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Epigenetic Study of Cohort of Monozygotic 
Twins With Hypertrophic Cardiomyopathy 
Due to MYBPC3 (Cardiac Myosin-Binding 
Protein C)
Alfonso Peñarroya , MD, MSc*; Rebeca Lorca , MD, PhD*; José Julián Rodríguez Reguero, MD, PhD; 
Juan Gómez, PhD; Pablo Avanzas , MD, PhD; Juan Ramon Tejedor , PhD; Agustín F. Fernandez, PhD; 
Mario F. Fraga , PhD

BACKGROUND: Hypertrophic cardiomyopathy is an autosomal dominant cardiac disease. The mechanisms that determine its 
variable expressivity are poorly understood. Epigenetics could play a crucial role in bridging the gap between genotype and 
phenotype by orchestrating the interplay between the environment and the genome regulation. In this study we aimed to es-
tablish a possible correlation between the peripheral blood DNA methylation patterns and left ventricular hypertrophy severity 
in patients with hypertrophic cardiomyopathy, evaluating the potential impact of lifestyle variables and providing a biological 
context to the observed changes.

METHODS AND RESULTS: Methylation data were obtained from peripheral blood samples (Infinium MethylationEPIC BeadChip 
arrays). We employed multiple pair-matched models to extract genomic positions whose methylation correlates with the 
degree of left ventricular hypertrophy in 3 monozygotic twin pairs carrying the same founder pathogenic variant (MYBPC3 
p.Gly263Ter). This model enables the isolation of the environmental influence, beyond age, on DNA methylation changes by 
removing the genetic background. Our results revealed a more anxious personality among more severely affected individuals. 
We identified 56 differentially methylated positions that exhibited moderate, proportional changes in methylation associated 
with left ventricular hypertrophy. These differentially methylated positions were enriched in regions regulated by repressor 
histone marks and tended to cluster at genes involved in left ventricular hypertrophy development, such as HOXA5, TRPC3, 
UCN3, or PLSCR2, suggesting that changes in peripheral blood may reflect myocardial alterations.

CONCLUSIONS: We present a unique pair-matched model, based on 3 monozygotic twin pairs carrying the same founder path-
ogenic variant and different phenotypes. This study provides further evidence of the pivotal role of epigenetics in hypertrophic 
cardiomyopathy variable expressivity.
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Hypertrophic cardiomyopathy (HCM) is an inherited 
heart condition characterized by a left ventricular 
hypertrophy (LVH) not ascribable to other over-

loading conditions.1–3 HCM is associated with myo-
cardial fibrosis, diastolic dysfunction, and potential 

obstruction of the left ventricular outflow tract. Recent 
research has revealed abnormalities in calcium han-
dling, fibroblast activation, fetal genes dysregulation, 
and impaired protein and energy homeostasis.2,4–6 
HCM follows an autosomal dominant inheritance 
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pattern, with genetic screening recommended for first-
degree relatives of identified pathogenic variant car-
riers due to its penetrance and variable expressivity.1 
Accumulated abnormal protein is thought to increase 
energy expenditure, hampering cardiomyocyte func-
tion and prompting compensatory responses to main-
tain cardiac output, such as myocardial hypertrophy.5,7 
Furthermore, high levels of inflammatory cytokines 
and myocardium lymphoid infiltration promote disease 
progression.8 Approximately half of patients with HCM 
present pathogenic variants at genes encoding heart 
sarcomere proteins, notably MYBPC3 and MYH7, the 
former accounting for most cases with more than 500 
reported pathogenic variants resulting in cMyBP-C 

(cardiac myosin-binding protein C) dysfunction.2,9–11 In 
other cases, the disorder can be attributed to alter-
ations in proteins involved in calcium handling or part 
of the cytoskeleton.2

However, in some patients, genetic testing fails to 
identify pathogenic variants. Genome-wide association 
studies have shown a strong polygenic influence in a 
significant portion of patients with sarcomere-negative 
HCM.12 Modifiable risk factors like hypertension, obe-
sity, or intense physical activity were associated with 
HCM development, suggesting a 2-hit model combin-
ing a genetic predisposition with environmental factors 
that trigger or modify its phenotypic expression.12,13

The lack of a consistent correlation between spe-
cific pathogenic variants and the resulting phenotype 
suggests the involvement of the epigenetic machin-
ery.12,14,15 Epigenetics refers to inheritable changes in 
gene expression that occur without altering the under-
lying DNA sequence. It plays a central role in dynamic 
biological processes such as differentiation or aging 
and integrates environmental stimuli with genomic in-
formation.16–21 It mainly relies on changes in the meth-
ylation state of DNA cytosine nucleotides and various 
histone covalent modifications that together determine 
transcription machinery accessibility and ultimately 
regulate gene expression. DNA cytosine methylation 
tends to occur at symmetrical CpG dinucleotides.22 
Although CpG are typically methylated throughout the 
mammalian genome, clusters of unmethylated CpG 
called CpG islands (CpGI) often congregate at regu-
latory regions of actively transcribed genes and can 
be subject of global or site-specific changes during 
development and disease.22 Functionally, high meth-
ylation rates at both transcription start sites and first 
exon or intron have been strongly linked to gene re-
pression, whereas gene body methylation correlates 
with active transcription.23,24 Although the role of DNA 
methylation in HCM has not been fully explored yet, 
recent studies demonstrated its implication in LVH. 
For instance, myocardial-specific Dnmt1 knockout rat 
models showed an upregulation of pathways involved 
in myocardial protection, whereas samples of patients 
with HCM showed significantly high transcriptional lev-
els of this gene.25

Understanding epigenetic interindividual variability 
plays a key role in unraveling how environmental fac-
tors regulate or trigger the phenotypic expression of a 
given disorder and how they induce the divergence in 
methylation patterns over time, or, alternatively, how a 
disorder may lead to the systemic dysregulation of DNA 
methylation landscape.26,27 In this regard, the use of 
monozygotic twin models, which isolate the epigenetic 
regulation from genetic influences and age differences, 
can provide a valuable insight into the interplay be-
tween DNA methylation, environmental factors and the 
variable phenotypic course of HCM.28,29 In this study, 

CLINICAL PERSPECTIVE

What Is New?
•	 We evaluated a cohort of monozygotic twins, 

carriers of the same founder pathogenic 
MYBPC3 variant but with different hypertrophic 
cardiomyopathy phenotype expression, and 
provided a unique model to isolate the environ-
mental influence articulated by epigenetics from 
the genetic background.

•	 The epigenetic imprint of hypertrophic car-
diomyopathy could be recapitulated in blood 
samples.

•	 We found that different environmental factors, 
such as lifestyle or a more anxious personality, 
could be related with more severe left ventricu-
lar hypertrophy via epigenic changes found in 
highly relevant genes for left ventricular hyper-
trophy, heart function, and stress.

What Are the Clinical Implications?
•	 Further studies to evaluate the epigenic-

influence on hypertrophic cardiomyopathy ex-
pression are encouraged.

•	 Lifestyle changes or stress-targeted treatments 
may help to avoid the epigenetic negative adap-
tative alterations found in this cohort.

Nonstandard Abbreviations and Acronyms

CpGI	 CpG islands
DMP	 differentially methylated positions
HCM	 hypertrophic cardiomyopathy
HOXA5	 homeobox A5
MYBPC3	 myosin-binding protein C, cardiac type
TRPC3	 transient receptor potential cation 

channel, subfamily C, member 3
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we integrated clinical variables with blood methylation 
profiles of a cohort of 3 pairs of monozygotic twins car-
rying the nonsense pathogenic variant p.Gly263Ter at 
MYBPC3 to study their distinct LVH (Figure 1).

METHODS
The data that support the findings of this study are 
available from the corresponding author upon reason-
able request.

Study Population
The study included 3 pairs1–3 of monozygotic twins, 
consisting of a severely affected individual with HCM 
(P) and a mildly affected one (C) (Table). They were 
all carriers of NM_000256.3 (MYBPC3): c.787G>T 
(p.Gly263Ter) variant, a founder pathogenic variant in 
our region.30 PowerPlex 16 HS System kit was used 
to confirm the genetic concordance of each twin pair, 
as reported elsewhere.15 Moreover, pairs 1 and 2 were 
related by an aunt–nephew relationship, with demon-
strated identical mitochondrial DNA.15

Data Acquisition
The study protocol was approved by the Local Ethical 
Committee and all participants signed the informed 
consent (2022.350). Clinical, demographic, and gen-
eral lifestyle data were collected and anonymized by 
the Cardiology Department of the Hospital Universitario 
Central de Asturias.15 Additional retrospective life-
style variables were collected following the validated 
FANTASTIC questionnaire.31,32 Cell type composition 
was predicted from DNA methylation data using the 
Houseman algorithm implemented in the EpiDISH 
package (v.2.14.1).33 Statistical comparisons were per-
formed with the nonparametric tests for paired sam-
ples using the statistical software R (v.4.2.2).

DNA Methylation Data Acquisition and 
Preprocessing
Genomic DNA methylation profiling of white blood 
fractions was performed with Illumina Infinium 
Human MethyationEPIC v2.0 BeadChip platform 
after bisulfite conversion following the EZ-96 DNA 
Methylation Kit conversion protocol (Zymo Research). 
All MethylationEPIC BeadChip data analyses were 
performed using the statistical software R (v.4.2.2). 
First, IDAT files were processed with the minfi package 
(v.1.44.0).34 Self-reported sex and twin pair-belonging 
were validated from sex chromosome and single-
nucleotide variant probes using the getSex and getSn-
pBeta functions from minfi. Probes were filtered out 
if (1) detection P value was >0.01 in any sample; (2) 
they were located in sex chromosomes; (3) they were 

cross-reactive or multimapping35,36; and (4) they in-
cluded single-nucleotide variants with minor allele fre-
quency ≥0.01 at their CpG or single base extension sites 
(dbSNP v.147). The intensity values from the 774 772 
remaining probes were then subjected to background 
correction with minfi ssNOOB algorithm (offset=15, 
dyeCorr=TRUE and dyeMethod=“single”) and result-
ing β-values were normalized using the BMIQ method 
from R/Bioconductor package ChAMP (v2.28.0).37,38 
M-values were obtained by the logit transformation of 
the normalized β-values with the beta2m function from 
R/Bioconductor package lumi (v2.30.0) and were used 
for statistical purposes assuming homoscedasticity.39 
A surrogate variable analysis was performed to ac-
count for possible batch effects or confounding vari-
ables using the sva package.40

Differential Methylation Analysis
Linear mixed models were built using the limma pack-
age (v3.54.2) to detect differentially methylated posi-
tions (DMP) fitting M-values (dependent variable) and 
LVH in mm (independent variable). All models were 
pair matched and included neutrophil proportion as 
confounder to avoid cell type composition bias. DMP 
were defined by contrasting coefficients using an 
empirical Bayes-moderated t test and keeping those 
with |logFC|>0.20 (biological filtering) and an adjusted 
P<0.05 (statistical filtering). P values were corrected for 
multiple testing using the Benjamini–-Hochberg method 
for controlling the false discovery rate. Additionally, we 
defined biological DMP (bDMP) as the subset of posi-
tions resulting from applying only the biological filtering 
(|logFC|>0.20). The methylation profiles of 18 known 
HCM-causal genes (MYBPC3, MYL2, MYL3, ALPK3, 
TNNT2, TNNI3, TNNC1, TPM1, ACTC1, PLN, FLNC, 
MYH7, JPH2, ACTN2, CSRP3, FHOD3, TRIM63, 
KLHL24) were examined.2,6 Corrected β-values were 
used for graphical purposes and expressed in terms of 
adjusted methylation (arbitrary units) after removing the 
effect of model confounders.

Enrichment Analysis
The IlluminaHumanMethylationEPICanno.ilm10b4.hg19 
package (v0.6.0) was used to assign each probe to its 
CpGI and gene location status. A single annotation was 
assigned to each region according to the following cri-
teria (1) for CpGI status, Island>Shore>Shelf>OpenSea; 
and (2) for gene locations, 1stExon>Transcription start 
site (TSS)200>TSS1500>ExonBoundary>5′ untrans-
lated region (UTR)>3’UTR>Body>Intergenic. TSS200 
and TSS1500 were then grouped together as promoter 
and exon boundaries included into gene bodies.

A biological contextualization of bDMP was per-
formed using R/Bioconductor MissMethyl package, 
as well as the Gene Ontology database.41,42 Chromatin 
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enrichment analyses were performed with the R/
Bioconductor package LOLA (v1.8.0).43 bDMP en-
richments in 6 histone marks (H3K4me1, H3K4me3, 

H3K27me3, H3K36me3, H3K9me3, and H3K27ac) 
were calculated using chromatin immunoprecipitation 
followed by sequencing tracks from different stem cell 
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and tissue epigenomes obtained from the Encyclopedia 
of DNA Elements and the National Institutes of Health 
Roadmap Epigenome Consortia.44,45 Chromatin state 
data from these same samples were obtained from the 
National Institutes of Health Roadmap’s ChromHMM 
expanded 18-state model (obtained from http://​egg2.​
wustl.​edu/​roadm​ap/​). For the different comparisons, 
appropriate background including all filtered CpG 
probes interrogated by the MethylationEPIC BeadChip 
platform was used to calculate statistical significance. 
Odds ratio (OR) enrichment and statistical significance 
were calculated by means of 2-sided Fisher’s tests in 
all analysis.

RESULTS
Exploratory Analysis
Initially, an exploratory analysis was conducted on clin-
ical and lifestyle variables (Figure 2A). We observed a 
discrete drop in the estimated neutrophil proportions 
at the expense of the other leukocyte populations in 
severely affected twins (P=0.02). Overall, no statisti-
cal correlation between LVH and variables such as 
body mass index, tobacco and alcohol consumption, 
or years of intense physical activity was observed. 
However, severely affected twins showed a higher 
number of years working shifts (P=0.10) and a lower 
total FANTASTIC lifestyle assessment score (P=0.05) 
compared with their siblings. Accordingly, examining 
FANTASTIC questionnaire results across the explored 
dimensions, a general trend for severely affected twins 
to score lower was shown, representing a poorer life-
style (Figure 2B), which could be statistically supported 
at stress (P=0.04) or toxic substance consumption 
(P=0.01) dimensions. Furthermore, these patients con-
sistently reported in an open-ended question a worse 
tolerance to stressful situations and more anxious per-
sonalities compared with their siblings.

Regarding global methylation, we observed the ex-
pected bimodal distribution, with most probes show-
ing a similar methylation fraction across cell types 
(gathering around 1 or 0 values) (Figure  3A). To get 
an overview of the degree of similarity regarding the 
DNA methylation profiles among individuals, a prin-
cipal component analysis was performed using the 
total number of screened CpG. This nonsupervised 
analysis simplifies the complexity of multidimensional 
sample spaces into distinct principal components (PC) 

capable of explaining decreasing percentages of inter-
sample variability. Most of the interindividual variability 
was contained in PC1 and PC2, together explaining 
approximately 85% of data divergence (Figure  3B). 
These PC clearly identified the 3 twin pairs, showing 
that the genetic background is the most relevant factor 
determining epigenetic differences between them. In 
addition, we found a striking proximity of pair 2 sib-
lings when compared with pairs 1 and 3, which also 
reflects their less divergent phenotype. PC3 and PC5 
were able to distinguish mildly from severely affected 
individuals but explained a much lower degree of in-
tersample variability, indicating that the epigenetic dif-
ferences underlying distinct LVH are of a much smaller 
magnitude (Figure 3C). This PC space preserves the 
relationship between cotwins, either in one or the other 
principal component.

Because methylation measurements (1) translate 
the mean value of the studied complex sample and 
methylation profiles differ between cell types, and (2) 
are mainly influenced by the genetic background as 
shown in Figure 3B, they were corrected considering 
a pair-matched model (removes genetic background) 
that includes neutrophil proportions (as estimated by 
Houseman deconvolution) as covariate to reduce bulk 
tissue heterogenicity. The relevance of these variables 
in the methylation profiles could be further supported 
through their correlation with the calculated surrogate 
variables that explain the variability in the methylation 
profiles not related to LVH (Figure 3D).

Analysis of Differentially Methylated 
Positions
Our patient set exhibited a continuous phenotype (LVH) 
spectrum (Figure 4A), prompting us to stratify methyla-
tion profiles based on their ventricular thicknesses and 
not to their affection (severely versus mildly); in other 
words, if methylation changes would reflect HCM ex-
pressivity, we would expect their intensity to propor-
tionally vary with the increasing LVH. Therefore, DMP 
were extracted using pair-matched models that in-
cluded LVH as independent variable and the estimated 
neutrophil proportion as confounder (Figure 4B). A total 
of 2486 bDMP were obtained, 1718 hypo- and 768 hy-
permethylated. Of them, 38 hypo- and 18 hypermeth-
ylated corresponded to DMP that showed an adjusted 
P value <0.05 (Figure 4C). Extracted DMP were suffi-
cient to stratify our patients in an unsupervised analysis 

Figure 1.  Graphical description of the cohort, design, and results.
The upper section shows the model used, consisting of 3 pairs of monozygotic twins carrying the same pathogenic variant in MYBPC3 
but with differential expression of the LVH phenotype quantified in mm. The middle part shows the aim of comparing homozygotic, 
allowing a nongenetically biased study of the environmental influence on phenotypic expression through epigenetic changes. In the 
lower part, the results of clinical analysis and methylation profiling, showing differentially methylated genes, affected functions, and 
relevant health determinants in the development of pathology. BMI indicates body mass index; HCM, hypertrophic cardiomyopathy; 
LVH, left ventricular hypertrophy; MYBPC3, myosin-binding protein C, cardiac type; and SNV, single-nucleotide variant.

http://egg2.wustl.edu/roadmap/
http://egg2.wustl.edu/roadmap/
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according to their corresponding phenotypic expres-
sion, showing 2 main probe populations consisting 
of either hypo- or hypermethylated CpG (Figure  4D). 
Hypomethylated DMP were enriched at CpGI shores 
(P<0.001) and first exons (P<0.05), hypermethylated 
ones at intergenic regions (P<0.05) (Figure 4E).

To validate the consistency of the relation between 
the observed changes and the HCM phenotype, we 
included a cohort of 10 external peripheral blood 
samples from healthy donors not affected by HCM 
(GSE42861). The set of 56 DMP remained effective 
in accurately stratifying individuals after their pheno-
type on a principal component analysis (Figure  4F). 
Validation cohort DMP corrected methylation profiles 

were similar to those of mildly affected twins, thereby 
supporting the association of the observed changes 
with LVH development (Figure 4G).

Then, the adjusted methylation of CpG located 
within or in the vicinity (±1000 bp) of genes of known in-
volvement in HCM was explored. MYBPC3 presented 
no statistically significant changes (Figure 5A). Among 
all 18 known causal genes, only JPH2 presented a sin-
gle bDMP (Figure 5B), and no DMP were found.

The extracted DMP often clustered in regions with 
other CpG exhibiting similar changes, affecting genes 
encoding (1) the cell growth regulator TNK1 (tyrosine ki-
nase nonreceptor 1; Figure 5C); (2) Ca2+ voltage-gated 
channel subunits, such as CACNA1 and CACNG2, or 

Table.  Clinical and Lifestyle Data

Age, y
Phenotype 
severity

Twin 
pair Sex LVH, mm

Shift work 
years

Pack 
years

FANTASTIC test 
total BMI

C1 89 Mild 1 F 12-13 0 0 118 26.7

P1 89 Severe 1 F 29 0 0 92 23.1

C2 47 Mild 2 M 13 1 31.25 91 27.7

P2 47 Severe 2 M 18 4 26 64 28.5

C3 49 Mild 3 M 15 0 0 99 21.7

P3 49 Severe 3 M 22 17 0 93 22.12

BMI indicates body mass index; and LVH, left ventricular hypertrophy.

Figure 2.  Exploratory analysis of clinical and lifestyle data.
A, Exploratory correlations between all sampled clinical and lifestyle variables against their corresponding LVH (mm). B, Radar plot 
with the FANTASTIC lifestyle test median scores for mildly and severely affected twins across assessed dimensions. BMI indicates 
body mass index; LVH, left ventricular hypertrophy; and UBE, standard drink of alcohol consumption.
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TRPC3 (Figure 5D), a Ca2+ sensing channel; (3) tran-
scriptional regulators such as EGR2 (early growth 
response protein 2; Figure  5E), or HOX (homeobox) 
factors A3, A5 (Figure 5F) and A6; (4) surface adhesion 
molecules such as the PLSCR2 (phospholipid scram-
blase 2; Figure 5G) or multiple members coded by the 
protocadherin gene cluster, such as PCDHGB1 (pro-
tocadherin gamma), PCDHB1/5/14, or PCDHGA1/2/3; 
and (5) the PiggyBac transposase coded by PGBD5 
(Figure  5H), drug allergy-related proline rich protein 
PRR23B, or UCN3 (urocortin 3; Figure 5I), which be-
longs to the corticotropin-releasing family. These 
changes, although of moderate intensity, tended to 
collocate with elements of known regulatory function, 
such as CpGI or gene promoters.

DMP Enrichment Analysis
To assess cell functions affected by epigenetic 
changes that reflect the LVH phenotype and due to 
the low number of statistically significant DMP, the en-
richment analysis was performed on the set of 2486 
bDMP. Gene ontologies were used to estimate af-
fected biological functions (Figure 6A). With high statis-
tical significance and large gene ratios (percentage of 
genes affected in relation to the total number of genes 

related to a given biological function), gene ontologies 
showed enrichment (especially regarding hypometh-
ylated bDMP) in genes involved in cell-to-cell contact 
and communication, either through homophilic surface 
adhesion molecules like protocadherins or through re-
ceptors and membrane ion transport channels.

Using chromatin immunoprecipitation followed by 
sequencing data of 6 histone marks across different cell 
cultures and tissues obtained from the Encyclopedia 
of DNA Elements and the National Institutes of Health 
Roadmap Epigenome Consortia, we looked for bDMP 
enrichments in genomic regions associated with spe-
cific histone modifications (Figure 6B). Regarding both 
hyper- and hypomethylation, the explored positions 
showed an up to 6-fold enrichment in DNA areas 
marked by H3K9me3, related to pericentromeric het-
erochromatin and necessary to the maintenance of 
genomic stability, and by H3K27me3, associated with 
inactive gene promoters. Based in the histone code 
theory, these findings could be ascribed to various 
chromatin states with different biological implications 
(Figure  6C). Both hypo- and hypermethylated bDMP 
showed a clear enrichment in states associated with 
ZNF (zinc finger proteins) repeats, gene clusters highly 
enriched in sequences encoding structurally similar 
ZNF family proteins frequently containing DNA-binding 

Figure 3.  Exploratory analysis of DNA methylation data.
A, Violin plots depicting 5-methylcytosine distribution at screened probes. B, PCA for the 774 772 CpG sites across all samples 
included in the DNA methylation study. PC1-PC2 combination segregate epigenetic data after their genetic background; C, 
Same, but segregating data after their HCM phenotype at PC3-PC5 space. D, Pearson correlations between surrogate variables 
explaining epigenetic variability not ascribable to LVH differences and other collected variables. BMI indicates body mass index; 
HCM, hypertrophic cardiomyopathy; LVH, left ventricular hypertrophy; NK, natural killer; PC, principal component; PCA, principal 
component analysis; and SV, surrogate variable.
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domains. Hypermethylated bDMP were enriched in 
chromatin states controlled by polycomb repressors.

DISCUSSION
Environmental Exposition Triggers 
Methylation Pattern Divergence
The unstable phenotypic expression of HCM-related 
variants has been proposed to be governed by the en-
vironment–epigenetic interplay.15 The strength of this 
work relies on the possibility of isolating the environ-
mental influence on epigenetic patterns by studying 
a cohort of monozygotic twins, carriers of the same 
founder pathogenic variant, representing a unique 
model of controlled genetic background, as already 
shown by other authors.21,46–49 More severely affected 

twins showed evidence of an overall worse lifestyle 
and a predisposition to modify their DNA methyla-
tion patterns at genes related to intercellular interac-
tions and calcium handling, processes heavily involved 
in the mechanism of cardiac contraction.2,4–6,12 DMP 
clustered within genomic elements involved in gene 
expression regulation, such as CpGI or first exon hy-
pomethylation, a functional pattern closely associated 
with active gene transcription.23

Our data suggest that twin pairs with a greater clini-
cal disparity, like twin pair 1, exhibit a more pronounced 
divergence in their methylation patterns. This could be 
explained by normal aging, this pair being 89 years 
old and, consequently, implying a longer exposure 
time to the environmental influences driving epigene-
tic drift. The divergences found in cotwins are subtle 
but must be considered in the context of an identical 

Figure 4.  DMP analysis, contextualization, and validation.
A, LVH (mm) of all 6 individuals. B, Example of hypo- and hypermethylated DMP. DNA methylation was corrected by twin pair 
belonging and neutrophil proportion. C, Total number of hyper- and hypomethylated DMP (P<0.05). D, Heatmap generated using 
the 56 DMP. The methylation values have been normalized to the range 0 to 1 for each probe. The top bars show the phenotypic 
annotations, with a correct stratification of patients after their phenotype. E, Stacked barplots displaying the relative frequency 
of hyper- or hypomethylated DMP in relation to their CpGI (left) or gene (right) context. The background distribution of the array is 
included for interpretation purposes. F, PCA based on the methylation profiles of the 56 DMP from all 6 twins and an external cohort 
of 10 peripheral blood samples from healthy donors. G, Examples of 2 DMP in both twins and external healthy validation cohort. 
CpGI indicates CpG islands; DMP, differentially methylated positions; HCM, hypertrophic cardiomyopathy; LVH, left ventricular 
hypertrophy; PC, principal component; and PCA, principal component analysis.
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Figure 5.  Gene candidates.
A, Adjusted methylation profiles at MYBPC3. Color code represents individual’s phenotype. The genomic context of 
each CpG is expressed in the bars below according to their relationship with gene structure and local CpG density. 
B, bDMP at JPH2. C through I, Candidate gene adjusted methylation profiles. bDMP indicates biological differentially 
methylated positions; CpGI, CpG islands; and LVH, left ventricular hypertrophy.
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genetic background and a very similar environment 
and lifestyle.15,21,28,46,47

Candidate Genes and Their Potential Role 
in LVH
One key finding is that the extracted DMP were located 
at genes with known or feasible biological implication 

LVH development. This indicates, on the one hand, that 
the epigenetic machinery is indeed behind the con-
nection between genotype and HCM phenotype, and 
on the other, that we might be able to recapitulate epi-
genetic changes associated with cardiac pathology at 
a systemic level, as functional epigenetic biomarkers.

To infer the influence of our findings, we have to 
resort to the typical behavior of DNA methylation.24,50 

Figure 6.  Enrichment analysis.
A, GO enrichment analysis of extracted bDMP at different annotated biological processes, cellular components, and molecular 
functions. Statistical signification is represented using different dot sizes, and the percentage of affected genes per category is 
represented by the gene ratio. B, Heatmap illustrating histone mark enrichment analyses of hyper- and hypomethylated bDMP. Color 
scales represent the odds ratio obtained across 6 common histone modifications from the NIH Roadmap Epigenome consortium as 
compared with the background distribution of the used platform. The legend indicates the biological origin of the used references for 
these comparisons. C, Same as (B) but displaying chromatin state enrichment analysis across 18 chromatin states obtained from the 
NIH Roadmap Epigenome consortium. bDMP indicates biological differentially methylated positions; DMP, differentially methylated 
positions; GO, Gene Ontology; HUVEC, human umbilical vein endothelial cell; NIH, National Institutes of Health; and NK, natural killer.
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The binding of transcription factors onto regulatory el-
ements, especially promoters containing CpGI, usually 
prevents maintenance DNA methyltransferases from 
methylating their CpG, whereas active gene bodies, al-
ready unfolded and accessible to the transcription ma-
chinery, are good targets for methyltransferases and 
tend to show higher methylcytosine levels.24 Under 
these premises, we could estimate that, in more se-
verely affected patients with HCM, genes that may pre-
vent LVH could be downregulated, whereas pro-LVH 
genes could result upregulated.

For instance, we observed a marked CpGI hyper-
methylation at 2 genes widely related to LVH: PLSCR2 
and TNK1, translating a potential transcriptional repres-
sion. PLSCR2 encodes a member of the phospholipid 
scramblase family, proteins that mediate calcium-
dependent, nonspecific movement of membrane 
phospholipids and phosphatidylserine exposure.51 It 
interacts with VCP (valosin-containing protein), a pro-
tein with cardioprotective properties against overload-
related cardiac hypertrophy, so its epigenetic silencing 
could contribute to LVH.51 TNK1 is a negative reg-
ulator of the Ras-MAPK cascade,52 a pathway that 
has proven responsible of LVH development in HCM 
mouse models.53 Thus, its repression could explain the 
development of the phenotype in most affected twins.

On the contrary, other genes such as HOXA5, 
TRPC3, or UCN3, presented hypomethylated DMP 
at their regulatory elements, potentially resulting in 
their upregulation. A CpGI at HOXA5 promoter region 
known to be bound by this transcription factor itself54 
showed extensive hypomethylation. Gene upregu-
lation could lead to its own hypomethylation due to 
the steric hindrance of the maintenance methyltrans-
ferases at its binding site. HOXA5 involvement in the 
development of HCM has been largely explored.54–56 
It controls NEXN expression, a gene coding a Z-disc 
protein involved in LVH.57 Zhang et  al. demonstrated 
the prohypertrophic role of HOXA5 in murine models: 
cardiac-specific accumulation of HINT1, a suppressor 
of HOXA5, showed a cardioprotective effect that allevi-
ates LVH.58 Furthermore, HOXA5 knockdown models 
impaired the cardioprotective effect of HINT1 overex-
pression.58 Under normal conditions, HOXA5 should 
not be transcribed in myocardial tissue or peripheral 
blood. Its expression has been shown to be repressed 
by promoter hypermethylation or through binding of 
miRNA-196a to the 3’UTR of its transcript.54 As stated, 
our data showed the hypomethylation of the CpGI that 
governs its expression in severely affected patients 
with HCM, which suggests a transcriptional activation 
of this prohypertrophic factor. Besides, HOXA5 is part 
of the fibroblast differentiation cluster based on single-
cell gene expression databases, so its upregulation 
could be related to the increased interstitial fibrosis ob-
served in HCM as well.59

Similarly, TRPC3 promoter CpGI hypomethylation 
could represent its upregulation. TRPC3 encodes a 
short transient receptor potential channel that regu-
lates reactive oxygen species production and intra-
cellular Ca2+ homeostasis and that has been shown 
to be involved in cell growth, proliferation, and patho-
logical hypertrophy.60,61 Its prohypertrophic action has 
been demonstrated experimentally in different scenar-
ios.60–62 Combined blockade of TRPC3 and TRPC6 by 
selective small-molecules or genetic deletion inhibited 
pathological cardiac hypertrophy pathways in cardio-
myocytes.62 It has been shown to be responsible for 
basal Ca2+ levels and its activity leads to cell depolar-
ization, affecting both the cardiac rhythm and neurohu-
moral regulation.60,63,64 Not only that, this protein also 
promotes interstitial fibrosis by amplifying mechanical 
stress-induced reactive oxygen species signaling, 
eventually affecting all hallmarks of heart failure.60,65 
Additionally, MYBPC3 is essential to constrain the 
myosin-actine cross bridging to sustain normal ejection 
in a Ca2+-dependent fashion, so its deficiency results 
in an increased contractility, which sustains the patho-
physiology of LVH in patients with HCM.66,67 This is fur-
ther promoted by the additional repression of TRPC3, 
because it promotes cardiomyocyte depolarization.63

Another very interesting finding was the hypometh-
ylation of both the promoter and the first exon of 
UCN3, a less-known paralog of UCN2 and UCN1.68,69 
UCN proteins are peptides associated with stress re-
sponse that belong to the corticotropin releasing fac-
tor family.69 UCN isoforms present an inotropic effect 
on myocardium and have been shown to improve 
cardioprotection after ischemia by preventing cardiac 
remodeling and maintaining Ca2+ homeostasis.68,70 
The mechanism of action of these promising candi-
dates is still poorly understood, although it appears to 
be mediated by miRNA.68,71 Together with their role in 
the development of the pathology, the more anxious 
temperament of the most affected twin of each pair, 
suggests a possible involvement of stress-related UCN 
proteins in LVH.

Central therapies with proven benefit in heart failure 
have largely focused on preventing the maladaptive 
neurohormonal systemic response.51,65 Main therapies 
address the increased circulating levels of substances, 
like adrenaline or noradrenaline, and try to inhibit the 
maladaptive response, including sinus tachycardia, 
which further increases the myocardial oxygen de-
mand and impairs myocardial perfusion.65 The only 
lifestyle significant differences identified among cot-
wins were, in fact, stress related, the twin with the most 
severe LVH being the one who not only presented a 
poorer lifestyle but also a more anxious personality. In 
this regard, the identification of differential methylation 
at stress-related genes is extremely interesting pro-
vided the context of the clinical findings. This makes 
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us wonder whether this would be a possible preventive 
strategy to be addressed in future investigations.

Heart failure therapies address various cardiomyo-
cyte impaired mechanisms, including contractility de-
fects related to Ca2+ handling, disbalanced metabolism 
from β-oxidation to glycolysis, and reactive oxygen 
species overproduction.65 Our study identified signifi-
cant DNA methylation changes at genes related to all 
these functions, especially Ca2+ handling, so targeting 
these epigenetic alterations could potentially prevent 
or delay LVH progression.

As for the EGR2 and PGBD5 genes, it is difficult 
to make possible functional associations through hy-
pomethylation of a CpGI in their gene body. However, 
we do know that EGR2 binds to several points of the 
HOXA cluster, altering the expression of the profibrotic 
factor HOXA4.72 Its repression is mediated by miR-150 
and attenuates maladaptive myocardial remodeling.72

As mentioned, we also found strong changes at the 
protocadherin gene cluster, as also revealed by gene 
ontologies. Protocadherins are homophilic surface ad-
hesion molecules involved in cell-to-cell junctions and 
cytoplasmic signal transduction.73 They are well de-
scribed to be expressed in a combinatorial fashion to 
specify neuronal identity for coding synaptic connec-
tivity and to gather stochastic methylation in developing 
neurons.29 Their role in the development of congenital 
heart defects has recently been reported and they ap-
pear to be neatly regulated throughout the cardiovas-
cular system.73 We found up to 28 bDMP in the cluster 
associated with PCDHGA3, mainly within its first exon 
and promoter by hypermethylation. This protein has 
been shown to be part of the intercalated disks, essen-
tial for the contractile and coordinated function of the 
myocardium.74 Changes in PCDHGA3 were strongly 
associated with a fall in stroke volume and ventricular 
dysfunction: the higher its expression, the greater left 
ventricular end-systolic diameter.74 Planterose-Jiménez 
et al. also found protocadherin loci to accumulate DNA 
methylation variability between monozygotic cotwins 
in an universal epigenetic interindividual dissimilarity.29 
They also found that almost half of the affected CpG in 
peripheral blood were also affected in adipose tissue, 
consistent with the idea of capturing tissue-specific 
shifts at the systemic level.29 The nature of the many 
protocadherins as individual epigenetic fingerprints 
and the fact that they accumulate—as demonstrated 
both in our work and in previous literature—methylation 
alterations suggest their role in the interplay between 
environment and phenotype.

In summary, our results show, on the one hand, that 
the gradual LVH corresponds to proportional modifi-
cations on DNA methylation levels affecting regions 
involved in the development of the pathology, and, on 
the other hand, that the imprint of HCM could be reca-
pitulated in blood samples.

The Potential Role of Other Actors
Environmental stimuli are also able to articulate phe-
notypic variation through changes in other epigenomic 
layers, for instance affecting regions controlled by par-
ticular histone marks.26,75,76 In our case, the tendency 
for selective hypo- and hypermethylation of areas 
regulated by the repressor marks H3K27me3 and 
H3K9me3 may indicate the upregulation of otherwise 
silenced genes in relation to the development of LVH. 
The involvement of H3K9me3 in LVH has already been 
described: its suppression contributes to ventricular 
mass growth in murine models through activation of 
FHL1, a key molecule in the development of HCM.26 
Furthermore, another study supported its role in LVH 
by demonstrating that fluid overload led in ventricular 
tissue to H3K9me3 depletion NPPA and NPPB promot-
ers, 2 hallmark genes for LV maladaptive remodeling.26

Study Limitations
There are also some technical limitations that pre-
vented us from investigating causal relationships for 
the varying expressivity of the studied mutation, lo-
cated at MYBPC3. These include sample size, which 
likely limited the power to detect more subtle altera-
tions; cellular heterogeneity; the bulk view provided by 
the array that yields average methylation of the 3 alleles 
of multiple cell types; and, most important, the fact of 
using peripheral blood samples to target a myocardial-
related pathology.

Although the external validation supports the re-
lation between obtained DMP and the studied phe-
notype, we cannot know if DMP are present in their 
myocardium counterparts and underpin the cause of 
HCM expressivity, or whether they are a systemic con-
sequence of an increased LVH. However, phenotypic 
differences are proportionally reflected in the periph-
eral blood methylation patterns. The fact that MYBPC3 
and other HCM causal genes are not expressed in pe-
ripheral blood may explain why no changes could be 
observed in their methylation patterns, as this epigen-
etic mark has a known functionality and is not usually 
subject to regulation at inactive regions.24 We cannot 
discard the presence of differential methylation or im-
printing phenomena at these genes within cardiomyo-
cytes and further studies are needed to shed light on 
this matter.

These facts do not undermine the value of our find-
ings, which are able to demonstrate systemic changes 
in DNA methylation at various positions along with the 
increased severity of HCM. Project follow-ups should 
focus on the obtention of samples of paired cardiac tis-
sue, the validation of our findings in an external cohort 
of patients carrying the studied mutation, the perfor-
mance of allele-specific analysis of MYBPC3, and even 
the integration of methylation data with expression 
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profiles to look for further functionality in the target 
tissue.

CONCLUSIONS
We present a unique pair-matched model, based on 
3 monozygotic twin pairs carrying the same founder 
pathogenic variant (MYBPC3 p.Gly263Ter) and differ-
ent phenotypes. Thanks to the possibility to remove 
the genetic background we were to isolate the envi-
ronmental influence, beyond age, on DNA methylation 
changes. The epigenetic imprint of HCM could be re-
capitulated in blood samples.

We found that different environmental factors, 
such as lifestyle or a more anxious personality, could 
promote the development of a more severe LVH. 
Moreover, we found a moderate number of epigenetic 
changes correlating with phenotype severity that were 
located in highly relevant genes for LVH, heart function, 
and stress.
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