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Due to the fact that Magnetic Resonance Imaging (MRI) is still a relatively slow imaging modality, its application for dynamic
imaging is restricted. *e total variation is introduced into the CS-based MRI reconstruction model, and three regularization
conditions are adopted to ensure that a high-quality reconstructed image is produced. In this paper, a simple yet fast CS-based
optimization model for noisy MRI Enhancement is proposed. *e alternative direction multiplier method is chosen to optimize the
model, and the k-terms power series is applied in order to derive the LogDet function into the augmented Lagrange form. Following
this, an approximation of the feature vector is achieved through the iterative process. *e quality of the reconstructed image was
much better than that of the CS-based MRI image reconstruction algorithm, as shown by experimental results under different noise
conditions. *e peak signal-to-noise ratio of the reconstructed image was able to be improved anywhere from 5 to 20 percent.

1. Introduction

Since the excited hydrogen nucleus will release its energy by
emitting a signal with a specific frequency, the signal can be
detected and reconstructed by corresponding MRI technical
so as to recover the internal image data, which makes it
possible for the rapid examination and reasonable diagnosis
of diseases [1]. However, MRI will invariably have issues
with noise, and the reduction in the number of phase-
encoded signals will result in truncation artifacts when the
truncated K-space data is Fourier transformed to reconstruct
the image. *is will have a direct impact on how accurately
the image is analyzed, as well as the results of any subsequent
medical diagnosis. It is of the utmost importance to de-
termine how to process the noisy MRI enhancement in a
reasonable and accurate manner [2].

*e essence of MRI enhancement is that the detailed
information of the image is fully reserved, and the irrelevant
information such as noise and artifacts is removed to the
greatest extent. At present, most MR image enhancement
methods assume that the interference signal obeys Gaussian

distribution and many effective enhancement algorithms are
proposed.*e enhancement algorithms forMRI images can,
as of right now, be broken down into three distinct cate-
gories. *e first type is known as the variational-based
method, and it is distinguished by the fact that it realizes
MRI enhancement by finding the numerical solution to a
particular partial differential equation. Some examples of
this type of method include the adaptive anisotropic dif-
fusion enhancement method, the fractional total variation
enhancement model with L1 fidelity, and the minimum
unbiased risk estimation for MRI enhancement. In order to
find a solution to the issue of MR image enhancement, Chen
et al. utilized the total variation regularization (TV) model.
*e ability of total variation mode of effectively eliminating
random noise while simultaneously preserving the image’s
edges is the primary benefit of utilizing this mode [3–5]. On
the other hand, in order to use the total-variation method,
MR images need to fulfill the requirements of piecewise
constancy. *is requirement cannot be satisfied in the actual
MRI system because there is a nonuniformity between the
high field system and the excitation B1 field of 3T. In
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addition, the enhancement method that is based on total
variation will, under the assumption of piecewise invariance,
result in the emergence of an artificial effect, which will cause
the reconstruction result to be artificial. *is is because the
assumption states that piecewise invariance exists. *e name
of the second approach is the transform domain method. Its
most distinguishing characteristic is the ability of elimi-
nating interference in the transform domain and then
performing an inverse transform in order to obtain an image
of superior quality using techniques such as the wavelet
threshold transformation method, different shrinkage cri-
teria methods of wavelet transform, and the wavelet
transform approach forMRI enhancement. According to the
research in [6], the MR image can be improved and denoised
through the use of bilateral filtering in the wavelet domain.
However, the improved result will show pseudo-Gibbs
phenomenon at the point where the signal discontinues. *e
third one is referred to as the NLM enhancement method,
and it is typically distinguished by the application of a
significant quantity of spatially redundant information.
Initially, the NLM algorithm was utilized primarily for the
purpose of addressing Gaussian distributed noise. It is able
to reserve more details and remove more noise than general
methods because it has obvious advantages over those
methods. In recent years, NLM and its improved algorithm
have been applied to MR images and have achieved a good
enhancement effect. Some examples of this include nonlocal
enhancement based on the Gaussian model, maximum
likelihood nonlocal estimation method, and nonlocal en-
hancement based on unbiased estimation [7, 8].

Although high-quality MRI images can be obtained by
enhancement algorithms, most of these algorithms still
analyze and process the images and do not make use of the
essential features of MRI raw data. It is well known that the
generation of MRI requires three main steps: (1) the protons
in the imaging area generate signals (FID signal, SE signal,
STE signal, etc.) through the cooperation of RF pulse and
gradient magnetic field; (2) the MRT/R coil is adopted to
acquire these signals and fill the acquired signals into the
K-space; (3) Fourier transform is performed on the data in
K-space to obtain a magnetic resonance image. *erefore,
the K-space is the space for storing the original data of
magnetic resonance, and the magnetic resonance image can
be obtained by performing very complex data post-
processing on the original data of the K-space. *erefore,
some scholars began to explore the data processing in
K-space so as to improve the signal quality in the imaging
process [9].

In an MRI system, image signals are recorded sequen-
tially in K-space. *e scanning efficiency is the most im-
portant factor in determining how quickly images can be
acquired in this system. Because of the MRI system’s slow
data acquisition speed, motion artifacts and noise are both
relatively simple to generate. According to CS theory, if a
signal is compressible or sparse in a transform domain, the
high-dimensional signal can be mapped into the low-di-
mensional space using an observation matrix unrelated to
the transform basis, and the original signal can be recon-
structed with a high probability from a small number of

projections by solving the optimization problem. *is is
done by mapping the high-dimensional signal into low-
dimensional space. *e application of CS theory should
make it possible to drastically cut down on the amount of
data acquired, significantly cut down on the amount of time
spent acquiring data, and guarantee high-quality image
reconstruction. Lustig et al. applied CS theory toMRI for the
first time, where the undersampled MR image reconstruc-
tion is expressed as a l0 norm minimization problem, and
solved it by greedy algorithm. *e l0 norm minimization
problem is a NP hard problem. Lustig relaxes the l0 norm
problem to the l1 norm problem and uses the conjugate
gradient method to solve it. In order to improve the speed
and accuracy of image reconstruction, it applies total var-
iation to CS-based MRI model and uses two regularization
conditions to ensure high-quality reconstructed image.
Wang et al.introduce the dual-tree complex wavelet to
obtain the global sparsity priori, combined with CS theory to
reconstruct the MR image with directional structure, but the
comprehensive sparse coding phase in its solution process
takes a long time, resulting in the low efficiency of MRI
enhancement reconstruction. With the advent of com-
pressed sensing (CS) theory, minimizing the recording time
in K-space without affecting the image quality has become
themain purpose forMRI enhancement research. Due to the
effective use of signal sparsity, the K-space samples required
for MR image reconstruction are far less than those of
conventional methods. Furthermore, it can significantly
reduce the scanning time, making it a popular fast imaging
method. Nowadays, compressed sensing theory has been
successfully applied toMRI reconstruction [10]. In CS-based
MRI enhancement algorithm, the adaptive sparse repre-
sentation of MR image plays an important role in high-
quality image reconstruction. *e adaptive sparse repre-
sentation of MR image refers to learning by using the
training samples of known MR image, so as to obtain the
adaptive dictionary matching with MR image. *e adaptive
sparse representation of MR image can obtain accurate
sparse priors and capture rich structural information of the
image. In recent years, MRI enhancement algorithm based
on adaptive sparse representation model has become the
research direction.*ese improved CS-based algorithms can
reconstruct MR images more accurately, but these algo-
rithms have some defects, which still need to be further
improved. As a result, with the assistance of computer
science theory, the purpose of this paper is to conduct an in-
depth investigation of the adaptive sparse representation
model in order to increase the speed of image reconstruction
while simultaneously enhancing its overall quality.

In this paper, a straightforward and speedy CS-based
optimization model for noisy MRI Enhancement is pro-
posed. In this model, the total variation is incorporated into
the CS-based MRI reconstruction model, and three regu-
larization conditions are utilized to ensure that the recon-
structed image is of high quality. In order to quickly solve the
objective function, the alternative direction multiplier
method is utilized to optimize the model. Additionally, the
k-terms power series is implemented in order to derive the
LogDet function into the augmented Lagrange form, and
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finally an approximation of the feature vector is achieved
through the iterative procedure.

2. Radial Subsampling and Its K-Space in
MRI System

As we all know, accelerating the speed of imaging has always
been the focus of Magnetic Resonance Imaging research,
which can not only improve the efficiency of MRI system,
but also weaken or eliminate motion artifacts and noise, so
that MRI can be better applied to medical diagnosis
[6, 11–13]. In MRI system, there are generally two methods
to shorten the time of data acquisition: one is to use mul-
tichannel parallel imaging technology; the other is to use
non-Cartesian sampling trajectory to fill K-space, such as
radial subsampling and sparse sampling [14–17].

Radial subsampling in MRI data acquisition is to collect
magnetic resonance data in a radial trajectory rather than
parallel linear manner. Radial subsampling not only
changes the phase coding gradient and adopts sinusoidal
gradient magnetic field, but also uses two coding gradient
magnetic fields, Gx and Gy, so that the direction of the total
gradient vector forms an arbitrary angle θ with the x-axis.
*erefore, the total gradient intensities G and θ in the two
directions are

G �

�������

G
2
x + G

2
y



,

θ � arctan
Gy

Gx

 .

(1)

Radial subsampling should also meet Nyquist sam-
pling theorem. *e difference of sampling steps will lead
to the existence of aliasing artifacts in image recon-
struction. In radial subsampling, the first two parameters
G and θ cannot be directly converted into spatial reso-
lution. Since the former depends on the number of radial
lines ns, the parameters can be set freely in actual sam-
pling. Generally, the number of radial lines is set to ns, so it
can be denoted by

ns �
πn

2
. (2)

Satisfy the above formula to ensure that the maximum
distance between adjacent radial subsampling lines is not
greater than Δk. Since traditional MRI uses Cartesian tra-
jectory, its reconstruction method is simple, but line by line
acquisition is very sensitive to motion artifacts. Non-Car-
tesian sampling, such as radial sampling, has obvious ad-
vantages over Cartesian sampling. *ere are mainly the
following two aspects: firstly, each line of radial sampling
data contains the same amount of low-frequency to high-
frequency information, which is conducive to the sub-
sampling reconstruction of MRI images. Secondly, the radial
sampling mode determines its oversampling of K-space
center data, and K-space center data determines the main
information of the image. *erefore, radial sampling is not
as sensitive to the motion parameter. However, radial
sampling also has some disadvantages. For example, the

radial sampling trajectory is densely sampled in the middle
and sparsely sampled at the edge, and then the sampling
density is uneven. *erefore, the image cannot be obtained
directly by Fourier transform, so the imaging process is more
complex. It is necessary to use grid interpolation method or
Zero_filling strategy to interpolate the data to uniform grid
points and then perform Fourier transform to obtain the
final image. Radial subsampling and its MRI image are
shown in Figure 1.*e specific operation can be seen in [18].

K-space is the space for storing the raw data of magnetic
resonance, and the magnetic resonance image can be ob-
tained by performing very complex data postprocessing, as
shown in Figure 1. After the radial sampling data set is
interpolated into the Cartesian coordinate system by
gridding convolution, the resampled data can be directly
used to obtain the final MRI reconstruction image by inverse
fast Fourier transform. It can be seen that there is no one-to-
one corresponding relation between the array points in the
K-space and the reconstructed pixel points in image space.
But the frequency encoding direction and phase encoding
direction of K-space are symmetrical. Due to the spatial
positioning effect of the gradient field in the phase encoding
direction, the phase encoding gradient in the center of
K-space is zero, and the phase encoding on both sides in-
creases in turn, so it is also symmetrical in t. *is is because
in the frequency encoding direction a continuous curve that
is composed of many signal subsampling points is collected,
and the curve is a symmetrical curve, so it is symmetrical in
the frequency encoding direction. Each point in the K-space
corresponds to all of the pixels in the MR image, and the
image contrast is determined by the central part of the
K-space, while the spatial resolution is determined by the
peripheral part of the K-space. *eoretically, one can obtain
a quarter of a subsample of the K-space, and then the
remaining space can be filled mathematically, which results
in an MRI image. *is can result in phase errors and image
distortions as a result of errors and noise in the data ac-
quisition process. *e challenge that needs to be tackled is
figuring out how to carry out image reconstruction and
enhancement with only a limited amount of data in order to
obtain MRI data of a high quality. *e CS-based MRI en-
hancement model is improved with the help of a powerful
and efficient optimization algorithm that is used in this
paper.

3. K-Space Enhancement Reconstruction
Algorithm for Noisy MRI

3.1. Improved CS-Based MRI Model. In an MRI system,
image signals are recorded sequentially in K-space. *e
scanning efficiency is the most important factor in deter-
mining how quickly images can be acquired in this system
[19]. Because of the MRI system’s slow data acquisition
speed, motion artifacts and noise are both relatively simple
to generate. According to the CS theory, if the signal in a
transform domain is compressible or sparse, the high-di-
mensional signal can be mapped into the low-dimensional
space using an observation matrix that is unrelated to the
transform basis, and the original signal can then be
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reconstructed with a high probability from a limited number
of projections by solving the optimization problem. By
mapping the high-dimensional signal into the low-dimen-
sional space, this is achieved. In the theory of CS, the image
reconstruction model can be expressed as Y � ΦX, where X

is an image matrix; Φ ∈ RM×N is an observation matrix; Y is
a measurement matrix. When M<N, this means that many
solutions can be obtained for the equation Y � ΦX. In order
to constrain the results, it is generally necessary to add
regularization terms to the equation, such as total variation,
sparse, and BM3D.

If the image is sparse under the representation of a
dictionary, and its model can be written as X � DA, where A

is a sparse matrix and D is a dictionary, it can be solved by
using an appropriate sparse optimization algorithm, and
then the image X can be reconstructed by solving the
X � DA. In the image inverse problem based on CS con-
struction, selecting an appropriate dictionary plays a key role
in image reconstruction.

MRI images are sparse in a specific transform domain,
which meets the requirements of CS theory for signal
sparsity. *e convex optimization problem of l1 norm is
constructed in combination with compressed sensing the-
ory. It can be concluded that the objective function of CS-
based MRI reconstruction is

x � argmin
x

1
2

‖Fx − y‖ + λL(x), (3)

where x is the MRI image to be reconstructed, F represents
the Fourier transform operator, and y is the K-space data
obtained after MRI scanning; L(x) is the regularization
term. According to the distribution of the signals in the
K-space data, the corresponding sparse transform domain,
the observation matrix and the appropriate CS-based re-
construction algorithm are selected. *e MRI image can be
reconstructed by solving the CS-based enhancement algo-
rithm for (3). However, to improve the reconstruction ac-
curacy, many effective objective functions have been
proposed, such as sparse and low-rank regularization con-
straints. *e nonlocal group-sparse model proposed by
Dong et al. is the most famous [2], whose global objective
function is shown as follows:

x, Li(  � argmin
x,Li

‖Φx − y‖
2
2 + η

i

Rix − Li

����
����
2
2 + λL(x) ,

(4)

where Rixi is expressed as a low-rank matrix composed of all
nonlocal similar patches of the sample xi. In order to solve
the multivariable objective function, the idea of alternating
solution is adopted to optimize, which fixes one variable to
solve another variable and finally obtains the optimal so-
lution. Although the objective function in (4) can achieve
better performance than the traditional CS-based en-
hancement, it can only be effective for Gaussian distribution,
and the solution process is extremely complex. TV regu-
larization model is one of the most successful image re-
construction models, which can adapt the noisy data with
different distribution for reconstruction and enhancement.
In order to adapt to different noise distributions and ac-
celerate the solution speed, the improved objective function
proposed in this paper is as follows.

x, Li(  � argmin
x,Li

‖Φx − y‖
2
2 + η

i

Rix − Li

����
����
2
2 + λL(x) 

+ β
Ω

|Φx − y|dx.

(5)

It can be seen that the improved model in this paper
introduces the total variational regularization on the basis of
(5). However, it is not easy to solve, so we relax the con-
straints; i.e.,Ω|Φx − y|dx � 〈Φx − y, z〉. As a consequence,
we can adopt the alternative direction multiplier method for
solving (6).

Firstly, split (6) and rewrite it into the augmented
Lagrange form.

x, Li(  � argmin
x,Li

‖Φx − y‖
2
2 + η

i

Rix − Li

����
����
2
2 + λL(x) 

+ β〈Φx − y, z〉,

(6)

where z is Lagrange multiplier; c, η, β are penalty factors.
(xk.xk, zk) is iterated through the alternative direction

(a) (b) (c)

Figure 1: Schematic diagram of MRI reconstruction. (a) K-space (spectral) image; (b) radial subsampling; (c) MRI image.
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multiplier method and get (xk+1.yk+1, zk+1)，whose step is
shown as follows:

x
k+1

, y
k+1

 ← argmin
x∈Rn,y∈rRn

Lc x.y.z
k
.c ,

z
k− 1←z

k
− c x

k− 1
− y

k− 1
 .

⎧⎪⎪⎨

⎪⎪⎩
(7)

It is worth noting that (7) only regards ((6) as a general
linear constrained convex programming problem without
considering its separable structure, so it is necessary to solve
two variables xk+1 and yk+1 at the same time. On the
contrary, the alternative direction multiplier method de-
composes (7) into two subproblems to solve xk+1 and yk+1,
respectively, so it has the following form:

y
k+1←argminLc x.y

k
.z

k
 ,

x
k+1←argminLc x

k+1
.y.z

k
 ,

z
k+1←z

k
− c x

k+1
− y

k+1
 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

In other words, the subproblem for solving x can be
rewritten as

x
k+1

� argmin
x∈Rn

1
2
‖Φx − y‖

2
+ x − y

k+1
−

z
k

c

���������

���������

⎧⎨

⎩

⎫⎬

⎭. (9)

*erefore, in order to solve the MRI enhancement
problem under the background of least squares problem by
using linear alternative direction multiplier method,
(τ/2)‖x − xk‖2 is introduced into the subproblem, so
x− subproblem can be solved by computing

x
k+1

� argmin
x∈Rn

1
2
‖Φx − y‖

2
+ x − y

k+1
−

zk

c

��������

��������

2

+
τ
2

x − x
k

�����

�����
2⎧⎨

⎩

⎫⎬

⎭,

(10)

where τ > ρ(ΦTΦ) is positive constant. *erefore, the
weighted singular value thresholding operator can be
adopted to solve optimization result, as in [2].

In this paper, the total variational constraint is intro-
duced into nonlocal group-sparse model, and the parame-
ters of the objective function are relaxed, so that each
subproblem can have analytical solutions, and the size of
iterative step is greater than 1. For example, zk+1 has a
closed-form solution; we can obtain

y
k+1←

1
λ2ΦTΦ + cI

λ2ΦT
y − z

k
+ cx

k
 ,

x
k+1←PΩ

1
τ + c

τx
k

+ z
k

+ c ωy
k+1

+(1 − ω)x
k

  − A
T

Ax
k

− b   ,

z
k+1

� z
k

− c x
k+1

− ωy
k+1

− (1 − ω)x
k

 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where ω ∈ (0, 2) is the relaxation operator.

3.2. LogDet Optimization for Acceleration. To solve the im-
proper operation of hard threshold for all singular values, the
smoothing effect caused by inaccurate estimation of matrix
rank, and the high time complexity of the algorithm caused by
a large number of iterative optimizations, we use the LogDet
optimization for acceleration to estimate the singular value, so
we can directly obtain the singular value approximation based
on the number of singular value iterations.

In [6], it has been proved that low-rank problem can be
approximated to LogDet problem. For a general matrix L
that is neither square nor positive semidefinite, it can be
slightly modified as L(X) � logdet((XXT)1/2 + εI). Because
of XXT � UΣUT, so we can obtain L(X) � logdet(Σ1/2 + εI),
where Σ is diagonal matrix composed of singular values of
XXT. In other words, we can use the LogDet optimization to
replace low-rank model, which can improve optimization
speed. However, when the matrix decomposition method is
used for XXT, its computation complexity of the exact
solution is 0(N3), so its computational cost and additional
storage requirements may limit their use in MRI real-time
reconstruction.

Literature [20] proposed a uniform distributed sample
selection method for the estimation of random traces in the
process of Gaussian regression, whose computation com-
plexity of the exact solution for logdet function is just a
O(N2). In the decomposition of large sparse matrix,
logdet(C) can realize the approximation estimation based
on power series expansion. Since any matrix can be con-
verted into a specific form I − a D, its eigenvalues remain
less than 1 after row standardization or extraction of a
sufficiently large factor, where, a ∈ (0, 1), I and D are
expressed as identity matrix and large sparse matrix, re-
spectively. Firstly, the power series expansion method is
applied to the approximation of generalized positive definite
matrix, and then the power series truncation error com-
pensation is used, and its result can be used as an effective
surrogate function for accurate estimation. For a positive
definite matrix C ∈ RN×N, the approximate value of the k-
terms power series for logdet(C) can be denoted by

logdetC ≈ Nlog(a) − Nε 
k

i�1

s
T
B

i
s

is
T
s

⎛⎝ ⎞⎠, (12)

where a � ‖C‖∞, B � I − C/a, s ∼ NN(0, I).
On basis of the infinite norm of thematrix, we can obtain
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logdet(C) � logdet(aA) � log a
NdetA 

� N log(a) + logdetA,
(13)

where α � ‖C‖∞ � maxi( N
j�icij), and A � C/a. *erefore,

logdetA can be approximately expressed as the sum of a
simple polynomial

logdetA ≈ − Nε 
k

i�1

s
T
B

i
s

is
T
s

⎛⎝ ⎞⎠, (14)

where ε is the mean for random number.*e basic algorithm
of logdet(C) is based on equations (13) and (14), where an
intermediate vector ] needs to be calculated or stored; that is,
]t+1 � B]t and ]0 � s. *e above approximate estimation
method only needs O(N2) operations and N vector storage.
Compared with the traditional matrix decomposition, our
adopted strategy can meet the needs of MRI data recon-
struction in K-space.

4. Experiments

4.1. Parameter Setting. In order to verify the effectiveness of
the proposed noisy MRI reconstruction algorithm in K-space,
this section report the experimental results for simulation
comparison experiment. In this experiment, six MRI images
are selected for testing, and the noise variance is 5, 10, 25, and
50 respectively. In the experimental parameters, the size f of
image patch and the size W of search window are σ2 < 30f

� 7，W � 21; σ2 ≥ 30， f � 9，W � 31. Since the number
of similar patches is adaptive, it overcomes the introduction of
dissimilar image blocks due to the fixed number of similar
patches, but too many similar blocks will increase the amount
of calculation, so we set the boundary value Si ∈ [10, 60]. *e
regularization parameter λ, β, η is tuned separately for dif-
ferent iteration times, where the initial values are set to 0.1,
0.05, and 0.01, respectively. Sensing rate in K-space is set to
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Noisy MRI reconstruction
algorithms are programmed using MATLAB language. *e
experimental simulation platform is a personal computer with
Intel (R) core (TM) i5 dual core CPU, 2.6GHz frequency, 4G
memory, Win10 operating system and MATLAB 2017a is
selected as experimental simulation software.

4.2. Evaluation Indexes. Some common objective evaluation
indexes for performance quantification have been adopted in
order to perform an objective evaluation of the reconstruction
performance of the improved reconstruction algorithm for noisy
MRI with different noise distributions. *ese objective evalu-
ation indexes include mean square error (MSE), peak signal-to-
noise ratio (PSNR), and structure similarity (SSIM). Since MSE
is the divergence of the mean square error between the original
picture and the reconstructed image, its primary application is in
the simulation experiment of a known original image.

MSE � 
i∈I

|x(i) − x(i)|
2
2, (15)

where x represents the reconstructed gray level. MSE reflects
the approximation degree of the reconstructed image to the

original image. *e smaller its value is, the better the noisy
MRI construction effect is.

Peak signal-to-noise ratio is an image-quality evaluation
index based on mean square error, which is defined as

PSNR � 10lg
2552

i∈I(x(i) − x(i))
2/M × N

 , (16)

where M, N represent the size of image. It can be seen from
the (15) and (16) that the evaluation of PSNR and MSE is
just the opposite.*e larger PSNR the better reconstruction
result, and the smaller PSNR the worse reconstruction
effect.

Structural similarity is to evaluate the performance of
image reconstruction algorithm from the perspective of the
edge structure of image, which evaluates the quality of image
based on structural distortion. It is an objective evaluation
method very close to human vision, which is defined as
follows:

SSIM �
4uxuyσxy

u
2
x + u

2
y  σ2x + σ2y 

, (17)

where ux, uy represent the mean value of the original image
and reconstructed image, respectively; σx, σy can represent
the variance of the original image and the estimated image,
respectively. If the two structures are more similar, the value
of SSIM is greater, and the value of SSIM is less than or equal
to 1.

4.3. Reconstruction Performance for Different Noises. To
verify the performance of the improved algorithm for noisy
MRI reconstruction with different noise distributions,
Rayleigh noise, Gaussian white noise, and random non-
uniform noise are selected for reconstruction analysis, where
the standard deviation σn of Gaussian noise is 5, 15, 25, 20,
and 35, respectively. All of the comparison tests had their
noisy images treated using the same settings. We also
performed a comparison study of the experimental out-
comes, looking at them from both a subjective and an
objective perspective. During the subjective evaluation, the
smooth area and the area with rich texture information are
primarily selected for analysis, and the performance of the
reconstruction method is evaluated based on the visual
effect. During the objective evaluation, PSNR and SSIM are
utilized in order to evaluate the performance of the re-
construction effect.

Uniform noise is defined as noise that obeys the same
distribution at different pixel positions of the image; namely,
the distribution of any position (i, j) is the same in
y � x + n. Nonuniform noise is defined as the noise that
either obeys different distributions at different pixel posi-
tions or obeys the same distribution but has different cor-
responding parameters. *e noise nij � nδij at any position
(i, j) in the image y � x + n obeys different distributions or
has the same distribution but different parameters, where the
value of the sampling function nij � nδij at any position (i, j)

is 1 and 0 at other positions. For the convenience of dis-
cussion, the standard deviation σ of nonuniform Gaussian
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noise follows the uniform distribution of [1 :100], while the
standard deviation of uniform Gaussian noise is σ � 20.
Table 1 shows the reconstruction results under different
noise distributions. NL-CS and GSCS are the selected
comparison algorithms, where NL-CS is a reconstruction
algorithm based on nonlocal compressed sensing and GSCS
is a group-sparsity based reconstruction algorithm. *e best
results in Table 1 have been bold. It can be seen that the
reconstruction performance of the reconstruction algorithm
proposed in this paper is the best under different types of
noise, because the regularization constraints used in this
paper are independent of the noise model, while the com-
parison models are optimized based on Gaussian noise
model. *e processing ability of NL-CS and GSCS for
Gaussian noise is significantly better than that of the other
two kinds of noise in Table 1.

It is evident from the results of the reconstruction shown
in Figure 2 that our approach does a better job of preserving
the features. When compared to NL-CS, it is only slightly
poorer in the bright places, but when compared to other
comparative algorithms it performs significantly better in
the bright spots. *e noise in the image is exceedingly
chaotic as a result of the interference caused by the non-
uniform Gaussian noise. *e noise can be effectively sepa-
rated using the model that was proposed in this study. *e
reconstruction performance is capable of preserving the
detailed signal, particularly in the edge region, but there are
also fake effects in some locations. *is is especially true for
the edge region. Some of the highlighted noise spots in the
amplification region are smoothed down in the salt and
pepper noise area; however the comparison process has a lot
of interference, and the reconstruction impact is not very
good. Figure 3 is the comparison of reconstruction residual
for Gaussian noise with σ � 20, where the proposed model
has the least texture detail and the best reconstruction
performance.

4.4. Comparison of Reconstruction Performance for Different
Algorithms. To verify the performance of noisy MRI en-
hancement reconstruction in K-space, we selected some

representative comparison algorithms, such as KLLD,
SAIST, LSSC, NL-CS, and GSCS. *e low-rank algorithms
of KLLD reconstruction in solving RPCA model are sin-
gular value threshold operations based on hard threshold,
and the low-rank matrix is obtained through repeated
iterations. Our method is mainly to solve the improper
operation of hard threshold for all singular values, the
smoothing effect caused by inaccurate estimation of matrix
rank, and the high time complexity of the algorithm caused
by a large number of iterative optimizations. We use the
LogDet optimization for acceleration to estimate the
singular value, so we can directly obtain the singular value
approximation based on the number of singular value
iterations. SAIST is to solve the problem that LSSC needs
to establish a very large redundant dictionary, resulting in
too high spatial complexity and too high time complexity
by solving it through low-rank algorithm on the basis of
dictionary. Since the signal space can be divided into
noise-free signal space and noise space, and the peak of the
singular value difference curve is the critical point of the
signal space, we used the LogDet optimization to divide the
similarity matrix into low-rank part and difference part.
*e singular values corresponding to the low-rank part
account for the vast majority of the sum of all singular
values, and the proportion of noise pollution is small.
Based on the prior information, we use the k-terms power
series to split and rewrite the LogDet function into the
augmented Lagrange form and then approximate the real
vector in the iterative process. Finally, it can be seen that
the improved CS-based MRI reconstruction algorithm can
approximate the real noise-free data. Table 2 shows that,
compared with NL-CS, KLLD, and GSCS, our algorithm
can effectively reduce noise, improve denoising perfor-
mance, and save texture edge and other structural infor-
mation. When the noise is less than 15, our algorithm
PSNR is much higher than NL-CS, KLLD, and GSCS about
0.2 dB. With the increase of noise intensity, the advantage
of our algorithm weakens, but it is also equivalent to the
best algorithm, which is due to the preservation of texture
and the smoothing effect of smooth area. However, since
our algorithm is based on LogDet optimization for

Table 1: Reconstruction performance for different noise distribution.

Images Rayleigh Gaussian Nonuniform
NL-CS GSCS Ours NL-CS GSCS Ours NL-CS GSCS Ours

1 PSNR 31.51 30.23 33.71 35.54 34.29 37.43 29.73 30.11 33.12
SSIM 0.928 0.934 0.942 0.912 0.920 0.941 0.951 0.955 0.961

2 PSNR 33.11 33.55 33.94 34.06 33.09 33.97 34.53 35.03 35.31
SSIM 0.889 0.922 0.929 0.825 0.924 0.933 0.9822 0.9125 0.9825

3 PSNR 32.90 33.48 34.02 33.98 33.08 33.91 33.91 34.48 34.74
SSIM 0.824 0.797 0.763 0.705 0.500 0.561 0.707 0.758 0.825

4 PSNR 30.99 32.42 32.43 32.57 31.55 32.62 33.21 33.82 33.80
SSIM 0.784 0.815 0.833 0.825 0.817 0.833 0.841 0.8525 0.874

5 PSNR 33.16 34.42 34.97 34.97 33.03 34.93 34.21 31.51 31.85
SSIM 0.650 0.597 0.663 0.705 0.714 0.561 0.707 0.751 0.821

6 PSNR 37.06 38.11 38.33 38.48 36.61 38.51 35.21 35.11 35.74
SSIM 0.787 0.815 0.848 0.785 0.819 0.848 0.852 0.8458 0.852
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Figure 2: Comparison of reconstruction performance for different noise. (a) *e proposed algorithm; (b) GSCS; (c) NL-CS.

(a) (b) (c)

Figure 3: Comparison of reconstruction residual for Gaussian noise with σ � 20. (a) NL-CS, (b) GSCS; (c) the proposed algorithm.
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acceleration, the reconstruction time of the algorithm is
the best.

For the irregular texture image, such as head MRI, our
algorithm can retain the texture structure but ignore the small
details. Even so, our algorithm is better than the comparison
algorithm. NL-CS algorithm is not denoised enough in the
texture area. Although the texture information is still saved,
the reconstruction result is incomplete. Although the eval-
uation index of NL-CS and GSCS is greatly improved
compared with KLLD, both methods are based on the sparse
coefficients under the CS dictionary. Due to the pseudo-Gibbs
effect, there are more scratches in the smooth area. Our
method mainly deals with LogDet function, and Gibbs effect
is inevitable, but we adjust the threshold according to the
mode characteristics of the image patch to further improve
our reconstruction quality; especially the TV model is in-
troduced to separate the residual matrix of the similar patches.
Our proposed algorithm performs much better than the
comparison algorithms on all noisy images and sensing rates.

4.5. Ablation Analysis. *e comparison of the PSNR of the
reconstructed picture using the proposed technique for
various sensing rates of an MRI image is shown in Figure 4.

*e ordinate represents the number of iterations, and there
are a total of one hundred iterative tests performed. Figure 5
demonstrates that the quality of the reconstructed picture
for 0.4 sensing rate and 0.5 sensing rate is comparable to one
another; however the quality of the reconstructed image for
0.6 sensing rate is noticeably superior to that of the other two
sensing rates. A sensing rate of 0.6 is chosen for the radial
subsampling lines because the goal of the ablation analysis is
to lower the sensing rate in order to enhance the recon-
struction quality and efficiency under the conditions without
compromising the performance of the hardware.

In addition to the number of iterations, take the size
parameter of overlapping patches as an example. We also
analyze the results of reconstruction experiments under
three different overlapping patch sizes 6× 6, 7× 7, and 8× 8.
It can be seen that the PSNR of reconstructed images
corresponding to the three patch sizes is not much different,
but the SSIM of 8× 8 is the best, and the growth range of
PSNR is decreasing. Considering the calculation cost, 8× 8 is
selected as the size of overlapping patches. By experiment
contrast, our proposed algorithm can preserve the edges and
local structures better than comparison algorithms. *is
paper adopts LogDet optimization for acceleration. In order
to analyze the reconstruction efficiency, the algorithm using

Table 2: Reconstruction of average performance for different algorithm.

Average σ KLLD SAIST LSSC NL-CS GSCS *e proposed algorithm

SSIM

5 0.914 0.964 0.965 0.923 0.951 0.966
10 0.908 0.934 0.941 0.890 0.942 0.941
20 0.817 0.881 0.883 0.819 0.851 0.919
25 0.815 0.850 0.887 0.793 0.804 0.892
50 0.671 0.713 0.794 0.562 0.572 0.805

PSNR

5 36.75 37.30 37.49 37.45 35.89 37.39
10 32.90 33.48 34.02 33.98 33.08 33.91
20 29.01 30.02 30.76 30.69 29.92 30.77
25 27.99 28.88 28.72 29.61 29.72 29.71
50 24.58 25.29 26.46 26.30 26.20 26.37

Time/s 10 63.12 30.74 41.75 31.5 75.52 28.11

22
20 40 60

Iteration
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N
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80 100

24

26

28

30

32

34
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0.4 sensing rate
0.5 sensing rate
0.6 sensing rate

Figure 4: Comparison of PSNR of the reconstructed image with the proposed algorithm.
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low-rank decomposition is recorded as LR-CS, and the
nonconvex LogDet surrogate of the rank is recorded as
Logdet_CS. In order to facilitate ablation analysis, the al-
gorithm model is consistent except that different methods
are used to solve the low-rank module. We also analyze the
reconstructed PSNR and reconstruction time under different
iterations. It can be seen that the PSNR of different com-
parison algorithms changes little, but the time of each it-
eration is different. *erefore, the comparative experiment
fully shows that the acceleration strategy proposed in this
paper has high efficiency without loss of accuracy.

5. Conclusion

Due to the fact that Magnetic Resonance Imaging (MRI) is
currently a very slow imaging technique, its application for
dynamic imaging is restricted.*e total variation is included
into the CS-based MRI reconstruction model, and three
regularization requirements are used to ensure that a high-
quality reconstructed picture is produced. In this article, a
simple yet efficient CS-based optimization model for noisy
MRI enhancement is provided. *e alternate direction
multiplier approach is used to optimize themodel, and the k-
terms power series is applied in order to extract the LogDet
function into the augmented Lagrange form. Following this,

an approximation of the feature vector is achieved through
the iterative process. *e quality of the rebuilt picture was
substantially better than that of the CS-based MRI image
reconstruction method, as shown by experimental results
under varied noise settings. *e peak signal-to-noise ratio of
the reconstructed image was able to be enhanced anywhere
from 5 to 20 percent.
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