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Pre-depletion of TRBC1+ T cells promotes
the therapeutic efficacy of anti-TRBC1 CAR-
T for T-cell malignancies
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Abstract

Targeting T cell receptor β-chain constant region 1 (TRBC1) CAR-T could specifically kill TRBC1+ T-cell malignancies.
However, over-expressed CARs on anti-TRBC1 CAR transduced TRBC1+ T cells (CAR-C1) bound to autologous TRBC1,
masking TRBC1 from identification by other anti-TRBC1 CAR-T, and moreover only the remaining unoccupied CARs
recognized TRBC1+ cells, considerably reducing therapeutic potency of CAR-C1. In addition, co-culture of anti-
TRBC1 CAR-T and TRBC1+ cells could promote exhaustion and terminal differentiation of CAR-T. These findings
provide a rationale for pre-depleting TRBC1+ T cells before anti-TRBC1 CAR-T manufacturing.
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Background
Chimeric antigen receptor (CAR) T cells showed re-
markable efficacy for the treatment of B-cell malignan-
cies and have been approved by the US Food and Drug
Administration for the treatment of relapsed/refractory
B-cell acute lymphoblastic leukemia (B-ALL) and diffuse
large B-cell lymphoma (DLBCL) [1, 2]. However, the de-
velopment of CAR-T cells against T-cell malignancies
seems more challenging due to the similarities between
the normal, malignant and therapeutic T cells, which
could result into CAR-T cell fratricide, T cell aplasia,
and contamination of CAR-T cell products with malig-
nant T cells [3, 4].
An innovative treatment option for T-cell malignancy

was proposed that targeting T cell receptor β-chain con-
stant region 1 (TRBC1) CAR-T could specifically

identify and kill TRBC1+ T-cell malignancies, since ei-
ther TRBC1 or TRBC2 is mutually exclusively expressed
in T cells and moreover proportion of TRBC1+ T cells
varies between 25 and 47% in healthy individuals, but
malignant T cells are clonally TRBC1 positive or nega-
tive [5, 6]. Thus, anti-TRBC1 CAR-T cells could specific-
ally kill TRBC1+ malignant T cells while sparing
TRBC2+ normal T cells. However, anti-TRBC1 CAR
gene could probably be inadvertently transferred into
TRBC1+ malignant T cells during CAR-T cell manufac-
turing, and its product could in cis bind to autologous
TRBC1 on the surface of malignant T cells, which could
result into masking TRBC1 from identification by and
mediating resistance to anti-TRBC1 CAR-T and mean-
while weaken effector function of anti-TRBC1 CAR
transduced TRBC1+ cells. Following transduction of T
cells with lentivirus encoding anti-TRBC1 CAR, all T
cells could be categorized into TRBC1+ cells (C1),
TRBC2+ cells (C2), anti-TRBC1 CAR transduced C1
cells (CAR-C1) and anti-TRBC1 CAR transduced C2
cells (CAR-C2) (Fig. 1a). Thus, it is interesting to
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Fig. 1 (See legend on next page.)
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evaluate whether both C1 and CAR-C1 could be identi-
fied and killed by CAR-C1 and CAR-C2 (Fig. 1a).

Results and discussions
To evaluate whether C1 and CAR-C1 could be identified
and killed by CAR-C1 and CAR-C2, we first sorted
donor T cells into TRBC1+ and TRBC1− (designated as
C2) fractions using magnetic beads. A portion of C1 or
C2 were used as target cells and other C1 and C2 from
the same donor were genetically engineered with anti-
TRBC1 CAR to obtain CAR-C1 and CAR-C2 as effect
cells. We confirmed that transduction efficacy of anti-
TRBC1 CAR was similar on C1 and C2, and moreover
TRBC1 was not detected on CAR-C1 through flow cy-
tometry (Fig. 1b). Since primed T cells could increase
CD137 expression and IFN-γ secretion, and moreover
cytotoxic T cells could express CD107 and mediated
killing of target cells, these markers could be used to de-
tect activation and cytolytic activity of T cells. We found
that CAR-C2 than CAR-C1 showed higher level of IFN-
γ production and CD137 expression when co-cultured
with C1 but not CAR-C1 or C2 (Fig. 1c and d). In flow
cytometry–based cytotoxicity assays, CAR-C2 and CAR-
C1 both specifically killed C1 but not CAR-C1 or C2,
more so in CAR-C2 than CAR-C1 (Fig. 1e and f).
We next evaluated the anti-tumour activity of CAR-C1

and CAR-C2 in vivo using Luc-expressing Jurkat T-ALL
cells. NOG mice were transplanted with 3 × 106 Luc-
expressing Jurkat cells 3 days before IV infusion of 5 ×
105 CAR-C1, CAR-C2 or MOCK T cells (Fig. 1g). Con-
sistent with the in vitro observation, CAR-C1 induced
transient tumour regression, but tumours re-progressed
rapidly. In contrast, mice treated with an equal number
of CAR-C2 exhibited significantly higher ani-tumour
ability with significantly prolonged survival (P < 0.001)
(Fig. 1h-j).
To investigate why CAR-C1 than CAR-C2 demon-

strated lesser killing ability against C1 and moreover nei-
ther of them could identify and kill CAR-C1, we
hypothesize that since expression abundance of anti-
TRBC1 CAR is significantly higher than TRBC1 on
CAR-C1, a proportion of CARs in cis bind to autologous

TRBC1 on CAR-C1, masking TRBC1 from identification
by other anti-TRBC1 CAR-T, and meanwhile only the
remaining unoccupied CARs identify C1, weakening ef-
fector function of CAR-C1 (Fig. 2a).
We first found that TRBC1 mRNA expression was

preserved in CAR-C1 as compared to C1 determined by
qRT-PCR analysis (Fig. 2b). We further confirmed via
flow cytometry that TRBC1 on CAR-C1 was detectable
by anti-TRBC monoclonal antibody (mAb) 8A3 target-
ing not the same epitope recognized by mAb JOVI-1
from which the anti-TRBC1 CAR was derived (Fig. 2c),
and moreover expression level of TRBC1 protein was
similar on CAR-C1 and C1 (Fig. 2d). Meanwhile, qRT-
PCR analysis demonstrated that expression level of CAR
was significantly higher than TRBC1 in CAR-C1 and
moreover confocal microscopy further confirmed that
colocalization of anti-TRBC1 CAR and TRBC1 on the
cell surface of CAR-C1 (Fig. 2e and f). These findings
supported that TRBC1 molecules were still expressed on
the surface of CAR-C1 but in cis bound by a proportion
of anti-TRBC1 CARs, masking TRBC1 from identifica-
tion by other anti-TRBC1 CAR-T, and meanwhile only
the remaining unoccupied CARs identified C1, weaken-
ing effector function of CAR-C1.
In addition, contaminating TRBC1+ malignant cells

during anti-TRBC1 CAR-T manufacturing not only pro-
duced CAR-C1 which was resistant to anti-TRBC1
CAR-T and had lesser killing ability, but were expected
to accelerate exhaustion and terminal differentiation of
anti-TRBC1 CAR-T with limited in vivo persistence due
to continuous (tonic) ligand-driven CAR stimulation [7,
8]. Co-culture of CAR-C2 with C1 in a 2:1 ratio (physio-
logical condition) for 6 days revealed lower and higher
percent of naïve and effect CAR-C2 cells, respectively,
compared to solo culture of CAR-C2 (Fig. 2g). In
addition, the co-culture of CAR-C2 and C1 exhibited in-
creasing expression of PD-1, TIM-3 and LAG-3 in CAR-
C2 (Fig. 2h-j). These findings suggested that compared
with unfractionated T cells, TRBC1-depleted T cells
genetically engineered with anti-TRBC1 CAR not only
avoided resistance to anti-TRBC1 CAR-T, but reduced
exhaustion and terminal differentiation.

(See figure on previous page.)
Fig. 1 Effector functions of TRBC1+ and TRBC2+ cells genetically engineered with anti-TRBC1 CAR. a The categories and relationship of T cells
following transduction with anti-TRBC1 CAR. TRBC1+ cells, C1; TRBC2+ cells, C2; anti-TRBC1 CAR transduced TRBC1+ cells, CAR-C1; anti-TRBC1 CAR
transduced TRBC2+ cells, CAR-C2. b TRBC1 expression and CAR transduction efficacy of TRBC1-sorted and TRBC1-depleted T cells as well as CAR
and TRBC1 expression of CAR-C1 and CAR-C2 analyzed by flow cytometry. c IFN-γ secretion by CAR-C1 and CAR-C2 against C1, CAR-C1 or C2
after 24-h co-culture. d-e Left, representive FACS profile of CD137 and C107a expression on CAR-C1 and CAR-C2 co-cultured with C1, CAR-C1 or
C2. Right, percentages of CD137- and C107a-positive CAR-C1 and CAR-C2 following co-culture with C1, CAR-C1 or C2. f Cytotoxic activities of
CAR-C1 and CAR-C2 against C1, CAR-C1 or C2 were examined by standard CFSE-based cytotoxity assays at several effector/target (E/T) ratios. g
Scheme of the xenograft model. NOG mice (n = 5/group) were IV injected with 3 × 106 Luc/GFP–expressing Jurkat cells followed 3 days after by a
single IV injection of 5 × 105 MOCK, CAR-C1 or CAR-C2. h IVIS imaging of tumor burden monitored by BLI at the indicated time points following
MOCK, CAR-C1 or CAR-C2 T cell injection (day 0). i Radiance of individual mice at day 20 following MOCK, CAR-C1 or CAR-C2 T cell injection. n = 5
mice per group. j Kaplan-Meier survival curve of mice injected with mock, CAR-C1 or CAR-C2 T cells. ***P < 0.001 and n.s., not significant
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Conclusions
Although anti-TRBC1 CAR-T appeared a promising ap-
proach for T-cell malignancy, unfractioned T cells trans-
duced to express anti-TRBC1 CAR could not only

produce CAR-C1 cells which had lesser killing ability
against TRBC1+ malignant T cells and moreover were
resistant to anti-TRBC1 CAR-T, but contaminate
TRBC1+ cells which promoted exhaustion and terminal

Fig. 2 The cause for undetected TRBC1 and lesser effector function of CAR-C1. a Due to higher expression level of CAR than TRBC1 on CAR-C1,
some CARs in cis bind to autologous TRBC1 on CAR-C1, resulting into masking TRBC1 from identification by other anti-TRBC1 CAR-T and
meanwhile occupying these CARs, and thus only the remaining unoccupied CARs target TRBC1. b TRBC1 mRNA expression is maintained in CAR-
C1 as compared to C1, as determined by qRT-PCR (ΔΔ Ct normalized to C1). c TRBC1 on C1 is detectable using both mAb 8A3 targeting TCRβ-
chain constant region and mAb JOVI-1 from which the anti-TRBC1 CAR was derived, but TRBC1 on CAR-C1 cells is only recognized by mAb 8A3.
d Left, representive FACS profile of TRBC1 expression on CAR-C1 and C1. Right, MFI of TRBC1 on CAR-C1 and C1. e Expression level of CAR was
significantly higher than TRBC1 on CAR-C1 determined by qRT-PCR analysis (ΔΔ Ct normalized to TRBC1). f Confocal imaging of CAR-C1 using
FITC-conjugated anti-TRBC1 antibody (green), TRITIK-conjugated anti-FLAG antibody (red), and DAPI (blue). Scale bars, 5 μm. g Left, representive
FACS profile of CD45RA and CCR7 expression on CAR-C2 after 6-day culture alone or co-culture with C1. Right, percentages of naïve (CD45RA+

CCR7+), effector (CD45RA+ CCR7−), effector memory (CD45RA− CCR7−) and central memory (CD45RA− CCR7+) CAR-C2 cells. h-j Left, representive
FACS profile of PD-1 (h), TIM-3 (i) and LAG-3 (j) expression on CAR-C2 after 6-day culture alone or co-culture with C1. Right, percentage of PD-1
(h), TIM-3 (i) and LAG-3 (j) positive CAR-C2. *P < 0.05, ***P < 0.001. Data are representative of three independent experiments
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differentiation of anti-TRBC1 CAR-T. Therefore, it was
necessary to pre-deplete TRBC1+ T cells, even if allo-
geneic T cells were used for anti-TRBC1 CAR-T manu-
facturing for patients without sufficient autologous T
cells.
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