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A B S T R A C T   

Psychosocial acceleration theory and other frameworks adapted from life history predict a link between early life 
stress and accelerated maturation in several physiological systems. Those findings led researchers to suggest that 
the emotion-regulatory brain circuits of previously-institutionalized (PI) youth are more mature than youth 
raised in their biological families (non-adopted, or NA, youth) during emotion tasks. Whether this accelerated 
maturation is evident during resting-state fMRI has not yet been established. Resting-state fMRI data from 83 
early adolescents (Mage = 12.9 years, SD = 0.57 years) including 41 PI and 42 NA youth, were used to examine 
seed-based functional connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC). Addi
tional whole-brain analyses assessed group differences in functional connectivity and associations with cognitive 
performance and behavior. We found group differences in amygdala – vmPFC connectivity that may be 
consistent with accelerated maturation following early life stress. Further, whole-brain connectivity analyses 
revealed group differences associated with internalizing and externalizing symptoms. However, the majority of 
whole-brain results were not consistent with an accelerated maturation framework. Our results suggest early life 
stress in the form of institutional care is associated with circuit-specific alterations to a frontolimbic emotion- 
regulatory system, while revealing limited differences in more broadly distributed networks.   

1. Introduction 

Institutional rearing is a form of early life stress (ELS) characterized 
by caregiver deprivation that has the potential to alter a child’s devel
opmental trajectory. The behavioral sequelae of institutionalization 
have been well-documented (Gunnar and Van Dulman, 2007), with 
atypical patterns of cognitive and emotional development evident across 
childhood and into adolescence (Beckett et al., 2010; Hawk and McCall, 
2010; Merz et al., 2016; Zeanah et al., 2009). Importantly, adoption into 
families is an effective intervention, rendering institutional care a 
time-limited stressor and mitigating many of the adverse effects of 
institutional rearing (Nelson et al., 2007) van Ijzendoorn and Juffer, 
2006). However, persistent effects remain, including some sleeper ef
fects that emerge in adolescence, such as an increase in internalizing and 
externalizing disorders in post-institutionalized (PI) youth compared to 
youth raised in their biological families (Hawk and McCall, 2010). 

One possible explanation for the emergence of psychopathology in 

post-institutionalized (PI) youth during early adolescence is stress- 
induced alteration of brain circuitry underlying cognitive and 
emotional processing. The presence of a caregiving relationship has 
been described as an experience-expectant process of early development 
that supports emotion regulation, among other processes (Nelson et al., 
2011). As a result, variations in caregiving during the first years of life 
influence the subsequent developmental trajectories of brain circuits 
underlying emotion regulation and attention. For example, the amyg
dala and medial prefrontal cortex (mPFC) are two brain regions that 
interact to form an emotion regulation circuit. The amygdala has a 
diverse range of cortical and subcortical connections (Phelps and 
LeDoux, 2005; Saygin et al., 2015) including with the mPFC, a hetero
geneous region associated with a wide spectrum of executive functions 
that serves a regulatory role for the amygdala (Etkin et al., 2011; Miller 
and Cohen, 2001). Importantly, both the amygdala and mPFC are sen
sitive to ELS and have been shown to develop differently in individuals 
with early institutionalized histories than individuals without 
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(Tottenham, 2014). 
Functional neuroimaging studies have shown increased amygdala 

activation in PI children, suggesting a heightened sensitivity to threat
ening stimuli (e.g. Tottenham et al., 2011). Task-based connectivity 
studies have reported altered amygdala – PFC connectivity in PI youth 
during negative emotion processing (Gee et al., 2013) and aversive 
learning (Silvers et al., 2016) tasks. In comparison to children reared in 
their birth families, PI children have shown a more developmentally 
mature profile of connectivity during an emotional face processing task 
(Gee et al., 2013). This finding is consistent with theories suggesting that 
early psychosocial stress leads to accelerated biological maturation (e.g. 
earlier age at menarche; (Belsky et al., 1991; Del Giudice et al., 2011) 
and subsequent findings linking stress-related early pubertal maturation 
with the development of psychopathology (Colich et al., 2019). Similar 
theories have been offered in the context of brain function, such as the 
stress acceleration hypothesis, which posits premature maturation of 
emotional behaviors and brain circuitry following early stress (Call
aghan and Tottenham, 2016). 

While task-based studies are useful for understanding connectivity in 
a behavioral context, networks identified in resting state functional MRI 
are thought to represent intrinsic connectivity at baseline and help to 
characterize the organization of brain networks in the absence of a task. 
In normative studies of adults the amygdala exhibits patterns of both 
positive and negative connectivity (Roy et al., 2009). In an emotion 
regulation circuit, amygdala activity is positively correlated with ac
tivity in the ventromedial PFC (vmPFC), and individual differences in 
this resting-state connectivity are predictive of adaptive functioning, 
including decreased internalizing symptoms (Kim et al., 2011). 

Though normative developmental studies of resting-state functional 
connectivity (rsFC) remain sparse, existing data present conflicting ev
idence regarding the developmental trajectory of amygdala connectiv
ity. Two studies have reported that resting-state amygdala – mPFC 
connectivity becomes more positive with age using cross-sectional ana
lyses of individuals ranging in age from 4 to 23 years (Gabard-Durnam 
et al., 2014; Qin et al., 2012). Conversely, a third study, which used a 
combination of cross-sectional and longitudinal data from 10- to 
25-year-old individuals, revealed age related decreases in amygdala – 
vmPFC rsFC (Jalbrzikowski et al., 2017). Importantly, these studies 
highlight the heterogeneity of the mPFC, highlighting differences in 
ventral and even subgenual areas of the vmPFC (Gabard-Durnam et al., 
2014), a more rostral portion of the anterior cingulate (Qin et al., 2012), 
and trends in three distinct subregions of the vmPFC (Jalbrzikowski 
et al., 2017). While more research is necessary to fully disentangle the 
developmental trajectories of the subregions of the vmPFC, it is clear 
that amygdala – vmPFC connectivity is refined from childhood to early 
adulthood. 

In addition to differences in emotion regulation, cognitive and 
attention-related processes have also been associated with early insti
tutional rearing. One of the most often observed behavioral differences 
in PI youth relative to comparison youth is increased impulsivity and 
difficulty inhibiting prepotent responses (Herzberg et al., 2018; Hostinar 
et al., 2012; McLaughlin et al., 2014). In this context, a framework of 
accelerated maturation falls short—high impulsivity is unlikely to be the 
more mature state following institutional care. This observation leads to 
the possibility of a tradeoff in early brain development in which the 
accelerated maturation of amygdala – vmPFC connectivity comes at the 
cost of networks supporting attention and executive function. Given this 
possibility, it is important to broaden the number of systems under study 
using more exploratory analytic techniques. 

One such exploratory approach is the application of graph theory 
methods to rsFC data. Graph theory analyses of fMRI data allow re
searchers to examine a whole-brain network, intermediate sub-networks 
(e.g. the default mode network), and local patterns of activity within the 
same empirical framework (Power et al., 2011). In a graph theory 
analysis, each region of interest in the brain is a “node” (or vertex) in the 
network and the connections between these nodes are “edges” (Fornito 

et al., 2016). How edges are defined varies by imaging modality and 
analysis approach, but in the case of fMRI the most common is the 
Pearson correlation in the BOLD signal between two nodes. The com
bination of nodes and edges identified from the data can then be used to 
create a large matrix, or graph, representing functional connections 
throughout the brain. These matrices serve as the input for calculation of 
a number of graph metrics, including the detection of highly similar 
clusters or communities, the relative importance or centrality of a given 
node, and the average within- and between-system connectivity of 
specific networks or across the whole brain (Fornito et al., 2016). 
Developmental studies have shown that as individuals age, variance in 
the size of communities increases, the centrality of limbic subcortical 
structures decreases, and between-system connectivity decreases (Betzel 
et al., 2014; Gu et al., 2015; Sato et al., 2015). Within-system connec
tivity has shown less consistent patterns to date, though it has also been 
suggested to increase from childhood into adolescence, followed by a 
decrease in early adulthood and beyond (Betzel et al., 2014). 

Functional connectivity research in PI samples to date has focused 
largely on frontolimbic connectivity in the context of emotion process
ing tasks. This study contributes to this literature by examining amyg
dala – vmPFC connectivity in the resting-state context and diversifying 
the networks under investigation to include systems involved in the 
additional cognitive and behavioral processes known to be altered 
following early institutional care. We used an a priori region of interest 
approach to investigate amygdala – vmPFC connectivity and predicted 
more positive connectivity in PI youth and comparison youth. An 
exploratory whole-brain graph theory analysis was then completed to 
evaluate preliminary evidence for a developmental tradeoff between 
emotion-regulation systems and higher order cognitive networks 
following early caregiver deprivation. Given that a more top-down or
ganization of brain activity centered on the hippocampus is thought to 
be the more mature state of cortico-limbic function (e.g. Casey, 2015), 
we predicted that PI youth would exhibit more mature subcortical – 
cortical connectivity as measured by lower centrality of the amygdala 
and hippocampus. Conversely, given the possibility of a developmental 
tradeoff between frontolimbic circuits and higher order cognitive net
works, we expected less mature higher order cognitive network and 
whole brain connectivity, indexed by more between-system connectivity 
in executive control and attention-related networks and less variance in 
community size than comparison youth. Behavioral and parent-reported 
measures of IQ, internalizing symptoms, and externalizing symptoms 
were examined in association with rsFC outcomes to examine the 
behavioral relevance of differences in brain function following institu
tional care. 

2. Materials and methods 

2.1. Participants 

Resting-state fMRI data were collected from 108 participants as part 
of a larger study investigating the neurobehavioral effects of early 
institutional care (Gunnar et al., 2012; Hodel et al., 2015). The study 
included PI youth who were internationally adopted between 4 and 62 
months of age from diverse countries of origin. Comparison adolescents 
raised in their biological families (non-adopted, NA) were recruited 
from a community participant pool in the United States with similar 
demographics to the adopting families. Exclusion criteria for all par
ticipants included serious illness (e.g. cancer), known genetic condi
tions, Fetal Alcohol Spectrum Disorder, neurological conditions (e.g. 
epilepsy), developmental disorders, known IQ below 80, or MRI exclu
sions (e.g. metal in body). In addition, NA participants were excluded for 
diagnosed and/or treated psychological/psychiatric disorders. Partici
pants and their parents provided verbal and written assent and consent, 
respectively, and were compensated for their efforts in the study. All 
procedures were approved by the University of Minnesota’s Institutional 
Review Board. 
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Of the initial sample of 108 youth, twenty-five of the participants (17 
PI, 8 NA) were excluded from analysis due to excessive head motion 
during resting state fMRI due to our stringent criteria, resulting in a final 
sample of 83 youth (see Section 2.4: MRI Preprocessing). The final 
sample included in this analysis therefore consisted of 41 adopted or 
post-institutionalized youth and 42 non-adopted (NA) youth. Further 
demographic information for these groups is presented in Table 1. The PI 
youth were internationally adopted between 4 and 62 months of age (M 
= 15.83 months) from these countries of origin: Russia (34.1 %), China 
(19.5 %), India (9.8 %), Romania (9.8 %), Ukraine (7.3 %), Vietnam (7.3 
%), Ecuador (2.4 %), Ethiopia (2.4 %), Guatemala (2.4 %), Mexico (2.4 
%), and Slovakia (2.4 %). 

2.2. IQ measurement 

Participants completed the Wechsler Abbreviated Scale of Intelli
gence (WASI) as a measure of general cognitive function (Wechsler, 
1999). The WASI is made up of four subtests, including Vocabulary, 
Block Design, Similarities, and Matrix Reasoning. Full-scale scores were 
used in this analysis. 

2.3. Parent report of problem behavior 

Internalizing and externalizing symptoms were obtained using the 
MacArthur Health and Behavior Questionnaire (HBQ) via primary 
parent report (Essex et al., 2002). The HBQ has been established as a 
valid and reliable measure of mental health symptomatology in child
hood and early adolescence. 

2.4. MRI acquisition 

MRI scanning was completed using a Siemens 3 T Trio whole body 
scanner with a 12-channel head coil. A T1-weighted 3D MPRAGE 
anatomical scan (TR =2530 ms, TE =3.65 ms, flip angle = 7◦, FOV =256 
mm, matrix = 256 × 256, 240 sagittal slices, slice thickness =1 mm; 10 

min, 49 s) was used for registration of functional images. Resting-state 
functional data were acquired during eyes-open rest (EPI BOLD, T2*- 
weighted scan [TR =2500 ms, TE =30 ms, flip angle = 80◦, FOV 
=240 mm, matrix 64 × 64, 40 transverse slices, slice thickness =3.5 mm 
with no skip, 140 time points; 5 min, 57 s]). Participants were instructed 
to keep their eyes focused on the blank computer screen and to think of 
nothing in particular. A field map sequence was collected prior to the 
functional scan with the same slice prescription and scan parameters for 
use in distortion correction. 

2.5. MRI preprocessing 

Preprocessing steps were completed using FMRIB’s Software Library 
(FSL v5.0.8; Jenkinson et al., 2012) and the Analysis of Functional 
Neuroimages software package (AFNI v16.0.00; Cox, 1996). For each 
individual, MPRAGE and field map images were skull stripped. Raw EPI 
data were slice time corrected, and framewise displacement was esti
mated prior to correcting the data for motion. Data were then corrected 
for motion using FSL’s MCFLIRT. Twenty-four motion confound pre
dictors were generated, including predictors for linear translation and 
rotation estimates (6), the first temporal derivative of these motion es
timates (6), the square of the original motion estimates (6), and the first 
temporal derivative of those squares (6) (Satterthwaite et al., 2013). The 
root mean square (RMS) summary of translation and rotation was used 
to estimate absolute and framewise motion, and DVARS, a measure of 
frame-to-frame variation in signal intensity, was also calculated (Power 
et al., 2012). Individual data points (volumes) were marked for 
censoring if they exhibited absolute motion greater than 3.5 mm from 
the middle volume, framewise displacement greater than 0.5 mm (the 
previous and subsequent TR were also censored), or a DVARS value 
above a given individual’s 75th percentile plus two times their inter
quartile range. Due to findings indicating large effects of head motion on 
resting state data (e.g. Power et al., 2012; Satterthwaite et al., 2012), we 
used stringent motion exclusion criteria that resulted in the exclusion of 
25 participants (17 PI, 8 NA). Participants were excluded if the total 
number of TRs that exceeded these combined motion thresholds was 
greater than 25 % of the resting state scan resulting in a final sample of 
83 participants with an average of 5 min, 21 s of data (range =4 min 31 s 
– 5 min 57 s, SD = 0.4). 

EPI data were unwarped based on the associated fieldmap using 
FSL’s prelude and fugue tools and then detrended (linear and quadratic 
trends). The stripped MPRAGE data were parcellated into grey matter, 
white matter, and cerebrospinal fluid using FSL’s fast tool. These par
cellations were thresholded at 75 % probability and binarized to create 
masks for use in generating mean time series estimates for each tissue 
segmentation. Linear confound regressions were then run on the EPI 
data that included estimates from the 24 motion confound predictors, 
gray matter, white matter, CSF, global signal (defined as the mean time 
course from all sampled voxels), and predictors for each volume 
censored due to motion. Finally, residuals from the regression analysis 
were band-pass filtered (0.009 – 0.08 Hz) and spatially smoothed using a 
6 mm full-width half-maximum (FWHM) kernel, providing the data for 
subsequent analyses. 

2.6. Seed-based analysis 

Bilateral amygdala masks derived from FreeSurfer (Fischl, 2012) 
were back-projected into participant’s unwarped EPI space. The mean 
bilateral amygdala signal time course for each participant was then 
extracted from the residual images produced by the preprocessing 
pipeline. Back-projected voxels exhibiting greater than 10 % signal loss 
in the corresponding EPI field map were removed from the individual 
level amygdala masks in order to obtain more accurate estimates of 
amygdala signal. The extracted mean amygdala time courses were 
submitted as predictors for each individual’s general linear model 
(GLM) to identify voxels in the brain that were correlated over time with 

Table 1 
Demographics, mean cognitive and behavioral scores, and adoption history of 
post-institutionalized (PI) and non-adopted (NA) youth. Test statistics were 
generated using t-tests for continuous dependent variables and chi-squared tests 
for categorical measures. * indicates significant group difference.   

Previously- 
institutionalized (PI) 
N = 41 

Non-Adopted 
(NA) 
N = 42 

Test 
Statistic 
p-value 

Sex 26 Female 28 Female 0.006 
0.94 

Mean Age at 
Assessment in Years 
(Range) 

13.0 (12.18–14.09) 12.8 
(12.04–13.96) 

− 1.530.13 

Median Family Income 
in Thousands (Range) 

$80.5 ($30 – $500) $100 ($20 – 
$200) 

37.76 
0.33 

Mean IQ (SD) 106.83 (12.86) 118.07 (12.5) 4.04 
0.0001* 

Mean Internalizing 
Score (SD) 

0.29 (0.24) 0.18 (0.18) − 2.54 
0.01 

Mean Externalizing 
Score (SD) 

0.18 (0.18) 0.12 (0.15) − 1.67 
0.10 

Adoption History    
Age at adoption in 

months, M (SD); 
range 

15.83 (12.84); 4− 62 NA  

Institutional care in 
months, M (SD); 
range 

13.65 (8.91); 
3.5− 48 

NA  

Percent of care in 
institution, M (SD); 
range 

92.35 (14.22); 
50− 100 

NA  

Time since adoption in 
years, M (SD); range 

11.68 (1.23) 
7.9− 13.4 

NA   
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signal in the amygdala. 
Higher-level analyses were conducted using a random effects GLM to 

compare group differences in connectivity during resting state. All 
higher-level seed-based analyses included age at test, sex, and IQ as 
covariates of non-interest. For the vmPFC, as the a priori region of in
terest, non-parametric permutation tests using threshold-free cluster 
enhancement (TFCE) were conducted using Randomise in FSL, within a 
vmPFC mask (derived from the combination of bilateral Harvard-Oxford 
frontal medial cortex and subcallosal cortex anatomical masks), using 
5000 permutations at p < 0.05. For clusters identified by the permuta
tion test, ROIs were back-projected into each individual’s unwarped EPI 
space. Individual z-stat maps were transformed into correlation co
efficients using the inverse Fisher z transform and mean correlation 
coefficients were extracted for each individual using the back-projected 
ROI mask. This produced a mean correlation with the amygdala across 
voxels within significant ROIs for each individual. An exploratory 
whole-brain connectivity analysis was also completed using a bilateral 
amygdala seed and cluster-based correction for multiple comparisons 
(voxelwise p < 0.005, cluster corrected p < 0.05). The seed-based 
analysis was also completed using a functionally defined bilateral 
amygdala ROI for comparison, see the supplementary materials. 

2.7. Graph creation 

Two hundred sixty four ROIs (5 mm radius spheres), previously 
identified by Power et al. (2011), were created in MNI standard space 
using fslmaths and back-projected into each participant’s unwarped EPI 
space. Each of the ROIs belonged to one of six previously identified 
resting state networks (RSNs) which included cingulo-opercular, cere
bellar, default mode, frontoparietal, occipital, and sensorimotor net
works. Additionally, four subcortical ROIs (bilateral amygdala and 
hippocampus) were created using coordinates retrieved from the asso
ciation test function of neurosynth.org using the search terms “amyg
dala” and “anterior hippocampus” (Yarkoni et al., 2011). For each 
participant, the mean signal intensity within each of the ROIs was 
extracted from the residualized data for every TR, producing 268 
separate time series. Correlation matrices were created for each partic
ipant, such that the time series of every ROI was correlated with the time 
series of every other ROI using Pearson correlation. The resulting 268 ×
268 correlation matrices were Fisher z(r) transformed. Finally, because 
the calculation of some graph metrics (e.g. eigenvector centrality) 
require that the largest eigenvalue of the matrix be positive, all values in 
the correlation matrices were made positive using the absolute value of 
every cell for the calculation of graph metrics using weighted graphs 
(Fornito et al., 2016). This approach was taken to eliminate arbitrary 
thresholding of the graph and to include information from every con
nectivity estimate in subsequent analysis. Graphs were created using 
MATLAB (version 2017a, MathWorks) and graph theory metrics were 
calculated using the Brain Connectivity Toolbox (BCT; Rubinov and 
Sporns, 2010). 

2.8. Graph metrics 

A number of graph metrics were used in this study, including vari
ance in community size, eigenvector centrality, and within- and 
between-system connectivity. Community detection was completed by 
calculating a Newman-Girvan modularity matrix using the modularity_f 
function of the BCT and Louvain-like community detection using the 
genlouvain function of the BCT (Jeub et al., 2016). The variance in 
community size was then calculated for each individual participant and 
used in further analysis. Eigenvector centrality was calculated to 
investigate the relative importance of the amygdala and hippocampus in 
PI and NA youth (Bonacich, 2007; Newman, 2008). Importantly, 
eigenvector centrality is a measure of node importance to the whole 
brain network, with limited relation to the strength of connectivity be
tween the node of interest (here amygdala and hippocampus) and other 

single nodes in the network. Finally, within- and between-system con
nectivity values were generated by calculating the mean connectivity 
values of each node in a system with all the other nodes in its network 
(for within-system connectivity) or all other nodes in the brain excluding 
those in its network (for between-system connectivity) and averaging 
across all nodes in the system, similar to the procedure in Gu et al. 
(2015). 

2.9. Data analysis strategy 

The weighted correlation matrices created from the preprocessed 
resting state data were used to calculate variance in community size, 
subcortical eigenvector centrality, and within- and between-system 
connectivity. Following the calculation of these metrics, a set of a pri
ori linear regression models were run to evaluate the effects of group and 
age in the whole-brain network and in a subset of the networks estab
lished in the set of ROIs used in this analysis (Power et al., 2011). Sex 
was also included as a potential covariate of non-interest. Akaike in
formation criterion was used to determine the best-fitting final model. 
Specifically, group differences in variance in community size and 
within- and between-system connectivity were evaluated at the 
whole-brain level. Group differences in within- and between-system 
connectivity were also evaluated for five networks involved in atten
tion and cognition: the frontoparietal, cingulo-opercular, dorsal atten
tion, ventral attention, and salience networks (Power et al., 2011). 
Finally, the relative importance of the amygdala and hippocampus, as 
indicated by eigenvector centrality was compared across groups and as a 
function of age. Given the exploratory nature of the graph theory 
analysis, raw significance values are presented without correction for 
multiple comparisons. Methods and significance thresholds of the a 
priori seed-based resting-state analysis can be found above (see Section 
2.6 Seed-based Analysis). 

Behavioral differences between groups were evaluated with two 
sample t-tests. Internalizing and externalizing symptoms were log- 
transformed due to right skewness. Brain-behavior relationships were 
investigated using whole-brain averages of within- and between-system 
connectivity and for networks exhibiting significant effects between 
groups. These analyses were intended only to provide preliminary evi
dence of behavioral relevance for these rsFC measures. Raw significance 
values without correction for multiple comparisons are presented given 
the exploratory nature of these associations. Each planned model was 
run with predictors of group and age, with sex considered as a possible 
covariate of non-interest. Akaike information criterion was used to 
determine the best-fitting final model. 

3. Results 

3.1. Seed-based amygdala resting state functional connectivity 

Overall patterns of amygdala connectivity in the full sample are 
presented in Supplemental Fig. 1. Patterns of connectivity were consis
tent with those commonly described in the rsFC literature. 

3.2. Group differences in seed-based amygdala connectivity 

Group differences were evident within the a priori vmPFC mask used 
in this analysis. Specifically, PI youth exhibited significantly greater 
positive amygdala connectivity in the subgenual anterior cingulate 
cortex (sgACC; see Fig. 1). Extracted connectivity estimates (mean cor
relation coefficients by group) indicated positive connectivity between 
the amygdala and sgACC in both groups, while the PI group showed a 
significantly stronger positive correlation than the NA group (MPI = 0.61 
SD = 0.38; MNA = 0.37 SD = 0.53). 

Exploratory whole brain analyses did not reveal any additional re
gions showing supra-threshold group differences in amygdala 
connectivity. 
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3.3. Whole-brain connectivity using graph theory metrics 

3.3.1. Subcortical eigenvector centrality 
Consistent with our expectations, there was a negative association 

between age at assessment and right amygdala eigenvector centrality 
(EVC; F(1,81) = 4.87, p = 0.03; Fig. 2). Left and aggregated amygdala 
EVC also indicated a negative association with age, but were not sta
tistically significant (F(1,81) = 1.31, p = 0.26 and F(1,81) = 3.55, p =
0.06, respectively). There were no differences in left or right amygdala 
EVC between PI and NA youth. 

Analysis of left and right hippocampal EVC revealed no significant 
effects of age or group. 

3.3.2. Variance in community size 
There were no significant effects of age or group on the variance in 

community size. 

3.3.3. Within- and between-system connectivity 
Within- and between-system connectivity were calculated for each of 

the five higher-order cognitive networks outlined above (see Section 2.9 
Data Analysis Strategy). Significant main effects of age and group 
emerged for within-system connectivity in the dorsal attention network 
(F(2,77) = 7.60, p = 0.001; Fig. 3). Specifically, within-system con
nectivity of the dorsal attention network increased with age, and the NA 
group displayed more within-system connectivity than the PI group (t 
(77) = 3.06, p = 0.003 and t(77) = 3.00, p = 0.004, respectively). 
Within-system connectivity in the other four networks examined was 
not significantly predicted by age or group. No significant effects of age 
or group were found for between-system connectivity in any of the 
networks investigated. 

3.4. Behavior and functional connectivity 

Average within-system connectivity combined across all networks 
was significantly related to IQ such that more within-system connec
tivity was related to lower IQ above and beyond the effect of group (F (1, 
81) = 5.09, p = 0.03; Fig. 4). No associations were observed between 
average within-system connectivity and internalizing or externalizing 

Fig. 1. Seed-based amygdala – vmPFC resting state analysis revealed a significant group difference in the subgenual ACC (sgACC; x = 38). As seen in the bar graph, 
PI youth exhibited significantly stronger positive connectivity between amygdala and sgACC than NA youth. PI youth had greater positive connectivity than the NA 
comparison group. Region survived a voxelwise significance threshold of p < 0.005 and region of interest permutation tests p < 0.05 after 5,000 permutations. 

Fig. 2. Right amygdala eigenvector centrality decreased significantly with age in the full sample. Gray shading represents 95 % confidence interval. NA and PI youth 
did not differ on right amygdala eigenvector centrality (inset). 

M.P. Herzberg et al.                                                                                                                                                                                                                            



Developmental Cognitive Neuroscience 48 (2021) 100922

6

scores. However, between-system connectivity averaged across the 
whole-brain was associated with behavior. Stronger between-system 
connectivity was associated with lower internalizing symptoms, above 
and beyond the effects of group, when controlling for age and sex (F 
(4,72) = 4.562, p = 0.002; Fig. 5). 

Network-specific differences in dorsal attention network connectiv
ity were associated with both internalizing and externalizing symptoms. 
Greater dorsal attention network within-system connectivity was asso
ciated with more internalizing symptoms, above and beyond the effect 
of group, when controlling for age and sex (F(4,74) = 3.023, p = 0.02; 
Fig. 6). Finally, higher levels of externalizing were associated with 
greater dorsal attention network within-system connectivity when 

controlling for group, age, and sex (F(4,72) = 4.603, p = 0.002; Fig. 7). 

4. Discussion 

The purpose of this study was to extend the examination of func
tional connectivity in post-institutionalized youth to the resting-state 
context and to diversify the brain networks under examination. We 
confirmed that seed-based amygdala connectivity with the mPFC, which 
has previously been shown to be associated with early institutional care 
in the context of a behavioral task (e.g. Gee et al., 2013), is also 
significantly different between PI and NA youth in our resting-state data. 
Further, we found significant decreases in the eigenvector centrality of 

Fig. 3. NA youth exhibited greater dorsal attention network within-system connectivity compared to PI youth. Dorsal attention network within-system connectivity 
was also associated with age at assessment in the full sample and each group. Gray shading indicates 95 % confidence intervals. 

Fig. 4. Higher within-system connectivity is associated with lower IQ scores in the full sample, above and beyond a main effect of group. Gray shading indicates 95 % 
confidence interval. 
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the right amygdala across age in the full sample, though no associations 
with early institutional care were evident. Additional whole-brain graph 
theory analyses revealed group and age effects in the within-system 
connectivity of the dorsal attention network and a number of 
brain-behavior associations with IQ, internalizing symptoms, and 
externalizing symptoms. Each of these results has developmental im
plications that will serve as an important foundation for future research, 
though the inconsistent findings reported in the current literature 
require that they be interpreted with care. 

Basic research addressing the normative developmental trajectory of 
amygdala – vmPFC connectivity has produced conflicting evidence that 
has a direct impact on the interpretation of the results presented here. PI 

youth in our study exhibited greater positive amygdala – vmPFC con
nectivity than NA youth, which has been reported to be the more mature 
state. In the context of resting-state functional connectivity results from 
Gabard-Durnam et al. (2014) and Qin et al. (2012), this result is 
consistent with an accelerated maturation framework in which 
emotional behavior and brain circuitry mature more quickly in in
dividuals who have experienced early caregiver deprivation. However, 
more recent work has suggested the opposite developmental trend: that 
resting-state amygdala – vmPFC connectivity decreases through 
adolescence and into early adulthood (Jalbrzikowski et al., 2017). There 
are a number of factors that may contribute to the inconsistent results, 
including differences in sample size, the age range of participants, and 

Fig. 5. PI youth exhibited higher levels of internalizing symptoms compared to NA youth, on average. Higher levels of between-system connectivity across the whole 
brain were associated with fewer internalizing symptoms above and beyond effects of group. Gray shading indicates 95 % confidence intervals. 

Fig. 6. PI youth exhibited higher levels of internalizing symptoms compared to NA youth, on average. Higher levels of dorsal attention network within-system 
connectivity are associated with more internalizing symptoms above and beyond effects of group. Gray shading indicates 95 % confidence intervals. 
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the use of different amygdala ROIs (e.g. including whole and sub
segmented amygdalae). Given the early adolescent age range of our 
sample (age 12.04–14.1 years), it could be that the participants in our 
study were more similar to those in late childhood rather than those in 
later adolescence. Alternatively, if the connectivity of the entire amyg
dala with vmPFC becomes more positive with age, our results would be 
consistent with accelerated maturation. In the context of theoretical 
work addressing early caregiver deprivation (i.e., neglect), our results 
seem to support stress-accelerated maturation of emotion-regulatory 
circuitry consistent with adaptation to a deprived environment (Blair 
and Raver, 2012; Callaghan and Tottenham, 2016). Given the varying 
results in the literature, further research is necessary to confirm that the 
results reported here are an indication of more mature resting-state 
frontolimbic connectivity in PI youth. 

Developmental trends in the relative importance of subcortical 
structures (as measured by graph theory centrality metrics), variance in 
community size, and between-system connectivity have been more 
consistent. A shift from subcortically-dominated patterns of brain ac
tivity to more balanced patterns has been suggested by a large body of 
developmental research that characterizes a shift from co-regulation, in 
which caregivers aid in responses to stressful or conflicting environ
ments, to a more independent form of regulation dependent upon the 
top-down control of subcortical limbic structures (e.g., Casey, 2015; 
Sameroff, 2010). Prior research has demonstrated that the centrality of 
subcortical limbic structures, including the amygdala, becomes less 
central to brain network organization as individuals age (Sato et al., 
2015). Consistent with this finding, we found age-related decreases in 
right amygdala eigenvector centrality in the full sample, though no 
differences were found as a function of early institutional care. The lack 
of significant differences related to early institutional deprivation in 
models evaluating subcortical limbic centrality may be due to a lack of 
whole-brain differences between groups, as eigenvector centrality is 
normalized to the importance of all nodes in the network. Similarly, 
decreases in between-system connectivity and increased variance in 
community size were not evident in our full sample, nor between PI and 
NA groups, despite such decreases having been well established across 
adolescent development as whole-brain networks become increasingly 
segregated (Gu et al., 2015). Overall, the lack of group effects is 
inconsistent with the possibility that early institutional deprivation has a 

large impact on broadly distributed networks; this may be preliminary 
evidence against a developmental tradeoff precipitated by accelerated 
maturation of frontolimbic circuits. However, while the groups did not 
differ in average between-system connectivity, a significant association 
with internalizing symptoms was found. This result lends support to the 
notion that decreasing between-system connectivity is a normative 
developmental trajectory across adolescence and may provide a piece to 
the puzzle when considering the relationships between functional con
nectivity and adaptive or maladaptive behavior. 

Our lack of group differences in variance in community size and 
measures of between-system connectivity has two additional implica
tions. It is possible that the effects of early institutional care do not affect 
whole-brain organization in adolescence but are instead more circuit 
specific. This explanation is consistent with previous research suggest
ing that frontolimbic circuitry is particularly susceptible to early psy
chosocial deprivation and adverse caregiving experiences (Callaghan 
et al., 2014). In other words, a lack of responsive caregiving early in life 
may result in a canalization of development toward improved 
self-regulated emotion processing in the absence of a co-regulator. As a 
result, the relative size of communities across the whole brain, or in
teractions between disparate networks may not be impacted by psy
chosocial deprivation, particularly when limited to the first years of life. 
An alternative explanation for the lack of whole-brain group differences 
could include protective effects afforded by the post-adoption environ
ment. Transitioning from early caregiver deprivation into 
well-resourced and supportive homes may result in a reorganization of 
brain networks that ameliorates differences that may have existed be
tween the groups initially. Longitudinal imaging studies will be able to 
tease apart these possibilities, including the possibility of sleeper effects 
that could emerge later in adolescence or adulthood. 

Interpreting effects of within-system connectivity is more difficult 
than subcortical centrality or between-system connectivity due to a lack 
of prior results in the literature. Despite this difficulty, our within- 
system connectivity results are interesting in the context of established 
behavioral differences between PI and NA youth. When examining 
dorsal attention network within-system connectivity, which differed 
between groups, increased network connectivity was associated with 
increased internalizing and externalizing symptoms. Given that the 
dorsal attention network has been associated with directed attention to 

Fig. 7. Greater dorsal attention network within-system connectivity was associated with higher levels of externalizing controlling for group, age, and sex. Gray 
shading indicates 95 % confidence intervals. 
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external stimuli (Corbetta and Shulman, 2002; Fornito et al., 2012; Fox 
et al., 2005) and that research in adults has shown that more positive 
connectivity among regions in the dorsal attention network is associated 
with ADHD (Sidlauskaite et al., 2016), our results suggest that higher 
levels of dorsal attention network within-system connectivity during 
early adolescence are generally associated with maladaptive outcomes. 
Interestingly, increased within-system connectivity averaged across all 
networks was negatively associated with IQ in the full sample. While 
connectivity metrics averaged across networks lack system-specific in
formation about the brain-behavior relationship under study, the asso
ciation between within-system connectivity and IQ further suggests that 
connectivity among nodes of the same network has predictive potential. 
Future research probing within-system connectivity—particularly dor
sal attention network within-system connectivity—following ELS may 
improve our understanding of the neural mechanisms underlying 
behavioral differences observed in these populations. 

Although our results may support current theories regarding circuit- 
specific accelerated maturation while demonstrating that a more diverse 
set of networks does not follow a similar pattern, they must be inter
preted in the context of several limitations. Most importantly, the study 
in which these data were collected was not designed to investigate age- 
related change. As such, age at assessment effects found in subcortical 
limbic centrality and within-system connectivity of the dorsal attention 
network are best considered in the context of the group differences (or 
lack thereof) in these metrics. The amount of resting-state data consti
tutes an additional limitation as only 5 min and 57 s of data were ac
quired from each subject. Further, the single timepoint nature of the 
data limits our analysis to simple associations between brain and 
behavior without the possibility of causal attribution or directional 
specificity. It may well be that a transactional relationship exists such 
that internalizing or externalizing symptoms modulate the environment 
in ways that shape the development of functional connectivity in these 
circuits. Notwithstanding this possibility, the findings reported here 
provide guidance for future research with designs better suited to 
investigating developmental change. 

An additional limitation of this and other studies of extreme groups 
concerns the heterogeneity present in the risk (PI) group. For example, 
the participants who survive the stringent motion correction thresholds 
set in rsFC research may be among the highest functioning individuals in 
the population, biasing results toward fewer group differences than may 
actually exist. The possibility for heterogeneity also extends to unmea
sured factors prior to entry into the institution. Among these factors are 
possible genetic confounds that render some individuals more stress 
sensitive than others, prenatal factors such as maternal stress or sub
stance use, and trauma occurring before institutionalization (McGuin
ness and Dyer, 2006). Finally, age at adoption varies across the PI group, 
which affects not only the amount of deprivation experienced but also 
the developmental timing of transition into an enriched environment. 
While this study was underpowered to examine age at adoption, future 
research with larger PI groups should consider such timing effects to 
elucidate the potential impact of this limitation. In each case, these 
sources of variation contribute unmeasured signal that may affect the 
presence or absence of group differences in adoption research. 

The work reported here lays the groundwork for future studies 
despite the limitations discussed above. Recent research has character
ized a recalibration of physiological systems across the pubertal period 
in PI youth (Gunnar et al., 2019). Whether or not such reorganization 
occurs at the level of the brain is not yet known. Future research 
examining the effects of ELS on functional connectivity throughout the 
adolescent period using large, longitudinal datasets may aid in 
addressing this gap in the literature. Further, the graph theory analyses 
presented here were largely exploratory in nature. More specific designs 
targeting neural mechanisms that may be involved in the development 
of behavioral differences following ELS are needed for application to 
prevention or intervention efforts. Specifically, investigating associa
tions between the organization of pairs of networks over time could shed 

light on how altered trajectories of functional connectivity development 
in one system may influence the subsequent development of another 
system. Targeting the interactions between networks as predictors of 
behavioral outcomes has the potential to further our understanding of 
brain-behavior relationships following environmental insult. Studies of 
protective factors will also provide new avenues for intervention and 
bolster mechanistic understandings of brain development following ELS. 
For example, a recent review of interventions in adoptive families found 
that interventions using attachment-based strategies in combination 
with strategies based on psychological theory ranging from family sys
tems to bio-psycho-social models were most effective for improving 
youth emotional and behavioral functioning (Ní Chobhthaigh and Duffy, 
2019). Interventions targeting attachment and other protective factors 
should continue to be an important part of ELS research focused on the 
biological consequences of stress. 

In sum, we report differences in circuit-specific and whole-brain 
functional connectivity between previously institutionalized and non- 
adopted youth in the resting-state context. Circuit-specific differences 
in frontolimbic connectivity suggest that experiences of ELS modify the 
developmental trajectory of emotion-regulation systems toward what 
may be a more mature state. While limited by an inconsistent literature, 
our results suggest that early institutional care may be associated with 
accelerated maturation in emotion processing circuitry. Such a devel
opmental pattern could be an adaptive response to deprived caregiver 
environments. In contrast, despite the possibility of a developmental 
trade-off in which accelerated maturation of frontolimbic connectivity 
comes at the cost of higher-order cognition and attention-related net
works, our results do not suggest these networks are heavily impacted by 
early caregiver deprivation. While there was a group difference evident 
in the within-system connectivity of the dorsal attention network, it 
remains unclear whether this is consistent with a more or less mature 
neural profile in PI youth. Despite the lack of support for a develop
mental tradeoff, this work extends prior task-based connectivity 
research into the resting-state context and emphasizes the importance of 
examining a diverse set of brain networks in future research with pop
ulations who have experienced early life stress. Continuing to build a 
more complete picture of the associations between early life stress and 
resting-state functional connectivity will be an important step toward 
understanding risk and resilience factors critical to effective 
intervention. 
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