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The intima-media thickness (IMT) of the common carotid artery (CCA) is widely used as an early indicator of cardiovascular
disease (CVD). Typically, the IMT grows with age and this is used as a sign of increased risk of CVD. Beyond thickness, there is
also clinical interest in identifying how the composition and texture of the intima-media complex (IMC) changed and how these
textural changes grow into atherosclerotic plaques that can cause stroke. Clearly though texture analysis of ultrasound images can
be greatly affected by speckle noise, our goal here is to develop effective despeckle noise methods that can recover image texture
associated with increased rates of atherosclerosis disease. In this study, we perform a comparative evaluation of several despeckle
filtering methods, on 100 ultrasound images of the CCA, based on the extracted multiscale Amplitude-Modulation Frequency-
Modulation (AM-FM) texture features and visual image quality assessment by two clinical experts. Texture features were extracted
from the automatically segmented IMC for three different age groups. The despeckle filters hybrid median and the homogeneous
mask area filter showed the best performance by improving the class separation between the three age groups and also yielded
significantly improved image quality.

1. Introduction

TheWorld Health Organization ranks cardiovascular disease
(CVD: coronary artery disease, cerebrovascular disease, and
peripheral artery disease) as the third leading cause of death
and adult disability in the industrial world [1]. In the United
Sates alone, more than 76 million American adults have one
or more types of CVD, of whom about half are estimated to
be age 65 or older. It is estimated that by 2015, there will be
20 million deaths due to atherosclerosis that will be associ-
ated with coronary heart disease and stroke. Atherosclerosis
causes enlargement of the arteries and thickening of the

artery walls. It begins early in life and silently progresses until
clinical events appear.

The intima-media thickness (IMT) is used as a validated
measure for the assessment of atherosclerosis [2, 3] (see
Figure 1). We present in Figure 1 anatomical locations of
the common carotid artery (CCA) ultrasound image for
atherosclerosis indicating the location of the intima-media
complex (IMC) at the far wall. The extracted IMC is shown
in Figure 1 and has been extracted using an automated
snake segmentation algorithm as described in [4]. In [4], we
showed that automated IMT, media-layer thickness (MLT),
and intima-layer thickness (ILT) measurements could be
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Figure 1: Anatomical locations of the common carotid artery ultrasound image components at the far wall. The IMT is defined as the layer
(band) which is comprised by the bands Z5 and Z6 as demonstrated in (a). The intima-media-complex (IMC) in (b) has been extracted
using automated segmentation as described in [4, 24], where the IMTaver = 079mm (between the bands Z5 and Z6, middle bar), IMTmax =
0.8367mm (left bar), IMTmin = 0.6356mm (right bar) and IMTmedian = 0.75mm).

carried out successfully. It was furthermore proposed that the
IMT, its thickness [2, 4], and its textural characteristics [4, 5]
may be associated with the risk of developing stroke.

Speckle, a form of locally correlated multiplicative noise,
corrupts medical ultrasound imaging making visual obser-
vation difficult [6, 7]. Clearly though, excessive despeckling
may result in the loss of image structure.Unfortunately, image
structure is hard to assess, and this is especially difficult for
noisy ultrasound images.

We are interested in characterizing image structure using
a multiscale Amplitude-Modulation Frequency-Modulation
(AM-FM) texture analysis system as described in [8], and
by the independent visual assessment of clinical experts who
are asked to judge the quality of the despeckled images.
Multiscale AM-FM models represent nonstationary image
content using spatially-varying amplitude and phase com-
ponents. We use the term instantaneous amplitude (IA) to
describe spatially-varying amplitude components. Similarly,
we use the term of instantaneous frequency (IF) to describe
spatially-varying frequency content. AM-FM components
are estimated using a multiscale filterbank that is tuned to
different frequency bands. Thus, we use the term multiscale
AM-FM analysis to summarize the analysis. The promise of
AM-FM methods for texture analysis can be summarized in
(see [9]) as follows: (i) they provide physically meaningful
texture features (e.g., instantaneous frequency in cycles per
mm), over multiple scales, at pixel level resolution, (ii)
textures can be reconstructed from AM-FM components so
that we can visualize content, (iii) we can extract AM-FM
decompositions for different frequency coverage, and (iv) we
have the recent development of robust methods for AM-FM
demodulation (see examples in [9–11]).

Early work in AM-FM image representations has been
reported in [12, 13]. In [12], Havlicek et al. discussed the use
of multicomponent AM-FMmodels where Kalman filters are
used to track changes in the instantaneous amplitude and
instantaneous frequency components. In [13], Havlicek et al.
introduced a complex-extension of the Hilbert- transform

for images and suggested the use of quasi-eigenfunction
approximations (QEAs) for estimating the instantaneous
frequency from discrete signals. An early application of AM-
FMmethods in medical imaging appeared in [14] in electron
microscopy. In [15], the authors introduced a foveated video
quality assessment method based on the use of continuous-
space AM-FM transforms. In [16], the authors extended this
research to video compression based on local instantaneous
frequency content and the characteristics of the human visual
system. An effective model for texture analysis based on
multidimensional frequency modulation was introduced in
[10]. The multiscale AM-FM methods that are used in this
paper were first introduced in [9] and first applied in medical
image analysis in [17].

For one-dimensional signals, the empirical mode decom-
position pioneered in [18] has been applied to several
applications. The empirical mode decomposition uses a
special case of AM-FM functions, intrinsic mode functions
as basis functions for decomposing signals. These intrinsic
mode functions decompose fractional Gaussian noise using
a dyadic filter bank as documented in [19]. The popular
implementation of the empirical mode decomposition based
on [20] requires that the instantaneous amplitude for the
first mode be estimated using the extrema of the input signal
and then using interpolation to determine the envelope.
This approach is clearly sensitive to noise since the envelope
estimation is very sensitive to additive noise artefacts. We are
not aware of any robust extensions that avoid the significant
noise artefacts or robust 2D extensions required for the
current application. On the other hand, the use of multiscale
AM-FM decomposition allows us to deal with noise through
the use of suitable designed band-pass filters [9]. For the
current application, the effectiveness of this approach is
demonstrated in [8].

While AM-FM decompositions can effectively model
nonstationary texture, it is also clear that we want to avoid
measuring noise. We want to investigate the use of despeckle
filtering for reducing the levels of noise in the image. Yet,
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excessive despeckling can destroy the nonstationary signal
content. It can result in a reduction of the discriminatory
power of the texture analysis system introduced in [8, 9, 11],
andwe expect this to also be detected by the clinical experts as
a reduction in image quality. Ultimately, we are interested in
the application of despeckle filteringmethods that can lead to
improvements in computerized texture analysis methods as
well as significant improvements in the image quality judged
by clinical experts.Theuse ofAM-FM features to characterize
the CCA will also provide complimentary information to
classical texture analysis features like the gray-scale median,
contrast, and coarseness. AM-FM texture features can be
associated with the progression of cardiovascular risk for
disease and the risk of stroke with age.

Prior research on the use of despeckle filtering on CCA
plaque images was reported by Loizou et al. in [21, 22].
In this paper, we investigate the use of two additional
despeckle filtering methods, namely, the despeckle filter
Kuhawara (see Section 2.3.1, (2)) and the hybrid median fil-
tering method (see Section 2.3.2) and study their effects on
image quality and multiscale AM-FM texture analysis on the
thin structures of the intima media. As we described in this
paper, the new filters gave significantly better results than
prior research in [21, 22].

Formally, an input image, 𝑓(𝑥, 𝑦) is expressed as a sum of
AM-FM components using [9, 11] as follows:

𝑓 (𝑥, 𝑦) =

𝑁

∑
𝑛=1

𝑎
𝑛
(𝑥, 𝑦) cos𝜑

𝑛
(𝑥, 𝑦) , (1)

where 𝑎
𝑛
(𝑥, 𝑦) denotes the 𝑛th instantaneous amplitude

(IA) function, 𝜑
𝑛
(𝑥, 𝑦) denotes the 𝑛th instantaneous phase

(IP) component, and 𝑛 = 1, 2, . . . , 𝑁 indexes the dif-
ferent AM-FM components. For each AM-FM component
𝑎
𝑛
(𝑥, 𝑦) cos𝜙

𝑛
(𝑥, 𝑦), we define the instantaneous frequency

(IF) by ∇𝜙
𝑛
(𝑥, 𝑦) and the magnitude of the IF given by

‖∇𝜙
𝑛
(𝑥, 𝑦)‖. Textural characteristics are described in terms

of the IA and the IF extracted from different frequency scales.
Here, frequency scales are defined based on the IFmagnitude
and are further classified into low-, medium-, and high-
frequency scales.

In [8], AM-FM analysis on the IMC, media-layer (ML),
and intima-layer (IL) structures, showed that there are
significant differences in AM-FM texture features extracted
from different age groups and different sexes. In this paper,
we investigate the AM-FM texture features that can show
significant differences and also appear to be improving
in simulations involving the use of despeckle filtering on
ground-truth signals.

The rest of the paper is organized as follows. In the
next sections, materials and methods, experimental results,
discussion, concluding remarks, and future work are given.

2. Materials and Methods

2.1. Ultrasound Images Acquisition. A total of 100 B-mode
longitudinal ultrasound images of the CCA were recorded
using the ATL HDI-3000 ultrasound scanner (Advanced
Technology Laboratories, Seattle, USA) [23] as described in

[8].The images were recorded at the Cyprus Institute of Neu-
rology and Genetics in Nicosia, Cyprus. The recordings were
carried out in agreement with the Cyprus national bioethics
committee rules on clinical trials, and after patient’s written
consent. For the recordings, we used a linear probe (L74) with
a recording frequency of 4–7MHz [23], a velocity of 1550m/s,
and a1 cycle per pulse, which resulted in a wavelength (spatial
pulse length) of 0.22mm and an axial resolution of 0.11mm.
Furthermore, the scanner is equipped with 64 elements fine
pitch high-resolution, 38mm broadband array, an acoustic
aperture of 10 × 8mm, and a transmission focal range of 0.8–
11 cm.

The B-mode scan settings were adjusted to allow for
the maximum dynamic range with a linear postprocessing
curve. In order to ensure that a linear postprocessing curve
is used, these settings were preselected (by selecting the
appropriate start-up presets from the software) and were
included in the part of the start-up settings of the ultrasound
scanner. The position of the probe was adjusted so that the
ultrasonic beam was vertical to the artery wall. The time gain
compensation (TGC) curve was adjusted, (gently sloping), to
produce uniform intensity of echoes on the screen, but it was
vertical in the lumen of the artery where attenuation in blood
wasminimal, so that echogenicity of the far wall was the same
as that of the near wall. The overall gain was set so that the
appearance of the carotid wall was assessed to be optimal, and
slight noise appeared within the lumen. It was then decreased
so that at least some areas in the lumen appeared to be free
of noise (black). Thus, the standardization effort follows the
ACSRS acquisition guidelines as detailed in [24].

Images were acquired with the subject’s head rotated by
45∘ away from the study side. A single longitudinal image
was captured at the distal end of the CCA during the diastolic
phase of a cardiac cycle. All captured images were revealing
optimal visualization of the IMC of the far wall and the near
wall of the CCA at the same time, thus corresponding to a
midline horizontal longitudinal representation of the CCA
walls.

During image acquisition, the sonographers varied spa-
tial resolution to provide optimal imaging at different depths
[4, 5]. However, without standardizing image resolution, the
estimated AM-FM components would not be comparable.
To see this, note that continuous-space image frequencies
are expressed in cycles per millimeter, and unless we have a
common spatial resolution, the estimated digital frequencies
would correspond to different continuous-space (analogue)
frequencies. As a result, we then had to use bicubic spline
interpolation to resize all digital images to a standard pixel
density of 16.66 pixels/mm.The use of bicubic spline interpo-
lation does not add additional information to the image. In
other words, interpolation does not recover high-frequency
content that was not present in the original acquisition.Thus,
when comparing among images, it is important to note that
high-frequency content is comparable to the extent that it is
shared among all of the resolutions. Also, note that most of
the images were acquired at the target resolution. In other
words, we only made small corrections to spatial resolution.

The images were also intensity normalized, as described
in [25], where a manual selection of blood and adventitia
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performed by the user of the system is required. The gray-
scale intensity normalized image was obtained through alge-
braic (linear) scaling of the image by linearly adjusting the
image so that the median gray level value of the blood was
0–5 and the median gray level of the adventitia (artery wall)
was 180–190 [25, 26]. The images were recorded from 42
female and 58 male asymptomatic patients. These subjects
had not developed any clinical symptoms, such as a stroke
or a transient ischemic attack. The primary-care physicians
informed the subjects of our stroke-prevention research
study. Overall, patients’ ages varied between 26 and 95 years,
with amean age of 54 years.The images were partitioned into
three different age groups. In the first group, we included 27
images from patients, who were younger than 50 years old.
In the second group, we had 36 patients, who were 50–60
years old. In the third group, we included 37 patients who
were older than 60 years.

2.2. Simulated Images. To understand the effects of despeckle
filtering on AM-FM estimation, we perform a simulation
on a synthetic image (see Figure 2(a)) which was created to
resemble clinical ultrasound images. The synthetic IA image
was 1024 × 1024 pixels with two strips. For the simulation, we
set the IA and the IF as follows:

𝐴 (𝑥, 𝑦) = 158,
𝜋

7.5
≤ 𝜙
𝑥
≤

𝜋

4.5
, 𝜙

𝑦
= −𝜙
𝑥
,

for 0 ≤ 𝑥 ≤ 272 (dark background) ,

𝐴 (𝑥, 𝑦) = 250,
𝜋

6.5
≤ 𝜙
𝑥
≤

𝜋

5.5
, 𝜙

𝑦
= 𝜙
𝑥
,

for 273 ≤ 𝑥 ≤ 306 (bright upper strip) ,

𝐴 (𝑥, 𝑦) = 102,
𝜋

7.5
≤ 𝜙
𝑥
≤

𝜋

4.5
, 𝜙

𝑦
= −𝜙
𝑥
,

for 307 ≤ 𝑥 ≤ 702 (dark background) ,

𝐴 (𝑥, 𝑦) = 250,
𝜋

6.5
≤ 𝜙
𝑥
≤

𝜋

5.5
, 𝜙

𝑦
= 𝜙
𝑥
,

for 703 ≤ 𝑥 ≤ 750 (bright lower stip) ,

𝐴 (𝑥, 𝑦) = 182,
𝜋

7.5
≤ 𝜙
𝑥
≤

𝜋

4.5
, 𝜙

𝑦
= −𝜙
𝑥
,

for 751 ≤ 𝑥 ≤ 1023 (dark backround) .

(2)

The resulting synthetic image is shown in Figure 2(b).
We add multiplicative noise (see Figure 2(c)) to generate
𝑔
𝑖,𝑗

= 𝑓
𝑖,𝑗
+ 𝑛
𝑖,𝑗
𝑓
𝑖,𝑗
, where 𝑔

𝑖,𝑗
and 𝑓

𝑖,𝑗
represent the noisy

and the original images, respectively, and 𝑛
𝑖,𝑗
is a uniformly

distributed random noise with zero mean and noise variance
𝜎2
𝑛
= 0.07. We show the results after applying a low frequency

AM-FM estimation in Figures 2(d)–2(h). Figure 2(d) illus-
trates the instantaneous amplitude (IA) estimation from the
noisy image, while Figures 2(e)-2(f) show the IF estimation
for the 𝑥- and 𝑦-directions. In Figure 2(f), we show the IA
estimation from the denoised image after using the hybrid
median despeckle filter. Finally, we show the IF estimation
using this method in Figures 2(g)-2(h).

2.3. Despeckle Filtering

2.3.1. Linear Filtering

(1) First Order Statistics Filtering (DsFlsmv, DsFwiener).These
filters utilize the first order statistics such as the variance and
the mean of a pixel neighbourhood and may be described
with a multiplicative noise model [21, 22, 27]. Hence the
algorithms in this class may be traced back to the following
equation:

𝑓
𝑖,𝑗
= 𝑔 + 𝑘

𝑖,𝑗
(𝑔
𝑖,𝑗
− 𝑔) , (3)

where 𝑓
𝑖,𝑗

is the estimated noise-free pixel value, 𝑔
𝑖,𝑗

is the
noisy pixel value in the moving window, 𝑔 is the local mean
value of a 5 × 5 rectangular region surrounding and including
pixel 𝑔

𝑖,𝑗
, 𝑘
𝑖,𝑗
is a weighting factor, with 𝑘 ∈ [0 ⋅ ⋅ ⋅ 1], and 𝑖, 𝑗

are the pixel coordinates. The factor 𝑘
𝑖,𝑗

is a function of the
local statistics in a moving window and can be found in the
literature [21, 22] as

𝑘
𝑖,𝑗
=

1 − 𝑔
2
𝜎2

𝜎2 (1 + 𝜎2
𝑛
)
. (4)

The values 𝜎2 and 𝜎2
𝑛
represent the variance in the moving

window and the variance of noise in the whole image, respec-
tively. The noise variance is calculated in the logarithmically
compressed image, using the average noise variance over
a number of windows with dimensions considerably larger
than the filtering window [21, 22]. The Wiener filter uses a
pixel-wise adaptive method [6, 7, 22, 28] and is implemented
as given in (3) with a different weighting factor 𝑘

𝑖,𝑗
= (𝜎2 −

𝜎2
𝑛
)/𝜎2 [13]. For both despeckle filters, which are proposed in

this subsection, the moving window size was 5 × 5 and the
number of iterations was set to two.

(2) Homogeneous Mask Area Filtering (DsFkuhawara,
DsFlsminsc). The Kuhawara despeckle filter is a 1D filter
operating in a 5 × 5 pixel neighbourhood by searching for the
most homogenous neighbourhood area around each pixel
[22, 29]. The middle pixel of the 1 × 5 neighbourhood is then
substituted with the median gray level of the 1 × 5 mask. The
filter was iteratively applied 2 times on the image.

The DsFlsminsc is a 2D filter operating in a 5 × 5
pixel neighbourhood by searching for the most homogenous
neighbourhood area around each pixel, using a 3 × 3 subset
window [21, 22].Themiddle pixel of the 5 × 5 neighbourhood
is substitutedwith the average gray level of the 3× 3maskwith
the smallest speckle index, 𝐶, where 𝐶 for log-compressed
images is given by

𝐶 =
𝜎
2

𝑠

𝑔
𝑠

, (5)

where 𝜎2
𝑠
and 𝑔

𝑠
represent the variance and mean of the

3 × 3 window. The window with the smallest 𝐶 is the
most homogenous semiwindow, which, presumably, does not
contain any edge. The filter is applied iteratively one time in
the image.
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Figure 2: Results using a low frequency scale for the AM-FM methods. (a) Noise-free synthetic IA image. (b) Noise-free synthetic AM-FM
image with low frequency information. (c) AM-FM image corrupted with speckle noise. (d) IA estimation from the noisy image of (c). (e)
IFx estimation from the noisy image. (f) IFy estimation from the noisy image. (g) IA estimation from the denoised image using the hybrid
median filter. (h) IFx estimation from the denoised image using the hybridmedian filter. (i) IFy estimation from the denoised image using the
hybrid median filter. Under each image we show the same AM-FM results but with a focus (zoom) on the top strip for better visual analysis
purposes.

2.3.2. Nonlinear Filtering (DsFmedian, DsFhybridmedian).
The first filter proposed in this subsection [22] is a median
filter applied over windows of size 5 × 5. This is extended
in the hybrid median despeckle filter, [30] which produces
the average of the outputs generated by median filtering
with three different windows (cross shape window, ×-shape
window, and normal window).

2.3.3. Diffusion Filtering (DsFsrad, DsFnldif)

(1) Speckle Reducing Anisotropic Diffusion Filtering. Speckle
reducing anisotropic diffusion is described in [7]. It is based
on setting the conduction coefficient in the diffusion equation
using the local image gradient and the image Laplacian.
The speckle reducing anisotropic diffusion filter [7] uses two
seemingly different methods, namely, the Lee [27] and the
Frost diffusion filters [28]. A more general updated function
for the output image by extending the PDE versions of the
despeckle filter is [7, 22]

𝑓
𝑖,𝑗
= 𝑔
𝑖,𝑗
+
1

𝜂
𝑠

div (𝑐srad (
∇𝑔

) ∇𝑔𝑖,𝑗) . (6)

The diffusion coefficient for the speckle anisotropic diffusion,
𝑐srad(|∇𝑔|), is derived [7] as

𝑐
2

srad (
∇𝑔

) =
(1/2)


∇𝑔
𝑖,𝑗



2

− (1/16) (∇
2𝑔
𝑖,𝑗
)
2

(𝑔
𝑖,𝑗
+ (1/4) ∇2𝑔𝑖,𝑗)

2
. (7)

It is required that 𝑐srad(|∇𝑔|) ≥ 0.The above instantaneous
coefficient of variation combines a normalized gradient
magnitude operator and a normalized Laplacian operator to
act like an edge detector for speckle images. High-relative
gradient magnitude and low-relative Laplacian indicate an
edge. The filter proposed in this subsection utilizes speckle
reducing anisotropic diffusion after (5) with the diffusion
coefficient 𝑐srad(|∇𝑔|) in (7) [7].

(2) Coherent Nonlinear Anisotropic Diffusion Filtering. This
filter extends the conduction coefficient using a symmetric
positive semidefinite diffusion tensor [31] with the param-
eters as given in [22]. Therefore, the filter will take the
following form:

𝑑𝑔
𝑖,𝑗,𝑡

𝑑𝑡
= div [𝐷∇𝑔] , (8)

where 𝐷 ∈ R2𝑥2 is a symmetric positive semidefinite
diffusion tensor representing the required diffusion in both
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gradient and contour directions, and hence enhancing coher-
ent structures as well as edges. The design of 𝐷 as well as
the derivation of the coherent nonlinear anisotropic diffusion
model may be found in [31] and is given as

𝐷 = (𝜔1 𝜔
2) (

𝜆
1

0

0 𝜆
2

)(
𝜔𝑇
1

𝜔𝑇
2

) (9)

with

𝜆
1
=

{{

{{

{

𝛼(1 −
(𝜇
1
− 𝜇
2
)
2

𝑠2
) , if (𝜆

1
− 𝜆
2
)
2
≤ 𝑠2,

0, otherwise,
(10)

𝜆
2
= 𝛼, (11)

where the eigenvectors 𝜔
1
, 𝜔
2
and the eigenvalues 𝜆

1
, 𝜆
2

correspond to the directions of maximum and minimum
variations and the strength of these variations, respectively.
The flow at each point is affected by the local coherence,
which is measured by (𝜇

1
− 𝜇
2
) in (10). The parameters used

in this work for the coherent nonlinear anisotropic diffusion
filter were 𝑠2 = 2 and 𝛼 = 0.9, which were used for the
calculation of the diffusion tensor 𝐷, and the parameter step
size 𝑚 = 0.2, which defined the number of diffusion steps
performed. The local coherence is close to zero in very noisy
regions and diffusion becomes isotropic (𝜇

1
= 𝜇
2
= 𝛼 =

0.9), whereas in regions with lower speckle noise, the local
coherence corresponds to (𝜇

1
− 𝜇
2
)
2
> 𝑠2 [31].

2.4. IMC Snakes Segmentation. All images were automat-
ically segmented to identify the IMC regions. Automatic
segmentation was carried out after image normalization and
despeckle filtering using the snakes segmentation system
proposed and evaluated on ultrasound images of the CCA
in [4]. The segmentation system is based on the Greedy
active contour algorithm [32]. Using the definitions given in
Figure 1, we first segment the IMC [33] by extracting the
I5 (lumen-intima interface) and the I7 boundaries (media-
adventitia interface). In order to achieve standardization in
extracting the thickness from the IMC segments with similar
dimensions, the following procedure was carried out. A
region of interest of 9.6mm (160 pixels) in length was first
extracted. This was done by estimating the center of the IMC
area and then selecting 4.8mm (80 pixels) left and 4.8mm (80
pixels) right of the center of the segmented IMC. Selection of
the same IMC length fromeach image is important in order to
be able to extract comparable measurements between images
and subject groups.

We note that there was no significant difference between
the manual and automated segmentation measurements for
the IMC [4].

2.5. Texture Analysis Using Multiscale Amplitude-Modulation
Frequency-Modulation (AM-FM) Methods. Multiscale AM-
FM texture features were extracted over different channel
filters. We refer to [8] for full details on the approach. Here,
we provide a brief summary for completeness.

First, a complex valued image is obtained using an
extended 2D Hilbert operator. The operator is implemented
by taking the 2D FFT of the input image, zeroing out the
upper two frequency quadrants, multiplying the remaining
frequency components by 2, and taking the inverse 2D FFT.

The complex-valued output image is processed through
a collection of 2D channel filters with passbands restricted
over the (nonzeroed) lower two quadrants. We refer to [8]
for a clear description of the filterbank. Here, we simply
note that we have low-, medium-, and high-frequency scales
based on the passband frequency magnitudes. Based on the
dyadic frequency decomposition, we have (1) low-frequency
components from 1.04 to 2.95 cycles/mm that correspond
to instantaneous wavelengths (IWs) from 5.66 to 16 pixels
(0.34–0.96mm); (2) medium-frequency components from
2.08 to 5.89 cycles/mm that correspond to IW from 2.83 to
8 pixels (0.17–0.48mm); and (3) high-frequency components
from 4.17 to 11.79 cycles/mm that correspond to IW from 1.41
to 4 pixels (0.085–0.24mm) [8].

AM-FM demodulation is carried out separately for the
low-, medium-, and high-frequency scales. Adaptively, for
each frequency-scale, at each image pixel, we estimate IA by
taking the absolute value of the channel response. Then, at
each pixel, among the channel responses of each scale, we
select the channel that gives the maximum IA. The phase for
each scale is then estimated by taking the phase response of
the dominant channel.

An adaptive method is used for estimating IF compo-
nents. The IF components are estimated using

𝑑𝜙 (𝑥, 𝑦)

𝑑𝑥
≅
1

𝑛
arccos(

𝑓 (𝑥 + 𝑛, 𝑦) + 𝑓 (𝑥 − 𝑛, 𝑦)

2𝑓 (𝑥, 𝑦)
) (12)

and similarly for 𝑑𝜑/𝑑𝑦, where 𝑓 denotes the estimated
FM image cos𝜑(𝑥, 𝑦) cos𝜑(𝑥, 𝑦). In (12), we consider 𝑛 =

1, 2, 3, 4 for the low frequencies, 𝑛 = 1, 2 for the medium
frequencies, and 𝑛 = 1 for the high frequencies. Among the
IF estimates, we select the one that generates the minimum
argument to the arccos function. This is expected to be the
most accurate [11]. The AM-FM texture features are then
formed by taking the 32-bin histograms of the resulting IA
and IF estimates from each one of the three frequency scales.

The Mann-Whitney rank sum test (for independent
samples of different sizes) [34] was used in order to identify
if there were significant differences (S) or not (NS) between
the extracted AM-FM texture features at𝑃 < 0.05.The results
will be explained in Section 3.2 and summarized in Table 3.

2.6. Visual Evaluation by Experts. The visual evaluation was
carried out according to the ITU-R recommendations with
the Double Stimulus Continuous Quality Scale (DSCQS)
procedure [21, 22]. The 100 segmented IMC structures of
the CCA were evaluated visually by two vascular experts, a
cardiovascular surgeon, and a neurovascular specialist before
and after despeckle filtering. For each case, the original and
the despeckled images were presented at random andwithout
labeling to the two experts. The experts were asked to assign
a score in the one to five scale corresponding to low and
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high subjective visual perception criteria. Five was given to an
image with the best visual quality. Therefore, the maximum
score for a filter is 500, if the expert assigned the score of five
for all the 100 images. For each filter, the score was divided by
five to be expressed in percentage format. The experts were
allowed to give equal scores to more than one image in each
case. For each class and for each filter the average score was
computed.

We have, furthermore, used the recently proposed NIQE
index assessment tool [35] for objective evaluation of the
quality of the images. The tool is based on the construction
of a quality aware collection of statistical features based on
a simple and successful space domain natural scene statistic
model.These features are derived from a collection of natural,
undistorted images. The quality of the despeckled image is
expressed as a simple distance metric between the model
statistics and those of the original image. A software release
of the NIQE index is available at http://live.ece.utexas.edu/
research/Quality/index.htm.

3. Experimental Results

3.1. Artificial Carotid Image. Despeckle filtering was evalu-
ated on an artificial carotid artery image corrupted by speckle
noise (see Figure 2(a)) as described in the materials and
methods section. Figure 2 presents the results using a low
frequency scale for the AM-FM methods. In Figure 2(a), we
present the original synthetic image, while in Figures 2(b)
and 2(c), we show the original synthetic image with low
frequency information and the image from Figure 2(b) with
speckle noise, respectively. In Figure 2(d) we show the IA
estimation from the noisy image, while in Figure 2(e), we
present the IFx estimation from the noisy synthetic image. In
Figure 2(f), the IFy estimation from the noisy synthetic image
is illustrated while in Figure 2(g), the IA estimation from the
despeckled image using the hybrid median filter is shown.
Finally in Figures 2(h) and 2(i), we present the IFx estimation
from the despeckled artificial image using the hybrid median
filter and the IFy estimation from the despeckled image using
the hybrid median filter, respectively. Below each figure we
present the zoom of the top part of the synthetic image AM-
FM results including the top strip for visualization purposes.

Table 1 presents the results of despeckle filtering demon-
strating its advantages applied to a synthetic AM-FM exam-
ple. We note significant noise estimation improvements for
the narrow strip for both the IF component for both the
𝑥- and 𝑦-direction. Here, we were not interested in the IA
error since it was piecewise-constant and estimation could be
significantly improved by simply using median-filtering on
the estimated values. The results are reported over the low-
frequency scales where most of the image energy is usually
concentrated.

3.2. Real Carotid Ultrasound Images. We show in Figure 3
an example of the original IMC ultrasound image in the
first column and the corresponding despeckled images with
hybrid median, and Kuhawara filters in the second and third
columns, respectively. The figure also shows the logarithmic
views of the IA components LIA, MIA, and HIA; the IF

components LIF, MIF, HIF; and the reconstructed FM com-
ponent. The last row shows the FM demodulation (integral
of the IF) of the images in the low frequencies. For better
visualization, the images have been interpolated to be 300 ×
20 pixels. In this Figure, image regions where the estimated
instantaneous frequency is outside the low-scale frequency
range are depicted as dark (black). By comparing the figures
(in the three different columns of Figure 3), it is clear that
the hybrid median approach has improved the estimation
significantly. In other words, there are fewer dark regions
in the results of the second column than there are in the
third column of Figure 3 (see Log LIA column). For the
Kuhawara filter (see Figure 3, third column), segmentation
gave a slightly expanded version of the original segmentation
results. Furthermore, the area of the dark regions appears
to be greater than that for the hybrid median filter. Also,
in this case, the Kuhawara filter does not show significant
improvements over the results on the original image.

The first part of Table 2 tabulates the results of the visual
evaluation of the original and despeckled IMC images made
by two experts, a cardiovascular surgeon and a neurovascular
specialist. It is clearly shown in Table 1 that the best despeckle
filter is the hybrid median with a score of 73%, followed
by Kuhawara with a score of 71%. It is interesting to note
that these two filters were scored with the highest evaluation
markings by both experts. The other filters gave poorer
performance, like the DsFnldif, DsFlsminsc, and DsFsrad,
that gave an evaluation score of 62%, 58%, and 56%, respec-
tively. The third row of Table 2 presents the overall average
percentage (%) score assigned by both experts for each filter.
The second part of Table 2 illustrates the objective evaluation
performed, for all despeckled filters investigated, between
the original and the despeckled images by using the NIQE
index. It is shown that the best results were obtained by the
hybrid median despeckle filter (NIQE = 0.987) followed by
the Kuwahara (NIQE = 0.981) despeckle filter.The last row of
Table 2 presents the final filter ranking.

Table 3 presents the statistical analysis between the Low,
Medium, and High AM-FM features extracted from the
IMC for the three different age groups, below 50 (<50),
between 50 and 60 (50–60), and above 60 (>60) years old
based on the Mann-Whitney rank sum test, showing only
the features that exhibited statistically significant difference
at 𝑃 < 0.05. It is shown in Table 3 that all the despeckle filters
investigated increased the number of AM-FM features that
exhibited significant differences between the different ages
(compare the first row for the Original images versus the rest
of the columns that represent the despeckled images). More
specifically, using the hybrid median filter, we can use the
followingAM-FMcomponents that demonstrated significant
differences for differentiating between the different IMC age
groups.

(a) For the <50 and 50–60 years old, use the LIA compo-
nent.

(b) For the <50 and >60 years old, use the MIA, and/or
the LIF, and the HIF components.

(c) For the 50–60 and >60 years old, use the LIA, and/or
the LIF, and the MIF components.

http://live.ece.utexas.edu/research/Quality/index.htm
http://live.ece.utexas.edu/research/Quality/index.htm
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Table 1: Despeckle filtering demonstrating its advantages applied to a synthetic AM-FM example (see text for details). Note significant noise
estimation improvements for the narrow strips.

Frequency component
x-component of low instantaneous frequency

(LIFx)
y-component of low instantaneous frequency

(LIFy)
Backgrounds Strips Combined Backgrounds Strips Combined

Noise-free, low-scale AM-FM
(upper bound of what can be
achieved)

3.9𝐸 − 06 7.6𝐸 − 02 2.7𝐸 − 03 2.9𝐸 − 02 5.5𝐸 − 01 4.8𝐸 − 02

Speckled image, low-scale AM-FM
estimation (no despeckling) 5.5𝐸 − 04 1.2𝐸 − 01 4.9𝐸 − 03 3.3𝐸 − 02 4.9𝐸 − 01 4.9𝐸 − 02

Despeckling using DsFlsmv 7.3𝐸 − 04 5.1𝐸 − 02 2.5𝐸 − 03 6.8𝐸 − 02 2.6𝐸 − 01 7.5𝐸 − 02

Despeckling using
DsFhybridmedian 1.6𝐸 − 03 4.6𝐸 − 02 3.1𝐸 − 03 6.2𝐸 − 02 4.1𝐸 − 01 7.4𝐸 − 02

Despeckling using DsFKuhawara 6.9𝐸 − 03 7.3𝐸 − 02 9.3𝐸 − 03 6.4𝐸 − 02 4.8𝐸 − 01 7.9𝐸 − 02

Table 2: Percentage scoring of visual and objective evaluation of the original and despeckled images by the experts and the natural image
quality evaluation (NIQE) index. Bolded values show best performance.

Experts original First order statistics Homogeneous mask area Non-linear filtering Diffusion
DsFlsmv DsFwiener DsFkuhawara DsFlsminsc DsFmedian DsFhybridmedian DsFnldif DsFsrad

Visual Evaluation
Expert 1 33 26 27 65 51 43 71 59 61
Expert 2 40 30 23 77 65 47 75 65 51
Average % 37 28 25 71 58 45 73 62 56

Objective Evaluation
NIQE 0.861 0.834 0.810 0.981 0.956 0.901 0.987 0.962 0.923
Ranking 7th 8th 9th 2nd 4th 6th 1st 3rd 5th
NIQE: Naturalness image quality evaluation.

Table 3: Statistical analysis between the low, medium and high AM-FM features extracted from the IMC for the automated segmentation
measurements for the three different age groups, below 50 (<50), between 50 and 60 (50–60), and above 60 (>60) years old based on the
Mann-Whitney rank sum test for all despeckle filtering techniques. Only the features that exhibited statistical significant differences at P <

0.05 are shown.
Filter name Age groups 50–60 >60 Score Table 2 ranking

Original (see also) [8]
<50 MIA 3 7th50–60 LIA/HIF

DsFlsmv <50 MIA/HIF MIA/LIF 5 8th50–60 MIF (0.4)

DsFwiener <50 MIA/HIA MIA/HIA/MIF/HIF/LIA 7 9th50–60

DsFKuhawara <50 LIA MIA/LIF/HIF 6 2nd50–60 LIA/MIF

DsFlsminsc <50 LIA/HIF HIF 5 4th50–60 LIA/MIA

DsFmedian <50 MIA/LIF/HIF 4 6th50–60 LIA

DsFhybridmedian <50 LIA MIA/LIF/HIF 7 1st50–60 LIA/LIF/MIF

DsFnldif <50 LIA/MIA/LIF MIA/HIA 9 3rd50–60 LIA/MIA/HIA/HIF

DsFsrad <50 LIA/HIF MIA/LIF 7 5th50–60 LIA/MIA/HIA
LIA, MIA, HIA: Low, Medium, High instantaneous amplitude. LIF, MIF, HIF: Low, medium, high instantaneous frequency, Score: Illustrates the numbers of
significantly different features.
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Table 4: Comparison of the mean, standard deviation (STD), median, and different quartile ranges between the high, medium and low AM-
FM features extracted from the IMC for the three different age groups, below 50 (<50), between 50 and 60 (50–60) and above 60 (>60) years
old for the original, the DsFhybrimedian and the DsFkuhawara filters. Here, the IA and IF values have been pre-multiplied by 100 for better
visualization. Recall that the original images were normalized to a maximum brightness value of 1.Thus, the IA values represent a percentage
of the maximum input image intensity. The instantaneous frequency magnitude, IF, is measured in cycles/mm (100x, Magnified by 100).

Mean STD Median P5% P10% P25% P75% P90% P95%

Original

LIA: <50 2.47 0.45 2.29 1.81 1.9 2.2 2.8 3.0 3.4
LIA: 50–60 2.88 0.66 2.62 2.31 2.5 2.5 2.7 4.0 4.3
LIA: >60 2.6 0.42 2.48 1.91 2.26 2.33 2.81 3.33 3.35

LIF: <50 145 4.1 145 140 141 142 146 147 154
LIF: >60 144 5.2 144 135 137 139 145 150 153
LIF: 50–60 143 3.8 145 136 137 139 146 147 147

MIF: 50–60 285 8.0 284 275 276 280 289 296 303
MIF: >60 284 8.7 282 273 275 278 289 295 303

HIF: <50 574 2.8 574 545 546 556 578 599 641
HIF: >60 566 1.6 564 541 545 557 574 585 597

DsFhybrimedian

LIA: <50 2.5 0.44 2.3 1.88 2.06 2.19 2.78 3.03 3.42
LIA: 50–60 2.64 0.64 2.64 2.32 2.36 2.45 2.78 3.92 4.33
LIA: >60 1.95 0.37 1.86 1.47 1.52 1.68 2.16 2.58 2.75

LIF: <50 146 3.89 146 142 143 144 149 150 155
LIF: >60 144 4.71 143 137 138 141 148 151 152
LIF: 50–60 143 5.82 146 136 137 141 147 147 148

MIF: 50–60 284 8.22 283 273 274 279 287 296 301
MIF: >60 283 8.35 281 274 275 276 290 296 302

HIF: <50 564 17.76 568 539 541 550 570 586 599
HIF: >60 556 12.6 553 540 543 545 566 575 580

DsFKuhawara

LIA: <50 2.5 0.44 2.32 1.89 2.07 2.18 2.77 3.03 3.41
LIA: 50–60 2.63 0.62 2.61 2.3 2.37 2.41 2.79 3.91 4.32
LIA: >60 2.58 0.39 2.49 1.92 2.27 2.32 2.77 3.24 3.41

LIF: <50 146 3.89 146 142 142 144 148 149 155
LIF: >60 144 4.71 143 137 138 141 148 151 152
LIF: 50–60 144 3.82 146 136 137 141 147 148 149

MIF: 50–60 284 8.22 283 273 274 279 287 296 301
MIF: >60 283 8.3 281 274 275 276 290 296 303

HIF: <50 564 17.8 568 539 541 550 570 586 599
HIF: >60 556 12.5 553 540 543 546 566 575 580

IMC: Intima-media-complex.

Also, the Kuhawara despeckle filter that can be used showed a
similar performance as above, except for the LIF component
in (c).

Table 4 presents a comparison of the mean, standard
deviation (STD), median, 5%, 10%, 25%, 75%, 90%, and
95% quartiles between the high, medium, and low AM-FM
features extracted from the IMC for the original and the
despeckled filters DsFhybrimedian and DsFkuhawara for the
three different age groups, below 50 (<50), between 50 and
60 (50–60), and above 60 (>60) years old. Only those features
that showed significant differences in almost all different age
groups according to Table 3 are presented.The results indicate
that for the high instantaneous frequency (HIF) magnitude

median for the IMC, the 75th percentile value of the >60 age
group remains lower than the median value of the <50 age
group (cycles/mm). Furthermore, we note the original HIF
standard deviation of 0.028 (<50) and 0.016 (>60) cycles/mm
versus the hybrid median filter with 0.1776 (<50) and 0.126
(>60) cycles/mm and the Kuhawara filter with 0.178 (<50)
and 0.125 (>60) cycles/mm. It is clear that image despeck-
ling produces more than a 5-fold increase in the spread
of the high instantaneous frequency range. This suggests
that high-frequency texture information does benefit from
despeckling.

This is a positive result since speckle noise can have
detrimental effects on high frequencies. Another significant
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Scale Original DsFhybridmedian DsFkuhawara

Log LIA

Log MIA

Log HIA

LIF

MIF

HIF

FM

Figure 3: AM-FM analysis of the IMC original (1st column) and despeckled images with the DsFhybrimedian (2nd column) and
DsFkuhawara (3rd column), from a male asymptomatic subject aged 49. In the 1st row, the IMT measurements of the original (IMTaver =
0.66mm, IMTmax = 0.827mm, IMTmin = 0.526mm, IMTmedian = 0.68), DsFhybrimedian (IMTaver = 0.69mm, IMTmax = 0.91mm, IMTmin =
0.53mm, IMTmedian = 0.69), andDsFkuhawara (IMTaver = 0.63mm, IMTmax = 0.77mm, IMTmin = 0.49mm, IMTmedian = 0.63mm) are shown.
In the following rows we present the AM-FM components of the instantaneous amplitude of Log of LIA,MIA, and HIA, and of instantaneous
frequency of LIF, MIF, and HIF. The last row shows the FM demodulation (integral of the IF) of the images in the low frequencies. For better
visualization, the images have been interpolated to be 300 × 20 pixels.

difference is observed in the standard deviation for the Low
Instantaneous Frequency (LIF). In this case, it is interesting
to compare the LIF for 50–60 that gives 0.038 cycles/mm
for the despeckled images versus 0.058 cycles/mm for the
hybrid median filter. This shows a significant increase in
the low-frequency magnitude spread in the results for the
hybrid median filter. As discussed in Figure 2, successful
AM-FM estimation over larger regions of the image also
contribute to this larger spread. On the other hand, note a
somewhat smaller spread for the >60 group (0.052 versus
0.047 cycles/mm). Overall, it is clear that the IF spreads
for the despeckled images tend to either have a significant
increase or remain essentially the same as the original
(speckled) images.

4. Discussion and Concluding Remarks

Clinically, no significant changes are anticipated in the IMT
before the age of 50 [36]. It was shown in [4] (based on a
similar group of subjects with the one used in this study as
well) that between the ages of 50 and 60, the age borderline
for the young (<50 years) and the adult (>60 years) ages

and a subtle increase in IMT can be demonstrated and IMC
textural changes can be initially observed. Above the age
of 60, IMT increases and changes in the IMC are more
evident. Moreover, most of the stroke incidences in this age
group are associated with the carotid atherosclerosis disease.
Significant texture changes between the different age groups
were reported in [5] for age and sex. More specifically:
(a) some of the texture features can be associated with the
increase (difference variance, entropy) or decrease (grey scale
median (GSM)) of patient’s age, (b) the GSM of the media
layer (ML) falls linearly with increasing ML thickness (MLT)
and with increasing age, (c) the GSM of male subjects is
larger than that of female subjects (see Figure 4), and (d)male
and female subjects may be better distinguished using texture
features extracted from the IMC.

Despeckle filtering improved the class separation
between the three age groups as measured by the number
of significantly different AM-FM texture features. The
improvements were also reflected in better instantaneous
frequency estimation and also the significantly improved
image quality as evaluated by two clinical experts. In terms
of performance, the nonlinear hybrid median despeckle
filter (DsFhybridmedian) gave the best results, followed by
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the homogeneous mask area filter (DsFkuhawara). More
specifically, using the hybrid median filter, we can use the
followingAM-FMcomponents that demonstrated significant
differences for differentiating between the different IMC
age groups: (a) for the <50 and 50–60 years old use the LIA
component; (b) for the <50 and >60 years old use the MIA,
and/or the LIF, and the HIF components; (c) for the 50–60
and >60 years old use the LIA, and/or the LIF, and the MIF
components. Also, the Kuhawara filter that can be used
showed a similar performance as above, except for the LIF
component in (c).

These filters combined with multiscale AM-FM analysis
can be used to differentiate between the three age groups
investigated (that could loosely correspond to low, medium,
and high-risk). It should be noted that this is not the
case when the nondespeckled AM-FM analysis was used
as documented in [8] (and shown in Table 3). In fact,
almost all despeckling filters improved class separation over
the nondespeckled filters. In Table 3, this is reflected in
the increased number of significant (despeckled) AM-FM
features that can be used to differentiate between classes.

The intensity normalization method used in this study
was found to be helpful in the manual contour extraction
[22, 26] as well as the snakes segmentation of the IMC
[4, 33] and the extraction and evaluation of texture features
from ultrasound images of the CCA [5]. The method uses
prior knowledge of the high- and low-intensity values of the
adventitia and blood so that the new intensity histogram
of the lesion has its maximum peak close to its average
gray-scale value [25]. Moreover, this method increased the
classification accuracy of different plaque types as assessed
by the experts [37]. Ultrasound image normalization was
carried out prior to segmentation of the IMTon carotid artery
ultrasound images for increasing the image contrast in [38].
Using the above intensity normalisationmethod, theAM-FM
texture analysis proposed in this study may be also applied
directly to the logarithmic compressed images.

The proposed despeckle filtering methods have been
evaluated on 550 ultrasound images of the CCA together
with other despeckle filters in [21, 22, 26] using texture
features, image quality metrics, observers evaluation, and
kNN classification. More specifically, it was shown that
these filters can be used to improve the class separation
between asymptomatic and symptomatic subjects based on
the statistics of the extracted texture features and improve the
classification success rate and the visual evaluation by experts.
A number of other despeckle filtering methods have been
proposed by other researches in the last 20 years, for increas-
ing the accuracy of edge detection in images [39], improve
the image visual perception evaluation [7, 21, 22, 27–31], and
aid the segmentation of the IMC and atherosclerotic carotid
plaque in ultrasound images [4, 33] or videos of theCCA [40].
Recently, a despeckle filtering toolbox for ultrasound videos
have been proposed [41], which can also be downloaded in
executable code from http://www.medinfo.cs.ucy.ac.cy/.

Future work will investigate whether it is possible to
identify a group of patients at risk of atherosclerosis based
on their texture features extracted from the IL, ML, and
the IMC of high-resolution ultrasound images of the CCA.

It may also be possible to identify and differentiate those
individuals into high and low risk groups according to their
cardiovascular risk before the development of plaques. The
proposed methodology may also be applied to a group of
people, which already developed plaques in order to study
the contribution of the ML texture features to cardiovascular
risk. Both groups of patients may benefit by prognosing
andmanaging future cardiovascular events. Another possible
future application of the proposed methodology is that it can
be used to investigate possible effects of statins or other drugs
in texture feature changes of the ML of the CCA.

The results will need to be validated on larger datasets
before they can be transitioned to clinical use. Furthermore,
the effect of despeckling on automated segmentation, texture
analysis, and classification of atherosclerotic plaques needs to
be further researched.
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