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Simple Summary: The fall webworm, Hyphantria cunea, is a worldwide invasive pest causing serious
ecological and economic damage. The use of RNAi is a feasible strategy for controlling this pest.
In this study, we evaluated the importance of the chitinase 5 gene (HcCht5) in the development
of H. cunea larvae. We found that the RNAi-mediated silencing of HcCht5 arrested molting and
caused larval mortality depending on the dsRNA injection time. The silencing of HcCht5 down-
regulated genes that were related to chitin metabolism, molting hormone signaling, and detoxification
metabolism. Our findings indicate that HcCht5 is an important gene in regulating larval development
and a promising target for RNAi-mediated pest management of the pest H. cunea.

Abstract: Chitinases, which are crucial enzymes required for chitin degradation and reconstruction,
are often selectively considered to be effective molecular targets for pest control due to their criti-
cal roles in insect development. Although the Hyphantria cunea chitinase gene has been reported
previously, its sequence characteristics, gene function, and feasibility as a potential target for pest
management were absent. In the present study, we characterized the H. cunea chitinase gene and
designated it HcCht5. Phylogenic and domain structure analysis suggested that HcCht5 contained
the typical chitinase features and was clustered into chitinase group I. Tissue-specific and devel-
opmental expression pattern analysis with Real-Time Quantitative PCR (RT-qPCR) showed that
HcCht5 was mainly expressed in the integument tissues and that the transcript levels peaked during
molting. RNA interference (RNAi)-mediated silencing of HcCht5 caused 33.3% (2 ug) and 66.7%
(4 ug) mortality rates after double-stranded RNA (dsRNA) injection. Importantly, the interference
efficiency of HcCht5 depended on the injection time of double-stranded RNA (dsRNA), as the pre-
molting treatment achieved molt arrest more effectively. In addition, transcriptome sequencing
(RNA-seq) analysis of RNAi samples demonstrated silencing of the down-regulated HcCht5 genes
related to chitin metabolism and molting hormone signaling, as well as genes related to detoxification
metabolism. Our results indicate the essential role of HcCht5 in H. cunea development and detail the
involvement of its gene function in the larval molting process.

Keywords: Hyphantria cunea; chitinase; molting; RNAi efficiency; transcriptome analysis

1. Introduction

Chitin, a linear polymer made of N-acetyl-β-D-glucosamine (GlcNAc) linked by β-1,4
glycosidic bonds, is an important component of the epidermis and peritrophic matrix in
insects [1]. The balance of the chitin content is particularly essential for insect development
(molting) and metamorphosis. Chitin synthesis and degradation occur simultaneously
during insect molting, when the old cuticle is degraded and replaced with the new cuticle
formed by the underlying epidermal cells [2]. Multiple enzymes are involved in this process
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of chitin metabolism. Chitinases (Chts, E.C.3.2.1.14), which belong to glycoside hydrolase
family 18 (GH18), are key enzymes in the degradation of chitin. The function of chitinase is
to hydrolyze the linear polymer of chitin and degrade chitin into low-molecular-weight
chitooligosaccharides. Insect chitinases are essential for insect survival and development.
They appear to play roles in cuticle turnover, wing expansion, digestion, immunity and
natural defense [1,3]. Insect chitinase was first cloned from Manduca sexta [4]. Since then,
hundreds of chitinase genes have been continuously reported from different insect species,
such as Tribolium castaneum [3], Spodoptera litura [5], Choristoneura fumiferana [6], Helicoverpa
armigera [7], Spodoptera exigua [8], Locusta migratoria [9], and Sogatella furcifera [10].

Currently, chitinases and chitinase-like proteins are classified into 11 groups (groups I
to X, and the Lepidoptera-specific group h) based on their sequence similarities, domain
architectures, tissue-specificity of expression, and functions [11–13]. Among them, group I
(Cht5) has been relatively well characterized. The transcripts of Cht5s are mainly detected
in the epidermis and the gut [7], which suggests that Cht5s may be involved in chitin
turnover in the cuticular exoskeleton and peritrophic membrane. Heterologous expression
of Cht5 of Drosophila melanogaster and T. castaneum has also been successfully performed
in the Hi-5 cell lines, and the recombinant protein showed high levels of chitinolytic
activity [13]. At present, most studies on Cht5 revealed its function in pupal–adult or
nymph–adult molting in coleopteran, orthopteran, and homopteran insects using RNA
interference (RNAi) technology. For instance, in T. castaneum, TcCht5 was down-regulated
by the injection of TcCht5-specific double-stranded RNA (dsRNA) into larvae, which led to
pupal–adult molting arrest [3]. In L. migratoria, two Cht5 genes, LcCht5-1 and LcCht5-2, were
identified. The RNAi of LcCht5-1 disrupted molting from nymphs to adults [14]. In Sogatella
furcifera, silencing of SfCht5 also affected the nymph–adult transition [10]. However, the
function of Cht5 in larvae-larvae molting in Lepidoptera has been rarely studied.

The fall webworm, Hyphantria cunea Drury, is a Lepidoptera insect belonging to the
family of Arctiidae. H. cunea is a worldwide invasive pest, and the larval stage is the main
stage in which the larvae can attack and feed on more than 600 host plants, causing serious
ecological and economic damage [15]. Currently, monitoring and control of H. cunea is
primarily achieved through chemical insecticides, which are environmentally unfriendly.
Some parasitoid wasps, sex pheromone traps, and biopesticides are also used, but are
inefficient and costly [16–19]. The identification of novel management strategies is urgently
required to control this pest. In recent years, RNAi-based pest management has been
increasingly studied as a novel insect control strategy and the publication of genome
and transcriptome sequencing for H. cunea also provided a molecular basis for H. cunea
control [20–22]. However, potentially effective genetic targets and innovative strategies
to control this invasive pest are still lacking. Chitinase 5 genes from different insects
have been identified as potential silencing targets and resulted in abnormal molting and
increased mortality in the pupal–adult or nymph–adult process [23,24]. However, for
H. cunea, the larval stage is the important damage stage and the key period for its control.
Little research has focused on chitinase genes from H. cunea. Although a chitinase gene
(Cht5, Accession number: U86877) was cloned by Kim et al. in H. cunea in 1998 [25], its
sequence characteristics, gene function, and feasibility as a potential target for pest control
were absent. To research the function of this chitinase gene in the H. cunea larvae molting
process, we further identified and analyzed the function of this gene using the RNAi
method and considered the possibility of its use as one of the competitive molecular targets
for H. cunea control.

In the present study, we identified and analyzed the domain structure of H. cunea
chitinase gene (HcCht5), a group I gene, and profiled its tissue-specific and developmental
expression patterns. RNAi and transcriptome sequencing (RNA-seq) were used to gain
insights into the biological function of HcCht5. Our results revealed the crucially important
role of HcCht5 during larval molting and in the promotion of the development of RNAi-
based management of H. cunea control.
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2. Materials and Methods
2.1. Insect Rearing

H. cunea larvae were kindly provided by the laboratory of Insect Virus Research Center,
Chinese Academy of Forestry. They were reared on an artificial diet under a 14 h light: 10 h
dark photoperiod at 26 (±1) ◦C with 75% (±10%) relative humidity.

2.2. Cloning and Sequencing of the HcCht5 cDNA

The total RNA was isolated from the third instar larvae on the second day after
molting using the Trizol Plus reagent (Ambion, Austin, TX, USA), following the manufac-
turer’s recommended protocol. The RNA concentration and quality were assessed using
a spectrophotometer (Denovix, Wilmington, DE, USA) and 1% agarose gel electrophore-
sis. cDNA synthesis was performed by the GoScript™ Reverse Transcription System kit
(Promega, Madison, WI, USA) with an oligo (dT)15 primer, and 1 ug of total RNA was used
per reaction.

The full-length coding sequence of HcCht5 was amplified using PrimeSTAR® Max
DNA Polymerase (Takara, Shanghai, China). PCR primers were designed based on the
reported H. cunea chitinase gene (Accession number: U86877) with the Primer Premier
5 software. The primer sequences are listed in Table S1. The PCR program used was as
follows: 94 ◦C for 3 min; 35 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s and 72 ◦C for 2 min; and
72 ◦C for 10 min. The PCR products were purified and cloned into a pEASY-Blunt3 vector
(TransGen, Beijing, China) and sequenced at Sangon Biotech (Co., Ltd., Beijing, China).

2.3. Deduced Amino Acid Sequence Analysis of HcCht5

The amino acid sequences were deduced using the Translate tool on the ExPASy
Proteomics website (http://web.expasy.org/translate/) (accessed on 20 February 2020).
The molecular weight and isoelectric point (pI) of HcCht5 were predicted using the Com-
pute pI/Mw tool (https://web.expasy.org/compute_pi/) (accessed on 20 February 2020).
SMART domain analysis (http://smart.embl-heidelberg.de/) (accessed on 20 February
2020) and SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/) (accessed on
20 February 2020) were used to predict the domain architecture and signal peptide. Percent
identity analysis of HcCht5 was conducted by NCBI blastp (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) (accessed on 25 February 2020). To compare the amino acid sequences and
catalytic domains of HcCht5 along with other insect orders, multiple amino acid sequence
alignment was carried out using Clustal X software [26], and the identities among Chts
were analyzed by GeneDoc software (http://wwwpscedu/biomed/genedoc) (accessed
on 25 February 2020). Four conserved motifs were identified based on the references
previously described by Arakane and Muthukrishnan [1] and Zhang et al. [27]. The known
insect Cht5 genes in other insect orders deposited in GenBank were used to construct phy-
logenetic trees using the MEGA 6.0 software package with the neighbor-joining method.
Bootstrap analysis was performed, and the robustness of each cluster was confirmed in
1000 replications.

2.4. Tissue-Specific and Developmental Expression Analysis of HcCht5

For tissue-specific expression analysis, different tissues (head, integument, gut, and fat
bodies) were dissected from larvae on the second day of the fifth instar stadium (L5D2). The
larvae were first kept on ice for 3 min and then dissected with sterile insect scalpels under
a zoom stereomicroscope (Olympus, SZX7). The heads from ten larvae and other tissues
(integument, gut, and fat bodies) from three larvae were pooled as one treatment. Each
treatment contained three biological replicates. For developmental expression analysis, the
whole larva was sampled and used for developmental expression analysis. The first to fifth
instar larvae (L1 to L5) larvae on the third day of the stadium (D3) and the fourth instar
larvae from day 1 to day 5 of the stadium (L4D1 to L4D5) were collected. Samples from
each developmental stage contained three biological replicates. At least 100 mg of tissue
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or larvae were sampled per replicate. All collected samples were immediately frozen in
liquid nitrogen and stored at −80 ◦C.

2.5. RT-qPCR

To screen for the stable reference genes of H. cunea, qRT-PCR was employed to an-
alyze the expression of four candidate reference genes (β-actin, β-tubulin, GAPDH, and
EF1α) at different developmental stages (L1 to L5) and different tissues (head, integument,
gut, and fat bodies), respectively. RT-qPCR was performed using the SuperReal PreMix
Plus (SYBR Green) kit (TIAN GEN, Co., Ltd., Beijing, China) with a 20 µL reaction. Each
reaction contained the following: 10 µL 2 × SuperReal PreMix Plus (SYBR Green) solution,
0.6 µL forward and reverse primers in a final concentration of 10 µM, 7.8 µL nuclease free
water, and 1 µL of undiluted cDNA. RT-qPCR was carried out using a LightCycler 480 II
(Roche, Basel, Switzerland) with the following conditions: 95 ◦C for 3 min, followed by
45 cycles at 95 ◦C for 5 s, and 60 ◦C for 30 s. Each reaction included three technical repe-
titions. According to the analysis by NormFinder (https://www.moma.dk/normfinder-
software/) (accessed on 15 March 2020), the stabilities of the four candidate reference genes
were analyzed.

All RT-qPCR experiments were conducted with the methods above. Each treatment
included three biological replicates and three technical repetitions. The relative mRNA
levels of the target genes were calculated using the 2−∆∆Ct method by normalizing them to
the expression of the screened reference gene. All the PCR primers were designed using
the Primer Premier 5 software. The primer sequences are listed in Supplementary Table S1.
Melting curve analyses were performed for all the primers.

2.6. dsRNA Synthesis and RNAi of HcCht5

The dsRNA was synthesized using a T7 RiboMAX™ Express RNAi System (Promega,
Madison, WI, USA) in accordance with the manufacturer’s instructions. T7 promoter se-
quences were tailed to the 5′-ends of the DNA templates by PCR amplification. The primer
sequences are listed in Supplementary Table S1. Template DNA and single-stranded RNA
were removed from the transcription reaction by DNase and RNase treatments, respectively.

For RNAi, larvae from the last day of the third stadium (L3D5) with similar sizes
and growth conditions were selected, 2 ug and 4 ug of dsHcCht5 or dsGFP (control)
solution were injected into each larva through the abdominal side between the fourth
and fifth abdominal segments, respectively, using a microinjector (Hamilton, Bonaduz,
Switzerland). A total of 12 larvae were treated for each group, three larvae (replicates) were
randomly sampled from each treatment group at 12 h and 24 h post treatment, immediately
frozen in liquid nitrogen, and stored at −80 ◦C. RNA extraction and RT-qPCR detection
of the relative transcript level of HcCht5 were conducted as described above. For RNAi
phenotype observation, another 30 larvae were treated for each group, the abnormal rate
was investigated at the molting stage, and the mortality rate was investigated five days
post treatment.

To research the RNAi efficiency of HcCht5 at different injection times, 30 larvae were
separately injected with 4 ug dsHcCht5 from day 1 to day 5 of the fourth instar larvae
stadium (L4D1 to L4D5). The control group was injected with the same amount of dsGFP.
The abnormal rate and mortality rate were investigated at the molting stage and five days
post molting, respectively.

2.7. RNA-Seq and Analysis

At the first day of the fourth stadium, the larvae were injected with 2 ug dsHcCht5 or
dsGFP (control). Three larvae (biological replicates) from each treatment were collected
12 h post injection, immediately frozen in liquid nitrogen, and then stored at −80 ◦C. For
mRNA sequencing, the total RNA was extracted as described above. RNA degradation
and contamination were monitored on 1% agarose gels. RNA purity was checked using the
NanoPhotometer® spectrophotometer (IMPLEN, Westlake Village, CA, USA). The RNA
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concentration was measured using a Qubit® RNA Assay Kit in Qubit® 2.0 Flurometer (Life
Technologies, Carlsbad, CA, USA). The RNA integrity was assessed using the RNA Nano
6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA).

A total amount of 3 µg RNA per sample was used as input material for the RNA
sample preparations. Sequencing libraries were generated using NEBNext®Ultra™ RNA
Library Prep Kit for Illumina® (NEB, Ipswich MA, USA) following the manufacturer’s
recommendations, and index codes were added to attribute sequences to each sample. The
library preparations were sequenced on an Illumina HiSeq2000 platform (Illumina, San
Diego, CA, USA) by Biomarker Technologies (Co., Ltd., Beijing, China).

The raw data outputs from the Illumina equipment were trimmed for adapters, and
polyA/T tails and low-quality reads (Q20 less than 20) were removed to obtain high-quality
clean reads. The clean reads were assembled to produce unigenes using Trinity [28]. The
assembled unigenes were aligned with the NR databases using BLAST (http://blast.ncbi.
nlm.nih.gov/Blast.cgi) (accessed on 10 August 2020) with a cut-off E-value of 10−5.

The unigene abundance was measured as the fragments per kilobase of transcript
per million mapped reads (FPKM) using RSEM [29]. The identification and counting of
differentially expressed genes (DEGs) between dsGFP- and dsHcCht5-treated samples
were conducted with the DESeq R package (1.10.1) at a False Discovery Rate (FDR) of
≤0.05 and a log2 fold change of ≥1.5, followed by hierarchical clustering based on the
expression values. DEGs were validated by RT-qPCR as described above. DEG analysis
was performed using BMKCloud (www.biocloud.net) (accessed on 10 September 2020).

2.8. Statistical Analysis

For the analysis of HcCht5 expression patterns in different tissues and at different
developmental stages, one-way analysis of variance followed by Tukey’s test was applied.
The other data were analyzed statistically using an independent sample Student’s t-test. In
the figures, different letters above the bars represent significant differences in the HcCht5
expression between the samples (p < 0.05), while asterisks are used to indicate significant
differences (*, p < 0.05).

3. Results
3.1. Sequence Analysis of HcCht5

The full-length coding sequence of the HcCht5 gene had a 1662 bp ORF encoding
553 amino acid residues with a predicted molecular weight of 61.97 kDa and a predicted
pI of 4.96. The deduced amino acid sequence of HcCht5 showed 80.07% identity with
BmCht5. The domain architecture of HcCht5 contained a signal peptide (amino acids
1–20), a catalytic domain (GH18 domain, amino acids 24–376), and a chitin-binding domain
(amino acids 496–553) (Figure 1A). Catalytic motif analysis showed that HcCht5 possesses
four conserved catalytic domains: KXXXAVGGW, FDGXDLDWEYP, MXYDLRG, and
GAMXWAIDMDD, where X is a nonspecific amino acid (Figure 1B). These motifs are
considered the catalytic active sites of chitinase. Phylogenetic analysis showed that HcCht5
exhibited a high homology with BmCht5 and was clustered in the branch of group I
chitinases (Figure S1).

3.2. Tissue-Specific and Developmental Expression of HcCht5

RT-qPCR was used to analyze the spatiotemporal expression levels of HcCht5. To screen
for stable reference genes of H. cunea, four candidate reference genes (β-actin, β-tubulin,
GAPDH, and EF1α) were evaluated for their expression stability in different developmental
stages and different tissues. Finally, β-Actin showed the most stability and was used as the
reference gene for RT-qPCR analysis (Table S3). To investigate the tissue-specific expression of
HcCht5, different tissues (head, integument, gut, and fat bodies) from the fifth instar larvae
were dissected and tested. The results showed that HcCht5 was expressed in all the tested
tissues and most highly expressed in the integument (Figure 2A).
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identity) backgrounds, respectively. Red-boxed regions are the four conserved motifs (I–IV) repre-
sented by the sequences KXXXAVGGW, FDGXDLDWEYP, MXYDLRG, and GAMXWAIDMDD, 
where X is a nonspecific amino acid. Four insect chitinases belonging to chitinase group I (BmCht5, 
TcCht5, DmCht5, and DpCht5) were used for catalytic motif analysis. Their GenBank accession 
numbers are listed in Table S2. 
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L4D5). Error bars represent the standard error of the calculated means based on three biological
replicates. Different letters above the bars represent significant differences in the HcCht5 expression
between the samples (one-way analysis of variance followed by Tukey’s test, p < 0.05).

To investigate the developmental expression of HcCht5, we detected the expression
level of HcCht5 in day 3 larvae from the first instar to the fifth instar (L1D3–L5D3) and
in larvae from the first day to the last day of the fourth instar (L4D1–L4D5), respectively.
The results showed that HcCht5 was expressed at a low level in the early stage (L1 to L3)
and a high level at the fourth and the fifth instar (L4 and L5) (Figure 2B). The HcCht5
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mRNA displayed an extremely high expression level at L4D1 and L4D5, but an extremely
low expression at L4D2 to L4D4 (Figure 2C). This indicates that HcCht5 was significantly
up regulated during molting and rapidly disappeared during inter-molting, implying a
conceivable role of HcCht5 during the molting process.

3.3. RNAi of HcCht5

To investigate the effect of HcCht5 on H. cunea molting, RNAi was performed by the
injection of dsHcCht5 and dsGFP (control). Since HcCht5 was highly expressed pre-molting,
we selected larvae on the fifth day of the third instar (the day before molting) for RNAi. RT-
qPCR was carried out to test the transcription level of HcCht5 after treatment. The results
showed that the expression of HcCht5 was effectively reduced at 12 h but recovered at 24 h
after the injection of 2 ug dsHcCht5 against dsGFP (Figure 3A). In contrast, a concentration
of 4 ug dsHcCht5 resulted in significant silencing at both 12 h and 24 h post injection
(Figure 3B). In addition, phenotypic observations suggested that all the larvae in the control
group could molt normally, whereas the dsHcCht5 injection group showed 33.3% (2 ug)
and 66.7% (4 ug) abnormal molting (Table 1). These abnormalities were characterized
by the fact that some larvae could shed the epidermis but did not molt completely, some
larvae stopped molting halfway, and some could not molt at all (Figure 3C). Finally, the
dsHcCht5 injection resulted in 33.3% (2 ug) and 66.7% (4 ug) mortality rates at five days
post treatment, while no death was observed in the control group (Table 1). These results
demonstrated the crucially important role of HcCht5 during H. cunea larval molting.
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Figure 3. RNAi efficiency of HcCht5. (A) The relative mRNA expression levels of HcCht5 after
injection with 2 ug dsHcCht5 and dsGFP. (B) The relative mRNA expression levels of HcCht5 after
injection with 4 ug dsHcCht5 and dsGFP. dsRNAs were injected in L3D5 instar (the day before
molting) larvae. The relative mRNA expression levels of HcCht5 were determined using RT-qPCR at
12 h and 24 h post injections. Error bars represent the standard error of the calculated means based on
three biological replicates. Asterisks indicate significant differences (Student’s t-test, p < 0.05). (C) The
abnormal molting phenotypes of H. cunea larvae after injection with dsHcCht5. Insects injected with
dsGFP were able to molt successfully, while the dsHcCht5-injected insects displayed three abnormal
molting phenotypes: P1, some larvae could shed the epidermis but did not molt completely; P2,
some larvae stopped molting halfway; and P3, some larvae completely failed to molt.

Considering the expression pattern of HcCht5, which displayed an extremely high
expression during ecdysis and then followed a sharp decline after ecdysis (Figure 2C), we
wondered whether the injection time could affect the RNAi efficiency. Therefore, injections
of dsRNA at different stages of the fourth instar larvae (L4D1–L4D5) were conducted. We



Insects 2021, 12, 406 8 of 13

found that only the treatment at L4D4 and L4D5 resulted in the molting defect and lethal
phenotype, whereas no phenotypic changes were detected for treatment at L4D1, L4D2
and L4D3 (Table 2). In addition, compared with the dsGFP control, injection of dsHcCht5
at L4D5 resulted in a higher abnormal rate (26.7%) and mortality rate (26.7%) than the
injection at L4D4, which showed a 10% abnormal rate and 10% mortality rate, respectively
(Table 2). These results indicated that the injection time of dsHcCht5 could affect the RNAi
efficiency of HcCht5.

Table 1. The abnormal rate and mortality rate of H. cunea after injection of dsHcCht5 in
different concentrations.

Treatment 1 dsGFP dsHcCht5 dsGFP dsHcCht5

2 ug/Larva 4 ug/Larva

Abnormal rate ND 33.3% ND 66.7%
Mortality rate ND 33.3% ND 66.7%

1 A total of 30 insects on the fifth day of the third instar were injected for each treatment group. The abnormal
rate was investigated at molting stage of the third instar larvae. The mortality rate was investigated five days
after treatment. dsGFP, the control group; dsHcCht5, the treatment group; and ND, not detected.

Table 2. The abnormal rate and mortality rate of H. cunea after the injection of dsHcCht5 at each day
of the fourth larval stadium (L4D1 to L4D5).

Treatment 1 dsGFP dsHcCht5

Abnormal rate L4D1 ND ND
L4D2 ND ND
L4D3 ND ND
L4D4 ND 10.0%
L4D5 ND 26.7%

Mortality rate L4D1 ND ND
L4D2 ND ND
L4D3 ND ND
L4D4 ND 10.0%
L4D5 ND 26.7%

1 A total of 30 insects were injected with 4 ug dsGFP/dsHcCht5 at each day of the fourth larval stadium (L4D1
to L4D5). The abnormal rate was investigated at the molting stage of the fourth larval stadium. The mortality
rate was investigated five days post molting. dsGFP, the control group; dsHcCht5, the treatment group; and ND,
not detected.

3.4. Differentially Expressed Gene (DEG) Analysis after HcCht5 RNAi

To investigate the effect of HcCht5 RNAi on other genes, RNA-seq analysis was used to
identify genes that were differentially expressed after HcCht5 RNAi. A total of 154,927,972
clean reads were yielded after filtering out the adapter sequences and low-quality reads
(Table S4). The gene expression profile of biological replicates from the same group showed
a high correlation coefficient (Figure S2). According to the results of the transcriptome
assembly, 54,852 unigenes were obtained and annotated to the NR database. Compared
with dsGFP, 65 unigenes were identified as being differentially expressed in dsHcCht5
(log2FC > 1.5, FDR < 0.05), among which 77% were down-regulated and 23% were up
regulated (Figure 4A, Table S5). The heat map shows that the expression levels of DEGs
were significantly different between the dsHcCht5 and dsGFP samples (Figure 4C). To
confirm the differential gene expression, ten DEGs were selected for RT-qPCR validation.
Most of the selected unigenes exhibited the same expression patterns as those observed in
the transcriptome data (Figure S3).
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Of all the DEGs, 68% were annotated genes and 32% were unknown (Figure 4B). We
found that in addition to HcCht5, many other genes related to the chitin metabolism and
molting hormone signal were also down-regulated in the dsHcCht5-treated group, such as
chitin synthase genes (CHS-A and CHS-B) and β-N-acetylglucosaminidase gene (NAG),
key genes in the chitin synthesis pathway; ecdysteroid kinase gene (EcK) and juvenile
hormone esterase gene (JHE), as well as essential genes encoding molting-related hormones
(Figure 4D). These results confirmed the function of HcCht5 in chitin metabolism and the
larval molting process.

Surprisingly, we also found that quite a few down-regulated DEGs were related to
detoxification metabolism, including odorant-degrading enzymes (ODEs), UDP-glycosyl-
transferases (UGTs), cytochrome P450 (CYP450), cytochrome b-561 domain containing
protein (CYB561), and carboxylesterase (CaE) (Figure 4D). Detoxification enzymes have
been reported in relation to virous functions in different insect species and are often
involved in insecticide, xenobiotic degradation, and pheromone metabolism. In the present
study, silencing of HcCht5 led to the down regulation of detoxification-related genes,
suggesting a direct or indirect association of HcCht5 with detoxification metabolism during
molting. To evaluate whether nonspecific dsRNAs have similar effects on immune genes,
we examined all the differentially expressed immunity gene expression in untreated insects.
The results showed that except for the ODE1 and CYB561 genes, the expression levels of all
the other immunity genes in the untreated group were consistent with those of the dsGFP
treatment. This demonstrated that the nonspecific dsRNAs do not have a similar effect on
the expression of immunity-related genes (Figure S4).

4. Discussion

Insect chitinase genes have been widely recognized as attractive targets for the de-
velopment of effective and environmentally safe insect management methods [30]. In the
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present study, we characterized the H. cunea chitinase gene (Accession number: U86877)
and designated it as HcCht5. All insect chitinases belong to the GH18 family and are
classified by specific structural domain organization [31]. Based on the sequence analysis,
the HcCht5 gene encoded a 553-amino acid protein with a signal peptide region, a catalytic
domain (GH18 domain), and a chitin-binding domain (Figure 1A), possessing four con-
served chitinase-catalyzed active sites (Figure 1B). These features were consistent with the
characteristics of group I genes in other insect species [1,11]. Phylogenetic analysis also
clustered HcCht5 to the group I chitinase branch (Figure S1). We therefore concluded that
HcCht5 belonged to the group I chitinase branch.

Group I chitinase (Cht5) is a well-characterized enzyme found in the integument and
molting fluid [1,30]. We detected the expression pattern of HcCht5 in different tissues of
H. cunea larvae by RT-qPCR. The results showed that HcCht5 was highly expressed in the
epidermis, similar to the expression pattern of Cht5 in P. xylostella (PxCht5) [23] and Nilaparvata
lugens (NlCht5) [32], indicating the important role of Cht5 in epidermal metabolism. We also
examined the temporal expression of HcCht5 during the different larval stages of H. cunea. As
shown in Figure 2C, the HcCht5 transcript was only significantly highly expressed during
the molting stage (L4D1 and L4D5), while its expression decreased in the inter-molting
stage, which was consistent with the Northern blot results of HcCht5 (H. cunea chitinase)
by Kim et al. [25] and similar to the expression pattern of Cht5s in L. migratoria (LmCht5-1
and LmCht5-2), P. xylostella (PxCht5), and C. fumiferana (CfChitinase) [6,14,23], suggesting its
important roles in larval molting.

According to previous studies, most research on Cht5s in insects focused on molting;
however, the function of Cht5s in metamorphosis development were slightly different
between insects of different orders. In coleopteran, homopteran, and lepidopteran, Cht5s
have been frequently reported to affect pupal–adult or nymph–adult molting. For example,
in T. castaneum, a pupa-adult lethal phenotype was observed after the injection of dsRNA
for Cht5, but the larva-larva and larva-pupa molts were normal [3]; in P. solenopsis, silencing
PsCht5 also resulted in pupation defects and failure to complete adult eclosion [24]; in S. ex-
igua, injection dsSeCht5 (dsSeChi) at the last instar larvae demonstrated its important role
during the larval-pupal and pupal–adult stages [8]. In the orthopteran insect, L. migratoria,
gene duplication of chitinase 5 (Cht5-1 and Cht5-2) was identified, but only RNAi-mediated
suppression of LmCht5-1 led to severe molting defects and lethality, whereas LmCht5-2 did
not display any visible phenotype [14]. The distinct functions of Cht5s in insects may be
related to the differences in the developmental patterns and tissue-specificity of chitinase
expression. In the present study, the HcCht5 was demonstrated to be of vital importance
in larva-larva molting. The injection of dsHcCht5 on the fifth day of the third larval sta-
dium resulted in an effective RNAi response accompanied by the knockdown of HcCht5
expression and arrested molting (Figure 3, Table 1), suggesting that HcCht5 is absolutely
required for the successful molting process of H. cunea larvae. Chitinase genes belonging
to other chitinase groups have also been linked to different roles in insect development.
The function of other Chts in H. cunea will be assessed in future studies.

Importantly, we found that dsHcCht5 injection at different larval stages resulted in
different RNAi efficiencies. Treatment at the early stage of the fourth instar larvae (L4D1,
L4D2 and L4D3) did not cause any phenotypic changes; however, larvae treated at the
late days of the fourth instar (L4D4 and L4D5) appeared to experience abnormal molting
and mortality (Table 2). In addition, a better RNAi efficiency was detected with injection
at L4D5 compared with at L4D4 (Table 2). In other words, the closer to pre-molting, the
better the RNAi efficiency was. The RNAi efficiency and the resulting phenotypes were
variable in the target insect. These variations are reliant on several critical factors, such
as the target gene transcript abundance, spatial and temporal expression profiles, and the
protein stability and turnover rate of the target gene [33,34]. In H. cunea, we found that
HcCht5 was highly expressed during molting, while its expression decreased by about
40–60 times during inter-molting (Figure 2C), suggesting the function of HcCht5 in the
molting process. When dsRNA injection occurred in L4D1, L4D2, and L4D3, premature
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intervention may have made it difficult to elicit significant RNAi phenotypes several days
later, such as the injection of dsRNA targeting calreticulin and cathespsin-L in Acyrthosiphon
pisum, which caused a decrease in target gene expression by 35–41% 1–5 days after injection,
stopping at 7 days post injection [35]. Our results demonstrated that RNAi-mediated
silencing of HcCht5 inhibited larval molting depending on dsRNA injection time and
provide a reference for the development and application of RNAi-based management of
H. cunea control.

RNA-seq analysis showed that many genes related to chitin metabolism and molting
hormone signaling were also down-regulated after silencing of the HcCht5 gene. DGE
analysis also found that depletion of HcCht5 decreased the expression of many detoxifi-
cation enzyme-related genes (Figure 4D). In general, insect detoxification enzymes are
often involved in insecticide, xenobiotic degradation, pheromone metabolism, or odorant
degradation to maintain the physiological balance within insects [36–39]. In the present
study, genes related to UDP-glycosyltransferases (UGTs) and odorant-degrading enzymes
(ODEs) were down-regulated after HcCht5 RNAi. UGTs catalyze the conjugation of a
range of diverse small lipophilic compounds with sugars to produce glycosides, playing
an important role in the detoxification of xenobiotics and in the regulation of endobiotics
in insects. The expression of insect UGTs has been detected in fat bodies, the midgut, the
Malpighian tubules, and even in the antennae, showing different patterns in their expres-
sion profiles and suggesting that UGT genes might have different functions [36,40]. Studies
have found that many endogenous compounds, such as ecdysteroid hormones and cuticle
tanning precursors, are glycosylated by UGT enzymes [36,41]. Recently, a putative UGT
from Heterorhabditis bacteriophora (Hb-ugt-1) was examined, and its activity was found to
likely involve the inactivation of ecdysone [42]. ODEs belong to olfactory proteins, playing
crucial roles in the responses triggered by external chemical stimuli [43]. Insect ODEs
include multiple enzyme families typically expressed in the sensillar lymph and likely
involved in the fast inactivation of odorants to maintain the sensitivity of the olfactory
system [44]. Few studies have focused on the effect of insect chitinase on detoxification
metabolism, although detoxification enzymes are functionally diversified in insects. How-
ever, detoxification was considered indispensable for ecdysis. During insect molting, the
molting fluid exudes multiple proteins for the recycling of old cuticles, and also produces
a great deal of toxic molecules [45]. Successful ecdysis requires all molting proteins to
work together, including in detoxification [46,47]. Therefore, we speculated that the down
regulation of detoxification-related genes after HcCht5 RNAi might be due to the inability
to molt and the disruption of the insect physiological balance. Further studies are required
to confirm this hypothesis.

5. Conclusions

Overall, we characterized the HcCht5 gene in H. cunea and detailed its gene function in
the larval molting process through RNAi and RNA-seq. Our current findings demonstrated
that the RNAi-mediated silencing of HcCht5 arrested molting and caused larval mortality
depending on the dsRNA injection time. The silencing of HcCht5 down-regulated genes
related to chitin metabolism, molting hormone signaling, and detoxification metabolism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12050406/s1, Table S1: Primer sequences used in this study, Table S2: GenBank
accession numbers for the phylogenetic tree used in this study, Table S3: Expression stability values
of the reference genes for different developmental stages and different tissues, Table S4: Summary
of the RNA sequencing data, Table S5: DEGs between the dsGFP and dsHcCht5 samples, Figure
S1: Phylogenetic tree of chitinases from different insect species, Figure S2: Correlation analysis
of RNA-seq samples, Figure S3: RT-qPCR validation of 10 selected RNA-seq-based DGEs, Figure
S4: The expression levels of the differentially expressed immunity genes in the untreated group,
dsGFP-treated group, and dsHcCht5-treated group.
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