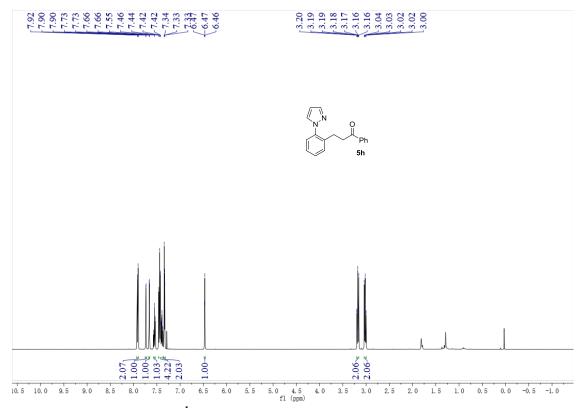

Supplementary Fig. 208 | ¹H NMR (400 MHz) of compound 5d (using CDCl₃ as solvent)

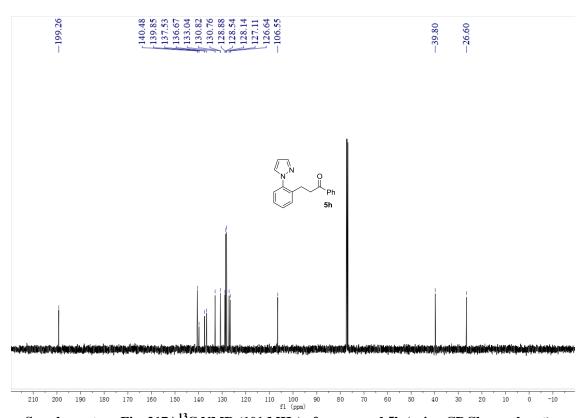

Supplementary Fig. 209 \mid ¹³C NMR (101 MHz) of compound 5d (using CDCl₃ as solvent)

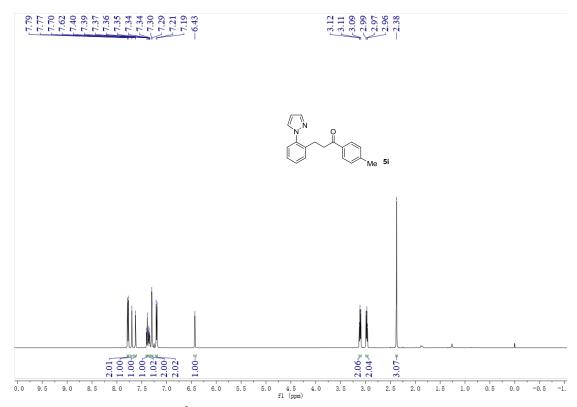

Supplementary Fig. 210 | ¹H NMR (400 MHz) of compound 5e (using CDCl₃ as solvent)

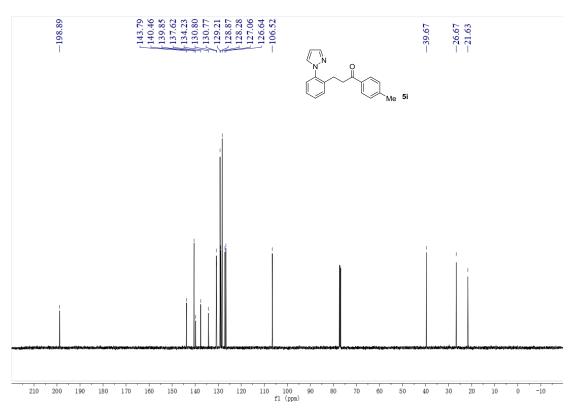

Supplementary Fig. 211 \mid ¹³C NMR (101 MHz) of compound 5e (using CDCl₃ as solvent)

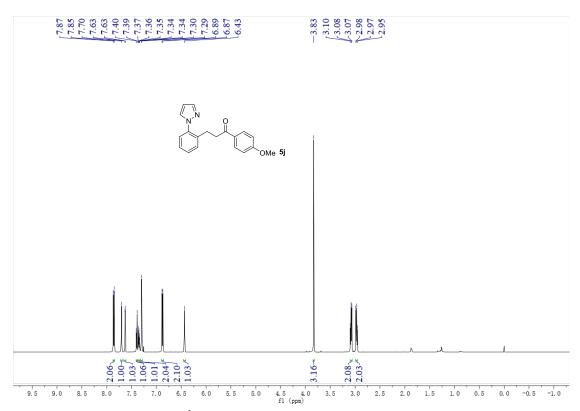

Supplementary Fig. 212 | ¹H NMR (400 MHz) of compound 5f (using CDCl₃ as solvent)

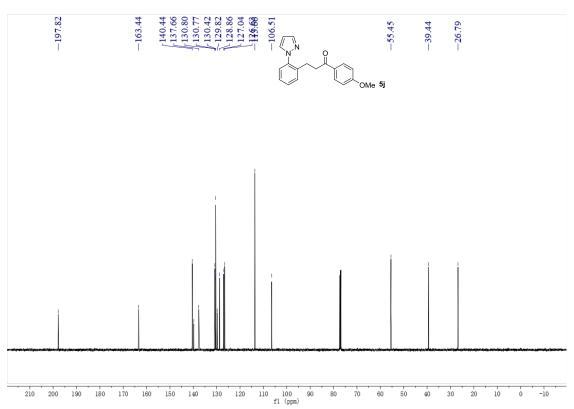

Supplementary Fig. 213 \mid ¹³C NMR (101 MHz) of compound 5f (using CDCl₃ as solvent)

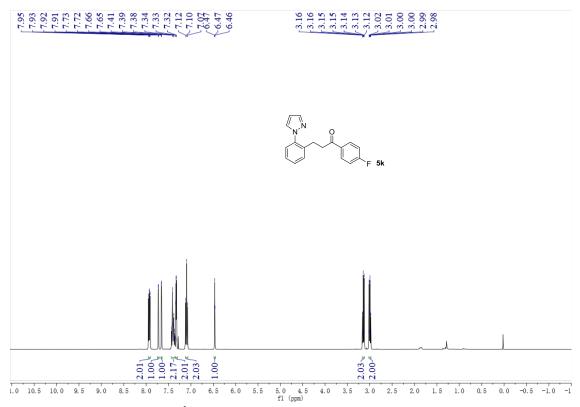

Supplementary Fig. 214 | ¹H NMR (400 MHz) of compound 5g (using CDCl₃ as solvent)

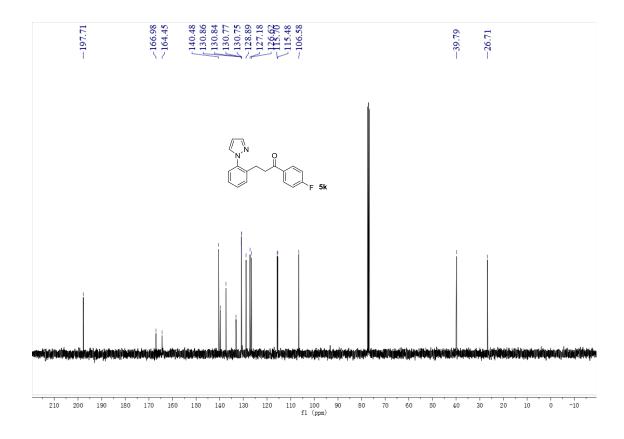

Supplementary Fig. 215 \mid ^{13}C NMR (101 MHz) of compound 5g (using CDCl $_3$ as solvent)

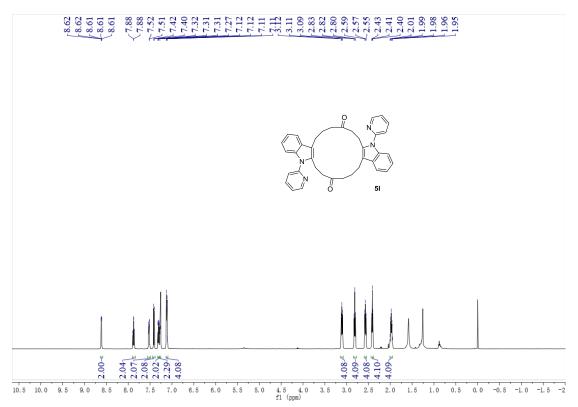

Supplementary Fig. 216 | ¹H NMR (400 MHz) of compound 5h (using CDCl₃ as solvent)

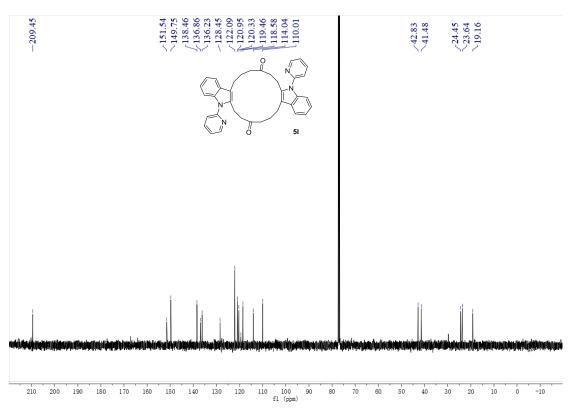

Supplementary Fig. 217 | ¹³C NMR (101 MHz) of compound 5h (using CDCl₃ as solvent)


Supplementary Fig. 218 | ¹H NMR (500 MHz) of compound 5i (using CDCl₃ as solvent)

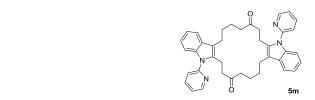

Supplementary Fig. 219 \mid ¹³C NMR (126 MHz) of compound 5i (using CDCl₃ as solvent)

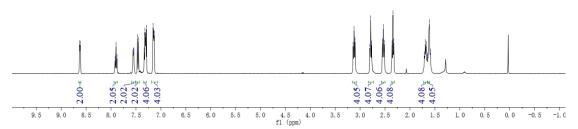

Supplementary Fig. 220 | ¹H NMR (500 MHz) of compound 5j (using CDCl₃ as solvent)

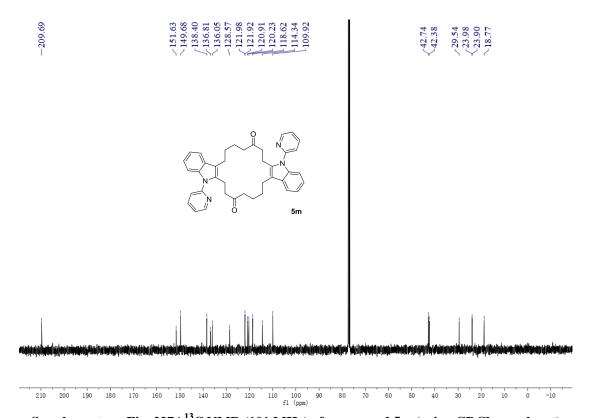

Supplementary Fig. 221 \mid ¹³C NMR (126 MHz) of compound 5j (using CDCl₃ as solvent)


Supplementary Fig. 222 | ¹H NMR (400 MHz) of compound 5k (using CDCl₃ as solvent)

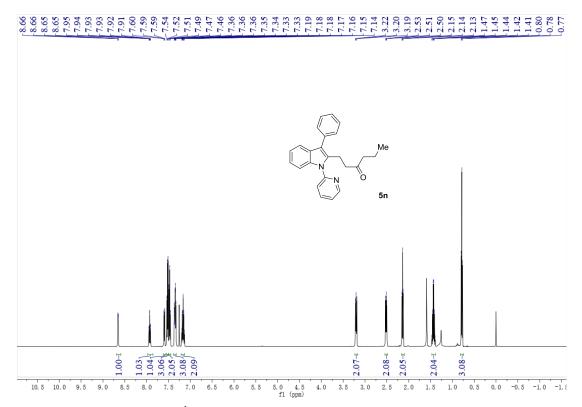
Supplementary Fig. 223 \mid 13 C NMR (101 MHz) of compound 5k (using CDCl₃ as solvent)

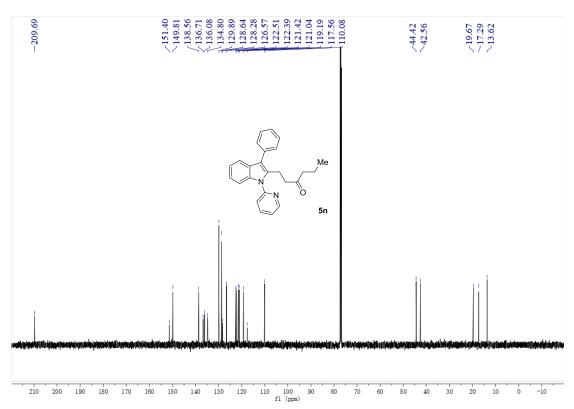


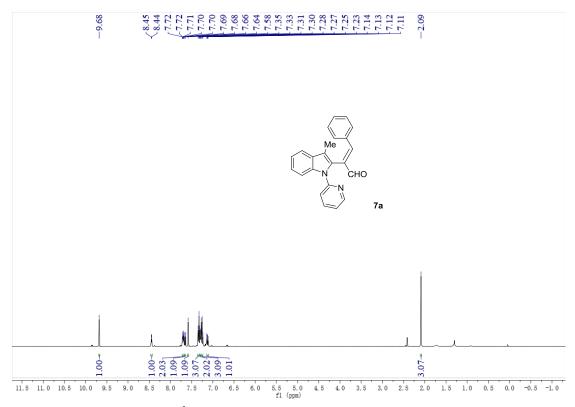

Supplementary Fig. 224 | ¹H NMR (500 MHz) of compound 5l (using CDCl₃ as solvent)

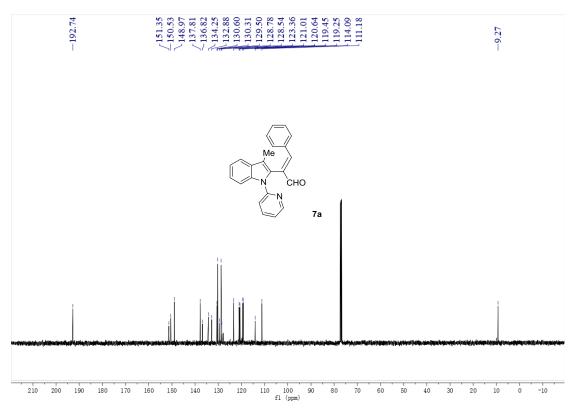

Supplementary Fig. 225 \mid ¹³C NMR (126 MHz) of compound 51 (using CDCl₃ as solvent)

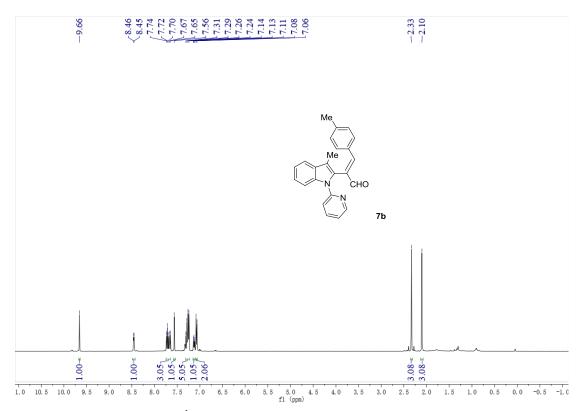
8.63 8.62 7.78 8.62 7.78 7.78 7.78 7.79

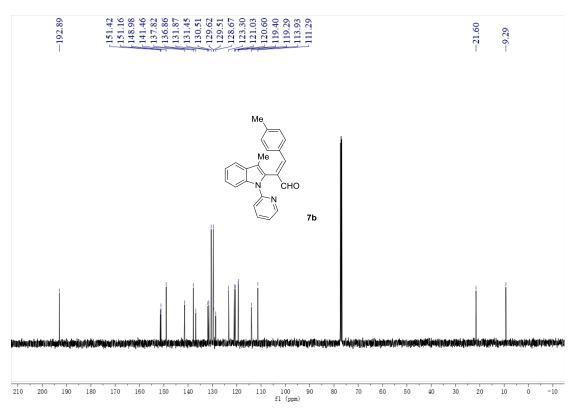


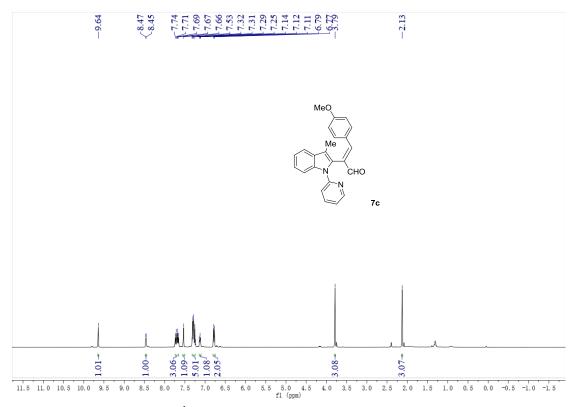

Supplementary Fig. 226 | ¹H NMR (400 MHz) of compound 5m (using CDCl₃ as solvent)

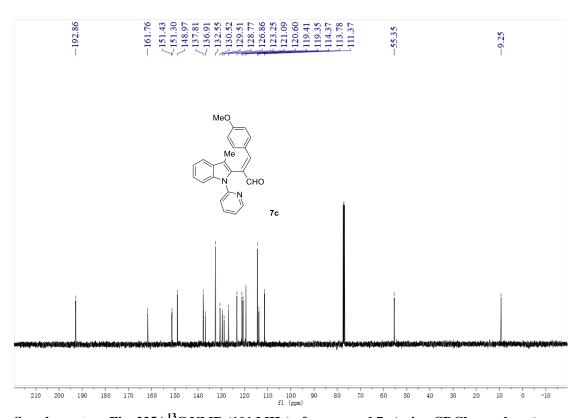

Supplementary Fig. 227 \mid 13 C NMR (101 MHz) of compound 5m (using CDCl $_3$ as solvent)

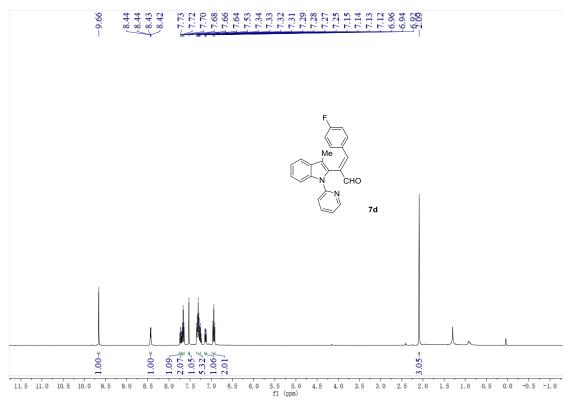

Supplementary Fig. 228 | ¹H NMR (500 MHz) of compound 5n (using CDCl₃ as solvent)

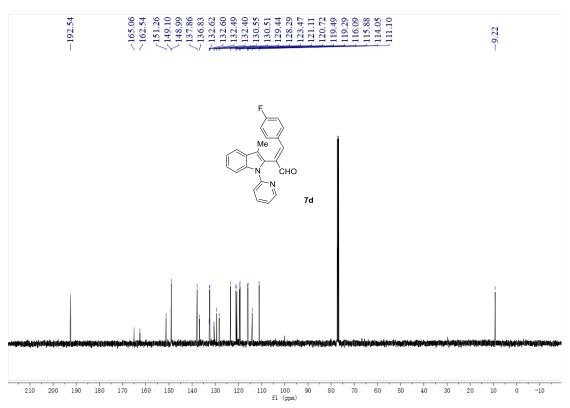

Supplementary Fig. 229 \mid ¹³C NMR (126 MHz) of compound 5n (using CDCl₃ as solvent)

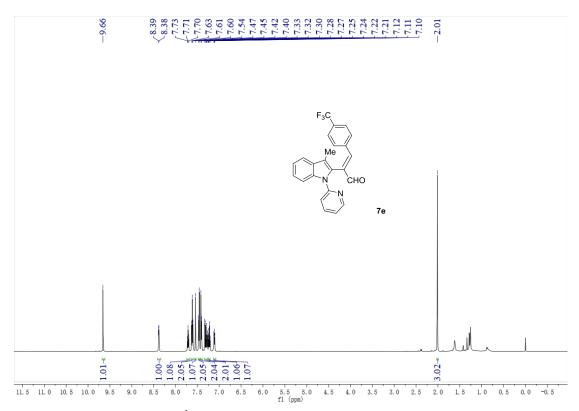

Supplementary Fig. 230 | ¹H NMR (400 MHz) of compound 7a (using CDCl₃ as solvent)

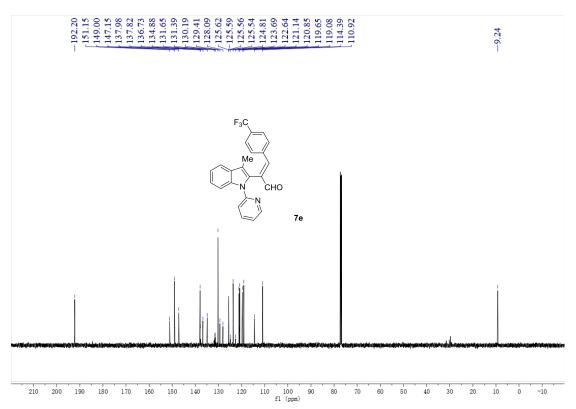

Supplementary Fig. 231 \mid ^{13}C NMR (101 MHz) of compound 7a (using CDCl3 as solvent)

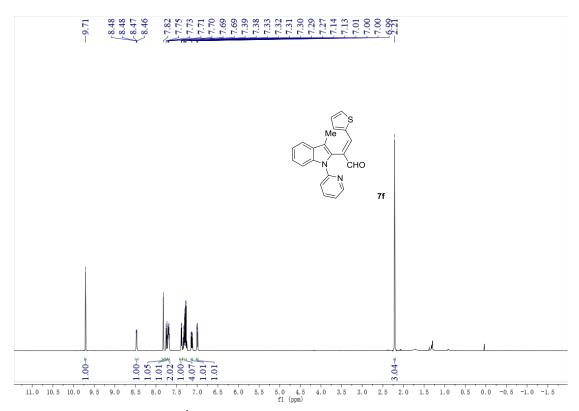

Supplementary Fig. 232 | ¹H NMR (400 MHz) of compound 7b (using CDCl₃ as solvent)

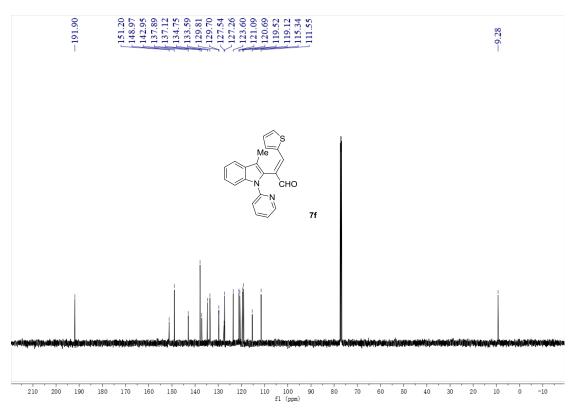

Supplementary Fig. 233 \mid ^{13}C NMR (101 MHz) of compound 7b (using CDCl $_3$ as solvent)

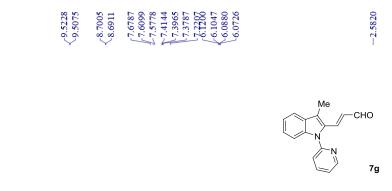

Supplementary Fig. 234 | ¹H NMR (400 MHz) of compound 7c (using CDCl₃ as solvent)

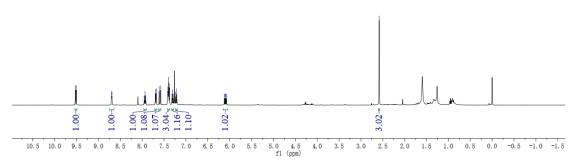

Supplementary Fig. 235 \mid ^{13}C NMR (101 MHz) of compound 7c (using CDCl $_3$ as solvent)


Supplementary Fig. 236 | ¹H NMR (400 MHz) of compound 7d (using CDCl₃ as solvent)

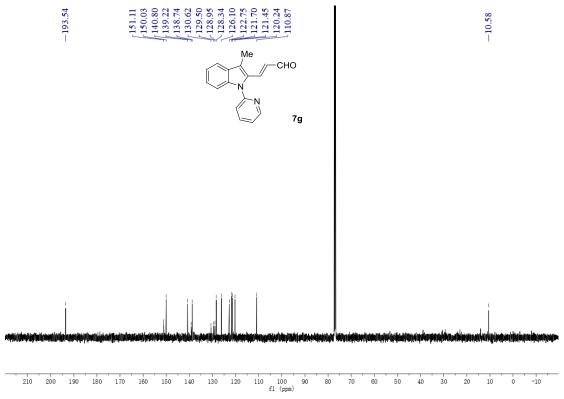

Supplementary Fig. 237 \mid ^{13}C NMR (101 MHz) of compound 7d (using CDCl $_3$ as solvent)


Supplementary Fig. 238 | ¹H NMR (500 MHz) of compound 7e (using CDCl₃ as solvent)

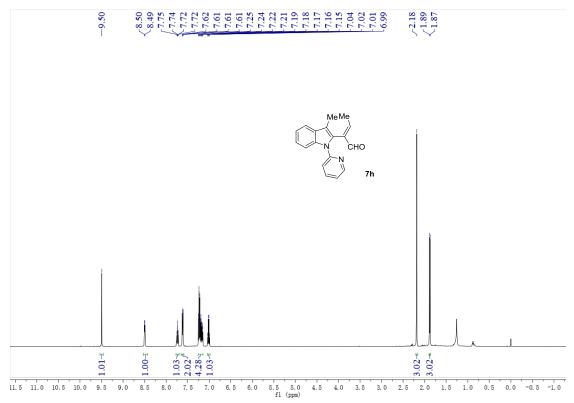

Supplementary Fig. 239 \mid ¹³C NMR (126 MHz) of compound 7e (using CDCl₃ as solvent)

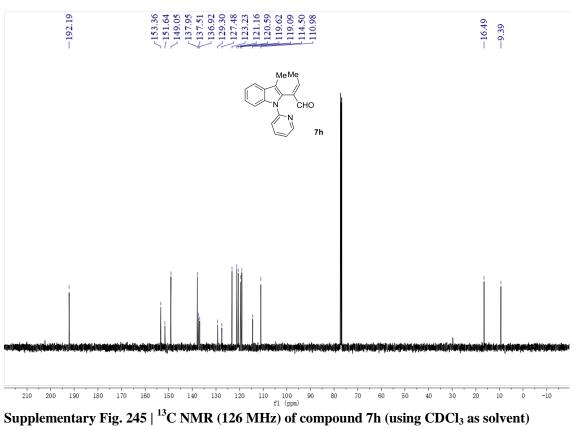


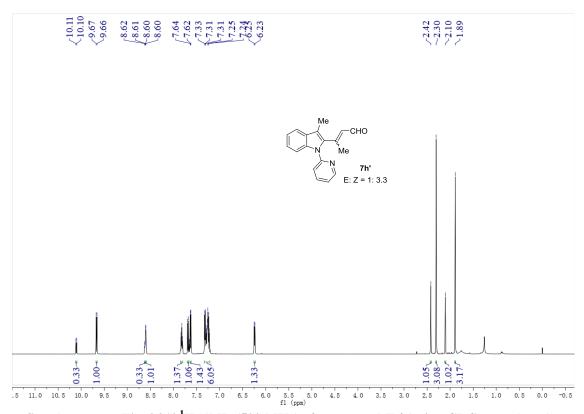
Supplementary Fig. 240 | ¹H NMR (400 MHz) of compound 7f (using CDCl₃ as solvent)



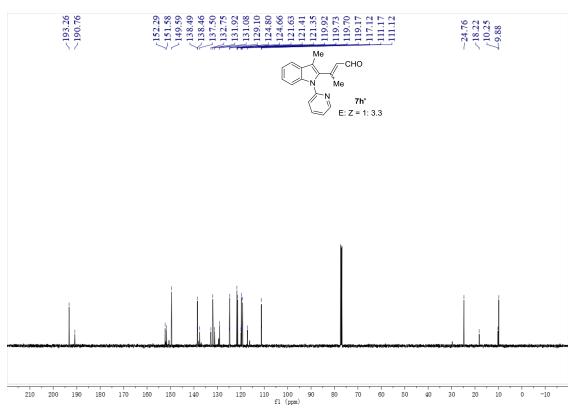
Supplementary Fig. 241 \mid ^{13}C NMR (101 MHz) of compound 7f (using CDCl $_3$ as solvent)



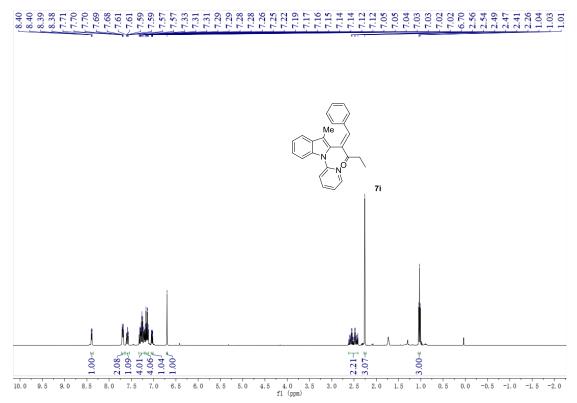

Supplementary Fig. 242 | ¹H NMR (500 MHz) of compound 7g (using CDCl₃ as solvent)

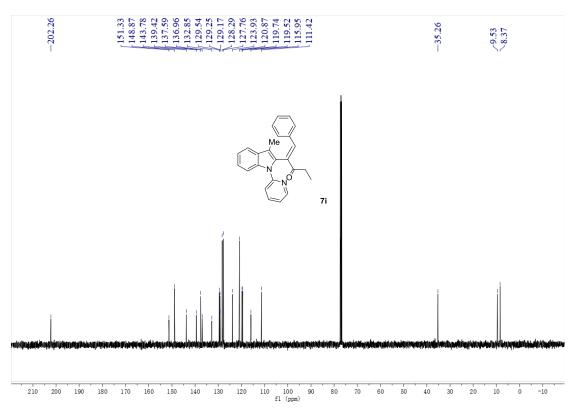


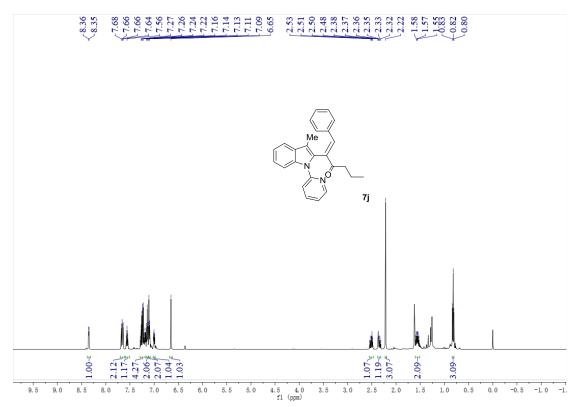
Supplementary Fig. 243 \mid 13 C NMR (126 MHz) of compound 7g (using CDCl $_3$ as solvent)

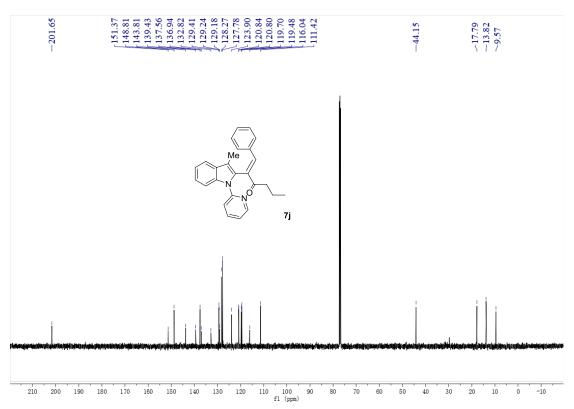


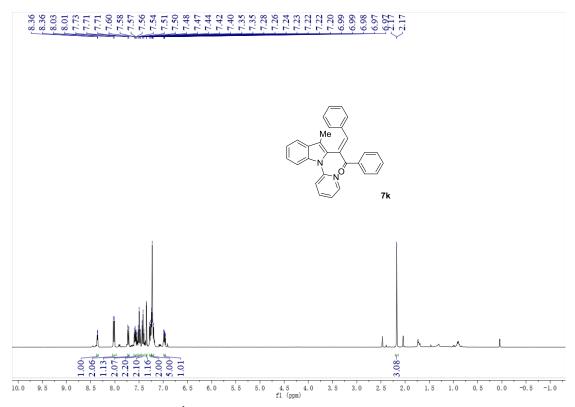
Supplementary Fig. 244 | ¹H NMR (500 MHz) of compound 7h (using CDCl₃ as solvent)

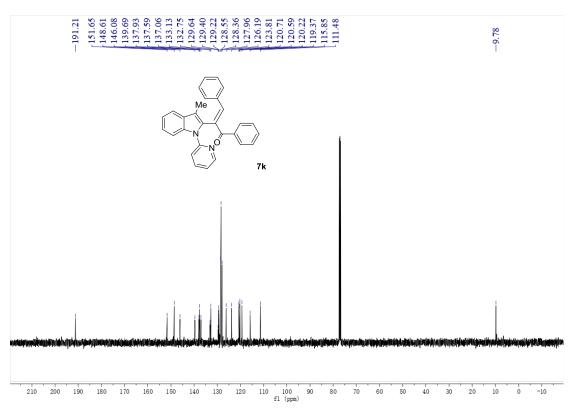


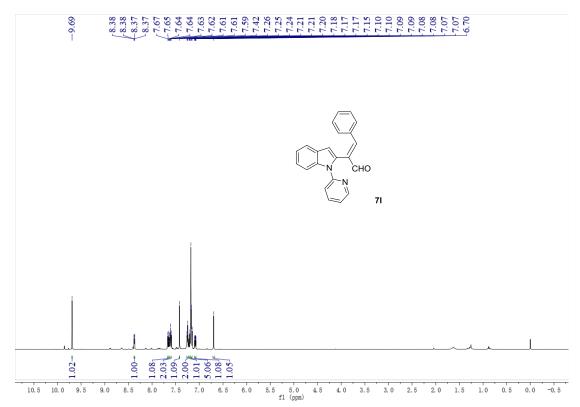

Supplementary Fig. 246 | ¹H NMR (500 MHz) of compound 7h' (using CDCl₃ as solvent)

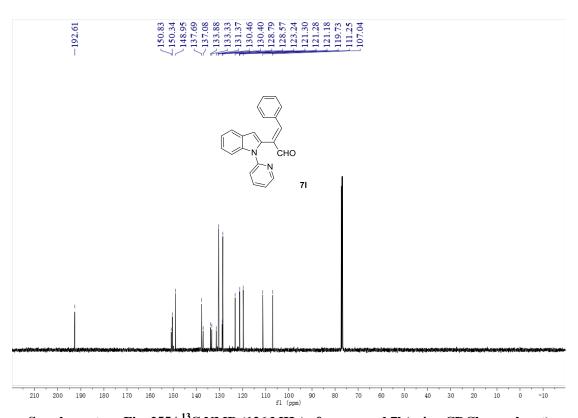

Supplementary Fig. 247 \mid 13 C NMR (126 MHz) of compound 7h' (using CDCl $_3$ as solvent)

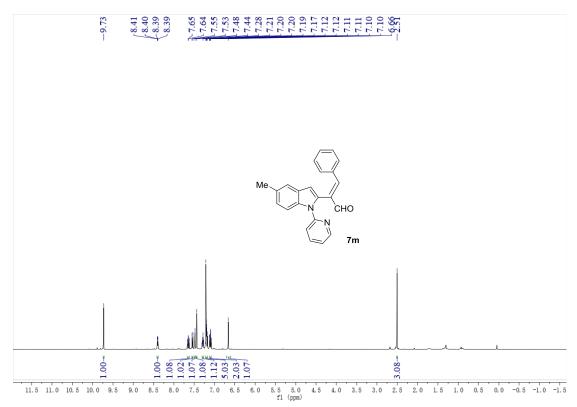

Supplementary Fig. 248 \mid ¹H NMR (400 MHz) of compound 7i (using CDCl₃ as solvent)

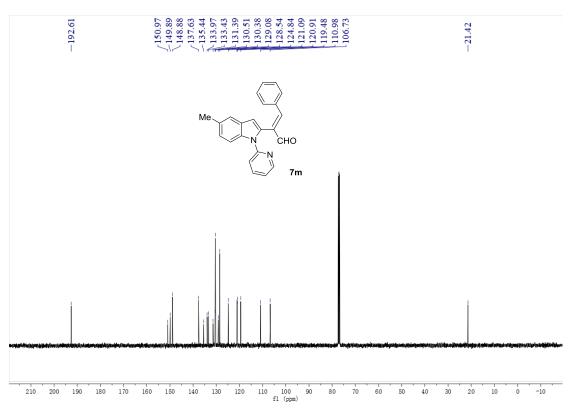

Supplementary Fig. 249 \mid ¹³C NMR (101 MHz) of compound 7i (using CDCl₃ as solvent)

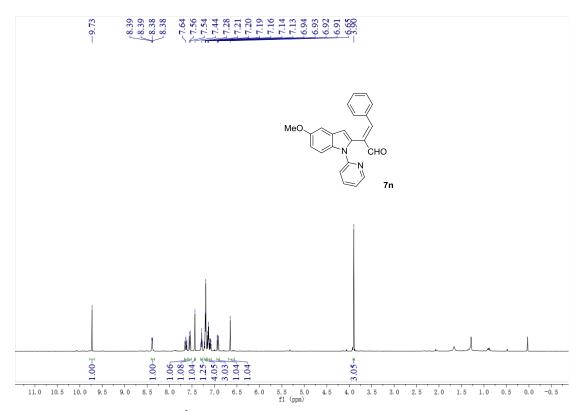

Supplementary Fig. 250 | ¹H NMR (500 MHz) of compound 7j (using CDCl₃ as solvent)

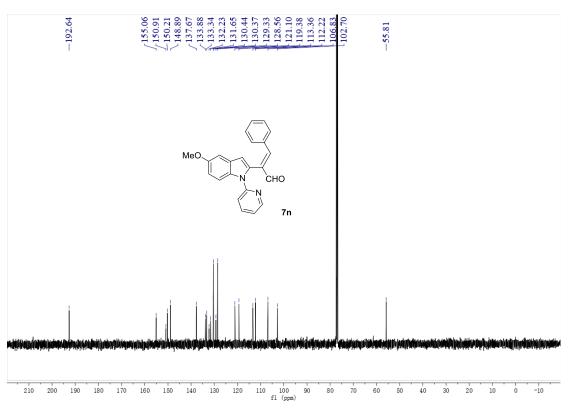

Supplementary Fig. 251 \mid ^{13}C NMR (126 MHz) of compound 7j (using CDCl $_3$ as solvent)

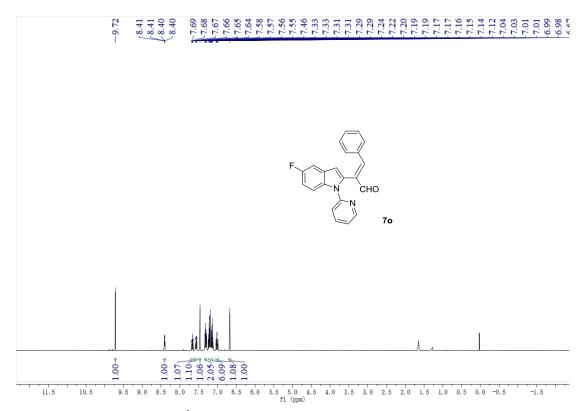

Supplementary Fig. 252 | ¹H NMR (400 MHz) of compound 7k (using CDCl₃ as solvent)

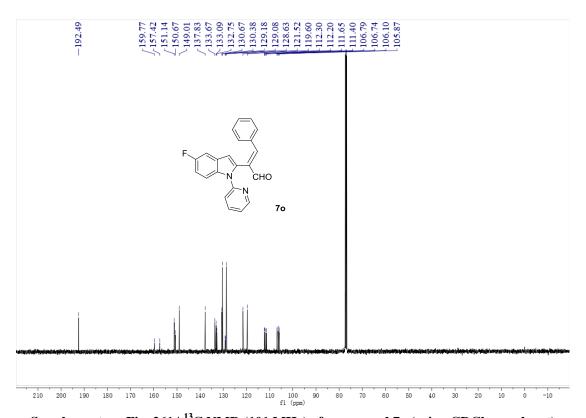

Supplementary Fig. 253 \mid ¹³C NMR (101 MHz) of compound 7k (using CDCl₃ as solvent)

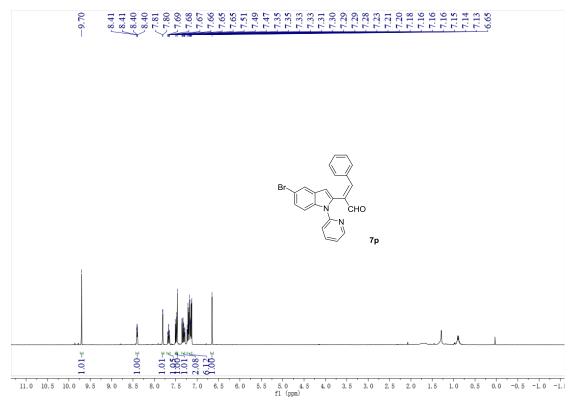

Supplementary Fig. 254 | ¹H NMR (500 MHz) of compound 7l (using CDCl₃ as solvent)

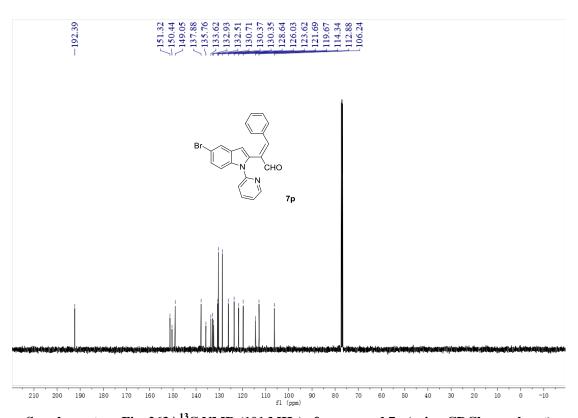

Supplementary Fig. 255 \mid ¹³C NMR (126 MHz) of compound 7l (using CDCl₃ as solvent)

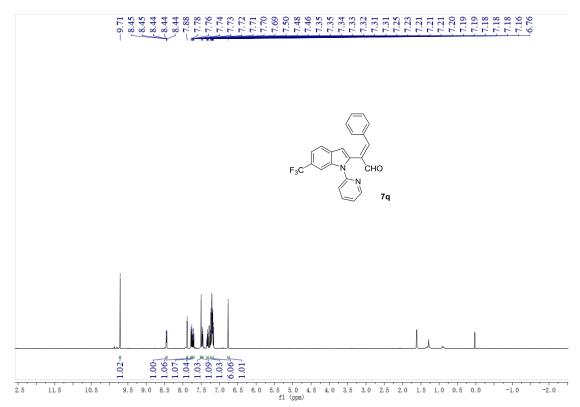

Supplementary Fig. 256 | ¹H NMR (400 MHz) of compound 7m (using CDCl₃ as solvent)

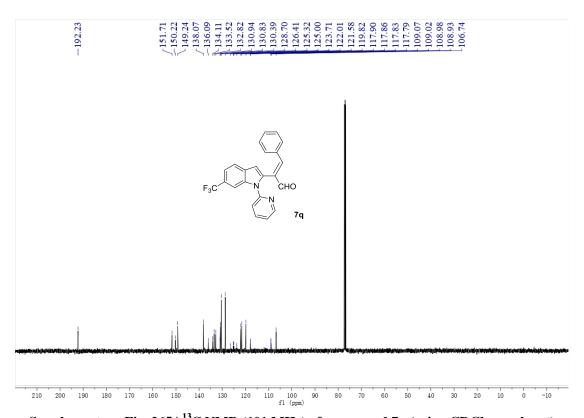

Supplementary Fig. 257 \mid ^{13}C NMR (101 MHz) of compound 7m (using CDCl $_3$ as solvent)

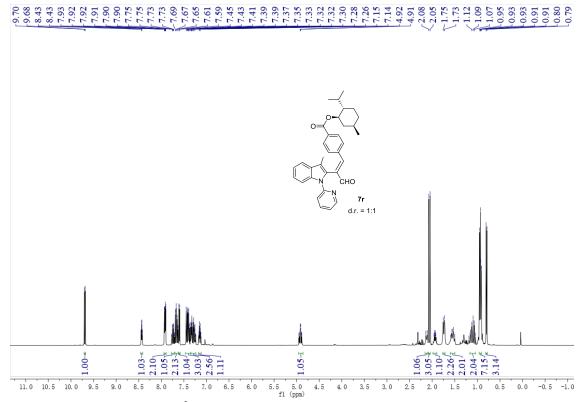

Supplementary Fig. 258 | ¹H NMR (400 MHz) of compound 7n (using CDCl₃ as solvent)

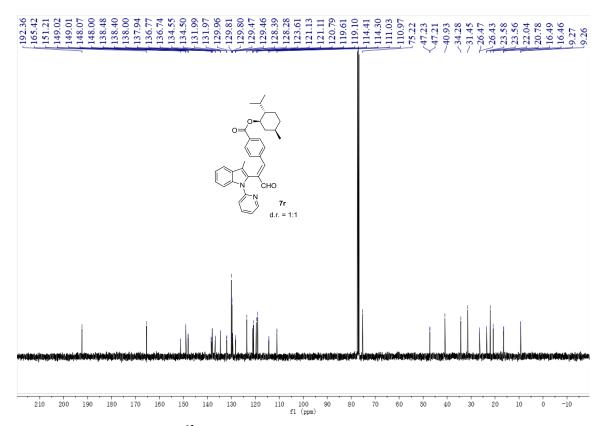

Supplementary Fig. 259 \mid ^{13}C NMR (101 MHz) of compound 7n (using CDCl $_3$ as solvent)

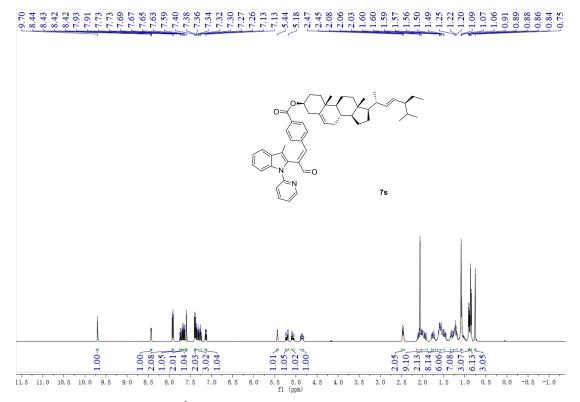

Supplementary Fig. 260 | ¹H NMR (400 MHz) of compound 70 (using CDCl₃ as solvent)

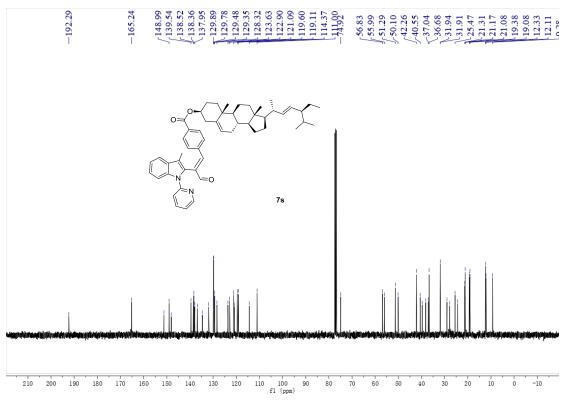

Supplementary Fig. 261 \mid ¹³C NMR (101 MHz) of compound 70 (using CDCl₃ as solvent)

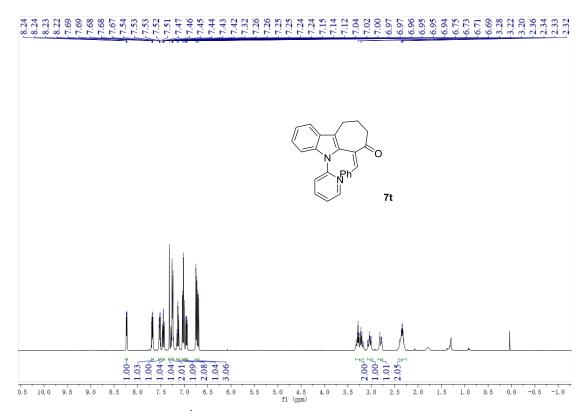

Supplementary Fig. 262 | ¹H NMR (400 MHz) of compound 7p (using CDCl₃ as solvent)

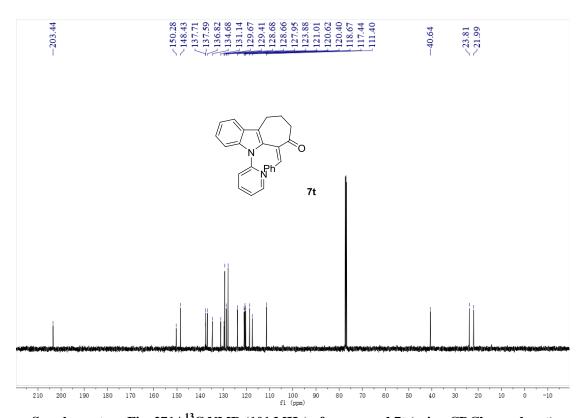

Supplementary Fig. 263 | ¹³C NMR (101 MHz) of compound 7p (using CDCl₃ as solvent)

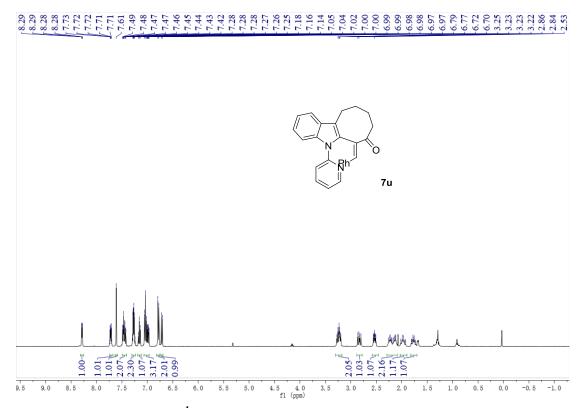

Supplementary Fig. 264 | ¹H NMR (400 MHz) of compound 7q (using CDCl₃ as solvent)

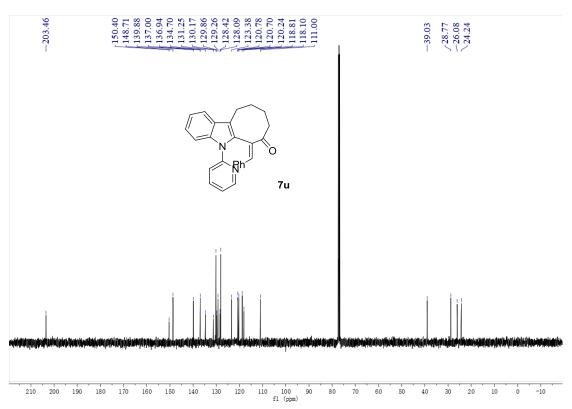

Supplementary Fig. 265 \mid ¹³C NMR (101 MHz) of compound 7q (using CDCl₃ as solvent)

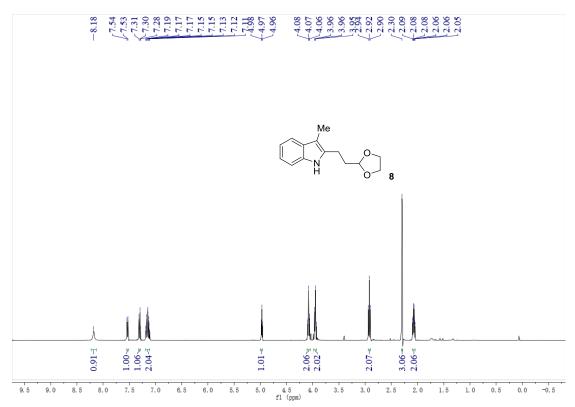

Supplementary Fig. 266 | ¹H NMR (400 MHz) of compound 7r (using CDCl₃ as solvent)

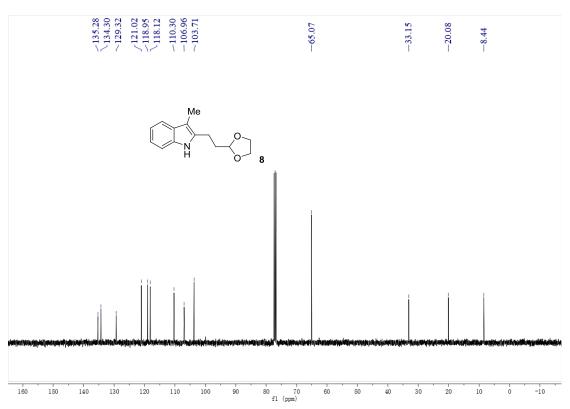

Supplementary Fig. 267 | ¹³C NMR (101 MHz) of compound 7r (using CDCl₃ as solvent)

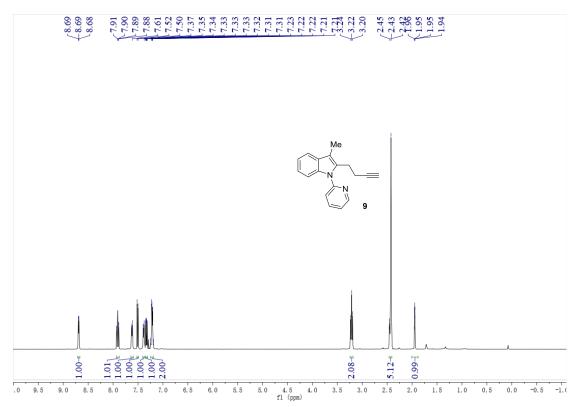

Supplementary Fig. 268 | ¹H NMR (400 MHz) of compound 7s (using CDCl₃ as solvent)

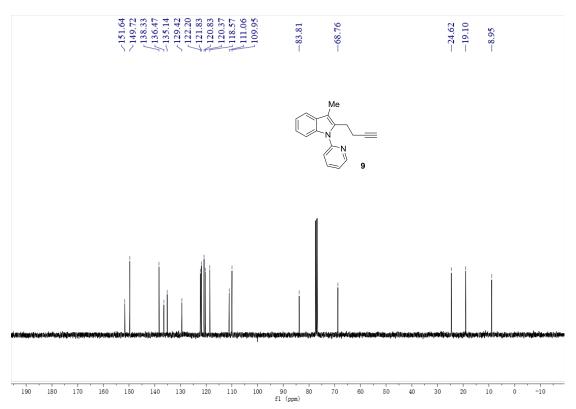

Supplementary Fig. 269 \mid ^{13}C NMR (101 MHz) of compound 7s (using CDCl₃ as solvent)

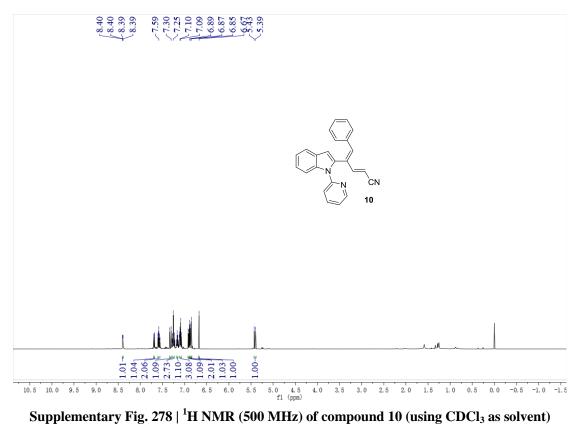

Supplementary Fig. 270 | ¹H NMR (400 MHz) of compound 7t (using CDCl₃ as solvent)

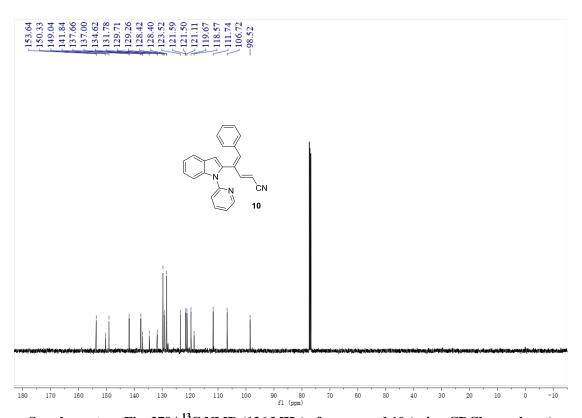

Supplementary Fig. 271 \mid ¹³C NMR (101 MHz) of compound 7t (using CDCl₃ as solvent)

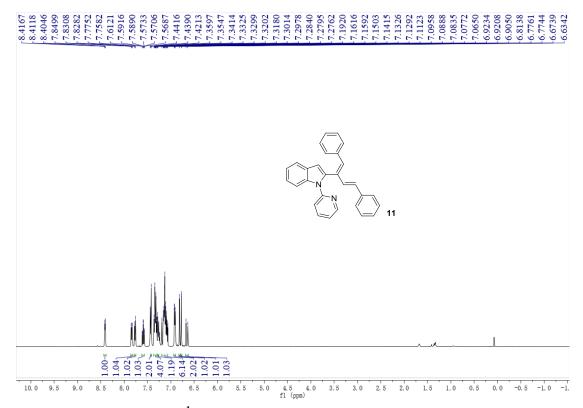

Supplementary Fig. 272 | ¹H NMR (400 MHz) of compound 7u (using CDCl₃ as solvent)

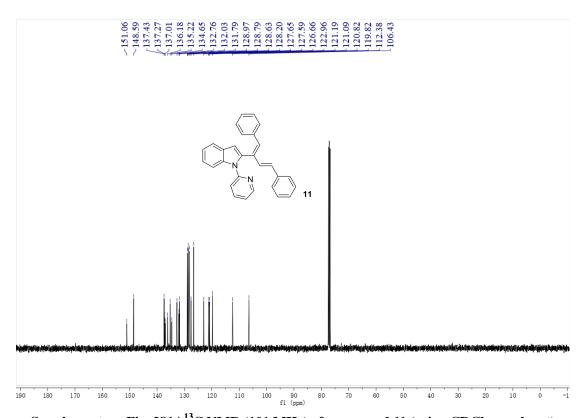

Supplementary Fig. 273 \mid ¹³C NMR (101 MHz) of compound 7u (using CDCl₃ as solvent)

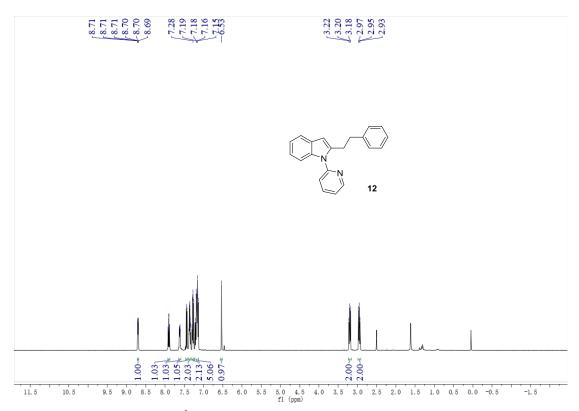

Supplementary Fig. 274 | ¹H NMR (400 MHz) of compound 8 (using CDCl₃ as solvent)

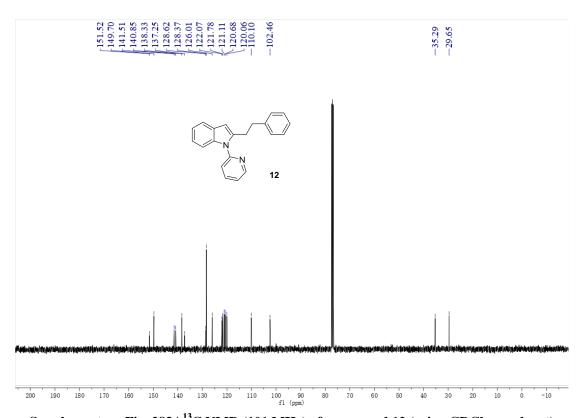

Supplementary Fig. 275 \mid 13 C NMR (101 MHz) of compound 8 (using CDCl₃ as solvent)

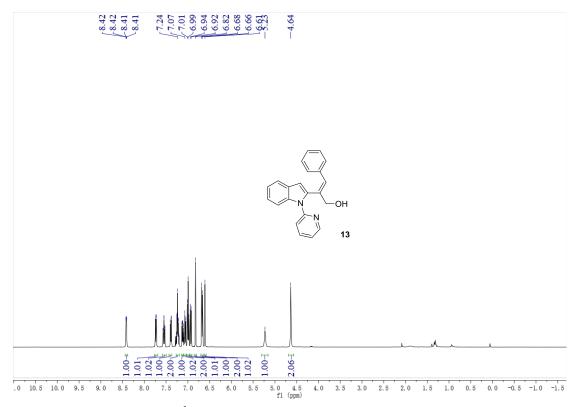

Supplementary Fig. 276 | ¹H NMR (400 MHz) of compound 9 (using CDCl₃ as solvent)

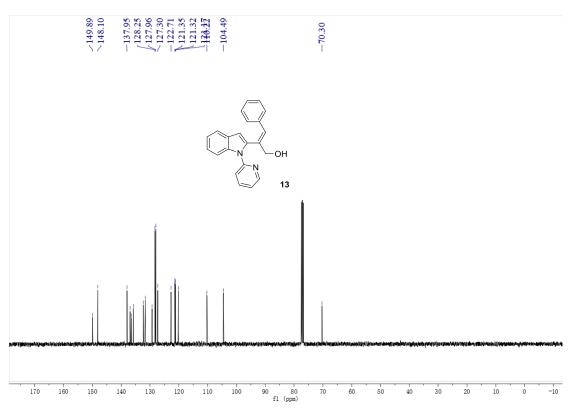

Supplementary Fig. 277 \mid ¹³C NMR (101 MHz) of compound 9 (using CDCl₃ as solvent)

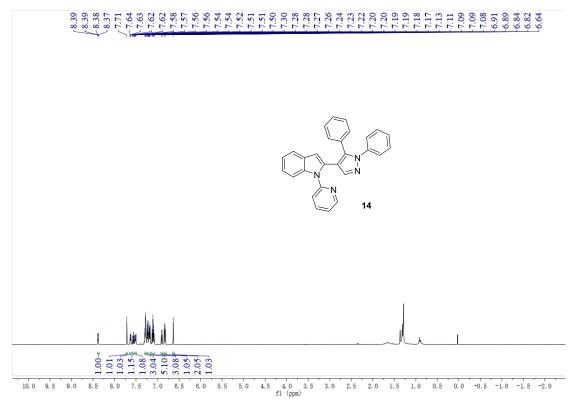

Supplementary Fig. 278 | ¹H NMR (500 MHz) of compound 10 (using CDCl₃ as solvent)

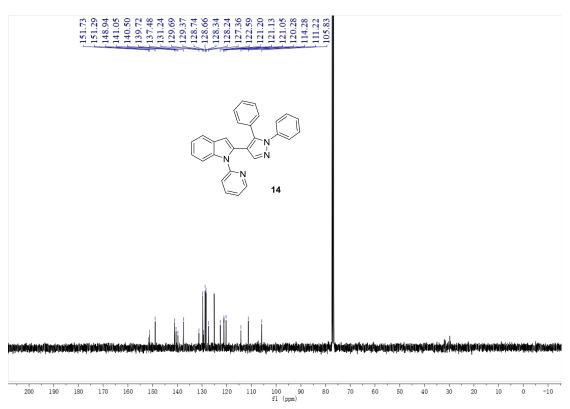

Supplementary Fig. 279 \mid ¹³C NMR (126 MHz) of compound 10 (using CDCl₃ as solvent)


Supplementary Fig. 280 | ¹H NMR (400 MHz) of compound 11 (using CDCl₃ as solvent)


Supplementary Fig. 281 \mid ¹³C NMR (101 MHz) of compound 11 (using CDCl₃ as solvent)

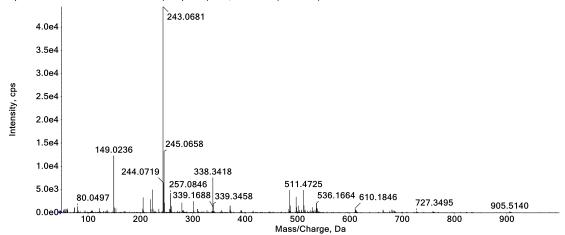

Supplementary Fig. 282 | ¹H NMR (400 MHz) of compound 12 (using CDCl₃ as solvent)


Supplementary Fig. 283 \mid ^{13}C NMR (101 MHz) of compound 12 (using CDCl $_3$ as solvent)

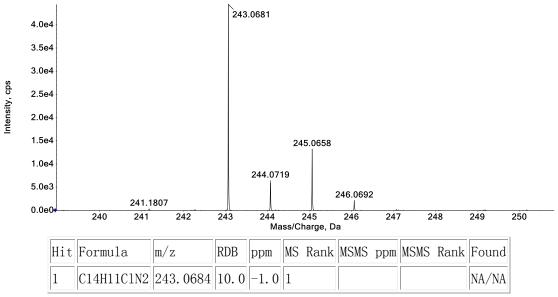

Supplementary Fig. 284 | ¹H NMR (400 MHz) of compound 13 (using CDCl₃ as solvent)

Supplementary Fig. 285 | 13 C NMR (101 MHz) of compound 13 (using CDCl $_3$ as solvent)

Supplementary Fig. 286 | ¹H NMR (400 MHz) of compound 14 (using CDCl₃ as solvent)

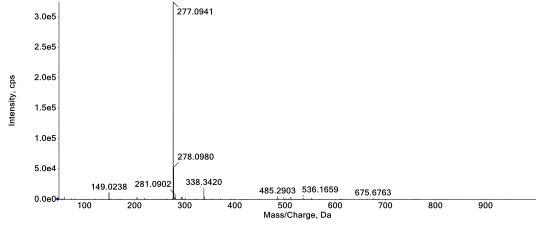


Supplementary Fig. 287 \mid ¹³C NMR (101 MHz) of compound 14 (using CDCl₃ as solvent)

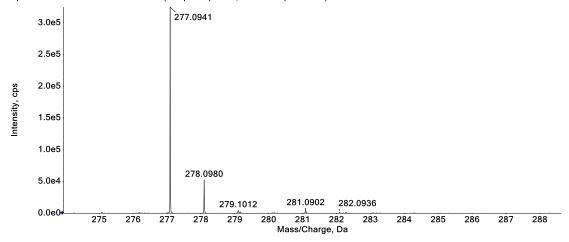

III. HR-MS Spectrum of the New Products

HR-MS spectrum of S1-1

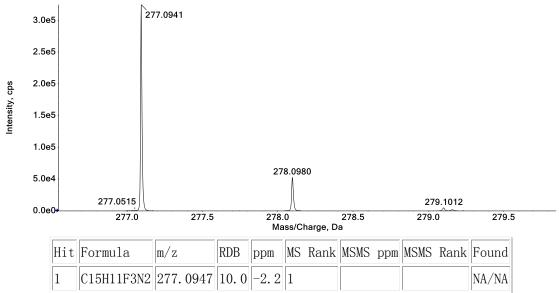
Spectrum from MASS20210609.wiff2 (sample 51) - Y4, +TOF MS (50 - 1000) from 0.132 to 0.167 min



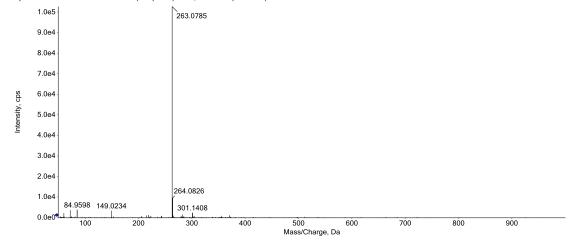
Spectrum from MASS20210609.wiff2 (sample 51) - Y4, +TOF MS (50 - 1000) from 0.132 to 0.167 min

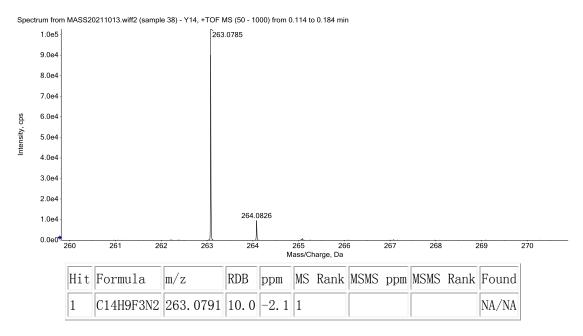


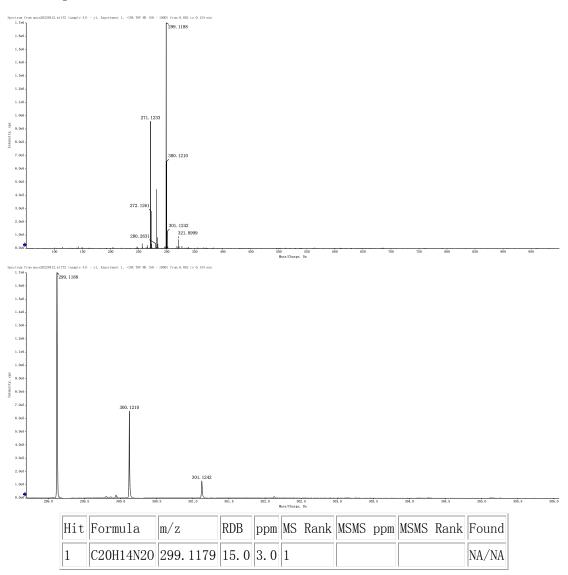
HR-MS spectrum of S1-2


Spectrum from MASS20210609.wiff2 (sample 70) - Y23, +TOF MS (50 - 1000) from 0.079 to 0.114 min

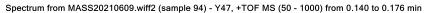
Spectrum from MASS20210609.wiff2 (sample 70) - Y23, +TOF MS (50 - 1000) from 0.079 to 0.114 min

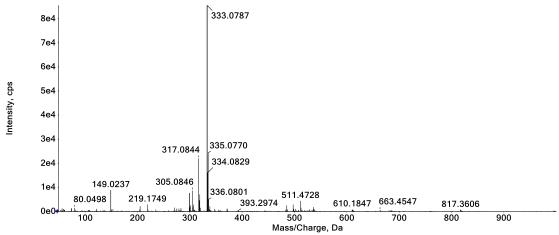



Spectrum from MASS20210609.wiff2 (sample 70) - Y23, +TOF MS (50 - 1000) from 0.079 to 0.114 min

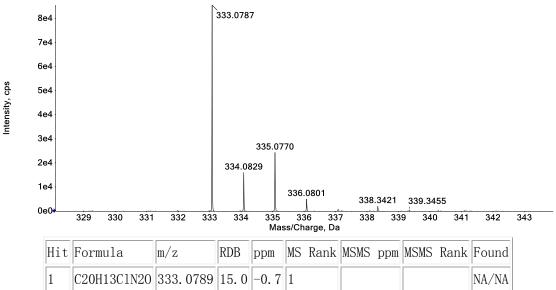

HR-MS spectrum of S1-3

Spectrum from MASS20211013.wiff2 (sample 38) - Y14, +TOF MS (50 - 1000) from 0.114 to 0.184 min

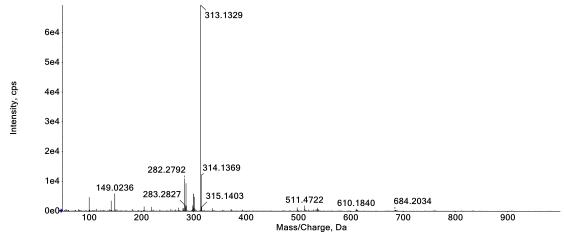




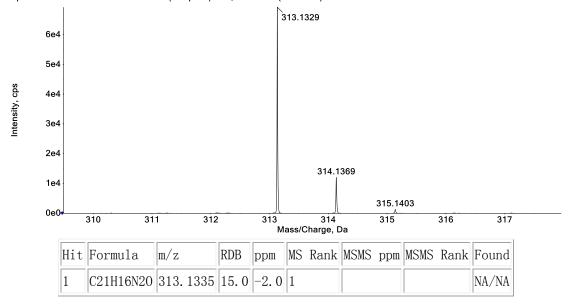
HR-MS spectrum of S2-1



HR-MS spectrum of S2-2

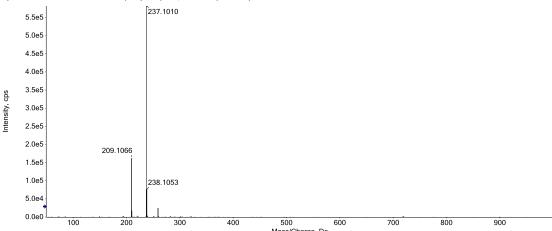


Spectrum from MASS20210609.wiff2 (sample 94) - Y47, +TOF MS (50 - 1000) from 0.140 to 0.176 min

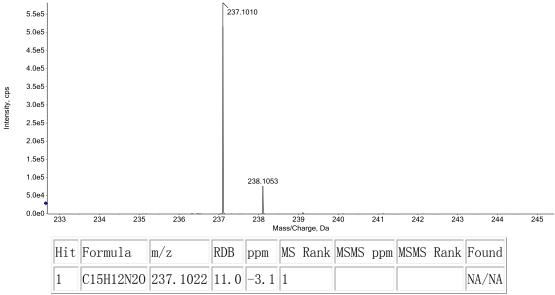


HR-MS spectrum of S2-3

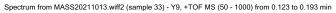
Spectrum from MASS202100707.wiff2 (sample 2) - Y2, +TOF MS (50 - 1000) from 0.158 to 0.193 min

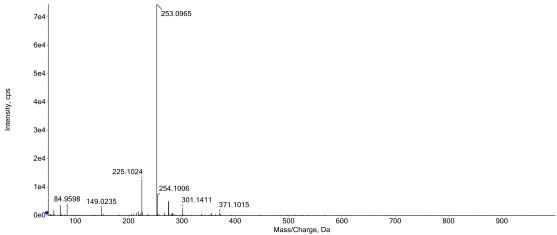


 $Spectrum\ from\ MASS202100707.wiff2\ (sample\ 2)\ -\ Y2,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.158\ to\ 0.193\ min$

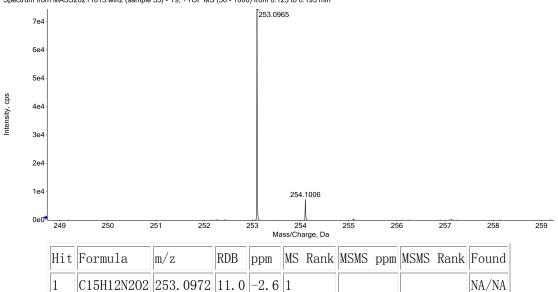


HR-MS spectrum of S2-4

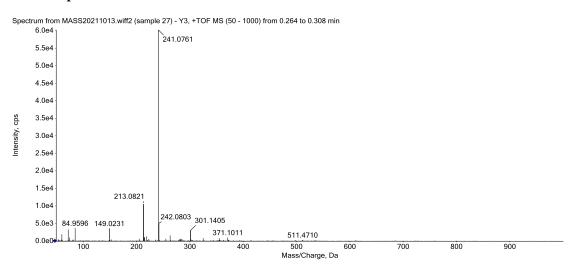

Spectrum from MASS20211013.wiff2 (sample 30) - Y6, +TOF MS (50 - 1000) from 0.088 to 0.158 min

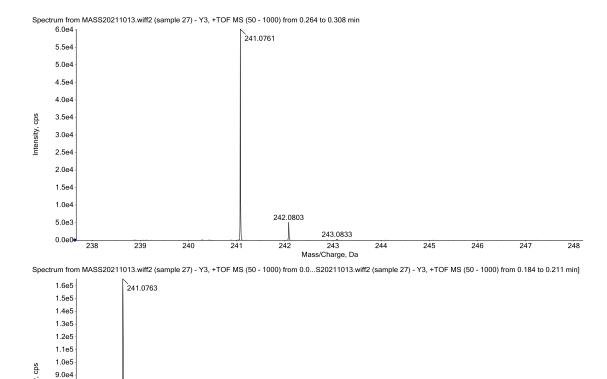


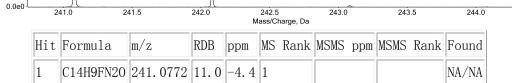
 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 30)\ -\ Y6,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.088\ to\ 0.158\ min$



HR-MS spectrum of S2-5

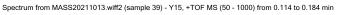


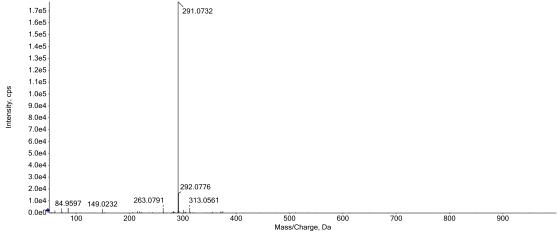

Spectrum from MASS20211013.wiff2 (sample 33) - Y9, +TOF MS (50 - 1000) from 0.123 to 0.193 min



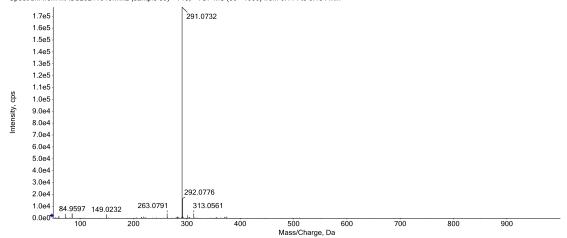
NA/NA

HR-MS spectrum of S2-6

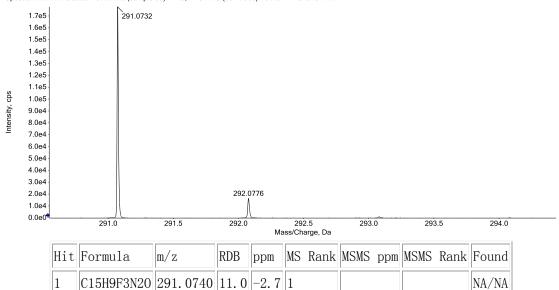



242.0800

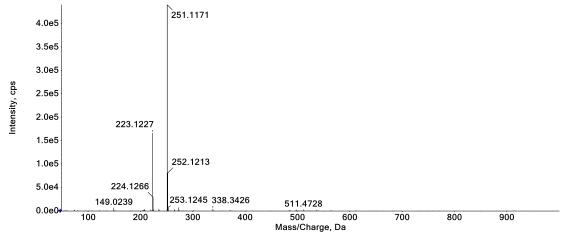
HR-MS spectrum of S2-7


8.0e4 7.0e4 6.0e4 5.0e4 4.0e4 3.0e4 2.0e4

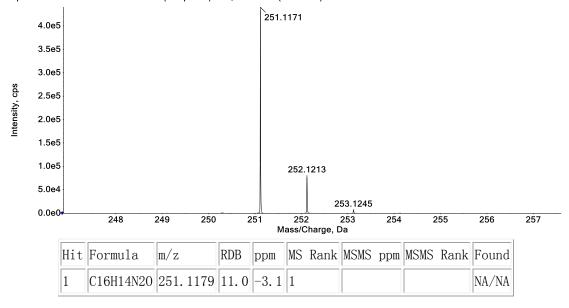
1.0e4



 $Spectrum\ from\ MASS 20211013.wiff 2\ (sample\ 39)\ -\ Y15,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.114\ to\ 0.184\ min$

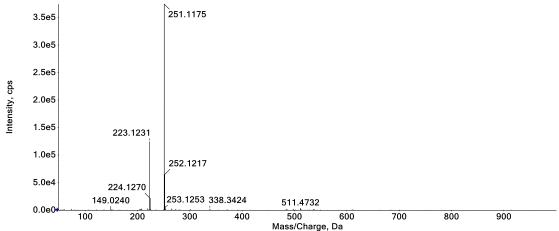


Spectrum from MASS20211013.wiff2 (sample 39) - Y15, +TOF MS (50 - 1000) from 0.114 to 0.184 min

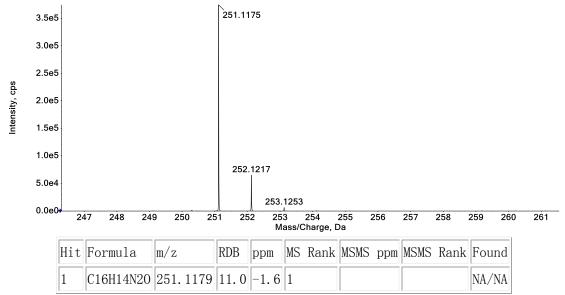


HR-MS spectrum of S2-8

Spectrum from MASS20210609.wiff2 (sample 56) - Y9, +TOF MS (50 - 1000) from 0.132 to 0.167 min

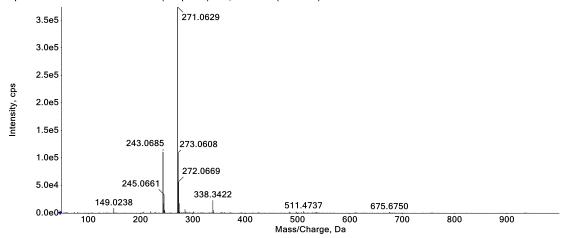


Spectrum from MASS20210609.wiff2 (sample 56) - Y9, +TOF MS (50 - 1000) from 0.132 to 0.167 min

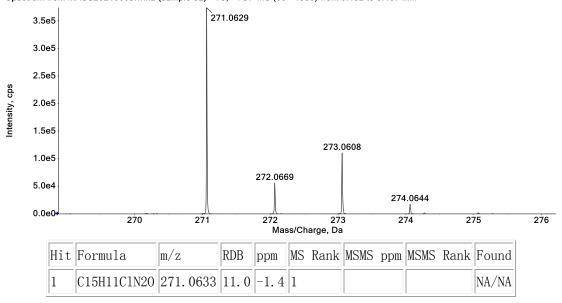


HR-MS spectrum of S2-9

Spectrum from MASS20210609.wiff2 (sample 59) - Y12, +TOF MS (50 - 1000) from 0.132 to 0.167 min

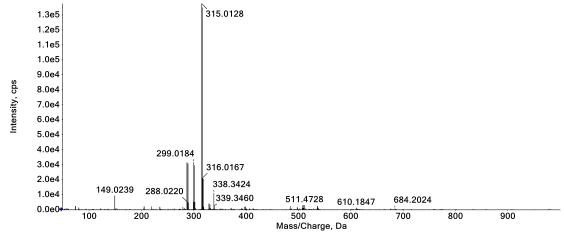


Spectrum from MASS20210609.wiff2 (sample 59) - Y12, +TOF MS (50 - 1000) from 0.132 to 0.167 min

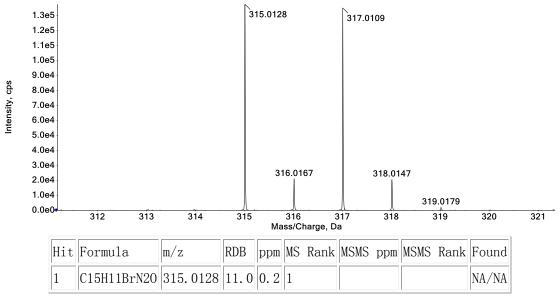


HR-MS spectrum of S2-10

Spectrum from MASS20210609.wiff2 (sample 52) - Y5, +TOF MS (50 - 1000) from 0.132 to 0.167 min

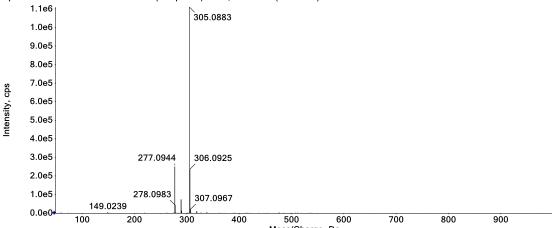


Spectrum from MASS20210609.wiff2 (sample 52) - Y5, +TOF MS (50 - 1000) from 0.132 to 0.167 min

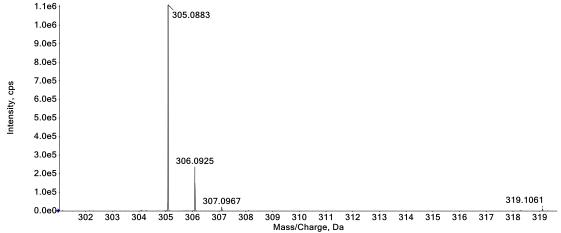


HR-MS spectrum of S2-11

Spectrum from MASS20210609.wiff2 (sample 67) - Y20, +TOF MS (50 - 1000) from 0.079 to 0.114 min

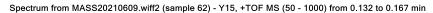


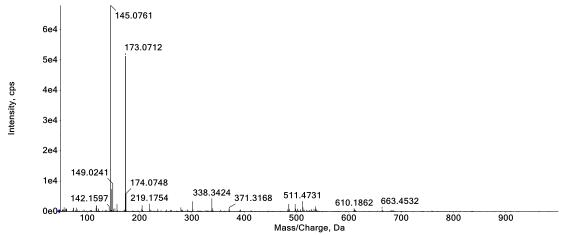
 $Spectrum\ from\ MASS20210609.wiff2\ (sample\ 67)\ -\ Y20,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.079\ to\ 0.114\ min$

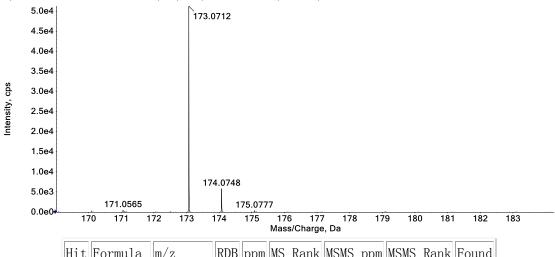


HR-MS spectrum of S2-12

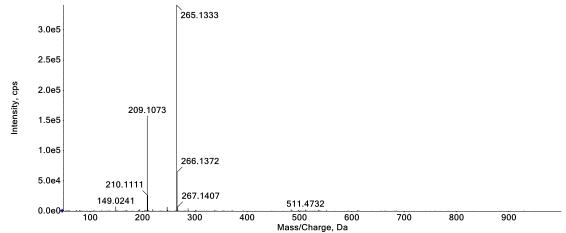
Spectrum from MASS20210609.wiff2 (sample 71) - Y24, +TOF MS (50 - 1000) from 0.079 to 0.114 min

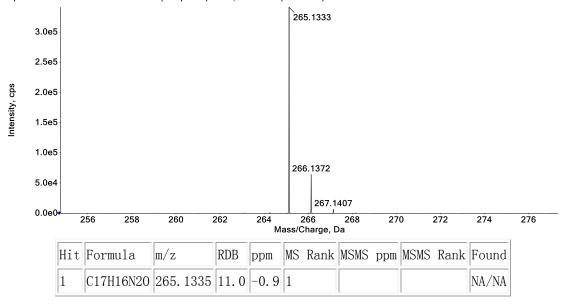



Spectrum from MASS20210609.wiff2 (sample 71) - Y24, +TOF MS (50 - 1000) from 0.079 to 0.114 min


Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C16H11F3N2O	305. 0896	11.0	-4.3	1						NA/NA

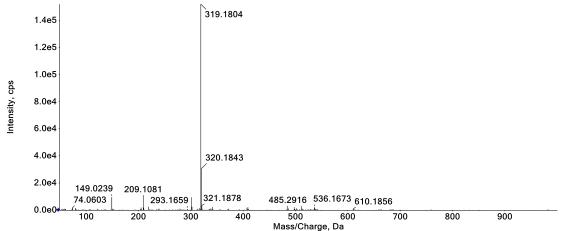
HR-MS spectrum of S2-13


Spectrum from MASS20210609.wiff2 (sample 62) - Y15, +TOF MS (50 - 1000) from 0.132 to 0.167 min

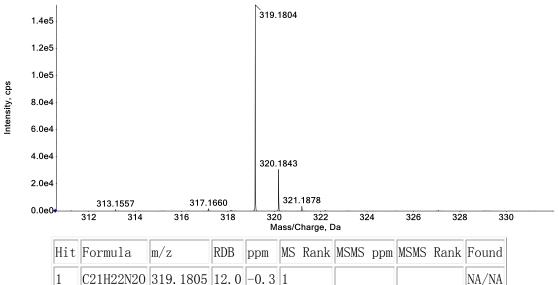

Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C10H8N20	173. 0709	8.0	1. 5	1						NA/NA

HR-MS spectrum of S3-1

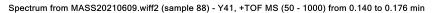
Spectrum from MASS20210609.wiff2 (sample 82) - Y35, +TOF MS (50 - 1000) from 0.140 to 0.176 min

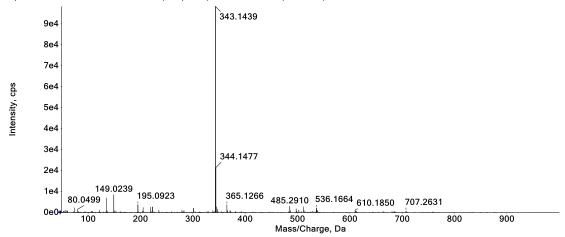


Spectrum from MASS20210609.wiff2 (sample 82) - Y35, +TOF MS (50 - 1000) from 0.140 to 0.176 min

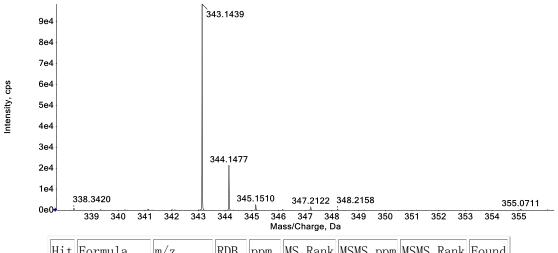


HR-MS spectrum of S3-2

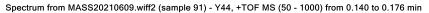

Spectrum from MASS20210609.wiff2 (sample 85) - Y38, +TOF MS (50 - 1000) from 0.140 to 0.176 min

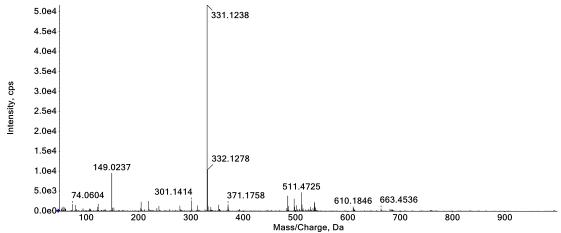


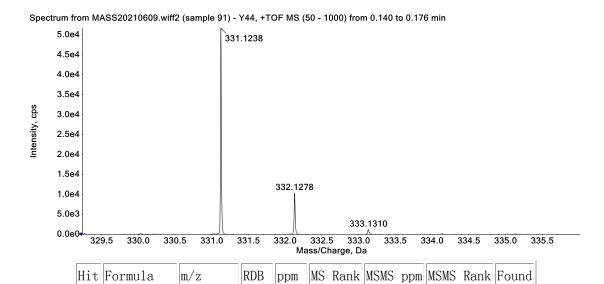
Spectrum from MASS20210609.wiff2 (sample 85) - Y38, +TOF MS (50 - 1000) from 0.140 to 0.176 min



HR-MS spectrum of S3-3

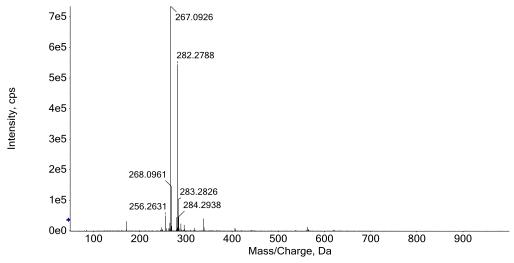



Spectrum from MASS20210609.wiff2 (sample 88) - Y41, +TOF MS (50 - 1000) from 0.140 to 0.176 min



Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C22H18N202	343. 1441	15. 0	-0.6	1						NA/NA

HR-MS spectrum of S3-4

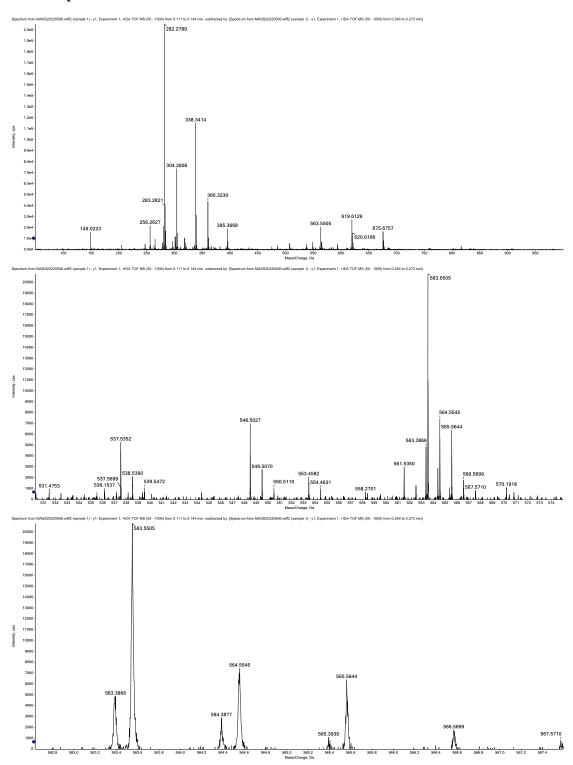

HR-MS spectrum of S3-5

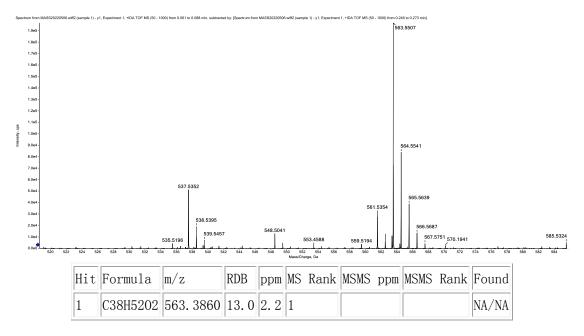
C21H15FN20 331. 1241 15. 0

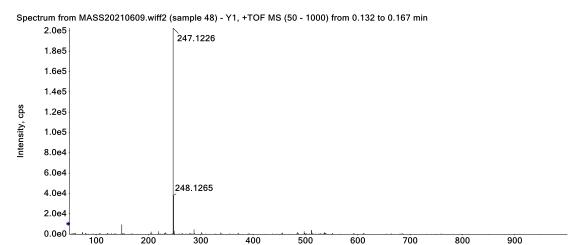

Spectrum from MASS20220928.wiff2 (sample 2) - Y1, Experiment 1, +IDA T...) - Y1, Experiment 1, +IDA TOF MS (50 - 1000) from 0.138 to 0.230 min]

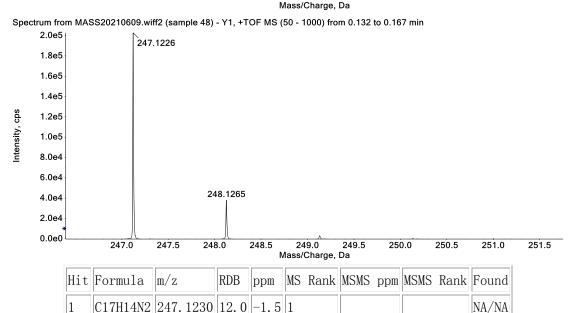
-1.0|1

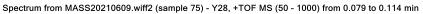
NA/NA

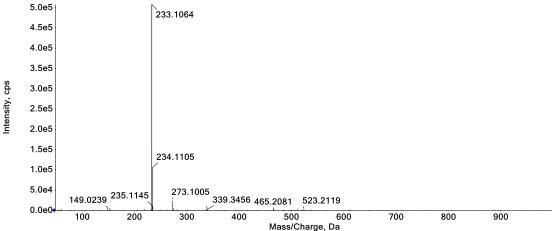


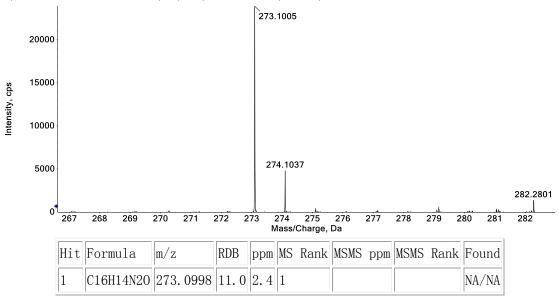

 $Spectrum\ from\ MASS20220928.wiff 2\ (sample\ 2)-Y1, Experiment\ 1, +IDA\ T...)-Y1, Experiment\ 1, +IDA\ TOF\ MS\ (50-1000)\ from\ 0.138\ to\ 0.230\ min]$


Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C16H11FN2O	267. 0928	12.0	-0.8	1						NA/NA

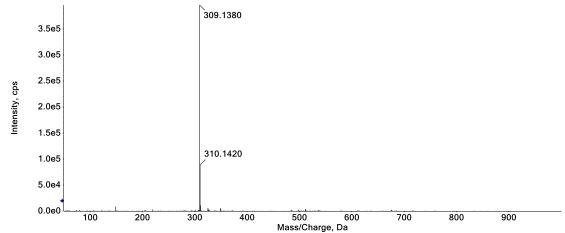

HR-MS spectrum of S4-2



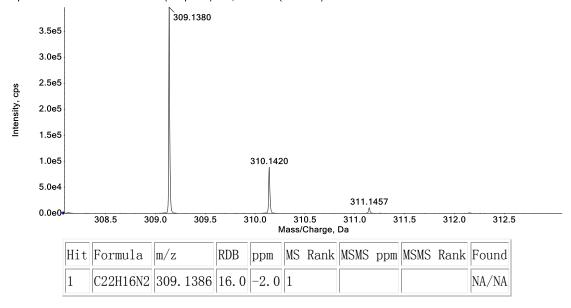

HR-MS spectrum of 1a



HR-MS spectrum of 1b

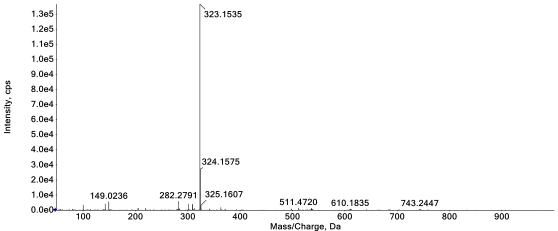


Spectrum from MASS20210609.wiff2 (sample 75) - Y28, +TOF MS (50 - 1000) from 0.079 to 0.114 min

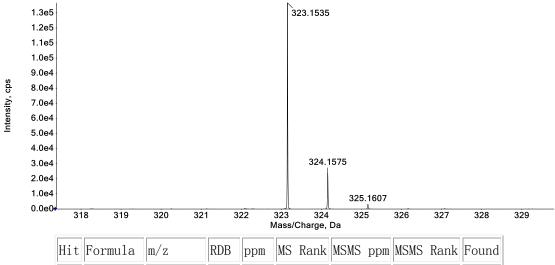


HR-MS spectrum of 1c

Spectrum from MASS20210609.wiff2 (sample 50) - Y3, +TOF MS (50 - 1000) from 0.132 to 0.167 min



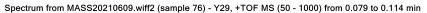
Spectrum from MASS20210609.wiff2 (sample 50) - Y3, +TOF MS (50 - 1000) from 0.132 to 0.167 min

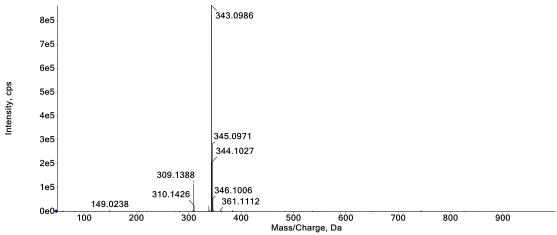


HR-MS spectrum of 1d

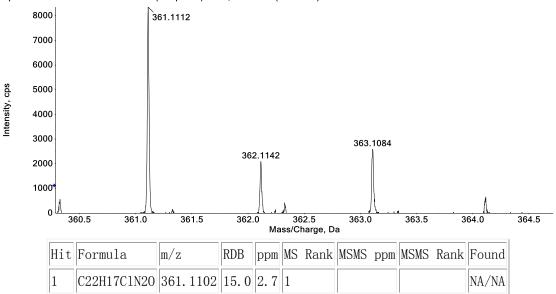
Spectrum from MASS202100707.wiff2 (sample 3) - Y3, +TOF MS (50 - 1000) from 0.158 to 0.193 min

Spectrum from MASS202100707.wiff2 (sample 3) - Y3, +TOF MS (50 - 1000) from 0.158 to 0.193 min

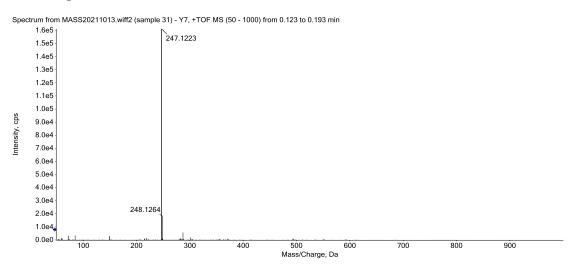


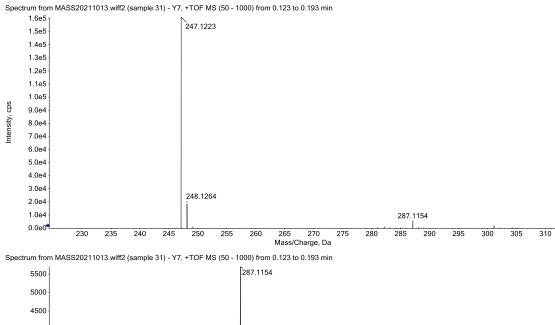

 Hit
 Formula
 m/z
 RDB
 ppm
 MS
 Rank
 MSMS
 ppm
 MSMS
 Rank
 Found

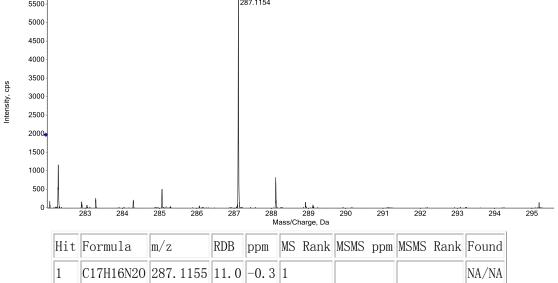
 1
 C23H18N2
 323.1543
 16.0
 -2.4
 1

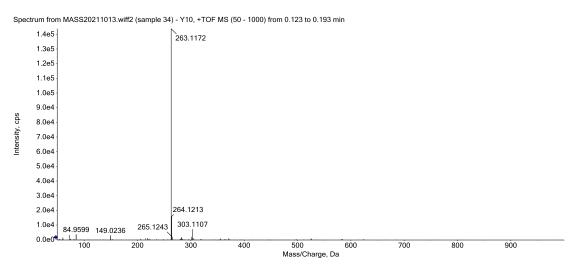

 NA/NA

HR-MS spectrum of 1e

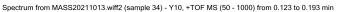


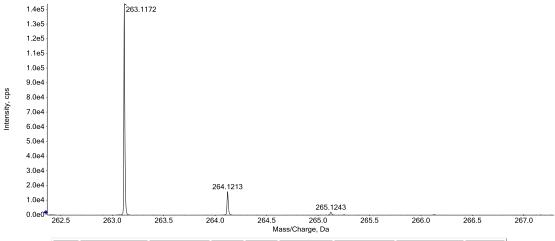



Spectrum from MASS20210609.wiff2 (sample 76) - Y29, +TOF MS (50 - 1000) from 0.079 to 0.114 min


HR-MS spectrum of 1f

HR-MS spectrum of 1g

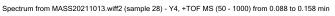


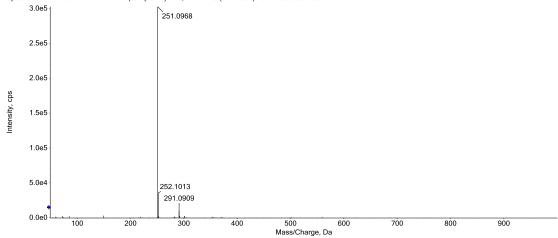

285 290 Mass/Charge, Da 295

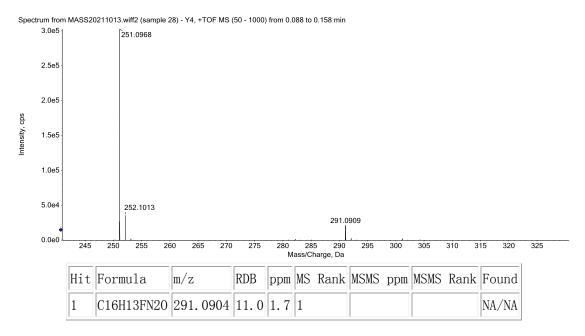
300

310

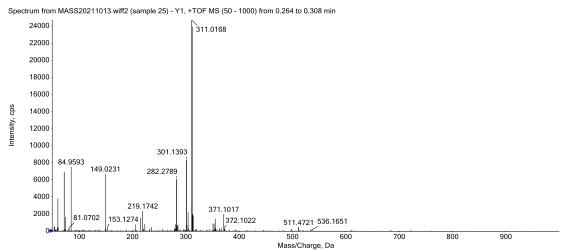
315

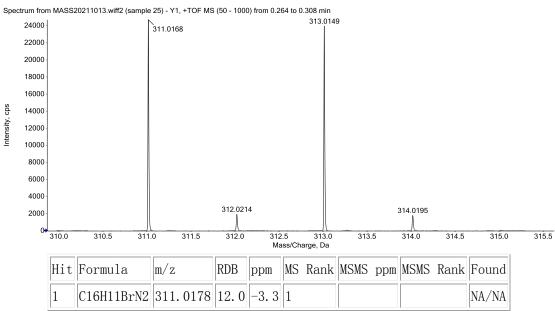


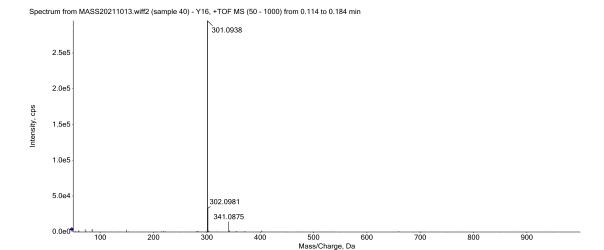


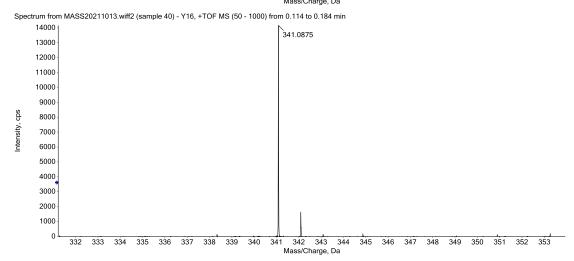

Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C17H14N2O	263. 1179	12.0	-2.6	1						NA/NA

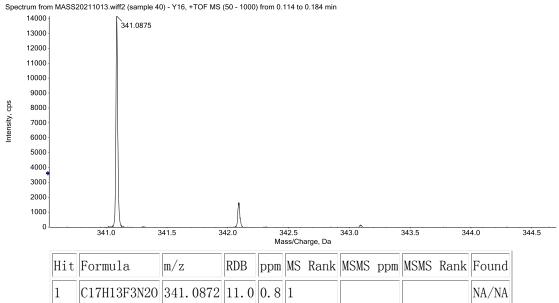
HR-MS spectrum of 1h

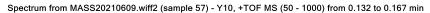

0.0e0

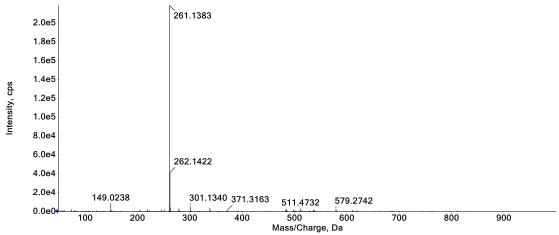


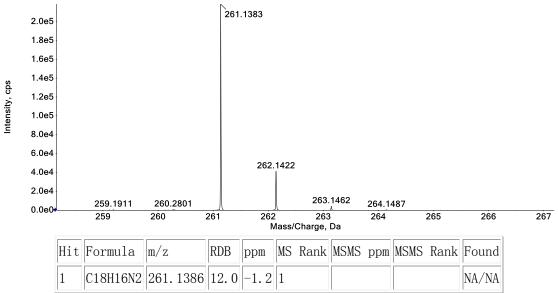



HR-MS spectrum of 1i

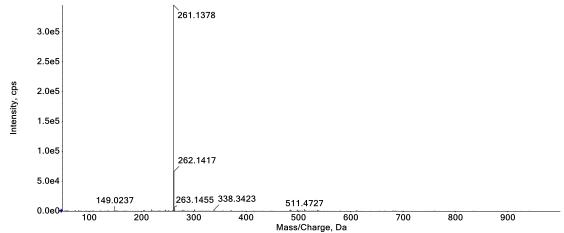



HR-MS spectrum of 1j

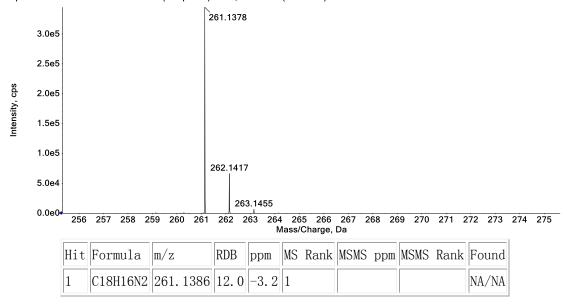




HR-MS spectrum of 1k

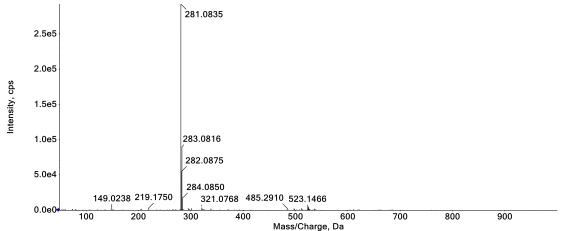


Spectrum from MASS20210609.wiff2 (sample 57) - Y10, +TOF MS (50 - 1000) from 0.132 to 0.167 min

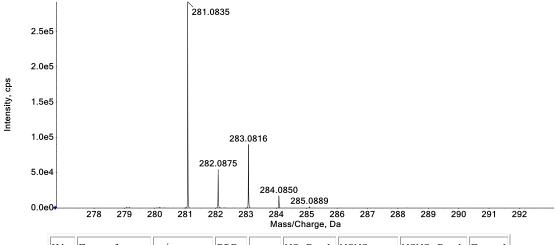


HR-MS spectrum of 11

Spectrum from MASS20210609.wiff2 (sample 60) - Y13, +TOF MS (50 - 1000) from 0.132 to 0.167 min

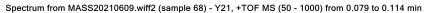


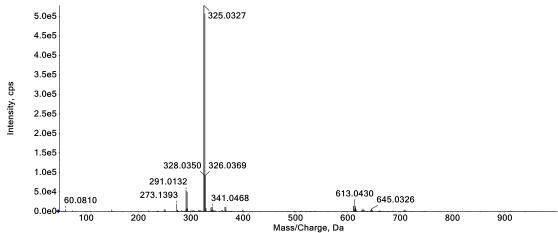
Spectrum from MASS20210609.wiff2 (sample 60) - Y13, +TOF MS (50 - 1000) from 0.132 to 0.167 min

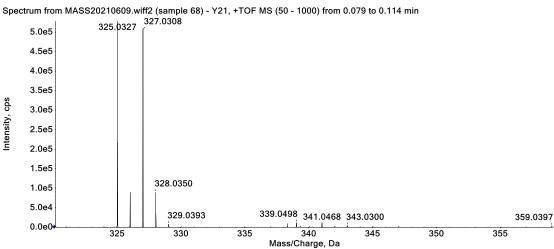


HR-MS spectrum of 1m

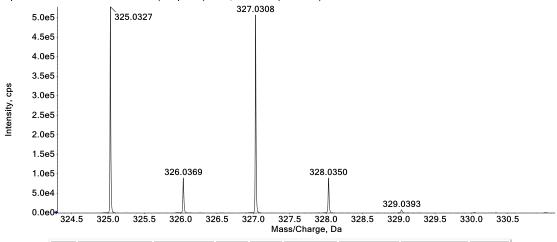
Spectrum from MASS20210609.wiff2 (sample 53) - Y6, +TOF MS (50 - 1000) from 0.132 to 0.167 min

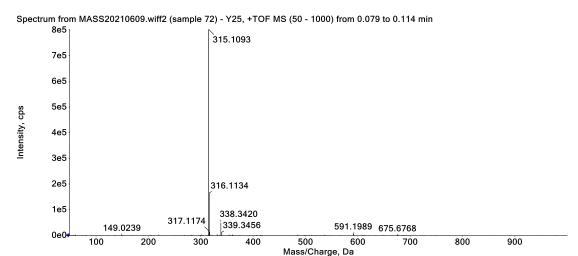


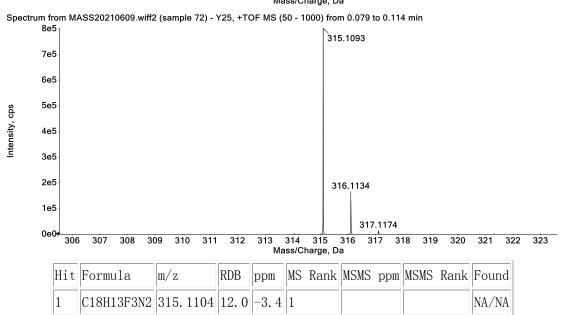

Spectrum from MASS20210609.wiff2 (sample 53) - Y6, +TOF MS (50 - 1000) from 0.132 to 0.167 min

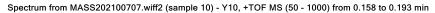


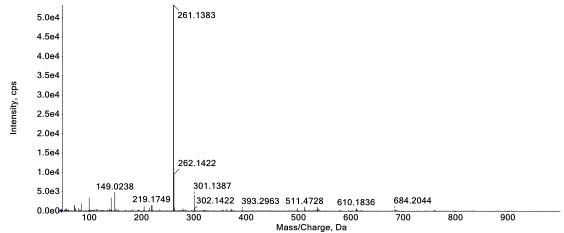
H	it	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1		C17H13C1N2	281. 0840	12. 0	-1.8	1						NA/NA

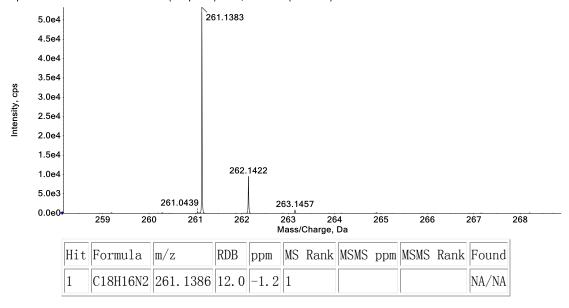

HR-MS spectrum of 1n



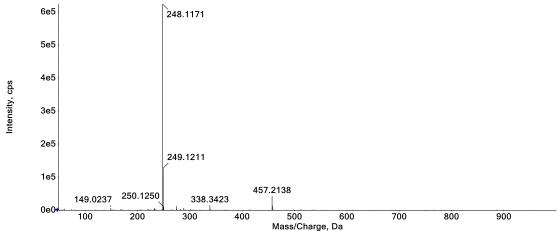

Spectrum from MASS20210609.wiff2 (sample 68) - Y21, +TOF MS (50 - 1000) from 0.079 to 0.114 min


Н	it	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1		C17H13BrN2	325. 0335	12.0	-2. 4	1						NA/NA

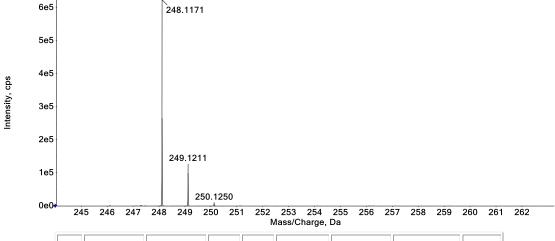

HR-MS spectrum of 10



HR-MS spectrum of 1p



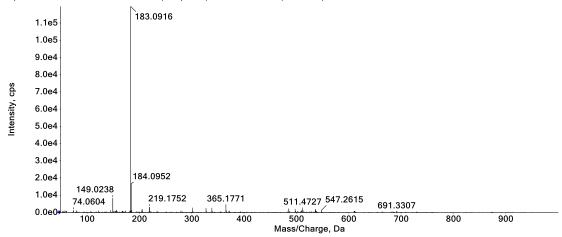
Spectrum from MASS202100707.wiff2 (sample 10) - Y10, +TOF MS (50 - 1000) from 0.158 to 0.193 min



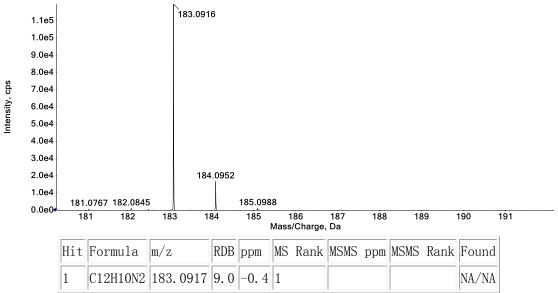
HR-MS spectrum of 1q

Spectrum from MASS20210609.wiff2 (sample 74) - Y27, +TOF MS (50 - 1000) from 0.079 to 0.114 min

Spectrum from MASS20210609.wiff2 (sample 74) - Y27, +TOF MS (50 - 1000) from 0.079 to 0.114 min

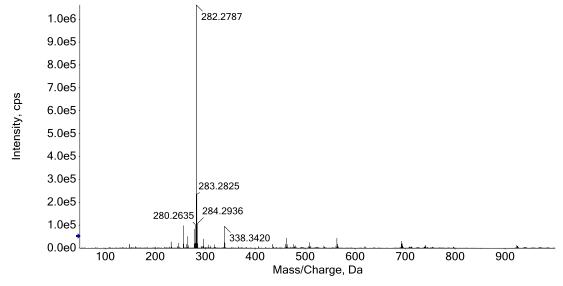


 Hit
 Formula
 m/z
 RDB
 ppm
 MS
 Rank
 MSMS
 ppm
 MSMS
 Ppm
 MSMS
 Ppm
 MSMS
 Ppm
 MSMS
 Rank
 Found

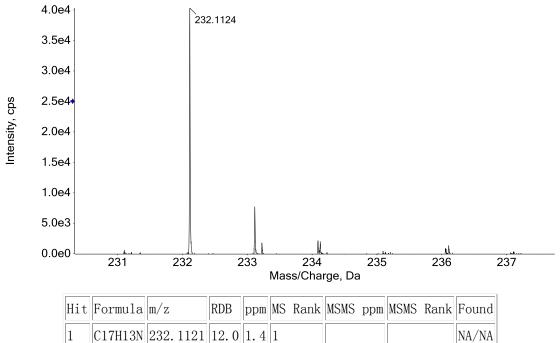

 1
 C16H13N3
 248. 1182
 12. 0
 -4. 5
 1
 NA/NA

HR-MS spectrum of 1r

Spectrum from MASS20210609.wiff2 (sample 63) - Y16, +TOF MS (50 - 1000) from 0.132 to 0.167 min

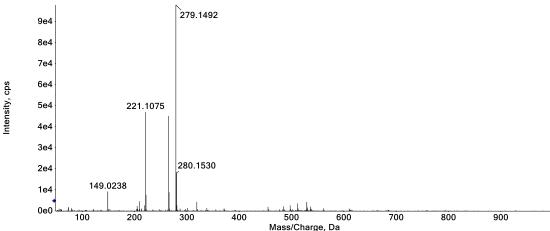


Spectrum from MASS20210609.wiff2 (sample 63) - Y16, +TOF MS (50 - 1000) from 0.132 to 0.167 min

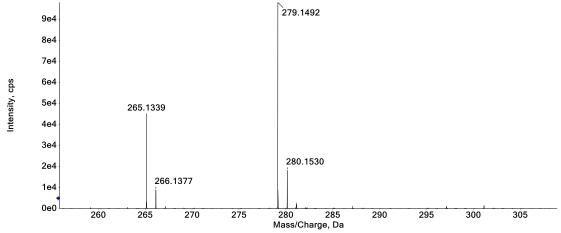


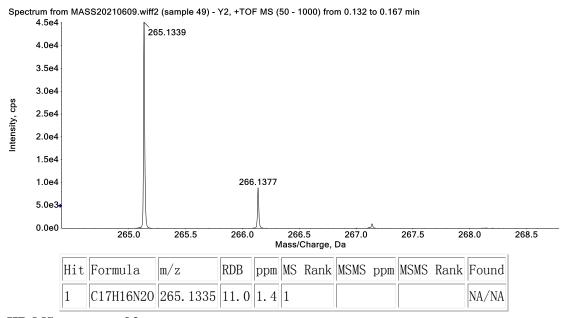
HR-MS spectrum of 1u

 $Spectrum\ from\ MASS20220928.wiff 2\ (sample\ 3)\ -\ Y2,\ Experiment\ 1,\ +IDA\ TOF\ MS\ (50\ -\ 1000)\ from\ 0.072\ to\ 0.111\ min$

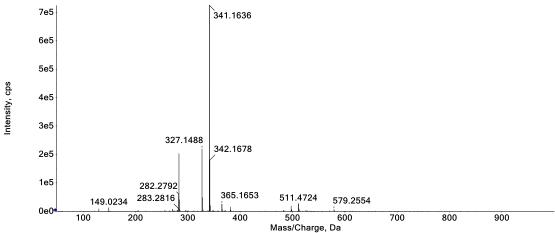


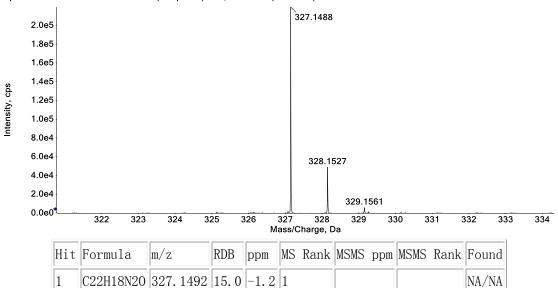
 $Spectrum\ from\ MASS20220928.wiff 2\ (sample\ 3)\ -\ Y2,\ Experiment\ 1,\ +IDA\ T...)\ -\ Y2,\ Experiment\ 1,\ +IDA\ TOF\ MS\ (50\ -\ 1000)\ from\ 0.135\ to\ 0.222\ min]$



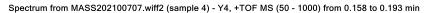

HR-MS spectrum of 3a

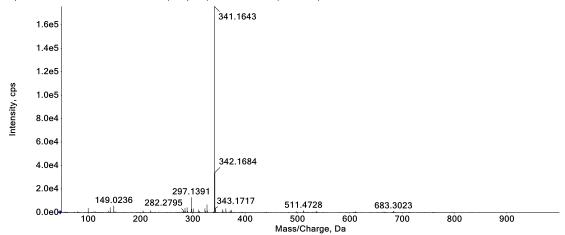
Spectrum from MASS20210609.wiff2 (sample 49) - Y2, +TOF MS (50 - 1000) from 0.132 to 0.167 min


Spectrum from MASS20210609.wiff2 (sample 49) - Y2, +TOF MS (50 - 1000) from 0.132 to 0.167 min

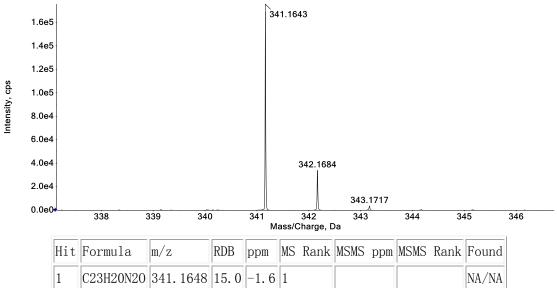


HR-MS spectrum of 3c

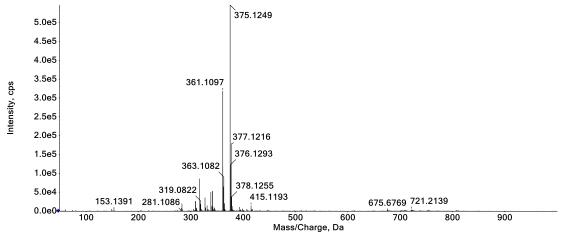

Spectrum from MASS20210120.wiff2 (sample 14) - Y3, +TOF MS (50 - 1000) from 0.105 to 0.158 min

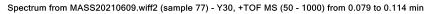


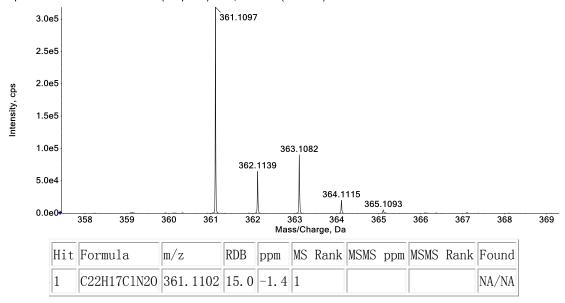
Spectrum from MASS20210120.wiff2 (sample 14) - Y3, +TOF MS (50 - 1000) from 0.105 to 0.158 min



HR-MS spectrum of 3d

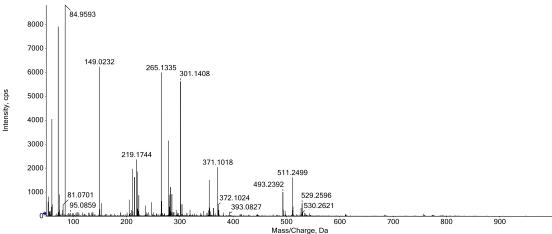


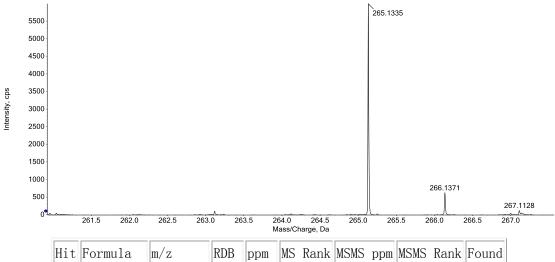

Spectrum from MASS202100707.wiff2 (sample 4) - Y4, +TOF MS (50 - 1000) from 0.158 to 0.193 min



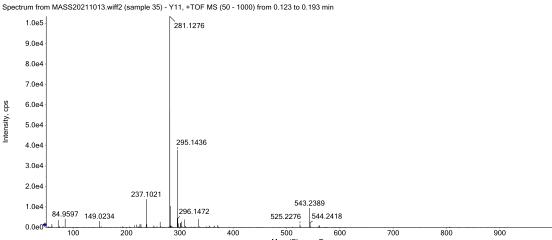
HR-MS spectrum of 3e

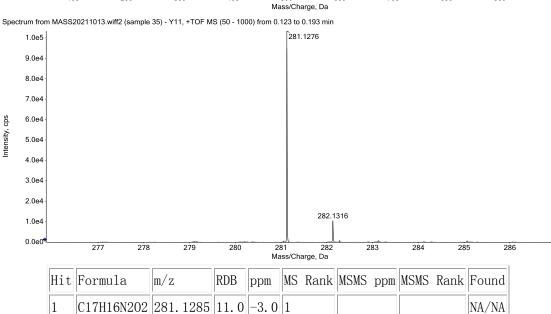
Spectrum from MASS20210609.wiff2 (sample 77) - Y30, +TOF MS (50 - 1000) from 0.079 to 0.114 min

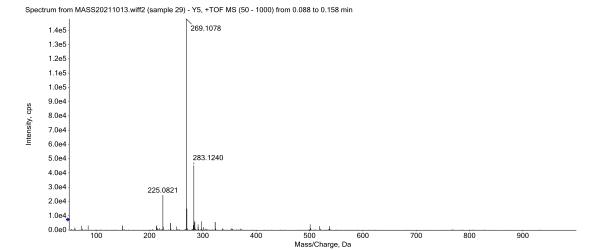


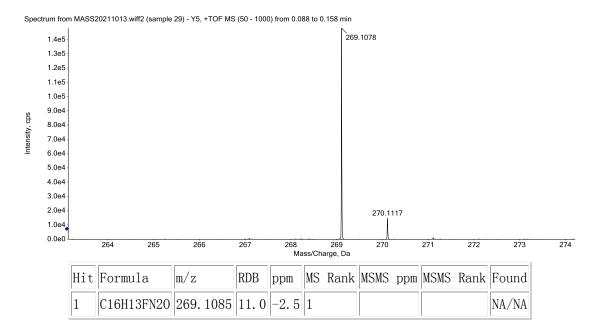

HR-MS spectrum of 3f

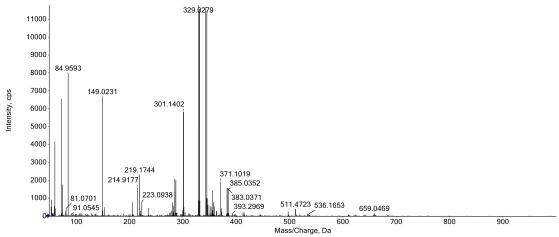
Spectrum from MASS20211013.wiff2 (sample 32) - Y8, +TOF MS (50 - 1000) from 0.123 to 0.193 min

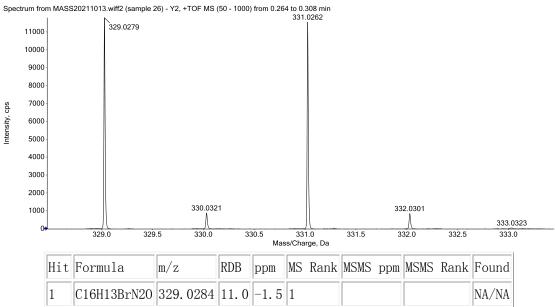

 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 32)\ -\ Y8,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.123\ to\ 0.193\ min$


C17H16N2O 265. 1335 11. 0 -0. 1 1

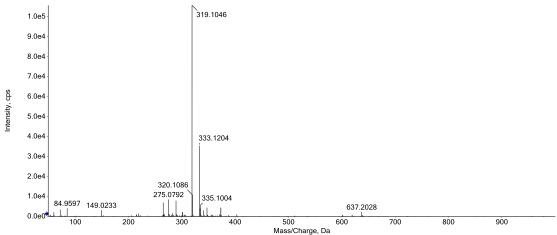

NA/NA

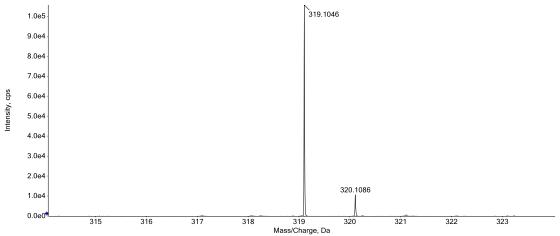

HR-MS spectrum of 3g


HR-MS spectrum of 3h

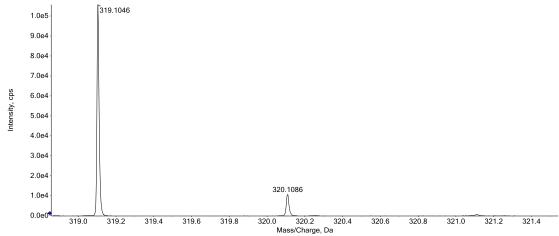


HR-MS spectrum of 3i

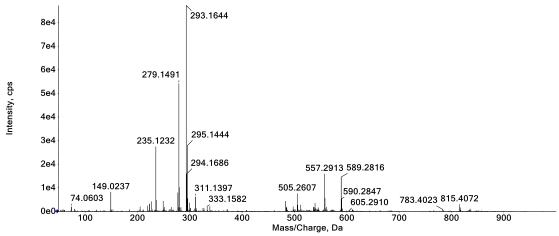

Spectrum from MASS20211013.wiff2 (sample 26) - Y2, +TOF MS (50 - 1000) from 0.264 to 0.308 min



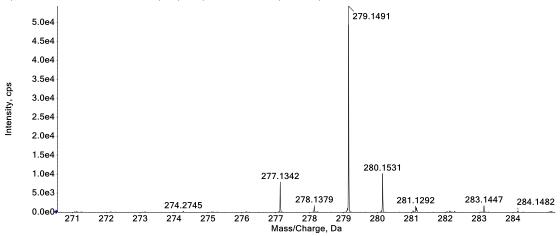
HR-MS spectrum of 3j


 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 41)\ -\ Y17,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.114\ to\ 0.184\ min$

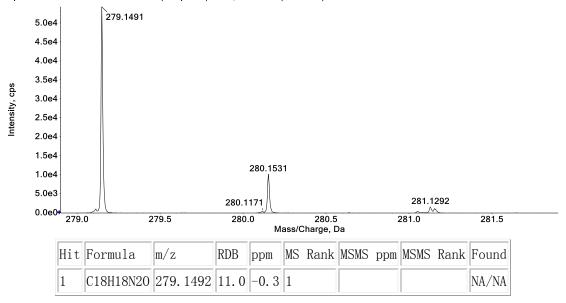
Spectrum from MASS20211013.wiff2 (sample 41) - Y17, +TOF MS (50 - 1000) from 0.114 to 0.184 min

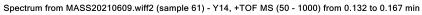


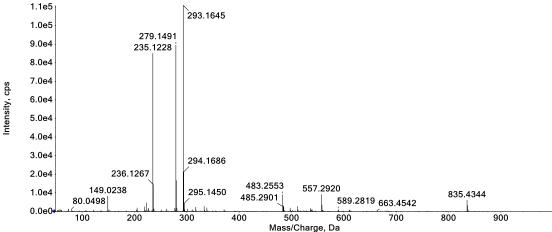
 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 41)\ -\ Y17,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.114\ to\ 0.184\ min$



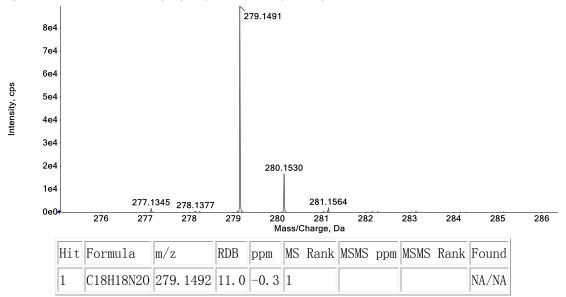
HR-MS spectrum of 3k


Spectrum from MASS20210609.wiff2 (sample 58) - Y11, +TOF MS (50 - 1000) from 0.132 to 0.167 min

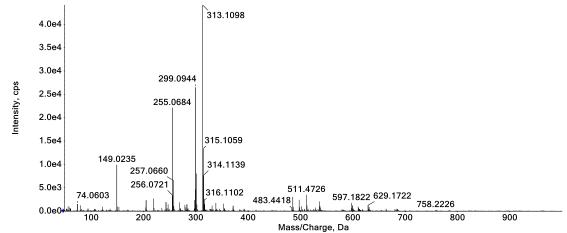

 $Spectrum\ from\ MASS20210609.wiff 2\ (sample\ 58)\ -\ Y11,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.132\ to\ 0.167\ min$



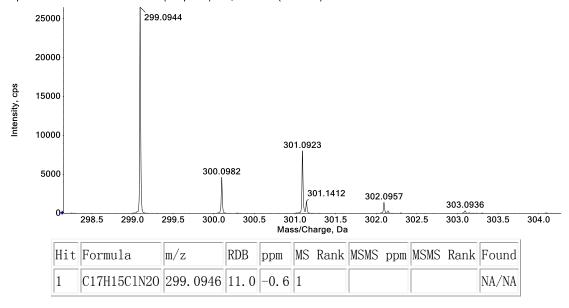
 $Spectrum\ from\ MASS20210609.wiff2\ (sample\ 58)\ -\ Y11,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.132\ to\ 0.167\ min\ 1000\ from\ 0.132\ min\ 1000\ fro$



HR-MS spectrum of 3l

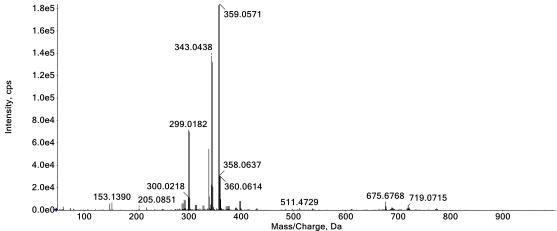


Spectrum from MASS20210609.wiff2 (sample 61) - Y14, +TOF MS (50 - 1000) from 0.132 to 0.167 min

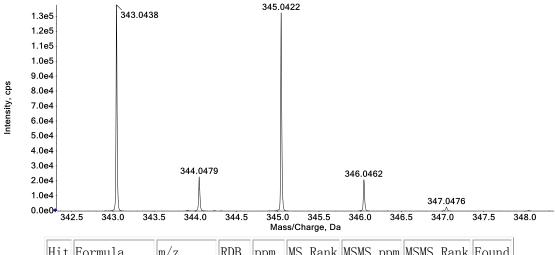


HR-MS spectrum of 3m

Spectrum from MASS20210609.wiff2 (sample 54) - Y7, +TOF MS (50 - 1000) from 0.132 to 0.167 min

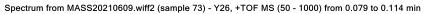


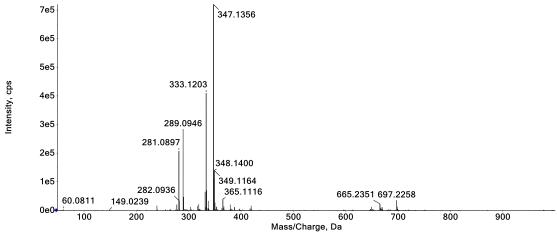
Spectrum from MASS20210609.wiff2 (sample 54) - Y7, +TOF MS (50 - 1000) from 0.132 to 0.167 min



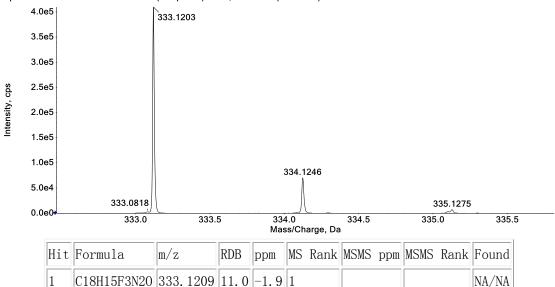
HR-MS spectrum of 3n

Spectrum from MASS20210609.wiff2 (sample 69) - Y22, +TOF MS (50 - 1000) from 0.079 to 0.114 min

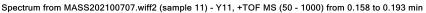

Spectrum from MASS20210609.wiff2 (sample 69) - Y22, +TOF MS (50 - 1000) from 0.079 to 0.114 min

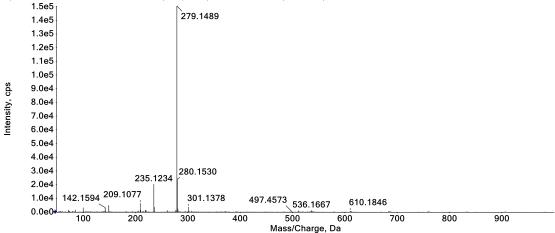


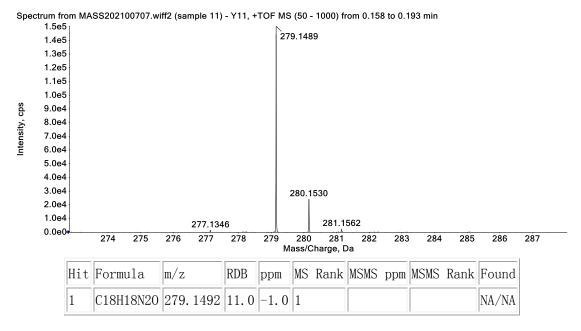
 Hit
 Formula
 m/z
 RDB
 ppm
 MS
 Rank
 MSMS
 ppm
 MSMS
 Ppm
 MSMS
 Ppm
 MSMS
 Ppm
 MSMS
 Rank
 Found

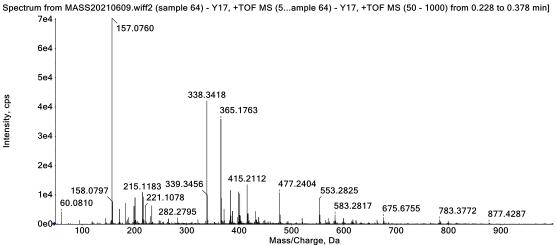

 1
 C17H15BrN20
 343.0441
 11.0
 -0.7
 1
 NA/NA

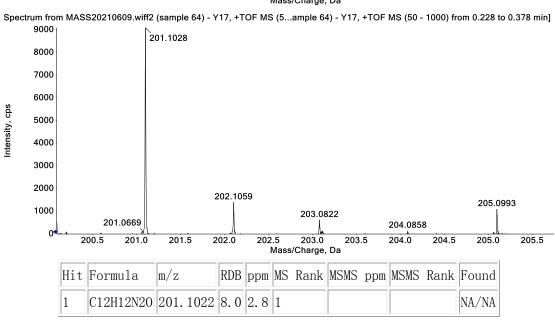
HR-MS spectrum of 3o

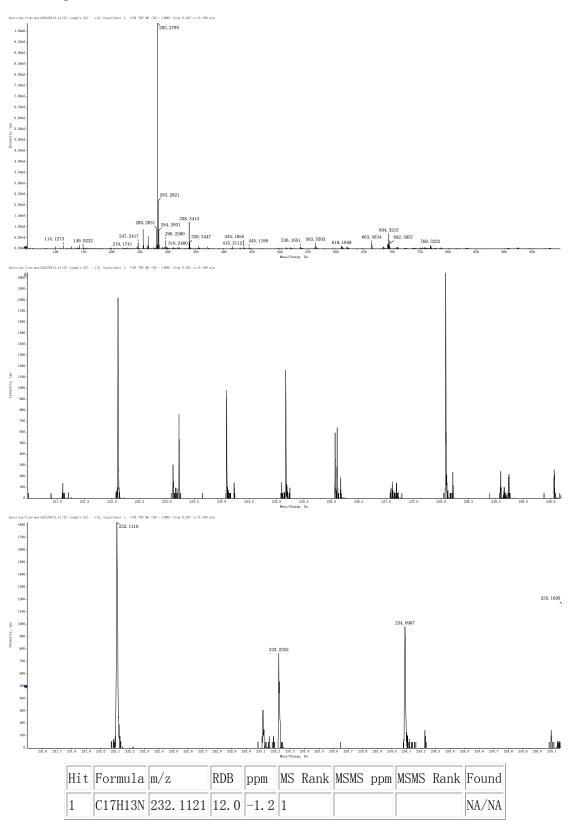




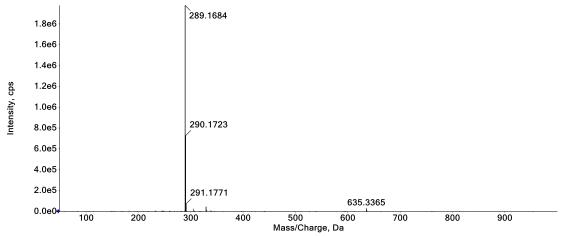

 $Spectrum\ from\ MASS20210609.wiff 2\ (sample\ 73)\ -\ Y26,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.079\ to\ 0.114\ min$


HR-MS spectrum of 3p

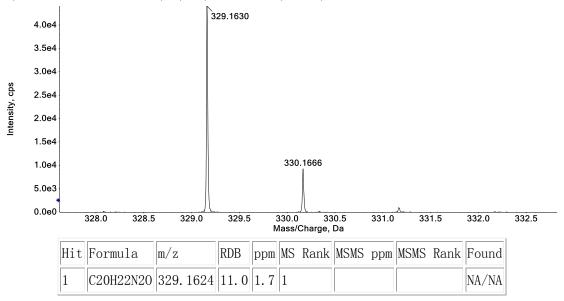




HR-MS spectrum of 3r

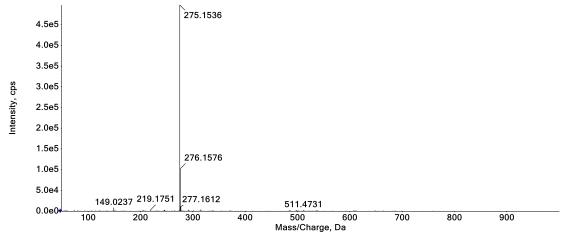


HR-MS spectrum of 3u '

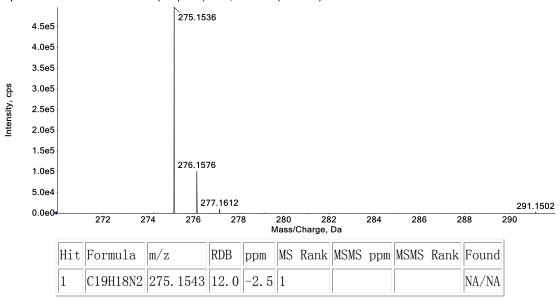


HR-MS spectrum of 4a

Spectrum from MASS20210609.wiff2 (sample 78) - Y31, +TOF MS (50 - 1000) from 0.079 to 0.114 min

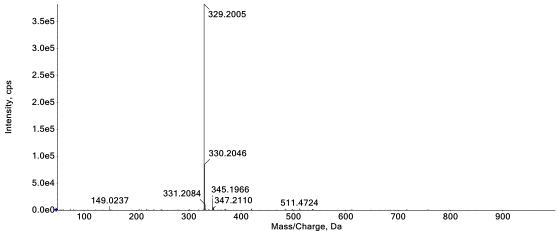


Spectrum from MASS20210609.wiff2 (sample 78) - Y31, +TOF MS (50 - 1000) from 0.079 to 0.114 min

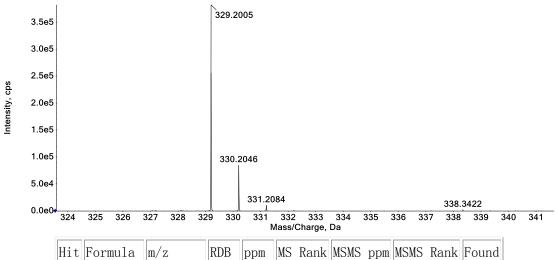


HR-MS spectrum of 4b

Spectrum from MASS20210609.wiff2 (sample 83) - Y36, +TOF MS (50 - 1000) from 0.140 to 0.176 min

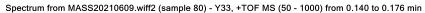


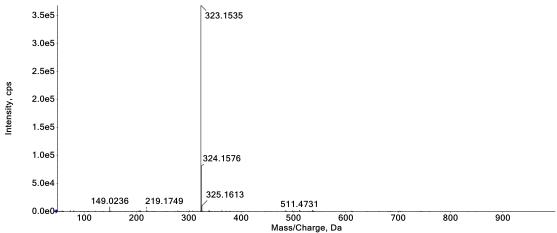
Spectrum from MASS20210609.wiff2 (sample 83) - Y36, +TOF MS (50 - 1000) from 0.140 to 0.176 min


HR-MS spectrum of 4c

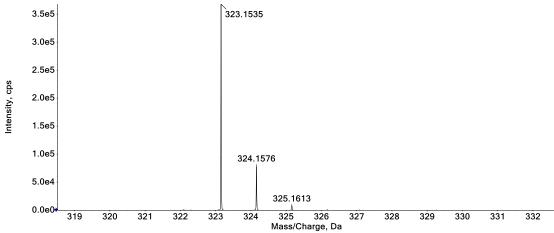
Spectrum from MASS20210609.wiff2 (sample 86) - Y39, +TOF MS (50 - 1000) from 0.140 to 0.176 min

Spectrum from MASS20210609.wiff2 (sample 86) - Y39, +TOF MS (50 - 1000) from 0.140 to 0.176 min

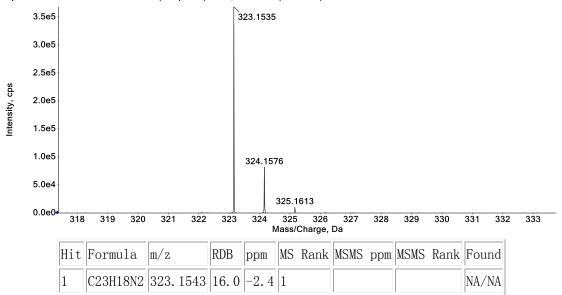

C23H24N2 329. 2012 13. 0

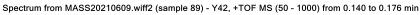


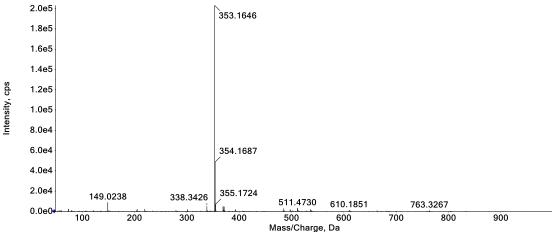
NA/NA


-2.2

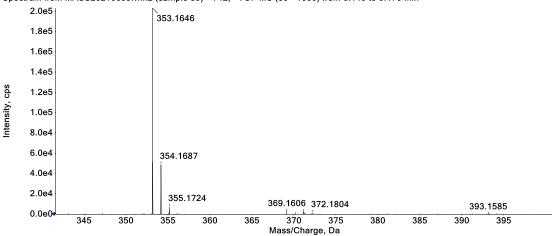
HR-MS spectrum of 4d



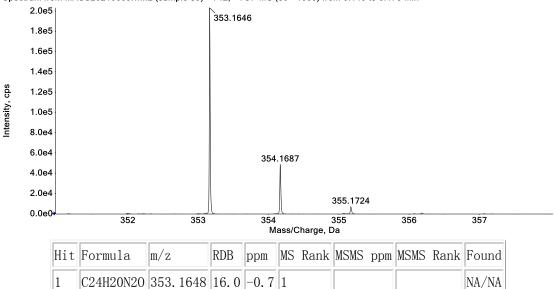

Spectrum from MASS20210609.wiff2 (sample 80) - Y33, +TOF MS (50 - 1000) from 0.140 to 0.176 min



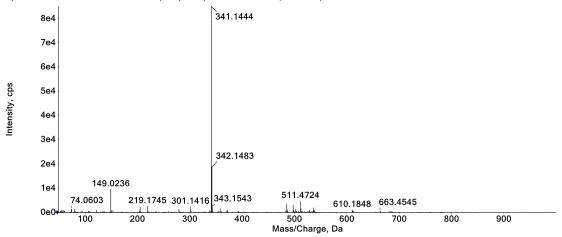
Spectrum from MASS20210609.wiff2 (sample 80) - Y33, +TOF MS (50 - 1000) from 0.140 to 0.176 min



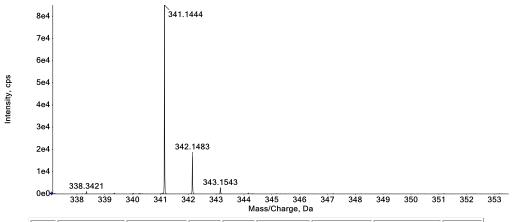
HR-MS spectrum of 4e



Spectrum from MASS20210609.wiff2 (sample 89) - Y42, +TOF MS (50 - 1000) from 0.140 to 0.176 min

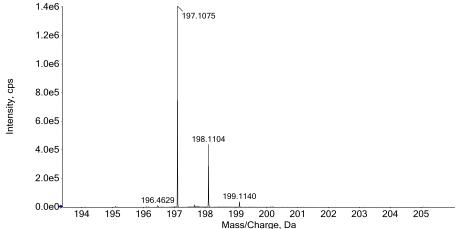


Spectrum from MASS20210609.wiff2 (sample 89) - Y42, +TOF MS (50 - 1000) from 0.140 to 0.176 min

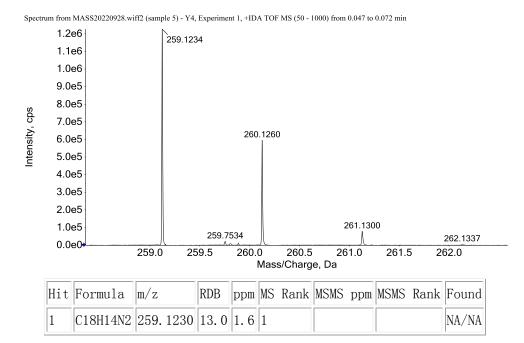


HR-MS spectrum of 4f

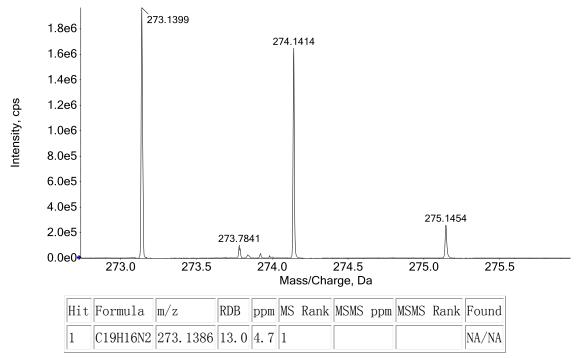
Spectrum from MASS20210609.wiff2 (sample 92) - Y45, +TOF MS (50 - 1000) from 0.140 to 0.176 min


 $Spectrum\ from\ MASS20210609.wiff2\ (sample\ 92)\ -\ Y45,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.140\ to\ 0.176\ min$

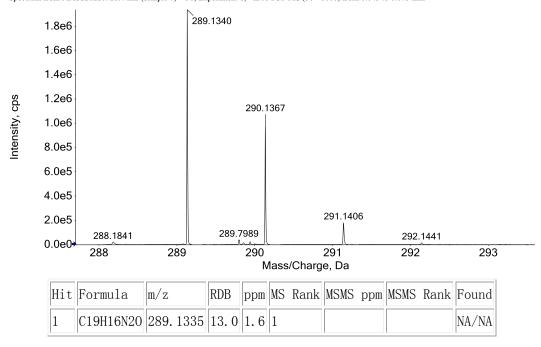
Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C23H17FN2	341. 1449	16. 0	-1.3	1						NA/NA


HR-MS spectrum of 4g

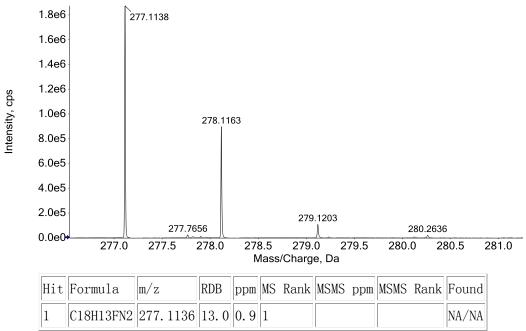
 $Spectrum\ from\ MASS20220928.wiff 2\ (sample\ 4)-Y3,\ Experiment\ 1,+IDA\ TOF\ MS\ (50-1000)\ from\ 0.046\ to\ 0.072\ min$


Hit	Formula	m/z	RDB	ppm	MS Rank	MSMS ppm	MSMS Rank	Found
1	C13H12N2	197. 1073	9.0	0. 9	1			NA/NA

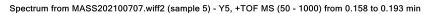
HR-MS spectrum of 4h

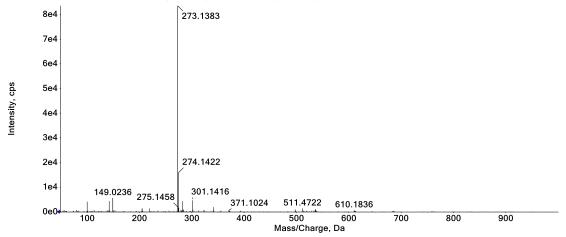

HR-MS spectrum of 4i

Spectrum from MASS20220928.wiff2 (sample 6) - Y5, Experiment 1, +IDA TOF MS (50 - 1000) from 0.046 to 0.072 min

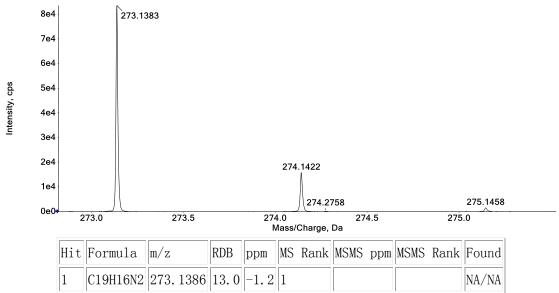

HR-MS spectrum of 4j

 $Spectrum\ from\ MASS20220928.wiff 2\ (sample\ 7)-Y6,\ Experiment\ 1,+IDA\ TOF\ MS\ (50-1000)\ from\ 0.045\ to\ 0.073\ min\ 1000)\ from\ 0.045\ to\ 0.073\ min\ 1000\ from\ 0.045\ min\ 1000\ from\ 0.045\ to\ 0.073\ min\ 1000\ from\ 0.045\ to\ 0.073\ min\ 1000\ from\ 0.045\ min\ 1000\ from\ 0.045\ min\ 0.045\ mi$

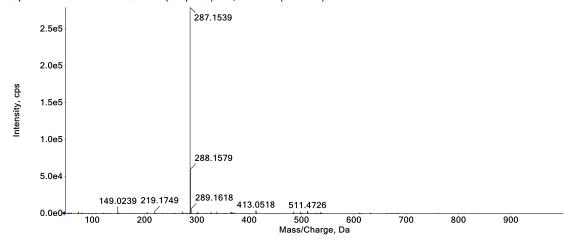



HR-MS spectrum of 4k

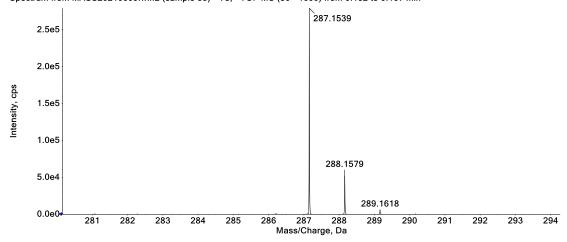
Spectrum from MASS20220928.wiff2 (sample 8) - Y7, Experiment 1, +IDA TOF MS (50 - 1000) from 0.046 to 0.072 min



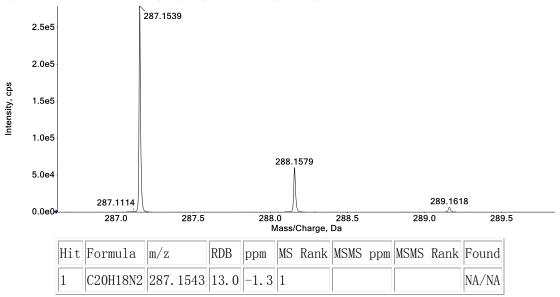
HR-MS spectrum of 4l



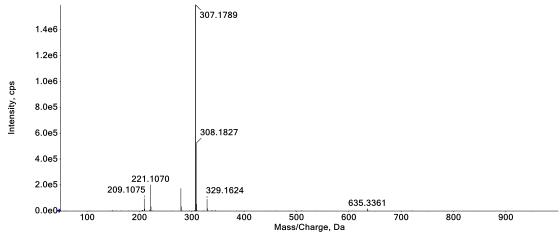
Spectrum from MASS202100707.wiff2 (sample 5) - Y5, +TOF MS (50 - 1000) from 0.158 to 0.193 min



HR-MS spectrum of 4m


Spectrum from MASS20210609.wiff2 (sample 55) - Y8, +TOF MS (50 - 1000) from 0.132 to 0.167 min

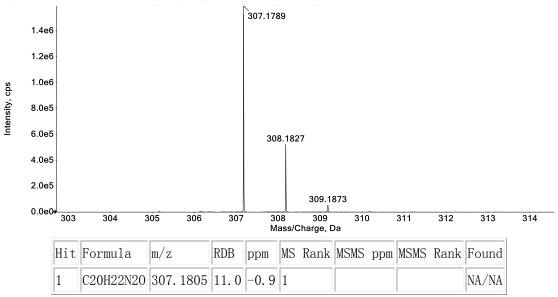
Spectrum from MASS20210609.wiff2 (sample 55) - Y8, +TOF MS (50 - 1000) from 0.132 to 0.167 min



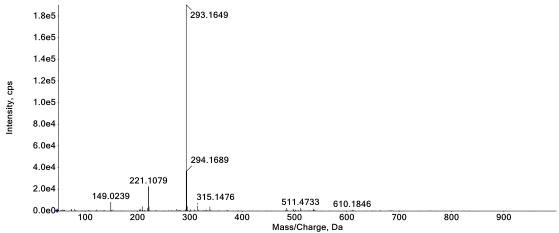
Spectrum from MASS20210609.wiff2 (sample 55) - Y8, +TOF MS (50 - 1000) from 0.132 to 0.167 min



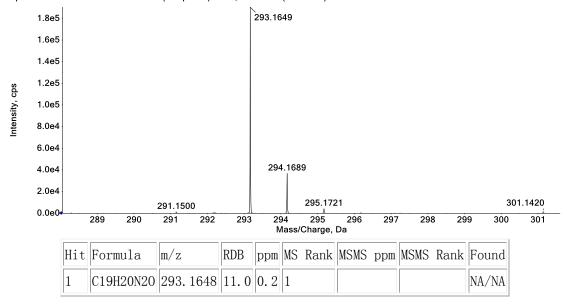
HR-MS spectrum of 5a


Spectrum from MASS20210609.wiff2 (sample 79) - Y32, +TOF MS (50 - 1000) from 0.079 to 0.114 min

 $Spectrum\ from\ MASS20210609.wiff2\ (sample\ 79)\ -\ Y32,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.079\ to\ 0.114\ min$

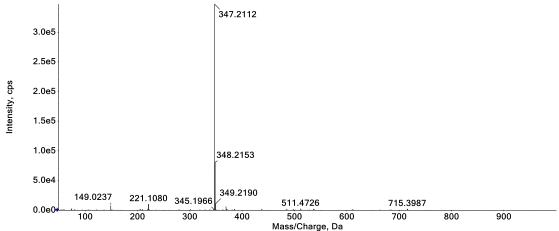


 $Spectrum\ from\ MASS20210609.wiff 2\ (sample\ 79)\ -\ Y32,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.079\ to\ 0.114\ min$

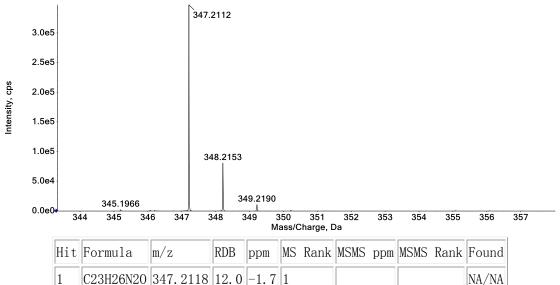


HR-MS spectrum of 5b

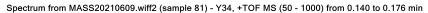
Spectrum from MASS20210609.wiff2 (sample 84) - Y37, +TOF MS (50 - 1000) from 0.140 to 0.176 min

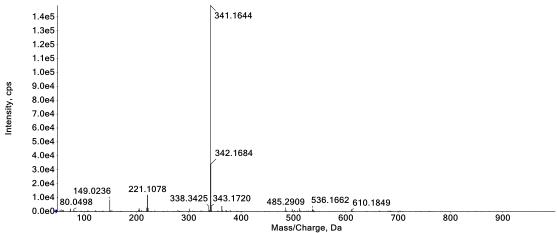


Spectrum from MASS20210609.wiff2 (sample 84) - Y37, +TOF MS (50 - 1000) from 0.140 to 0.176 min

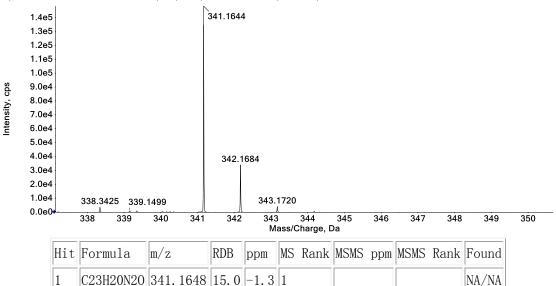


HR-MS spectrum of 5c

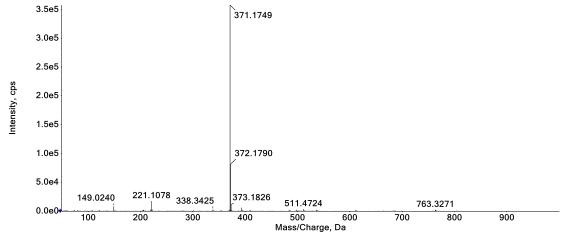

Spectrum from MASS20210609.wiff2 (sample 87) - Y40, +TOF MS (50 - 1000) from 0.140 to 0.176 min

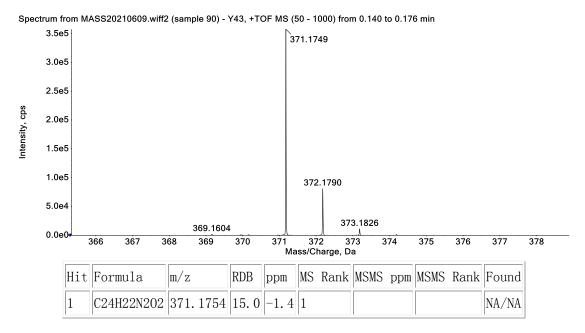


Spectrum from MASS20210609.wiff2 (sample 87) - Y40, +TOF MS (50 - 1000) from 0.140 to 0.176 min



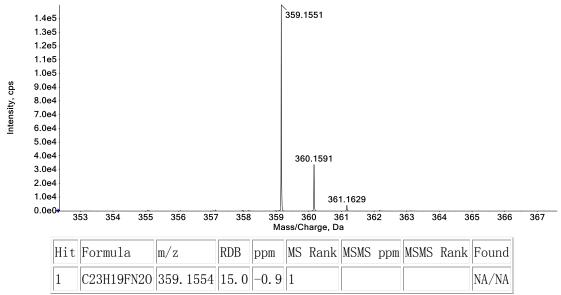
HR-MS spectrum of 5d




Spectrum from MASS20210609.wiff2 (sample 81) - Y34, +TOF MS (50 - 1000) from 0.140 to 0.176 min

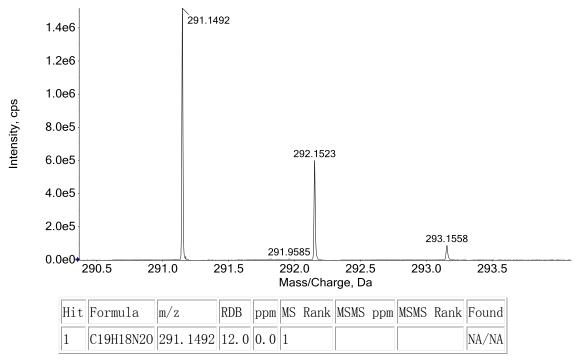
HR-MS spectrum of 5e

Spectrum from MASS20210609.wiff2 (sample 90) - Y43, +TOF MS (50 - 1000) from 0.140 to 0.176 min

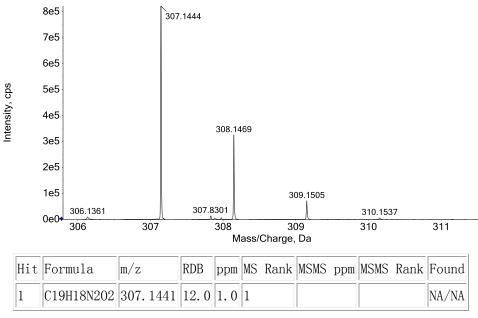


HR-MS spectrum of 5f

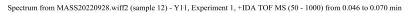
Spectrum from MASS20210609.wiff2 (sample 93) - Y46, +TOF MS (50 - 1000) from 0.140 to 0.176 min

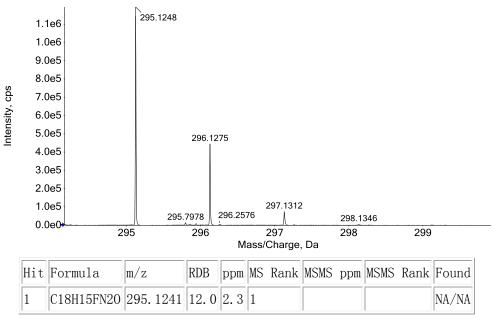


Spectrum from MASS20210609.wiff2 (sample 93) - Y46, +TOF MS (50 - 1000) from 0.140 to 0.176 min

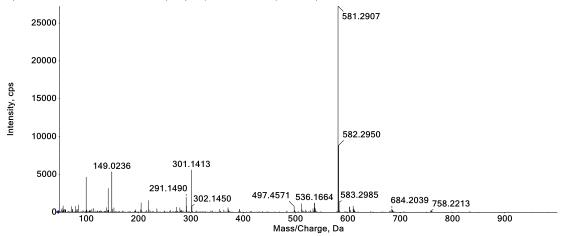

HR-MS spectrum of 5i

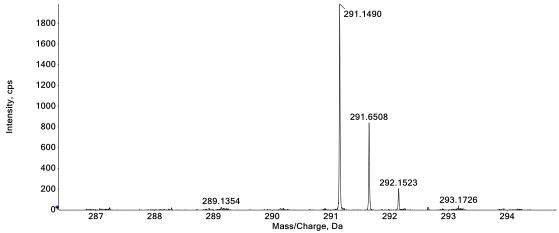
 $Spectrum\ from\ MASS20220928.wiff 2\ (sample\ 10)\ -\ Y9,\ Experiment\ 1,\ +IDA\ TOF\ MS\ (50\ -\ 1000)\ from\ 0.046\ to\ 0.071\ min$



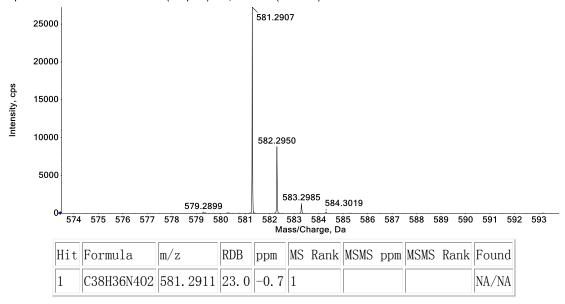

HR-MS spectrum of 5j

 $Spectrum\ from\ MASS20220928.wiff 2\ (sample\ 11)\ -\ Y10,\ Experiment\ 1,\ +IDA\ TOF\ MS\ (50\ -\ 1000)\ from\ 0.046\ to\ 0.069\ min\ 10000\ from\ 0.046\ to\ 0.069\ min\ 0.046\ from\ 0.046$

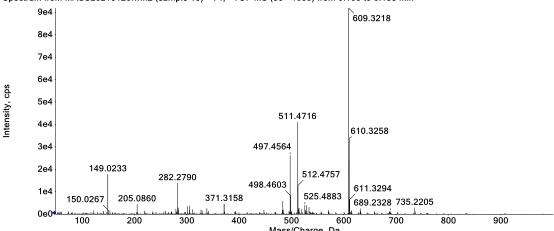

HR-MS spectrum of 5k



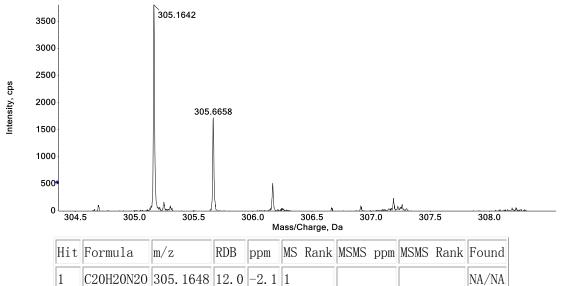
HR-MS spectrum of 51


Spectrum from MASS202100707.wiff2 (sample 6) - Y6, +TOF MS (50 - 1000) from 0.158 to 0.193 min

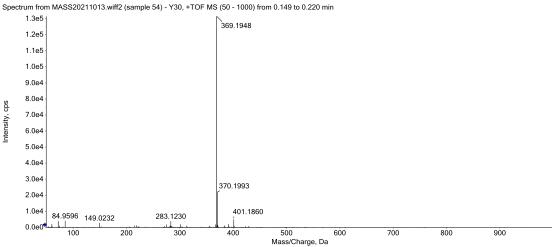
Spectrum from MASS202100707.wiff2 (sample 6) - Y6, +TOF MS (50 - 1000) from 0.158 to 0.193 min

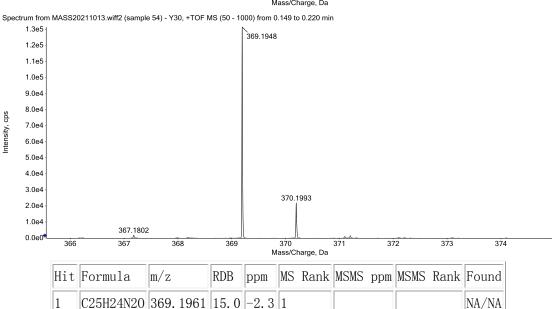


Spectrum from MASS202100707.wiff2 (sample 6) - Y6, +TOF MS (50 - 1000) from 0.158 to 0.193 min

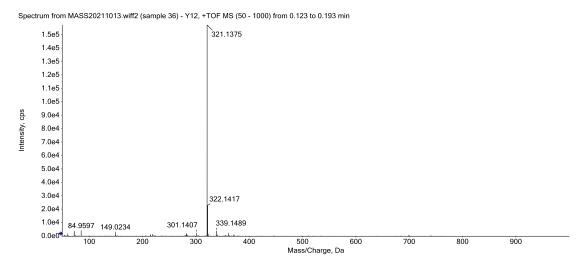


HR-MS spectrum of 5m


Spectrum from MASS20210120.wiff2 (sample 15) - Y4, +TOF MS (50 - 1000) from 0.105 to 0.158 min



Spectrum from MASS20210120.wiff2 (sample 15) - Y4, +TOF MS (50 - 1000) from 0.105 to 0.158 min

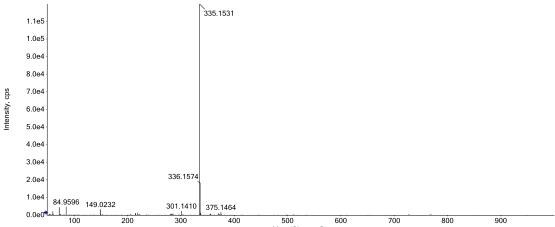


HR-MS spectrum of 5n

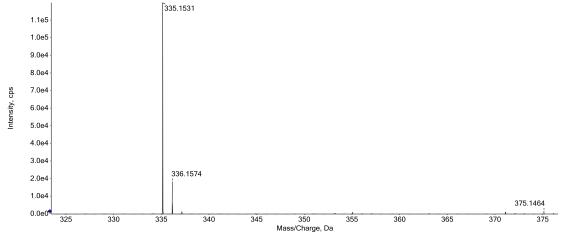
HR-MS spectrum of 6a

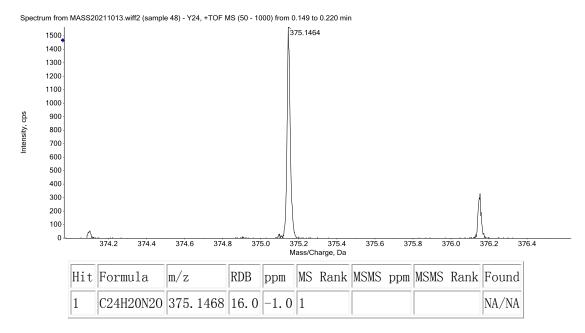
Spectrum from MASS20211013.wiff2 (sample 36) - Y12, +TOF MS (50 - 1000) from 0.123 to 0.193 min

3399.1489

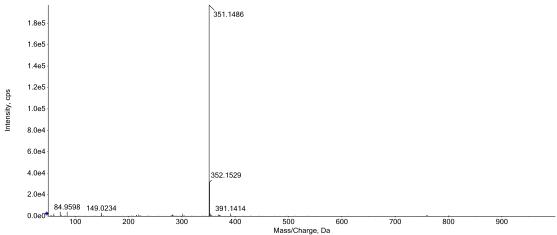

2500
2500
1500
1000
334
335
336
337
338
339
Mass/Charge, Da
MS Rank MSMS ppm MSMS Rank Found

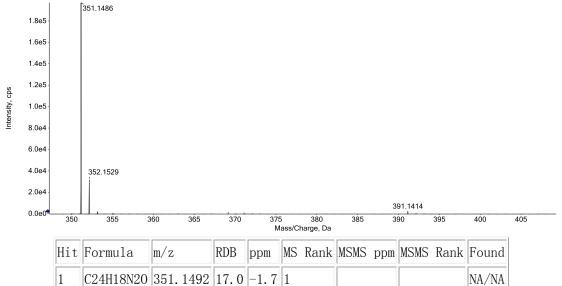
NA/NA


HR-MS spectrum of 6b

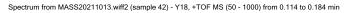

 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 48)\ -\ Y24,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.220\ min$

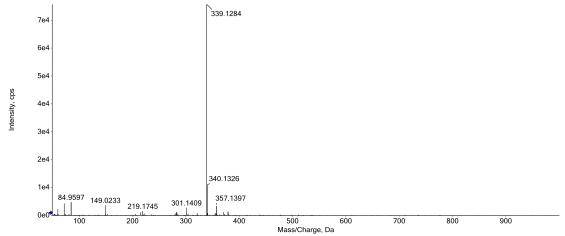
C23H18N20 | 339. 1492 | 16. 0 | -0. 9 | 1


 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 48)\ -\ Y24,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.220\ min$

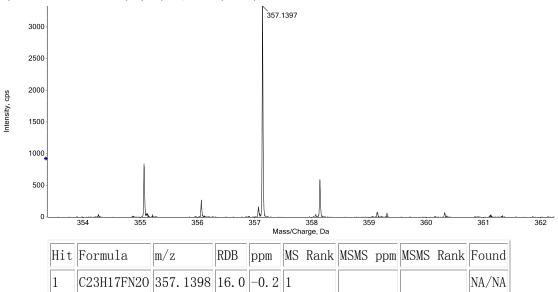


HR-MS spectrum of 6c

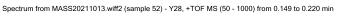

Spectrum from MASS20211013.wiff2 (sample 44) - Y20, +TOF MS (50 - 1000) from 0.114 to 0.184 min

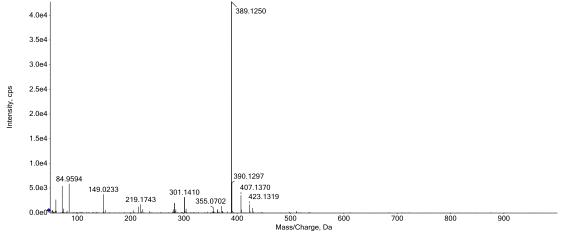


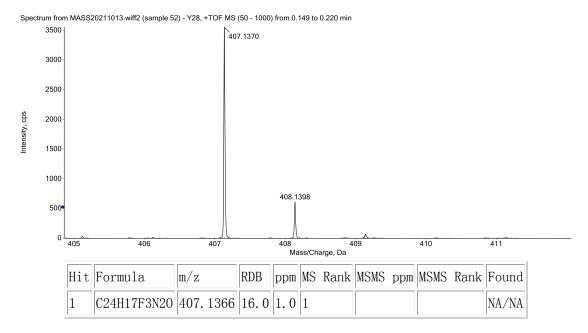
 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 44)\ -\ Y20,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.114\ to\ 0.184\ min$



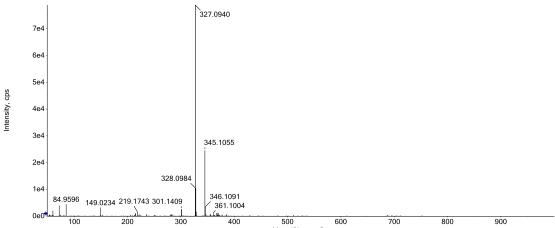
HR-MS spectrum of 6d

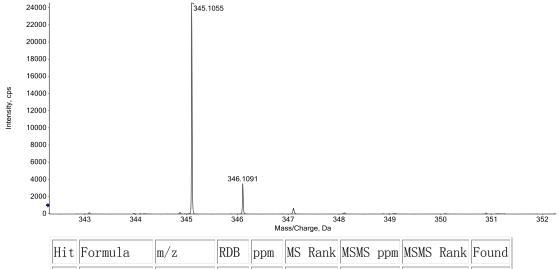




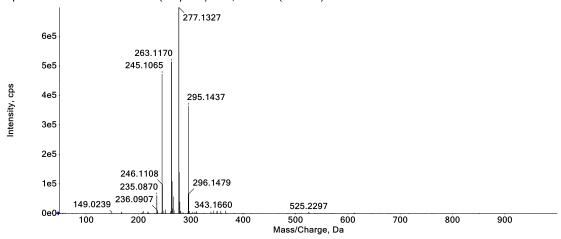

Spectrum from MASS20211013.wiff2 (sample 42) - Y18, +TOF MS (50 - 1000) from 0.114 to 0.184 min

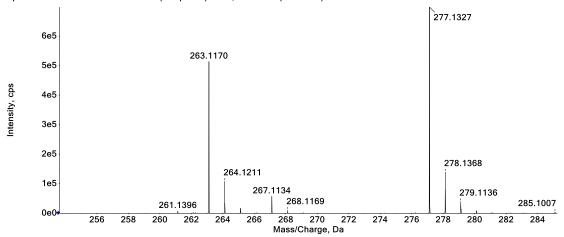
HR-MS spectrum of 6e

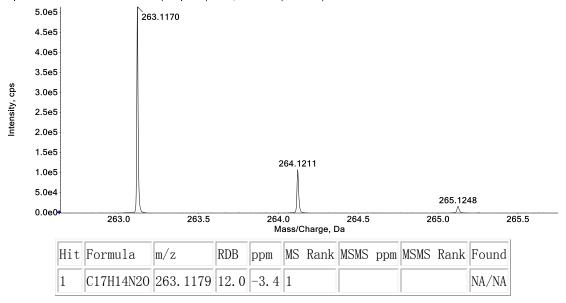


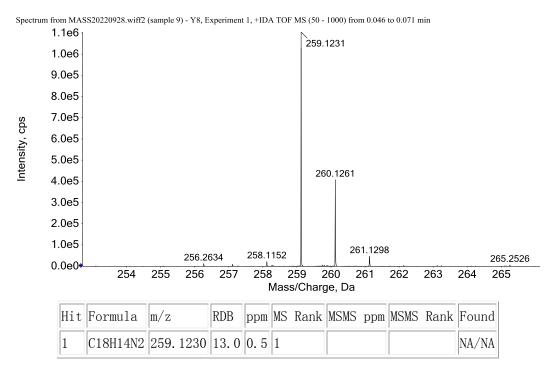


HR-MS spectrum of 6f

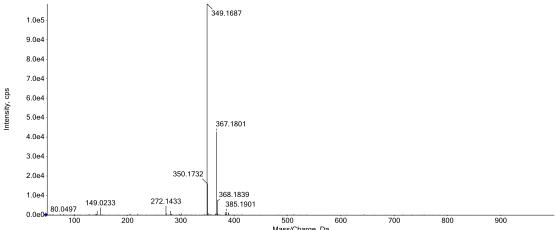

Spectrum from MASS20211013.wiff2 (sample 46) - Y22, +TOF MS (50 - 1000) from 0.123 to 0.193 min

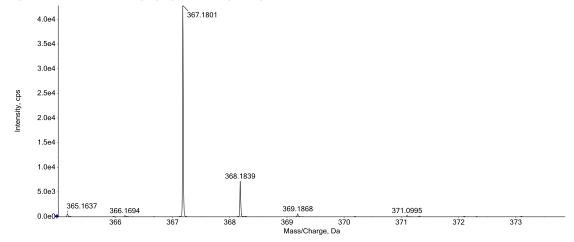

 $Spectrum\ from\ MASS 20211013.wiff 2\ (sample\ 46)\ -\ Y22,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.123\ to\ 0.193\ min$


Spectrum from MASS20210609.wiff2 (sample 65) - Y18, +TOF MS (50 - 1000) from 0.079 to 0.114 min



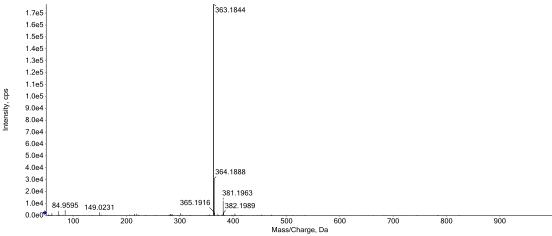
Spectrum from MASS20210609.wiff2 (sample 65) - Y18, +TOF MS (50 - 1000) from 0.079 to 0.114 min


Spectrum from MASS20210609.wiff2 (sample 65) - Y18, +TOF MS (50 - 1000) from 0.079 to 0.114 min

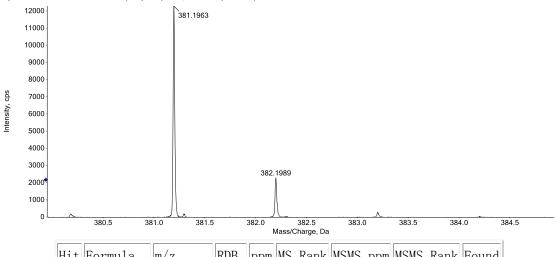


HR-MS spectrum of 6i

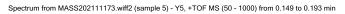
Spectrum from MASS202111173.wiff2 (sample 7) - Y7, +TOF MS (50 - 1000) from 0.149 to 0.193 min

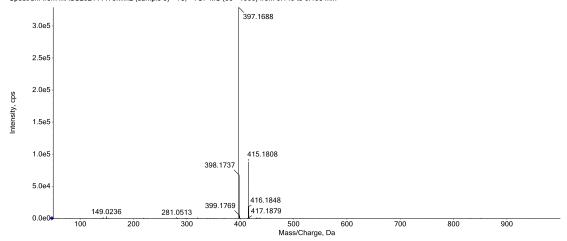


Spectrum from MASS202111173.wiff2 (sample 7) - Y7, +TOF MS (50 - 1000) from 0.149 to 0.193 min

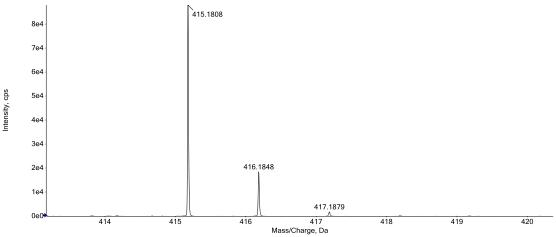


Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C25H22N2O	367. 1805	16.0	-1.1	1						NA/NA

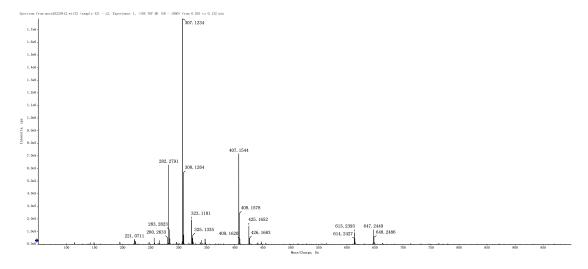

Spectrum from MASS20211013.wiff2 (sample 50) - Y26, +TOF MS (50 - 1000) from 0.149 to 0.220 min

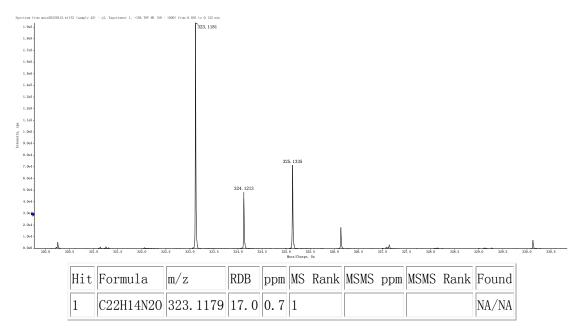


 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 50)\ -\ Y26,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.220\ min$

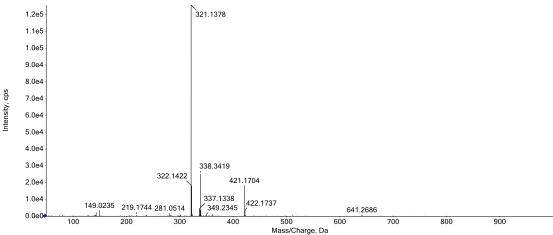


Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C26H24N2O	381. 1961	16. 0	0.4	1						NA/NA

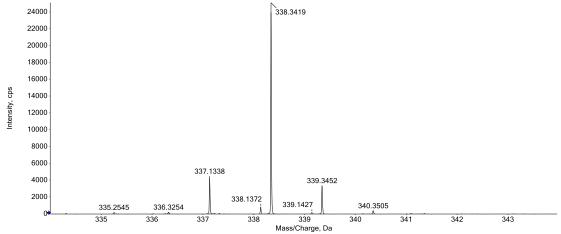


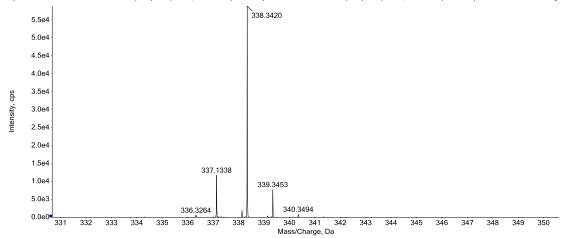


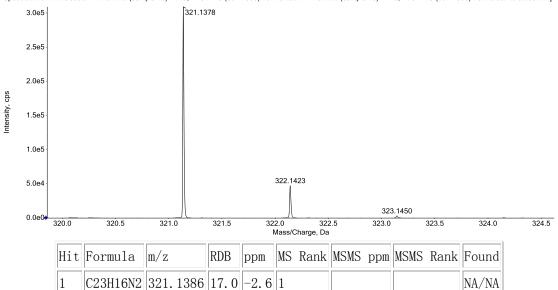
 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 5)\ -\ Y5,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

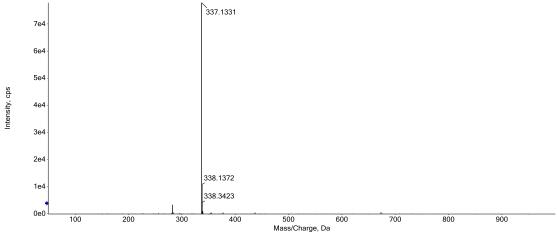


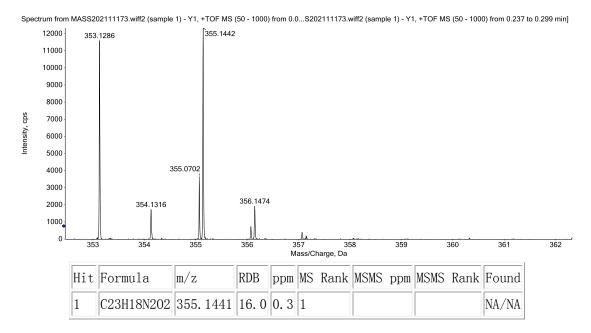
Hit	Formula	m/z	RDB	ppm	MS Rank	MSMS ppm	MSMS Rank	Found
1	C29H22N2O	415.1805	20.0	0.7	1			NA/NA

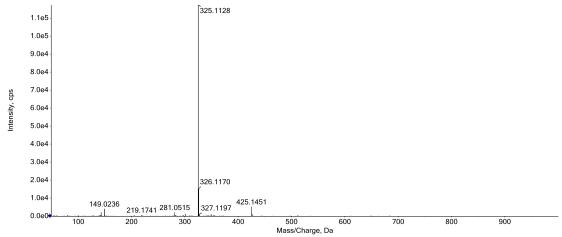



Spectrum from MASS202111173.wiff2 (sample 13) - Y13, +TOF MS (50 - 1000) from 0.149 to 0.193 min

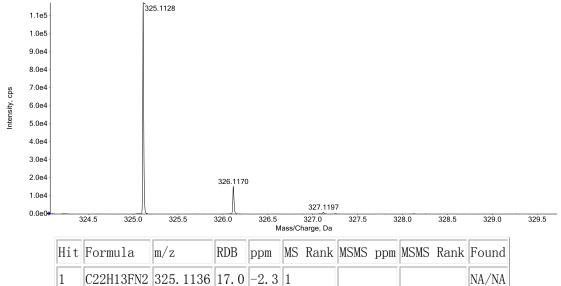

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 13)\ -\ Y13,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

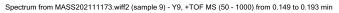


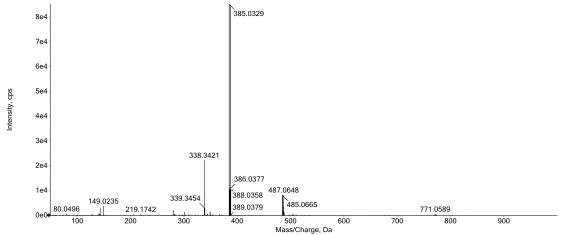

Spectrum from MASS202111173.wiff2 (sample 13) - Y13, +TOF MS (50 - 1000) from 0...02111173.wiff2 (sample 13) - Y13, +TOF MS (50 - 1000) from 0.237 to 0.299 min]

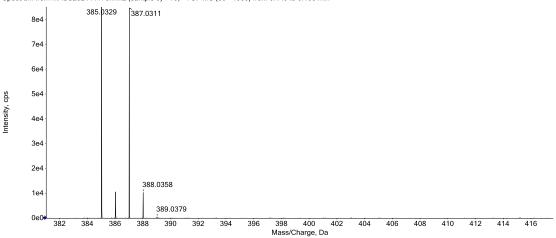

HR-MS spectrum of 6n

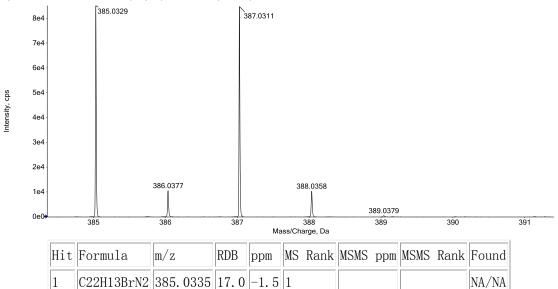
Spectrum from MASS202111173.wiff2 (sample 1) - Y1, +TOF MS (50 - 1000) from 0.1...S202111173.wiff2 (sample 1) - Y1, +TOF MS (50 - 1000) from 0.237 to 0.299 min]



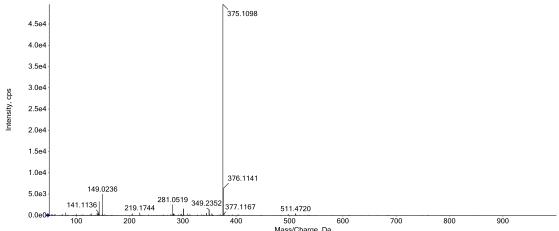


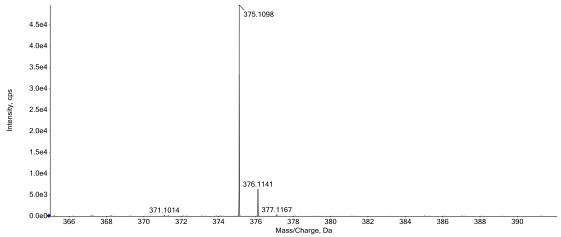

Spectrum from MASS202111173.wiff2 (sample 3) - Y3, +TOF MS (50 - 1000) from 0.149 to 0.193 min

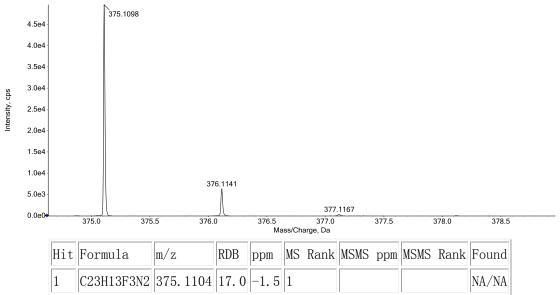

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 3)\ -\ Y3,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

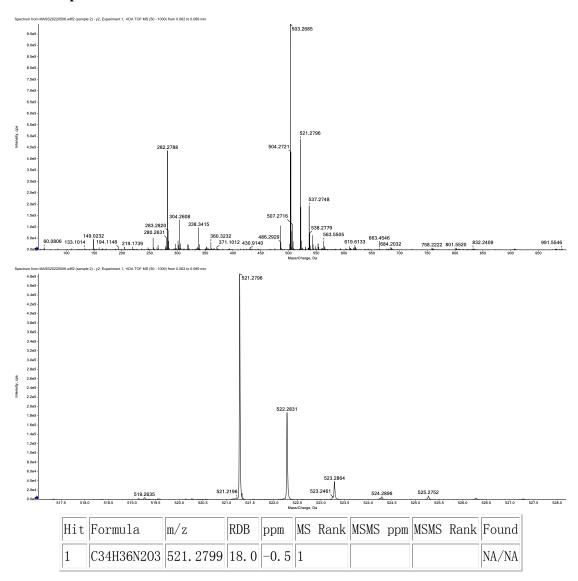


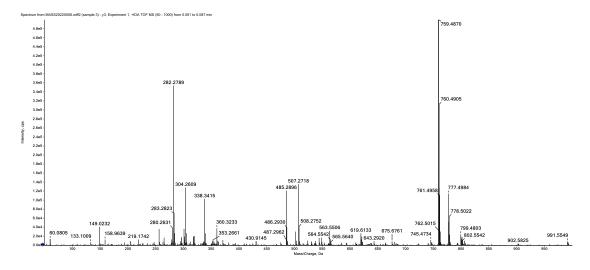


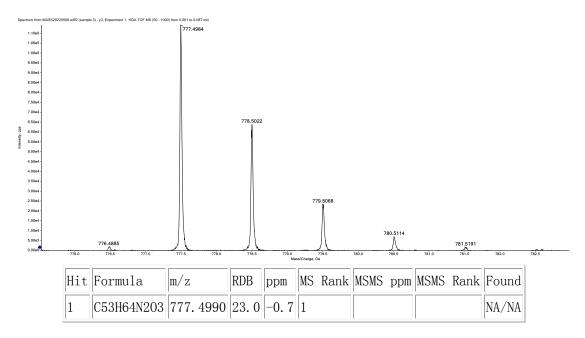

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 9)\ -\ Y9,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

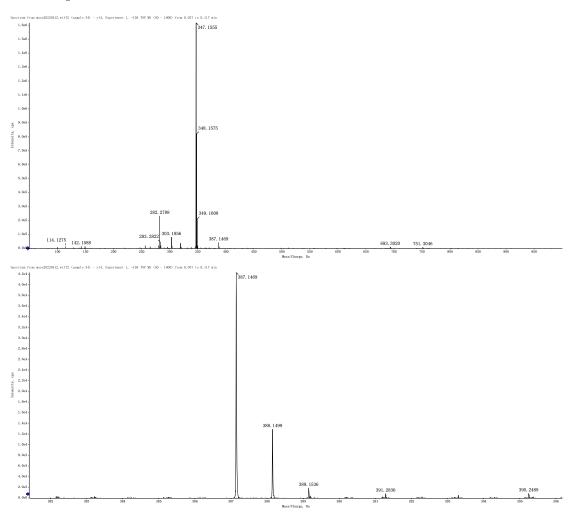

Spectrum from MASS202111173.wiff2 (sample 9) - Y9, +TOF MS (50 - 1000) from 0.149 to 0.193 min

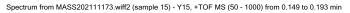


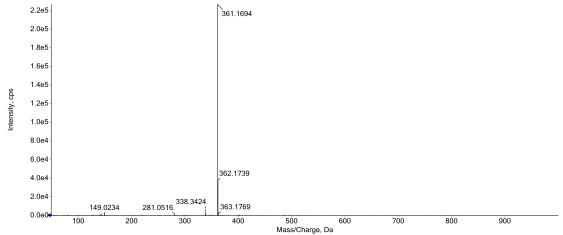


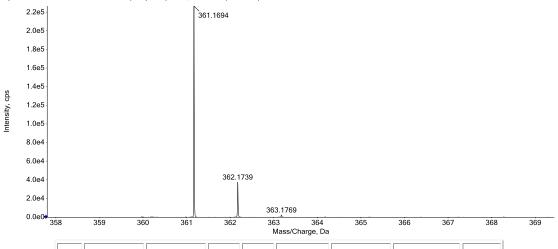

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 11)\ -\ Y11,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

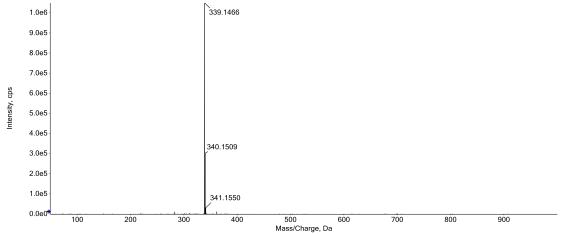


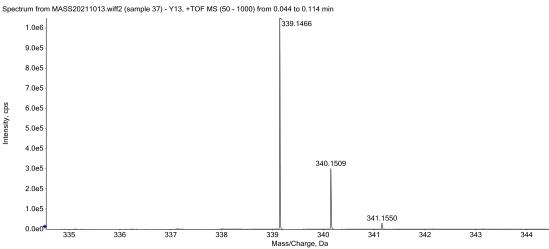

Spectrum from MASS202111173.wiff2 (sample 11) - Y11, +TOF MS (50 - 1000) from 0.149 to 0.193 min

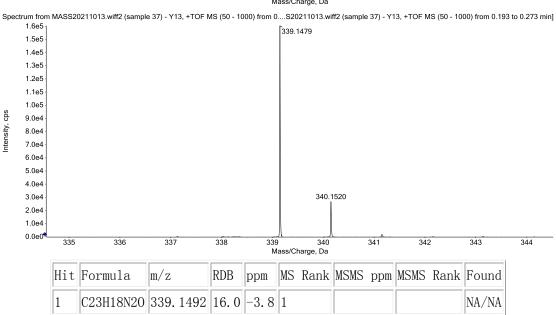


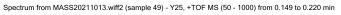


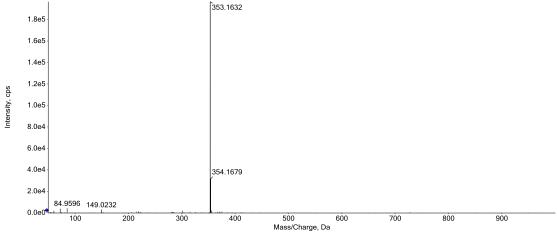


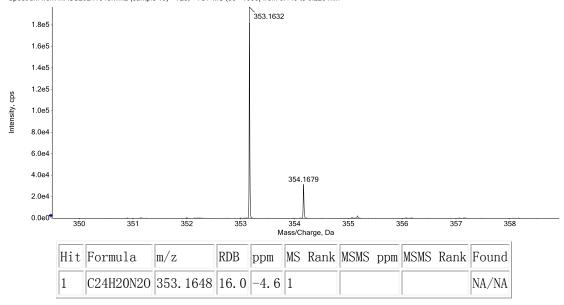

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 15)\ -\ Y15,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

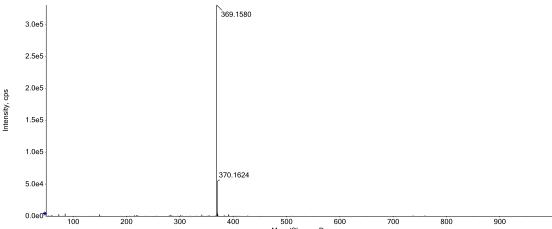



Hi	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C26H20N2	361. 1699	18.0	-1.5	1						NA/NA

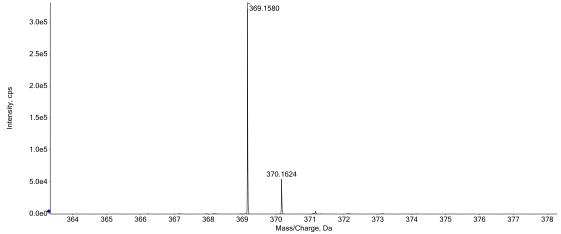

HR-MS spectrum of 7a


Spectrum from MASS20211013.wiff2 (sample 37) - Y13, +TOF MS (50 - 1000) from 0.044 to 0.114 min

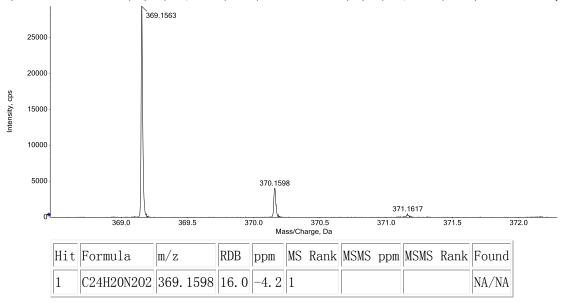




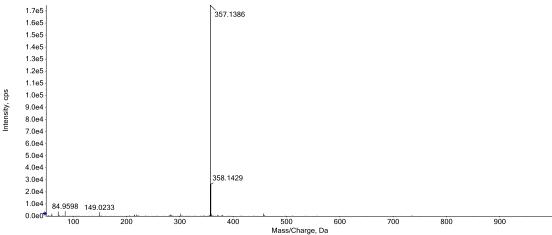
 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 49)-Y25,\ +TOF\ MS\ (50-1000)\ from\ 0.149\ to\ 0.220\ min$



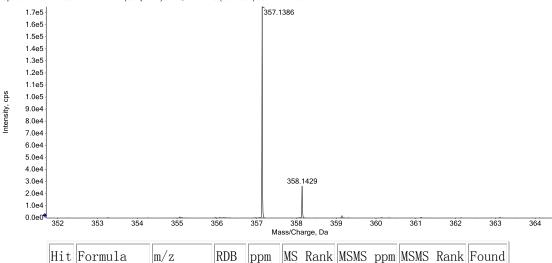
HR-MS spectrum of 7c


Spectrum from MASS20211013.wiff2 (sample 45) - Y21, +TOF MS (50 - 1000) from 0.114 to 0.184 min

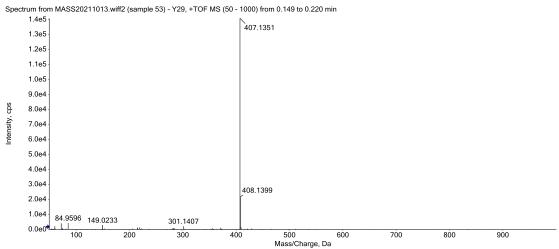
 $Spectrum\ from\ MASS 20211013.wiff 2\ (sample\ 45)\ -\ Y21,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.114\ to\ 0.184\ min$

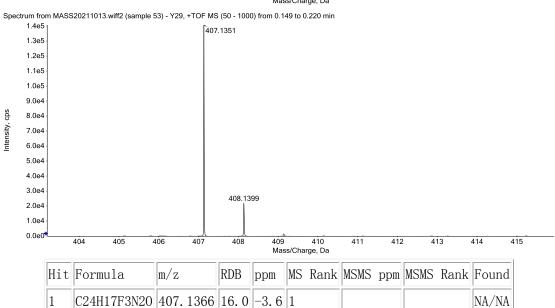


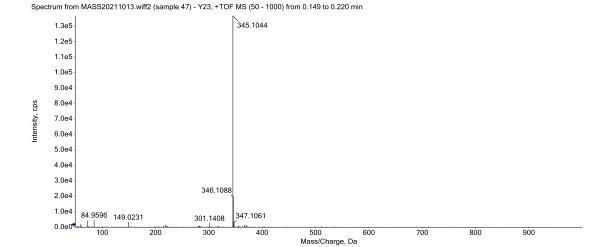
Spectrum from MASS20211013.wiff2 (sample 45) - Y21, +TOF MS (50 - 1000) from 0....S20211013.wiff2 (sample 45) - Y21, +TOF MS (50 - 1000) from 0.290 to 0.369 min]


HR-MS spectrum of 7d

Spectrum from MASS20211013.wiff2 (sample 43) - Y19, +TOF MS (50 - 1000) from 0.114 to 0.184 min

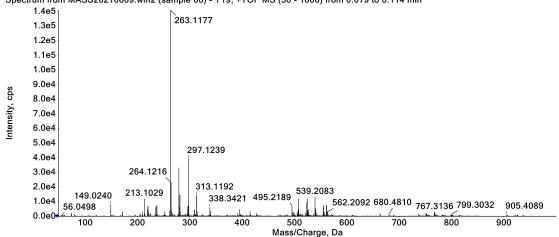

 $Spectrum\ from\ MASS20211013.wiff2\ (sample\ 43)\ -\ Y19,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.114\ to\ 0.184\ min$

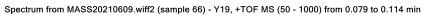

C23H17FN20 357. 1398 16. 0

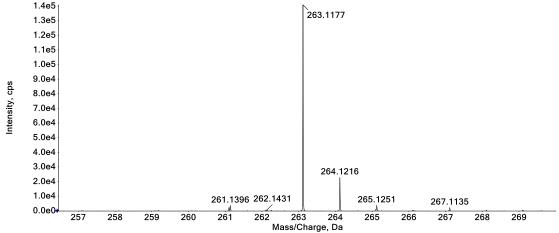


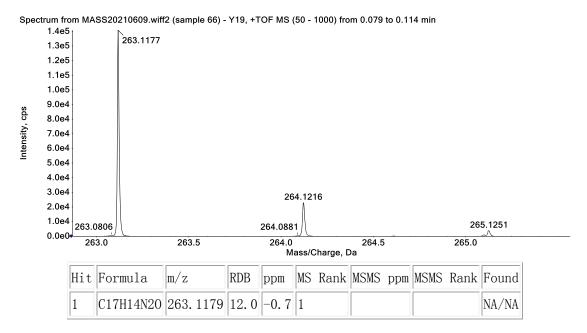
-3.3|1

NA/NA

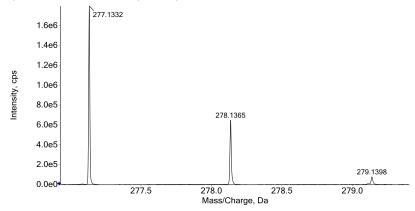



Spectrum from MASS20211013.wiff2 (sample 47) - Y23, +TOF MS (50 - 1000) from 0.149 to 0.220 min 345.1044 1.3e5 1.2e5 1.1e5 1.0e5 9.0e4 8.0e4 7.0e4 6.0e4 5 0e4 4.0e4 3.0e4 346.1088 1.0e4 347.1061 0.0e0 347 348 349 Mass/Charge, Da 342 344 345 346 350 352 353 354

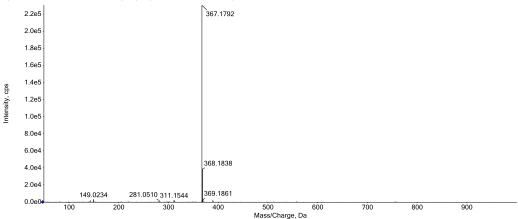

Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C21H16N2OS	345. 1056	15. 0	-3.5	1						NA/NA


HR-MS spectrum of 7g

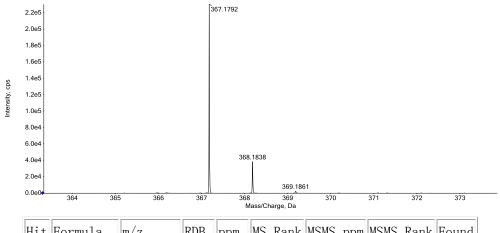
 $Spectrum\ from\ MASS20210609.wiff2\ (sample\ 66)\ -\ Y19,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.079\ to\ 0.114\ min$



Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C18H16N2O	277. 1335	12.0	-1.2	1						NA/NA

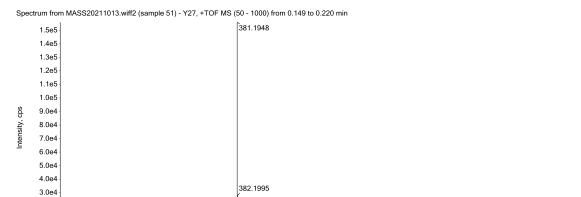

HR-MS spectrum of 7h'

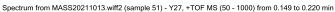
Spectrum from MASS20220916-LGQ.wiff2 (sample 4) - Y4, Experiment 1, +IDA TOF MS (50 - 1000) from 0.048 to 0.081 min



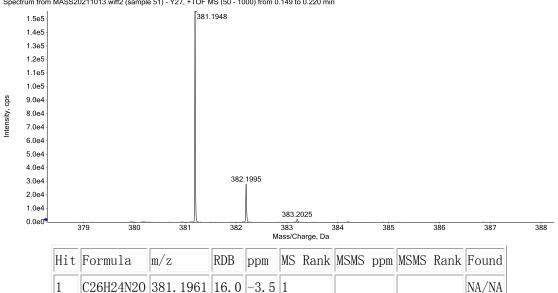
HR-MS spectrum of 7i

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 8)\ -\ Y8,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

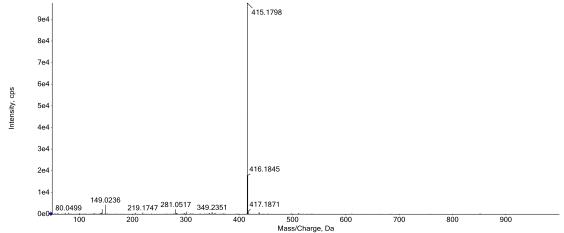

Spectrum from MASS202111173.wiff2 (sample 8) - Y8, +TOF MS (50 - 1000) from 0.149 to 0.193 min

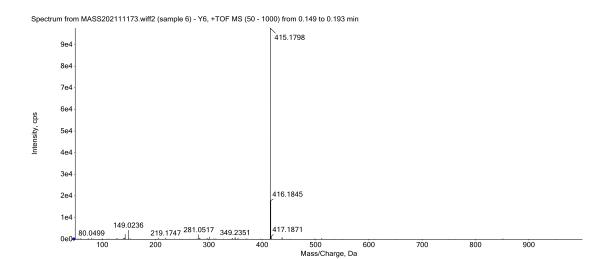

Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C25H22N2O	367. 1805	16. 0	-3.5	1						NA/NA

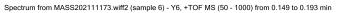
2.0e4

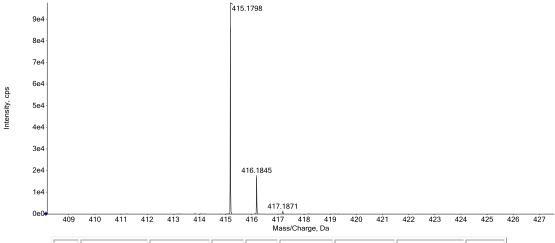

0.0e0 100

Mass/Charge, Da

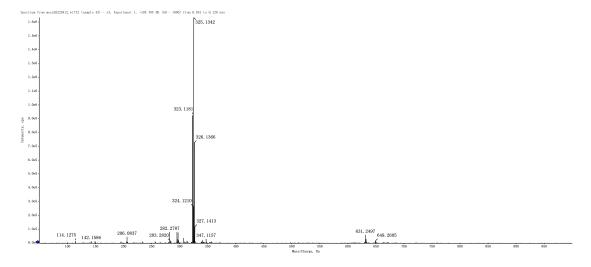


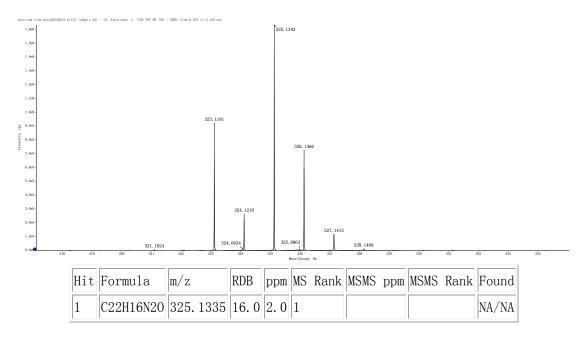

301.1410

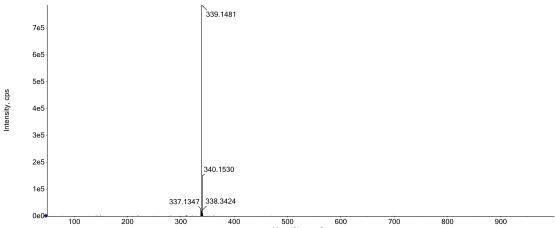



HR-MS spectrum of 7k

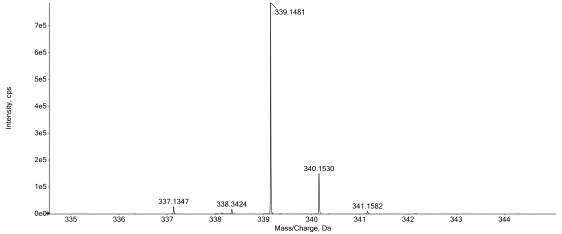
Spectrum from MASS202111173.wiff2 (sample 6) - Y6, +TOF MS (50 - 1000) from 0.149 to 0.193 min

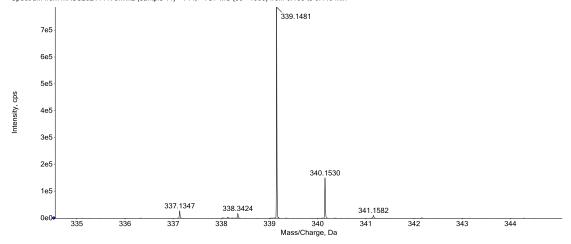


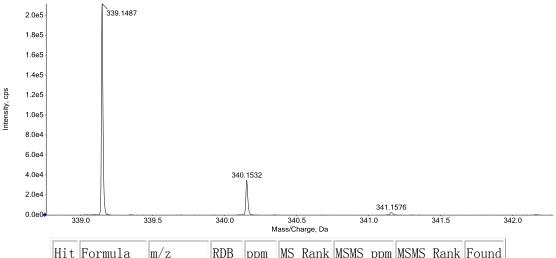




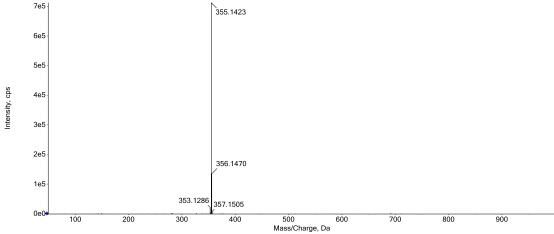
Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C29H22N2O	415. 1805	20.0	-1.7	1						NA/NA

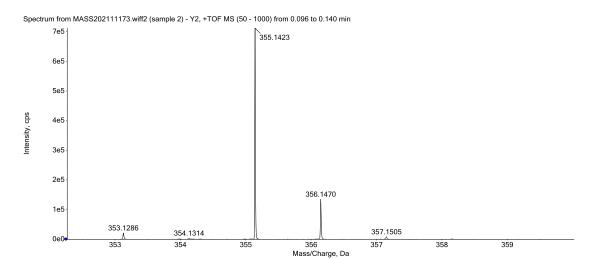


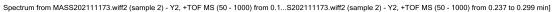

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 14)\ -\ Y14,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.105\ to\ 0.149\ min$

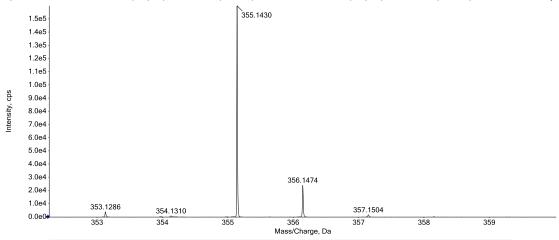

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 14)\ -\ Y14,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.105\ to\ 0.149\ min$

Spectrum from MASS202111173.wiff2 (sample 14) - Y14, +TOF MS (50 - 1000) from 0.105 to 0.149 min

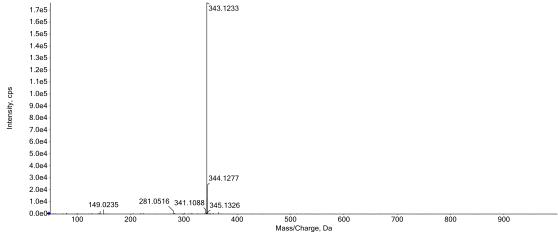

Spectrum from MASS202111173.wiff2 (sample 14) - Y14, +TOF MS (50 - 1000) from 0...02111173.wiff2 (sample 14) - Y14, +TOF MS (50 - 1000) from 0.237 to 0.299 min]

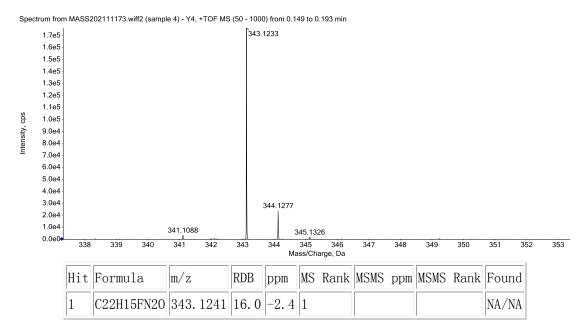


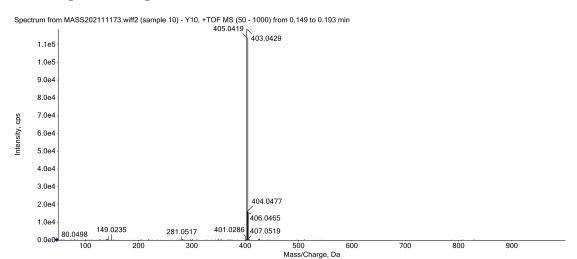

Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C23H18N2O	339. 1492	16.0	-1.4	1						NA/NA


HR-MS spectrum of 7n

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 2)\ -\ Y2,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.096\ to\ 0.140\ min$

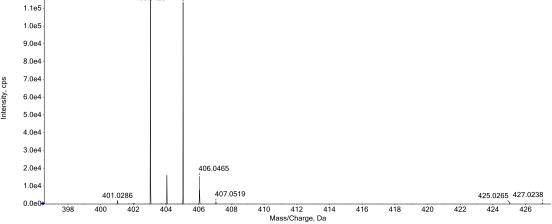


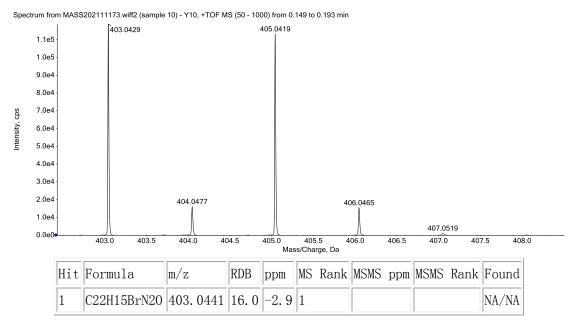


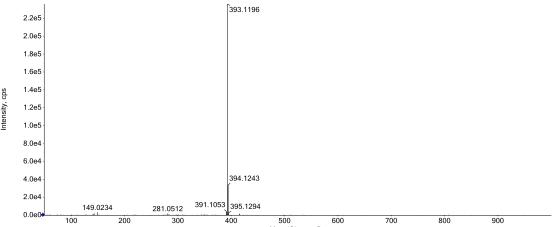


Н	it	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1		C23H18N2O2	355. 1441	16. 0	-3. 1	1						NA/NA

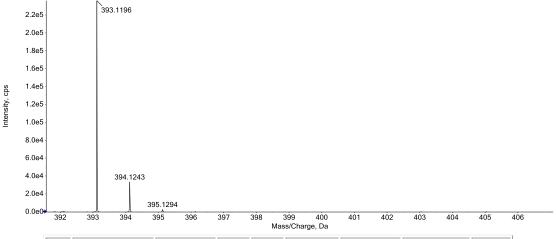
 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 4)\ -\ Y4,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

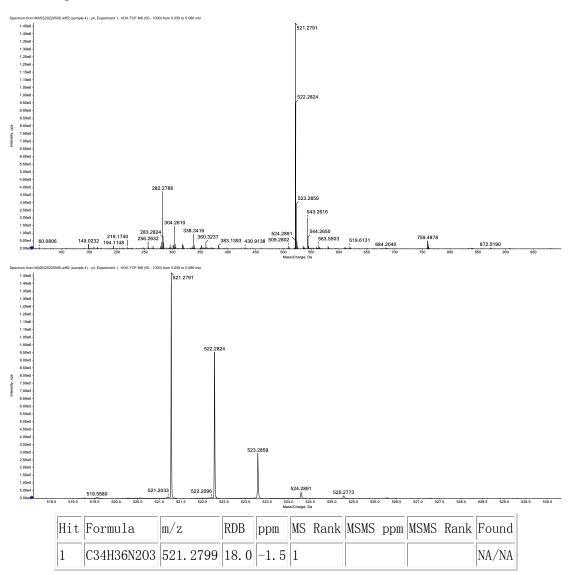


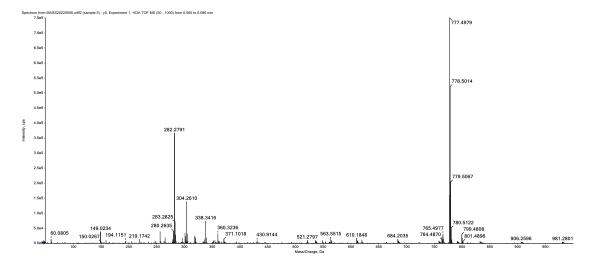


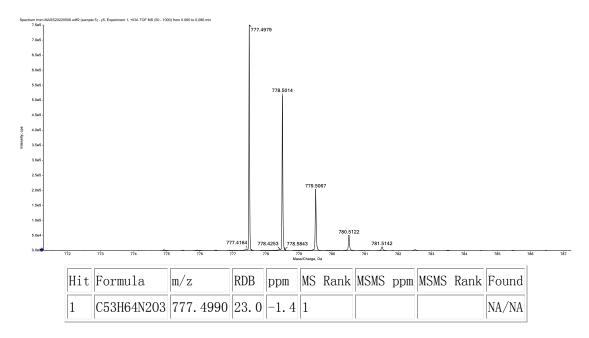

Spectrum from MASS202111173.wiff2 (sample 10) - Y10, +TOF MS (50 - 1000) from 0.149 to 0.193 min

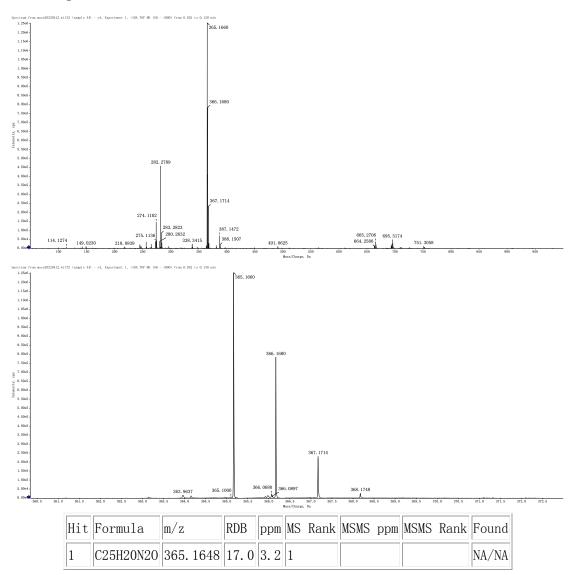
403.0429 405.0419

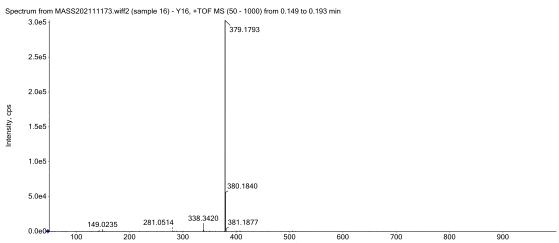


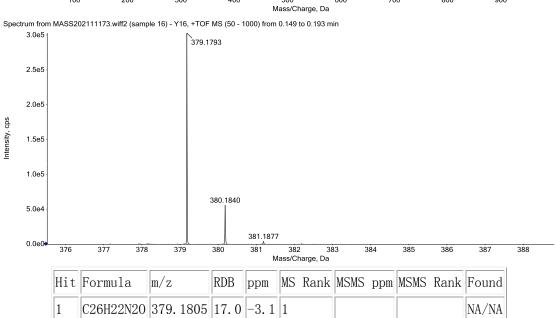

Spectrum from MASS202111173.wiff2 (sample 12) - Y12, +TOF MS (50 - 1000) from 0.149 to 0.193 min

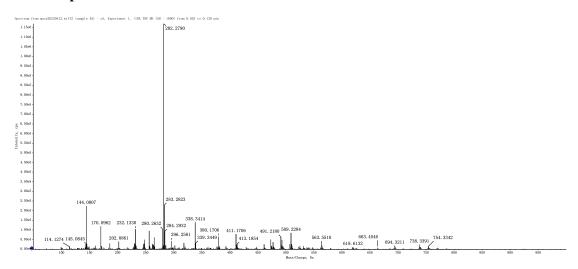


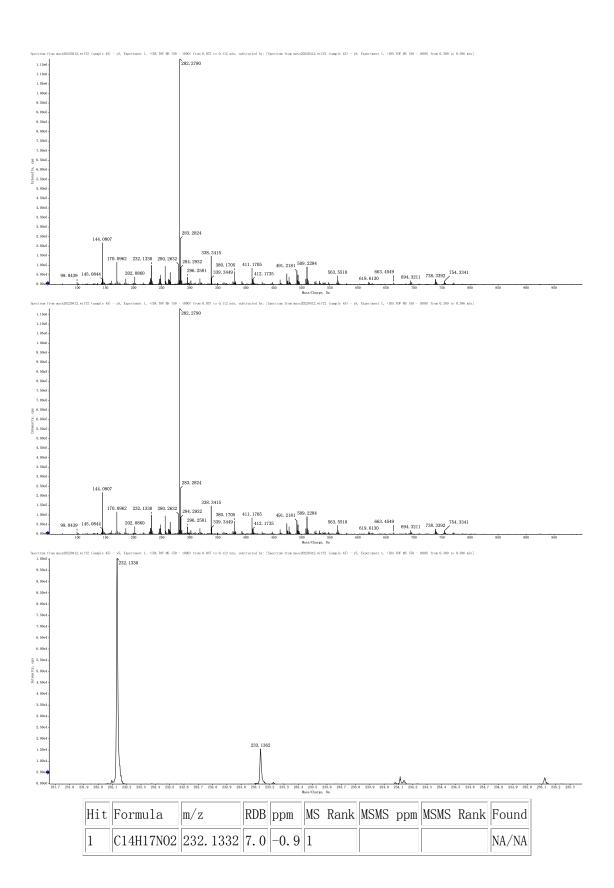

 $Spectrum\ from\ MASS202111173.wiff2\ (sample\ 12)\ -\ Y12,\ +TOF\ MS\ (50\ -\ 1000)\ from\ 0.149\ to\ 0.193\ min$

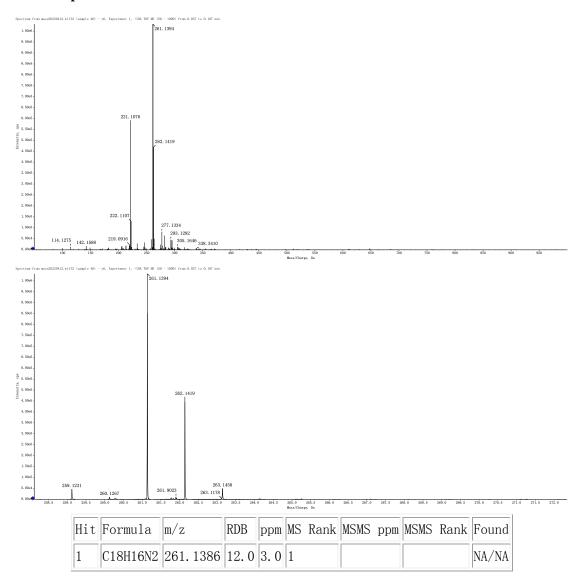


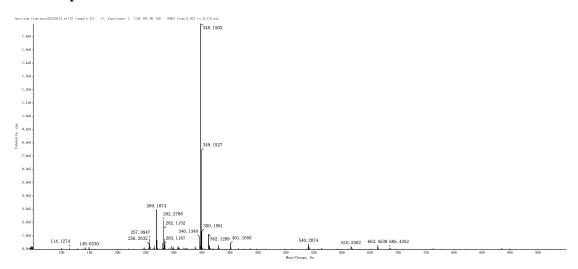

Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C23H15F3N20	393. 1209	16. 0	-3.4	1						NA/NA

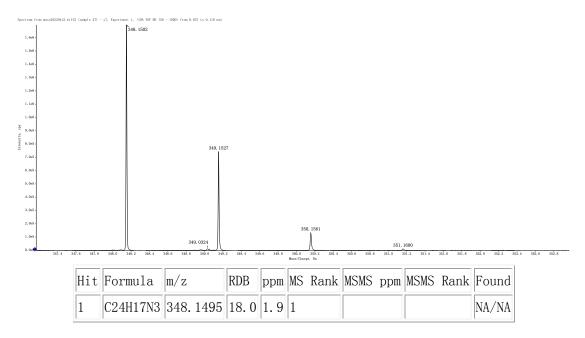


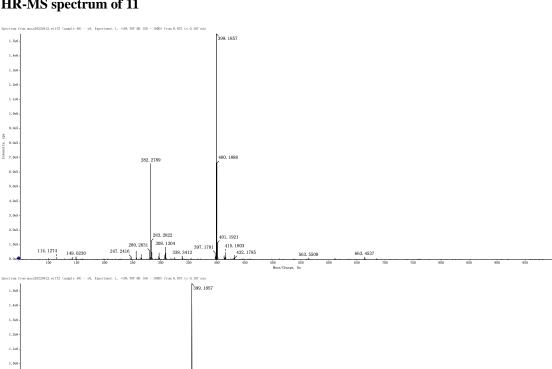


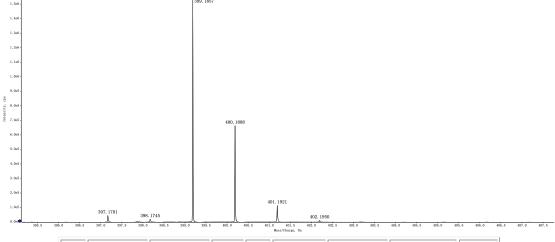


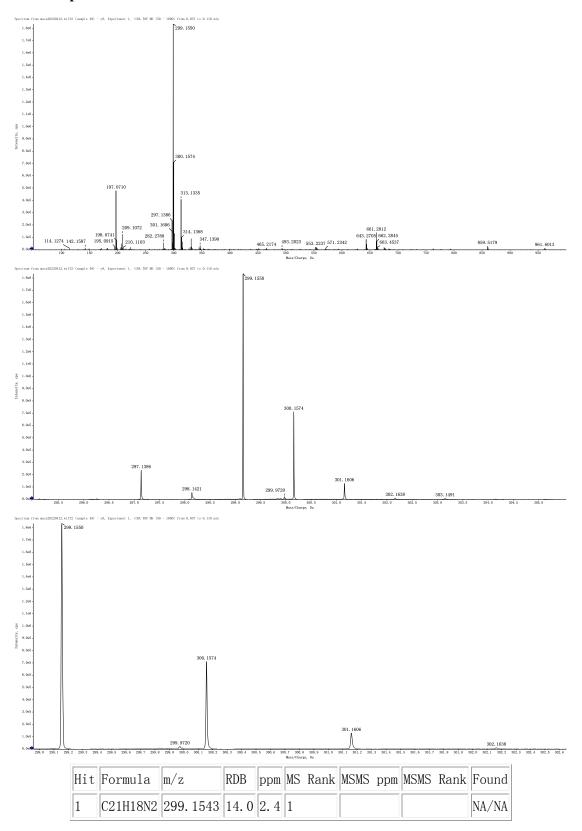


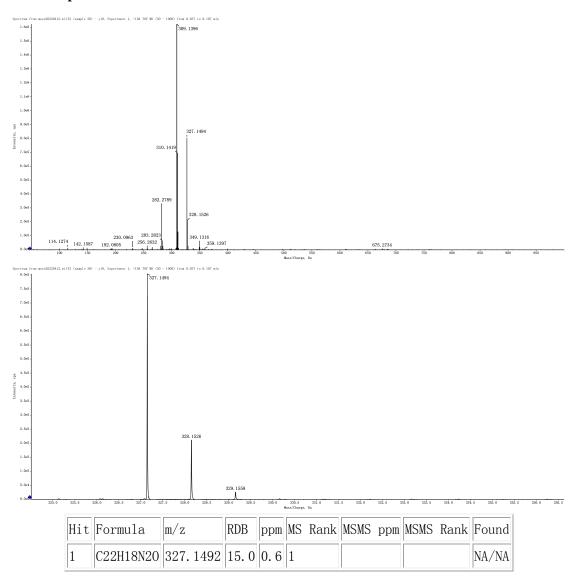


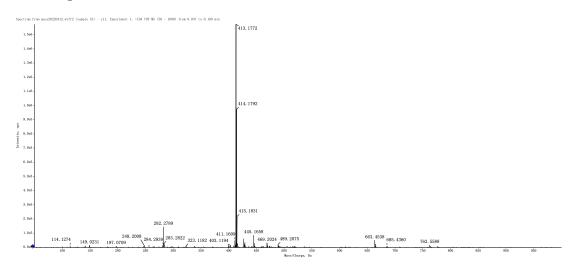


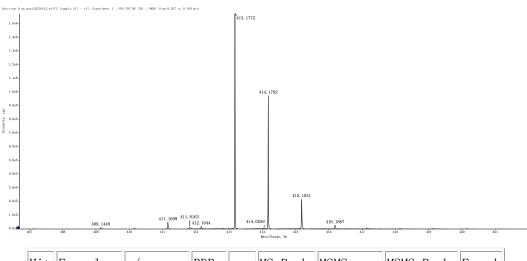












Hit	Formula	m/z	RDB	ppm	MS	Rank	MSMS	ppm	MSMS	Rank	Found
1	C29H22N2	399. 1856	20.0	0.3	1						NA/NA

IV. Supplementary References

- 1. (a) Hu, X., Shao, Y., Xie, H., Chen, X., Chen, F., Ke, Z., Jiang, H. & Zeng, W. Direct Carbon–Carbon σ Bond Amination of Unstrained Arylalkylketones. *ACS Catal.* **10**, 8402 8408 (2020); (b) Yang, P. & Bao, Y.-S. Palladium nanoparticles supported on organofunctionalized kaolin as an effcient heterogeneous catalyst for directed C H functionalization of arylpyrazoles. *RSC Adv.* **7**, 53878–53886 (2017).
- 2. Zhu, C., Pinkert, T., Greßes, S. & Glorius, F. One-Pot C-H Formylation Enabled by Relay Catalysis of Manganese(I) and Iron(III). *ACS Catal.* **8**, 10036 10042 (2018).
- 3. Estopiñá-Durán, S., Mclean, E., Donnelly, L., Hockin, B. & Taylor, J. Arylboronic Acid Catalyzed C Alkylation and Allylation Reactions Using Benzylic Alcohols. *Org. Lett.* **22**, 7547 7551 (2020).
- 4. Bai, J.-F., Yasumoto, K., Kano, T. & Maruoka, K. Asymmetric Synthesis of Chiral 1,4-Enynes through Organocatalytic Alkenylation of Propargyl Alcohols with Trialkenylboroxines. *Angew. Chem., Int. Ed.* **58**, 8898 8901 (2019).
- 5. Yang, B., Li, S.-J., Wang, Y., Lan, Y. & Zhu, S. Hydrogen radical-shuttle (HRS)-enabled photoredox synthesis of indanones via decarboxylative annulation. *Nat. Commun.* **12**, 5257 5268 (2021).
- 6. Tiwari, V., Kamal, N. & Kapur, M. Ruthenium-Catalyzed Heteroatom-Directed Regioselective C–H Arylation of Indoles Using a Removable Tether. *Org. Lett.* **17**, 1766 1769 (2015).
- 7. Li, J., Zhang, Z., Ma, W., Tang, M., Wang, D. & Zou, L.-H. Mild Cobalt (III)-Catalyzed C–H Hydroarylation of Conjugated C=C/C=O Bonds. *Adv. Synth. Catal.* **359**, 1717 1724 (2017).
- 8. Yang, C., Liu, Z., Hu, X., Xie, H., Jiang, H. & Zeng, W. Rh(III)-Catalyzed $Csp^2 Csp^3$ bond alkoxylation of α -indolyl alcohols via $C C \sigma$ bond cleavage. *Org. Chem. Front.*, **8**, 2949 2954 (2021).
- 9. Liu, Y., Xu, W. & Wang, X. Gold(I)-Catalyzed Tandem Cyclization Approach to Tetracyclic Indolines. *Org. Lett.* 12, 1448 1451 (2010).
- 10. Lee, H., Kim, S. & Kim, J. Facile One-Pot Synthesis of Cinnamamides from Aromatic Aldehydes and Acetonitrile with Me₃SiOK. *Bull. Kor. Chem. Soc.* **32**, 1748 1750 (2011).
- 11. Wen, X.-M., Tao, L., Xiang, Y.-Z., Fang, Y.-G. & Yu, X.-Q. A facile synthesis of trans-alkenes in micellar media. *ARKIVOC* **13**, 169 174 (2005).
- 12. Kim, Y., Park, S. & Kim, J. Cobalt-Catalyzed Direct C(sp²)–H Alkylation with Unactivated Alkenes. *Eur. J. Org. Chem.* **2020**, 4026 4030 (2020).
- 13. Shintani, R., Fujie, R., Takeda, M. & Nozaki, K. Silylative Cyclopropanation of Allyl Phosphates with Silylboronat. *Angew. Chem., Int. Ed.* **126**, 6664 6667 (2014).
- 14. Annes, S., Vairaprakash, P. & Ramesh, S. TfOH mediated intermolecular electrocyclization for the synthesis of pyrazolines and its application in alkaloid synthesis. *RSC Adv.* **8**, 30071 30075 (2018).
- 15. Gaussian 09, Revision D.01; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
- Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
- Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.
- A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
- Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
- Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
- Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma,
- K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.: Gaussian, Inc., Wallingford CT, 2009.
- 16. Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. *Acc. Chem. Res.* 41, 157 167 (2008).

- 17. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **120**, 215 241 (2008).
- 18. Wang, C., Wang, J., Cai, Q., Li, Z., Zhao, H.-K. & Luo, R., Exploring accurate Poisson–Boltzmann methods for biomolecular simulations. *Comput. Theor. Chem.* **1024**, 34 44 (2013).
- 19. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297 3305 (2005).
- 20. Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 14, 363 368 (1981).
- 21. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057 1065 (2006).
- 22. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B.* **113**, 6378 6396 (2009).
- 23. Besora, M., Vidossich, P., Lledós, A., Ujaque, G. & Maseras, F. Calculation of Reaction Free Energies in Solution: A Comparison of Current Approaches. *J. Phys. Chem. A.* **122**, 1392 1399 (2018).
- 24. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 592 (2012).