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A B S T R A C T

Human preterm birth (PTB), a multifactorial syndrome affecting offspring born before 37 completed

weeks of gestation, is the leading cause of newborn death worldwide. Remarkably, the degree to which

early parturition contributes to mortality in other placental mammals remains unclear. To gain insights

on whether PTB is a human-specific syndrome, we examined within- and between-species variation in

gestation length across placental mammals and the impact of early parturition on offspring fitness.

Within species, gestation length is normally distributed, and all species appear to occasionally give birth

before the ‘optimal’ time. Furthermore, human gestation length, like that of many mammalian species,

scales proportionally to body mass, suggesting that this trait, like many others, is constrained by body

size. Premature humans suffer from numerous cognitive impairments, but little is known of cognitive

impairments in other placental mammals. Human gestation differs in the timing of the ‘brain growth

spurt’, where unlike many mammals, including closely related primates, the trajectory of human brain

growth directly overlaps with the parturition time window. Thus, although all mammals experience early

parturition, the fitness costs imposed by the cognitive impairments may be unique to our species.

Describing PTB broadly in mammals opens avenues for comparative studies on the physiological and

genetic regulators of birth timing as well as the development of new mammalian models of the disease.

K E Y W O R D S : prematurity; fitness; gestation length; allometry

I. INTRODUCTION

Preterm birth (PTB), defined in humans as birth be-

fore 37 completed weeks of gestation, is a complex

multifactorial syndrome that originates when the

complex interplay of ‘anatomical, physiological, bio-

chemical, endocrinological and immunological

events’ necessary for parturition is disrupted [1].

Complications of PTB are the leading cause of death

in newborns and in children under the age of 5 [2].

Globally more than 1 in 10 babies is born before 37

weeks of gestation, and PTB rates appear to be

increasing in almost all countries [3]. PTB can stem

from environmental factors such as infection, in-

flammation and stress [1], as well as genetic ones;

for example, familial studies have demonstrated an

increased risk for PTB in women with sisters who

have given birth prematurely [4] and in women

whose grandparents were born preterm [5]. More

recently, genome-wide association studies have

begun to identify candidate genes associated with

increased risk of PTB in various human populations

[1, 6].
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A complete understanding of PTB will require

identifying the molecular and genetic mechanisms

that control gestation length, pregnancy mainten-

ance and initiation of parturition. Although the study

of animal models has yielded many insights into the

physiology of pregnancy, the functional mechan-

isms that result in early parturition remain poorly

understood [7–9]. This is so in part to our lack of

understanding of whether the syndrome of PTB is

human-specific, or whether other organisms experi-

ence PTB as well. Although to our knowledge this

question has not been heretofore explicitly ad-

dressed, experts have so far argued for the unique-

ness of human parturition [10, 11]. If, as Smith has

stated, ‘human parturition is a distinctly human

event’ [10] then it follows that pathologies of partur-

ition, such as PTB, might also be confined to our

species. Several statements in the published litera-

ture seem to support this notion with respect to PTB

[12–15]. For example, the 2007 National Academies

report on PTB stated that ‘most animal species do

not have significant rates of spontaneous preterm

birth’ [15], Rubens et al. recently opined that ‘spon-

taneous idiopathic PTB is very uncommon in

species other than humans’ [12], and Bryant-

Greenwood et al. stated that ‘the serious clinical

problem of spontaneous PTB appears to be almost

unknown in species other than humans’ [14].

If indeed PTB is unique to humans, then consid-

erable nuance is required in translating studies of

animal models to an understanding of the etiology

of PTB, as presumably most of the genetic contribu-

tors to the disease evolved after the divergence of

humans from the chimps, e.g. [6, 16, 17]. However, if

PTB is not restricted to humans, knowledge on the

prevalence and symptoms of PTB in placental mam-

mals has the potential to invigorate research

strategies through comparative studies on the

physiological and genetic regulators of birth timing

as well as the development of new mammalian

models of the disease.

Addressing the degree to which PTB is a human-

specific syndrome requires carefully examining three

questions. First, is the amount of variation in gesta-

tion length of humans distinct from that of other

mammals? Additionally, is there large enough vari-

ation in birth timing, as there is in humans, such that

some births normally occur before full-term gestation

in other mammals? Second, is the average gestation

length of human pregnancy in any way unusual

compared to other mammals? Answering this ques-

tion is directly relevant to addressing whether human

gestation length has been uniquely influenced by se-

lection. For example, it has been recently argued that

PTB is more common in humans due to selection for

shortened gestation length driven by fitness costs

associated with cephalopelvic disproportion [6].

Finally, if mammals broadly experience PTB, what is

the impact of variation in gestation length on off-

spring fitness across the species that exhibit it? In this

critical review, we address the first question by sur-

veying the distributions of gestational lengths and the

second question through examining the evolutionary

constraints on gestation lengths relative to body size

and brain size across a wide range of placental mam-

mals. To address the third question, we examine the

fitness costs associated with early parturition in

humans and other mammals. Finally, we discuss

how the answers to these questions provide a novel

evolutionary perspective to studying the molecular

basis of PTB broadly in mammals.

II. GESTATION LENGTH SHOWS
SIMILAR INTRA-SPECIES VARIATION
ACROSS MAMMALS

All quantitative traits, such as human height [18–20],

have a continuous range of variation. In this context,

we expect the presence of measurable variance in

reproductive traits. For example, long-term popula-

tion studies in British islands, such as with Soay

sheep in St Kilda island and red-tailed deer on the

Isle of Rum, have uncovered abundant variation in

longevity, age at primiparity, lifetime fecundity and

lifetime reproductive success [21–23], and have

provided strong evidence for the heritability of such

variation [21, 22]. For example, the average lifetime

fecundity in the Ram Mountain population of Soay

sheep is 5.3 lambs, ranging from 0 to 15, and its

estimated heritability is significantly larger than

zero, suggesting that this reproductive trait is not

only variable, but that its variance has a heritable

component [23]. The insights we have gained from

these long-term studies on variation in reproductive

traits suggest that heritable variation in gestation

length, like other reproductive traits, should also

be a general feature of mammalian life history.

Indeed, gestation length data from diverse placental

mammals show that all experience variation in birth

timing (Fig. 1). For example, guinea pigs, Cavia

porcellus, have gestation lengths ranging from 8.5

to 10 weeks [24], whereas humans have gestation

lengths ranging from 28 to 50 weeks [25]. From

Fig. 1, we see there is no expectation from life-history
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theory that gestation length variation is absent in

mammals generally, nor is there evidence that vari-

ation in human gestation length is remarkable or

unusual compared to other mammal species, par-

ticularly other primates.

III. PTB IS OBSERVED IN MANY
MAMMALS

Although all mammals experience variation in ges-

tation length, is the syndrome of PTB itself unique to

humans? The World Health Organization defines

human PTB as ‘babies born alive before 37 weeks

of pregnancy are completed’ [26]. Contributed by the

World Health Organization and supported by the

International Federation of Gynecology and

Obstetrics, the basis of this definition stems from

a statistical analysis of the distribution of gestational

age at birth, based on the first day of the last men-

strual period [27]. The purpose of such a definition

was to provide a standardized language for PTB, but

the definition lacks medical or biological meaning;

as a result ‘preterm’ should be distinguished from

‘premature’, which describes a lack of completed

fetal development [28].

Although no definition of PTB exists for species

other than our own, it is interesting to contemplate

how the gestational length-based definition of human

PTB applies to other species. For example, generalizing

the human-based definition of PTB as ‘parturition prior

to 92.5% (259 days or 37 weeks/280 days or 40 weeks)

completed gestation’ and assuming that gestational

length is a normally distributed variable [25] allows

us to examine the occurrence of PTB in any placental

mammal species for which population gestational

length data are available.

Applying this generalized, percentage-based cut-

off definition of PTB to gestation length data from

diverse species shows that parturition before 92.5%

completed gestation occurs in many organisms,

including in all examined primates, such as chimpan-

zees and gorillas (Fig. 1). Interestingly, one definition

of PTB in chimpanzees, defined as 2 SD below the

mean [29], results in an estimated 16% of chimpan-

zees born preterm, suggesting that the prevalence of

‘PTB’ in chimpanzees, our closest relatives, appears

to be similar to the prevalence of PTB in humans [2].

Although it is generally unclear whether PTB is spon-

taneous or induced in these animals, evidence from

horses suggests that PTB in non-human mammals

can result from placental infections [30], a well-

documented cause of PTB in humans [31].

Interestingly, ‘PTB’ appears to be absent in most

of the animal models of the human syndrome.

Figure 1. Intra-species variation in gestation length is similar among many mammals. (A) We collected the arithmetic means and standard deviations, when

available, in days for all placental mammals with complete genomes. Sample sizes ranged from 2 to 17 000, with a median of 104. In all cases, only live births were

considered. Examination of the potential for skew in model choice (normal vs log-normal) showed that the mean squared error between the two distributions was

likely well below the error in measurement of gestation lengths reported in the original research. Boxes contain the mean plus/minus 1 SD; whiskers extend to plus/

minus 3 SD. Vertical lines indicate 92.5% completed gestation time suggesting each species experiences ‘preterm’ birth according to the human definition with the

exclusion of horses, goats and rodents. (B) Comparison of the coefficient of variation across species. Plots and analysis were performed using the ggplot2 package

in R 3.1.2 [122, 123]. References for each species can be found as follows: human [25], chimpanzee [29], gorilla [124], orangutan [125], long-tailed macaque and

rhesus macaque [126], baboon [127], marmoset [128], rat and rabbit [129], guinea pig [24], goat and mouse [130], cow [131] and horse [132]
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The gestation lengths of newborns in mice, rats, and

guinea pigs do not appear to cross below a threshold

of 92.5% of completed gestation (Fig. 1). The appar-

ent absence of PTB in Rodentia is particularly inter-

esting as this order shows remarkable diversity in

both gestation length, which can range from 20 days

(e.g. Mus musculus) to 150 days (e.g. Hydrochoerus

hydrochaeris), and developmental strategy; young

may be precocial (e.g. Mus musculus) or altricial

(e.g. Cavia porcellus). This diversity suggests that

the mechanisms underlying the apparent absence

of PTB in this lineage may not be influenced by ges-

tation length or by developmental strategy.

IV. OPTIMAL GESTATIONAL LENGTH
SCALES WITH BODY SIZE

Allometry, namely how traits scale with one another

[32], has long provided a framework for not only

understanding how traits function and vary across

ecological and evolutionary time, but also for iden-

tifying outliers and the underlying ecological or evo-

lutionary reasons that gave rise to them [33].

Allometric studies have been used extensively to pre-

dict the values of morphological, ecological, and

physiological traits as a function of an organism’s

body size, as measured by body mass [34–41]. Well-

known examples of allometric traits that scale with

body mass include vertebrate brain size [35, 39], lon-

gevity [38, 40] and basal metabolic rate [34, 36, 37,

41]. For example, both the basal metabolic rate and

brain size scale with mammalian body mass to the

three-fourth of the power [37, 42].

Allometric relationships have also been described

for many mammalian reproductive traits, such as lit-

ter weight [38, 43, 44], neonate weight [38, 43–45],

neonate brain weight [42, 43, 46] and the per capita

growth rate (Malthusian parameter) [38, 45],

providing a window for understanding the evolution

of pregnancy-associated traits in mammalian spe-

cies and the identification of trends and constraints.

For example, study of the relationship between neo-

natal brain mass and body size has identified an

evolutionary trend toward larger brain size relative

to fetal body mass compared to non-primates [42].

Gestation length has also been found to scale to

maternal body mass by 1/4 [38, 43, 47, 48], but sub-

sequent studies utilizing phylogeny-informed statis-

tics support a scaling exponent closer to 0.10 [49, 50]

(Fig. 2). The relationship between body mass and

gestation length suggests that the timing of gesta-

tion in mammals is either constrained by maternal

body mass, or that the two traits are under a shared

constraint. For example, recent work has suggested

that human gestation length may be primarily con-

strained by metabolism [51], raising the alternative

hypothesis that gestation length and maternal body

mass, which also allometrically scales with metabol-

ism, may be under a shared metabolic constraint.

The diversity of traits associated with mammalian

reproduction and pregnancy may also play an im-

portant role in controlling gestation length. For ex-

ample, mammals employ different precocial and

altricial strategies in neonate development state at

birth. Precocial species have offspring that are typ-

ically well-developed, born with eyes open and are

immediately mobile (e.g. most ungulates). In con-

trast, offspring from altricial species are born while

relatively immobile, deaf, blind and unable to obtain

food without parental assistance. Precocial mam-

mals typically have longer gestation periods

compared to altricial ones. When a distinction is

made between altricial and precocial mammals,

the scaling relationships of precocial and altricial

mammals become distinct, but retain similar

scaling exponents [48, 50] (Fig. 2). Additionally, off-

spring in altricial mammals are typically born in lit-

ters; increased litter sizes have been shown to

reduce gestation lengths in cats [52] and dogs [53].

Similarly, multiple births in humans show reduced

gestation lengths, with 50% of twin and 90% of trip-

lets pregnancies born preterm [54].

Another pregnancy-associated phenotype that

varies extensively across mammals is placental

morphology. Mammalian placentas can be classi-

fied into three principle types of interfaces, namely

epitheliochorial, endotheliochorial and hemo-

chorial. Frequently more than one placental inter-

face occurs within an order, e.g. epitheliochorial in

strepsirrhine primates and hemochorial in haplor-

rhine primates. Placental shape and interdigitation

also vary frequently within mammalian orders.

Interestingly, placental structure correlated with dif-

ferences in gestation length and fetal growth [55].

Analysis of gestation length against body mass in

haplorrhine primates, which all have hemochorial

placentas, shows that humans are typical for organ-

isms with hemochorial placentas (Fig. 2).

Human encephalization has resulted in a

cephalopelvic disproportion that has been argued

to play a role in the complication of labor [56], and

that the dramatic cephalopelvic changes have re-

sulted in shortened gestation lengths in humans

[6]. Encephalization is not a primate trait but rather
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a complex combination of changes in brain growth

specific to the human lineage [57]. Humans and

closely related primates do not share a common

brain ontology [57], thus calculating human gesta-

tion by comparing brain size is not sufficient evi-

dence to suggest a shortening of gestation length

in humans. To make allometric analyses from an

obviously enlarged feature would be akin to suggest-

ing that human skeletal mass is decreased relative to

brain size, when studies have demonstrated a reli-

able allometric relationship between body and skel-

etal mass [58].

A

B

Figure 2. Gestation length is constrained by maternal body mass in placental mammals. Logarithmic plot of gestation length

(days) against maternal body mass (grams) for 1100 placental mammals (A) and 120 primates (B). The scaling coefficient for all

mammals is 0.09 (SE = 0.007). Altricial and precocial mammals have similar slopes, 0.10 (SE = 0.008) and 0.10 (SE = 0.01),

respectively. Within primates, the scaling coefficient is 0.08 (SE = 0.02). Epitheliochorial and hemochorial have similar slopes,

0.10 (SE = 0.04) and 0.09 (SE = 0.02), respectively. Mass and gestation length data taken from the PanTheria database [133].

Offspring number per litter was used as a proxy for neonate development state. Placental structure was as described by Mossman

[134]. Data were linked to a supertree of extant mammals [135]. We present the relationship between log-transformed body mass,

and log-transformed gestation length using phylogenetic generalized least squares. Statistical tests were performed in R 3.1.2

[123] using the packages ape [136], caper [137] and nlme [138]
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Characterization of allometric relationships also

provides the opportunity to identify outliers: organ-

isms in which the relationship between two biolo-

gical variables of interest significantly deviates from

the majority of others. Such outliers can be inform-

ative about evolution, as they reflect cases in which

one of the variables has been sculpted by adaptive

evolution. For example, primates tend to have larger

brain sizes than predicted by a scaling relationship

between brain size and body mass in mammals.

Within primates, humans have a brain size 3.1 times

larger than predicted for the average primate [59].

For gestation length, organisms with longer gesta-

tion lengths than expected given their body mass are

primarily from the order Chiroptera, whereas organ-

isms with shorter than expected gestation lengths

are largely from Cetacea [47]. Mammals in these

orders may be ideal for comparative and functional

genomic analyses to better understand regulation of

gestation timing.

In summary, optimal gestation length in most

mammals appears to be strongly correlated with

body size; simply put, for most mammals, including

humans, gestation length can be easily be

extrapolated from their body mass. This correlation

is rather surprising, not only given that many of the

reproduction- and pregnancy-associated traits dis-

cussed above vary widely across mammals but also

given the genetic complexity stemming from the

interplay of maternal, paternal and fetal genomes

inherent in mammalian pregnancy [60]. Thus, even

though control of parturition, whether maternal,

fetal or both, has been shown to be an important

regulator of gestation length and birth timing

[61–64], it appears that such molecular control

mechanisms of parturition are evolutionarily

coupled with organism body size.

V. PREMATURITY IMPOSES FITNESS
CONSEQUENCES

Fitness is a complex measure that accounts for nu-

merous life-history traits in age-structured popula-

tions. Fitness has been equated with reproductive

success [65, 66], and for the purpose of evolutionary

genetics, fitness measures the rate of increase in

individuals possessing specific genotypes or pheno-

types [67]. Individuals with increased rates of sur-

vival and reproductive success are expected to

have increased fitness [66, 68].

Discussing the fitness consequences of PTB

requires that we first disentangle the meanings of

‘preterm’, which denotes an earlier than expected

timing of parturition and the quantity that most

human PTB studies rely on, and ‘premature’, which

denotes a lack of completed fetal development and

the source of any fitness consequences associated

with PTB [28]. Because PTB is defined by gestational

age in humans, it is often divided into three

subcategories: extremely preterm (birth before

28 weeks completed gestation), very preterm (birth

before 32 weeks completed gestation, but after 28)

and moderate/late preterm (birth before 37 weeks

completed gestation, but after 32). As each sub-

category has associated complications and levels

of prematurity [69], fitness differentials between pre-

term and full-term offspring can be interpolated by

the differential survival rates of each group.

Neonate mortality is lowest in infants born at full-

term, between 38 and 41 weeks of gestation, with

mortality rates rising inversely to gestational age in

preterm infants [70, 71]. The significant impact of

PTB on offspring fitness is indicated by the fact that

PTB is the leading direct cause of neonate mortality

(defined as deaths within the first 4 weeks of life)

worldwide; for example, approximately 27% of the

4 million neonatal deaths in 2000 were attributed to

complications from PTB [72]. Preterm infants have

higher rates of cerebral palsy [73–75], chronic lung

disease [76–78], necrotizing enterocolitis [79–81],

retinopathy [82–84], hearing impairments [75] and

hospital readmissions [85, 86] compared to full-term

infants. Neonate deaths and increased rates of

chronic health conditions arise from immature

organ systems that are not yet developed to support

life outside the intrauterine environment [15].

In the few records of fitness outcomes for PTB in

primates, both chimpanzees and pigtail macaques

experience decreased survival rates resulting from

preterm delivery [29, 87]. In chimpanzees, all but

one chimpanzee in 17 recorded preterm deliveries

(�208 days as defined by Wildman et al.) were

aborted, stillborn or died during the neonatal period

[29]. In pigtail macaques, greater than 95% of ‘high

risk newborns’, which include premature, low birth

weight, and maternally rejected offspring, die if left

in maternal care. In contrast, if provided care in a

nursery environment, the mortality rate of high risk

newborn pigtail macaques is reduced to only 20%.

Premature pigtail macaques have not only

decreased survival but complex patterns of behav-

ioral traits that differ from full-term offspring [87].

The fitness consequences of PTB continue to be

highly noticeable in early childhood [73, 88, 89], with
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complications from PTB being the largest cause of

mortality in children under 5 [2]. For example, mor-

tality rates in early childhood, ages 1–5, in a large

Swedish cohort not only showed a strong, significant

inverse relationship with gestational age [90], and

thus reduced fitness compared to full-term children,

but also a significant association between

decreasing gestational age and the severity of the

fitness cost.

Fewer studies have examined the long-term ef-

fects of prematurity in young adults [90–96].

Mortality rates in young adulthood, ages 18–36, also

show an inverse relationship with gestational age

[90, 96]. The outcomes of extremely low birth weight

(ELBW) infants, whose average gestational age was

27.1 weeks, include a substantially larger number of

incidents of neurosensory impairments (NSI)

including cerebral palsy, mental retardation, blind-

ness and deafness, and were more likely to include

multiple impairments [96]. Additionally, male ELBW

infants have increased prevalence of physical condi-

tions including seizures, asthma and recurrent bron-

chitis [92, 95, 96]. Even though the prevalence of NSI

was higher in young adults with low birth weights,

studies support that young adults born with low

birth weights are only slightly disadvantaged in re-

gards to participation in sports and other social

activities, as well as romantic and sexual relation-

ships [92, 95, 97, 98]. The argument that preterm

born adults have similar quality of life is surrounded

by dissention both in the medical community [97,

98] and by parents [99, 100]. The precise degree to

which fitness is affected in preterm infants that sur-

vive to adulthood, especially those impacted by NSI,

remains unclear.

Defining PTB by a percentage based cut-off leads

to the inference that many placental mammals ex-

perience preterm delivery. However, understanding

the impact, if any, of variation in gestation length on

offspring fitness in non-human mammals is chal-

lenging due to the lack of studies [12, 29]. One area

where the relationship between fitness and param-

eters associated with reproduction has been well

studied in both humans and other mammals [101–

104] is in the context of changes in the environment.

In humans, offspring born during the Finnish famine

experienced decreased survival rates, but the

increased mortality rates did not persist in later life

[104] suggesting the fitness differential due to ma-

ternal exposure to environmental hardships lessens

once the offspring reaches reproductive age. In wild

mammal populations, differences in birth weights of

red deer are associated with seasonal temperature

fluctuations during the final months of gestation;

lower birth weights in cooler temperatures are linked

to decreased neonatal survival and increased age at

first reproduction [101]. In Soay sheep, increased

population density, which probably leads to compe-

tition for limited food resources and increased com-

petition for mates, is associated with reduced birth

weights and neonatal survival [102].

In summary, the synthesis of the currently avail-

able data suggests that although the fitness conse-

quences of PTB in the early years of human life are

very large in infancy and early childhood, the conse-

quences may be smaller in adulthood. Furthermore,

NSI are the most consistently reported difference

between preterm and full term neonates. Cognitive

deficits, in the absence of major motor defects, are

the dominant neurodevelopmental sequelae in PTB

infants [105]. The degree to which human-specific or

human-elaborated adaptations contribute to these

cognitive deficits is unknown. Although little data

exist on either the rate of incidence of prematurity

in other mammals or the resulting cognitive impair-

ments of PTB in other mammals, the results to date

indicate that neonate fitness is linked to gestational

age, environmental fluctuations and reduced birth

weights [29, 87, 101, 102].

VI. TIMING OF BRAIN DEVELOPMENT
MAY PLAY AN IMPORTANT ROLE IN
HUMAN PREMATURITY

One obvious difference between humans and our

closely related primates is our highly increased im-

maturity at term birth, primarily due to the substan-

tial postnatal brain growth required for normal

human development [56, 107]. The ‘brain growth

spurt’ defines the window during development when

the brain is passing through its most rapid period of

growth [108, 109], and can be visualized as a sig-

moidal curve when brain growth is plotted against

age [110]. Rough categorization of growth spurts

suggests three categories: (i) prenatal, (ii) perinatal

and (iii) postnatal. Altricial young undergo growth

spurts prenatally, precocial young postnatally,

whereas organisms that exhibit intermediates be-

tween altriciality and precociality undergo growth

spurts perinatally. For example, the perinatal growth

spurt in humans places the species in the intermedi-

ate state of development, previously described as

‘secondarily altricial’ [111], which is evidenced by

the typically singleton births of neonates with open
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eyes and ears at birth (precociality) combined with

relative helplessness of human babies compared to

other primates (altriciality) [56, 107] and by the

reduced neonate brain size relative to the adult size

in humans compared to chimps [112].

Importantly, the brain growth spurt time window

not only reflects a period where brain size grows dra-

matically, but also a period of enhanced vulnerability

of the growing brain and organism to endogenous

and exogenous insults [105, 108, 109, 113]. Humans

experience the most rapid brain growth during the

perinatal and into the postnatal phase of develop-

ment [113, 114], but recent comparison to chimpan-

zees has shown our closest extant relative does not

share this pattern of brain growth [114]. Rapid brain

growth in chimpanzees continues to approximately

22 weeks of the 34–35 week gestation period,

whereas rapid human brain growth continues to at

least 32 weeks [114]. Therefore, in a manner distinct

from our closest primate relatives, the period of

enhanced vulnerability resulting from the brain

growth spurt overlaps with parturition in humans.

Brain growth patterns are highly variable in closely

related primates [115]; a more complete understand-

ing of the variation in these patterns is necessary to

better understand cognitive impairments that result

from PTB. The vulnerability of the brain due to rapid

growth rates at parturition may play an important

role in the cognitive impairments resulting from

early parturition in humans, and as such this may

explain the lack of cognitive impairments in organ-

isms with ‘growth spurts’ primarily occurring during

prenatal or postnatal development (Fig. 3). Recent

work in baboons has provided evidence that the se-

quence of cerebral development and pattern of cere-

bral injury between the prematurely delivered

baboons is remarkably similar to that of prematurely

born humans [116], but the long-term behavioral

phenotypes have yet to be described in this

promising animal model.

VII. THE SIGNIFICANCE OF AN
EVOLUTIONARY PERSPECTIVE FOR
UNDERSTANDING HUMAN PTB

Gestation length is normally distributed and scales

proportionally to body mass across a wide diversity

of placental mammals, suggesting that not only is

this trait correlated with body size, but also that

many mammals give birth before the ‘optimal’ time.

Thus, humans are not unique in the variation or in

the length of gestation relative to other mammals.

Prematurely born humans suffer numerous NSI, but

knowledge of cognitive impairments in other placen-

tal mammals is lacking because studies are rare and

difficult, given the drastic mortality rate of PTB in

mammals outside of humans. The timing of the

human ‘brain growth spurt’ has the potential to ex-

plain increased cognitive impairments in premature

humans as the trajectory of growth is unlike closely

related primates and directly overlaps with the par-

turition time window.

What guidance, if any, does this evolutionary per-

spective provide for furthering our understanding of

the molecular basis of PTB? We believe that this crit-

ical review illustrates three ways, which have generally

not been considered in the PTB literature, to advance

our understanding of this serious syndrome.

First, the widespread occurrence of PTB in wild

mammal populations strongly argues for decoupl-

ing preterm parturition from premature parturition

and suggests that all mammals could in principle be

useful, at least through comparative and functional

genomics experiments, for understanding gestation

length and birth timing, even if they are poor models

for understanding the pathogenesis of the syn-

drome. In fact, it can be argued that a mechanistic

understanding of the regulation of mammalian ges-

tation length would in fact contribute to understand-

ing PTB pathogenesis, albeit not by direct inference.

Second, the significant deviations in the allomet-

ric relationships between gestation length and body

mass of organisms in the orders Chiroptera and

Cetacea relative to the relationships observed in

most other mammals, raises the hypothesis that

the evolution of these two traits (gestation length

and body mass) might be less correlated or

decoupled in these two orders. Much like species

with exaggerated or novel characters, which have

been exploited by evolutionary developmental biolo-

gists to generate insights into the genetic basis of

the underlying characters [117, 118], species in these

two orders can be viewed as outliers that harbor

great promise for beginning to elucidate the molecu-

lar mechanisms that control mammalian gestation

length and timing.

Third, a comparative perspective across develop-

ment at the tissue level provides a way to identify

organisms that better model disease aspects of the

PTB syndrome. For example, the resemblance be-

tween the lung histopathology of premature lambs

to that of chronic lung diseases in preterm infants

has led to the development of lambs as a model for

bronchopulmonary dysplasia [119]. Similarly, the

Is preterm birth human-specific? Phillips et al. | 143



brain growth spurt in pigs, like humans, spans the

prenatal, perinatal and postnatal development,

leading to suggestions that it has potential as an ap-

propriate model for human infant brain development

[120, 121]. Finally, the presence of similar patterns of

cerebral injury in premature baboons and humans

[116] suggests that non-human primates may be use-

ful models of NSI that result from human PTB.

In summary, we have made clear that placental

mammals experience ‘non-optimal’ birth timing and

that early parturition results in fitness costs through

increased mortality in both human and non-human

primates, but the fitness cost of prematurity in sur-

vivors remains elusive. The combination of brain

growth timing as well as the secondarily altricial na-

ture of human offspring may be features that make

human parturition unique to experience PTB as a syn-

drome of complications, but continued comparative

studies in gestation length, birth timing and brain

development may reveal additional similarities be-

tween humans and other placental mammals.
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