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Abstract

Background: One of the most important challenges in the study of aging is to discover compounds with longevity-
promoting activities and to unravel their underlying mechanisms. Royal jelly (RJ) has been reported to possess diverse
beneficial properties. Furthermore, protease-treated RJ (pRJ) has additional pharmacological activities. Exactly how RJ and
pRJ exert these effects and which of their components are responsible for these effects are largely unknown. The
evolutionarily conserved mechanisms that control longevity have been indicated. The purpose of the present study was to
determine whether RJ and its related substances exert a lifespan-extending function in the nematode Caenorhabditis
elegans and to gain insights into the active agents in RJ and their mechanism of action.

Principal Findings: We found that both RJ and pRJ extended the lifespan of C. elegans. The lifespan-extending activity of
pRJ was enhanced by Octadecyl-silica column chromatography (pRJ-Fraction 5). pRJ-Fr.5 increased the animals’ lifespan in
part by acting through the FOXO transcription factor DAF-16, the activation of which is known to promote longevity in C.
elegans by reducing insulin/IGF-1 signaling (IIS). pRJ-Fr.5 reduced the expression of ins-9, one of the insulin-like peptide
genes. Moreover, pRJ-Fr.5 and reduced IIS shared some common features in terms of their effects on gene expression, such
as the up-regulation of dod-3 and the down-regulation of dod-19, dao-4 and fkb-4. 10-Hydroxy-2-decenoic acid (10-HDA),
which was present at high concentrations in pRJ-Fr.5, increased lifespan independently of DAF-16 activity.

Conclusions/Significance: These results demonstrate that RJ and its related substances extend lifespan in C. elegans,
suggesting that RJ may contain longevity-promoting factors. Further analysis and characterization of the lifespan-extending
agents in RJ and pRJ may broaden our understanding of the gene network involved in longevity regulation in diverse
species and may lead to the development of nutraceutical interventions in the aging process.
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Introduction

Lifespan in metazoans is influenced not only by genetic factors

[1], [2] but also by environmental factors, including temperature

[3], [4], oxygen [5–7], food intake [8] and nutrition [9–16]. In the

honeybee Apis mellifera L., queens live and reproduce for 1–4 years,

yet hive workers, which are derived from the same diploid

genome, live for only 3–6 weeks during the spring and summer in

temperate climates [17–19]. Queens are fed throughout their lives

with royal jelly (RJ), which is produced by the hypopharyngeal,

postcerebral and mandibular glands of the worker bees. In

contrast, workers are fed this RJ for only a short period of time

during their larval stages. This scenario raises the possibility that

RJ contains longevity-promoting agents for queens [17], [19]. An

analysis of its chemical composition showed that RJ comprises

proteins, sugars, lipids, vitamins and free amino acids [20] together

with a variety of bioactive substances, including AMP N1-oxide

[21], peptides [22–24], acetylcholine [25–27] and fatty acids, such

as 10-hydroxy-2-decenoic acid (10-HDA) [28]. The mechanism by

which RJ exerts its longevity effects on queen bees and the

identities of the components that play critical roles in this process

are largely unknown.

Lifespan-control mechanisms involving biological responses to

hormonal or nutritional signals are remarkably conserved, even in

diverse species, including nematodes, insects and mammals [2].

The effects of RJ on the extension of lifespan are likewise

conserved between Drosophila [9] and mice [29], indicating that RJ

plays the same role in disparate phyla.
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In mammals, RJ has also been reported to possess a variety of

pharmacological activities such as antibacterial [30], antitumor

[31], anti-allergic [32], antifatigue [33], anti-inflammatory [34],

[35] and immunomodulatory [36], [37] effects. RJ also induces

neurite outgrowth [38], prevents dermatitis [39], hypercholester-

olemia [40] and osteoporosis [41] and stimulates bone formation

[42]. Protease-treated RJ (pRJ) has additional beneficial proper-

ties, including antioxidant activity [43], inhibitory effects on lipid

peroxidation [44] and antihypertensive effects [45–47].

The nematode Caenorhabditis elegans has been widely used in

studies on aging and longevity. It is an ideal model organism for

such studies because of its relatively short lifespan (3–4 weeks) and

well-established genetic pathways [1]. Using C. elegans, researchers

have identified several compounds that are capable of extending

lifespan and are derived from natural products including

blueberries [48], herbs [49] and green tea [50], [51]. In the

present study, we examined the effects of RJ and pRJ on the

lifespan of C. elegans to identify the lifespan-extending agents in

these substances and to understand the mechanism of their action.

Results

Effects of RJ on the lifespan of C. elegans
We first investigated the effects of RJ on the lifespan of the wild-

type N2 strain of C. elegans. RJ treatment was begun at the young

adult stage with concentrations ranging from 1 to 100 mg/ml. RJ

treatment at 10 mg/ml extended the mean lifespan by 7–9%,

whereas either 1 or 100 mg/ml RJ had little or no effects on the

lifespan (Fig. 1, Table S1), indicating that there is an optimal dose

of RJ for lifespan extension. In contrast, pRJ prolonged the mean

lifespan at all concentrations tested (1, 10 and 100 mg/ml). The

maximal effect was observed at 10 mg/ml, at which concentration

the mean lifespan was increased by 7–18% (Fig. 2, Table S1).

These results suggest that both RJ and pRJ contain the lifespan-

extending agents and that these agents are not proteinaceus.

To gain insights into the nature of the lifespan-extending agents,

we performed fractionations of both RJ and pRJ. RJ was divided

into EtOH-soluble (RJ-Fr.1) and water-soluble (RJ-Fr.2) fractions.

Neither of these fractions extended the lifespan (Fig. S1, Fig. S2,

Table S1). pRJ was fractionated by Octadecyl-silica (ODS) column

chromatography and eluted with water (pRJ-Fr.4) and subse-

quently with 30% MeOH (pRJ-Fr.5). pRJ-Fr.4 at concentrations

from 5 to 100 mg/ml increased the mean lifespan (Fig. 3, Table

S1). The maximal effect was observed at 10 mg/ml, at which

concentration the mean lifespan was increased by 9%. In contrast,

pRJ-Fr.5 at concentrations of 10, 25 and 100 mg/ml increased the

mean lifespan by 8–9%, 18–19% and 17–19%, respectively (Fig. 4,

Table S1). These results indicated that the lifespan-extending

agents in pRJ were enriched in the 30% MeOH-eluted fraction

more than in the water-eluted fraction.

Gene expression changes during pRJ-Fr.5 treatment
To understand the mechanism underlying the lifespan extension

by pRJ-Fr.5, we analyzed genome-wide changes in gene

expression during treatment of C. elegans N2 with pRJ-Fr.5. Using

the Agilent C. elegans (V2) Gene Expression Microarray, we

monitored the expression of 20,000 genes. To identify differen-

tially regulated genes, we eliminated all probes with absent or

marginal flags and then performed a t-test with the significance

level set at p,0.05. Of these genes, 733 were further selected using

the criterion of at least a 1.8-fold change (Table S2). Further

analysis of these 733 genes revealed that pRJ-Fr.5 down-regulated

ins-9 and up-regulated ins-20 and ins-23, all of which encode

insulin-like peptides (Table S2). Among these insulin-like peptide

genes, real-time RT-PCR confirmed down-regulation of ins-9 gene

expression after pRJ-Fr.5 treatment (Fig. 5). These results are

consistent with previous findings implicating reduced insulin/IGF-

1 signaling (IIS) in lifespan extension [1]. pRJ-Fr.5 also down-

regulated dod-19, dao-4, and fkb-4 and up-regulated dod-3 (Table

S2). These expression changes were all verified by real-time RT-

PCR analysis (Fig. 5) and, more importantly, correlated with the

changes observed when IIS is reduced in C. elegans [52], [53].

Certain DNA motifs were previously reported to be associated

with the FOXO transcription factor DAF-16 [53], [54], the

activation of which is known to promote longevity in C. elegans

upon reduction of IIS [1]. The DAF-16-binding element (DBE:

TTGTTTAC) [54] and the DAF-16-associated element (DAE:

CTTATCA) [53] were overrepresented in the upstream regions of

ins-9, dod-3, dod-19, dao-4 and fkb-4 (Table 1), suggesting that their

gene expression is controlled by DAF-16 activity.

Effects of pRJ-Fr.5 on lifespan in daf-16 deletion mutants
To clarify whether the IIS-DAF-16 pathway is involved in pRJ-

Fr.5-induced extension of lifespan, we examined the effects of pRJ-

Fr.5 on the lifespan of a daf-16 deletion mutant. The findings that

pRJ-Fr.5 extended the mean lifespan of this mutant by 8–12%

(Fig. 6, Table S1) and that this effect was smaller than that

observed in wild-type N2 (18–19%) (Fig. 4, Table S1) indicated

that pRJ-Fr.5 extends the lifespan by both IIS-DAF-16 pathway-

dependent and -independent mechanisms.

Effects of pRJ-Fr.5 on DAF-16 nuclear translocation
To ascertain whether pRJ-Fr.5 acts on the IIS-DAF-16

pathway, we examined the effects of pRJ-Fr.5 treatment on

DAF-16 nuclear localization, which has been shown to be

augmented when IIS is abrogated [55], [56]. We found that

pRJ-Fr.5 treatment induced DAF-16 nuclear localization (Fig. S3),

suggesting that pRJ-Fr.5 acts on the IIS-DAF-16 pathway.

Analysis of pRJ-Fr.5 components
Next, we analyzed the components of pRJ-Fr.5. The amount of

sugars contained in pRJ-Fr.5 was estimated to be 20%(w/w) in

terms of glucose. Peptides accounted for more than 60%(w/w) of

pRJ-Fr.5. The molecular weight measurement indicated that pRJ-

Fr.5 contained low-molecular weight peptides, such as dipeptides

and tripeptides, as well as 16.5% (w/w) 10-HDA. We also

measured the 10-HDA content in RJ, pRJ and the other fractions

derived from them. The 10-HDA concentrations were as follows:

RJ: 1.7%, pRJ: 5.3%, RJ-Fr.1: 8.9%, RJ-Fr.2: 2.1% and pRJ-Fr.4:

,0.1%. These results showed that 10-HDA was enriched

especially in pRJ-Fr.5.

Effects of 10-HDA on lifespan in N2 and daf-16 deletion
mutants

To elucidate whether 10-HDA is a lifespan-extending agent, we

assessed its effects on lifespan. Worms treated beginning at the

young adult stage with concentrations of 10-HDA ranging from 10

to 100 mM all showed extensions of the mean and maximum

lifespans (Fig. 7, Table S3). The largest increase was observed at

25 mM, at which concentration the mean lifespan was increased by

12%.

We next tested whether 10-HDA extends lifespan through the

IIS-DAF-16 pathway by measuring the effects of this compound

on the lifespan of the daf-16 deletion mutants. 10-HDA at

concentrations from 10 to 100 mM extended the mean lifespan of

this mutant by 6–15% (Fig. 8, Table S3). The ability of 10-HDA to

extend the lifespan of the daf-16 deletion mutants and the wild-
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type N2 to similar extents clearly indicates that its lifespan-

extending effect is mediated through a mechanism independent of

the IIS-DAF-16 pathway.

Effects of combined treatment with pRJ-Fr.5 and 10-HDA
on lifespan

To examine the contribution of 10-HDA to pRJ-Fr.5-induced

lifespan extension, we tested the effect of combining pRJ-Fr.5 and

10-HDA on lifespan. The lifespan extension achieved by the

combination of pRJ-Fr.5 and 10-HDA was greater than that

induced by each treatment alone, but the effect was less than

additive (Fig. 9, Table S3). These results suggest that pRJ-Fr.5 and

10-HDA do not extend lifespan independently of each other.

Therefore, part of the lifespan extension by pRJ-Fr.5 is probably

due to its 10-HDA component.

Discussion

The present study demonstrates that RJ has the ability to

prolong the lifespan of C. elegans (Fig. 1), as it is known to do in

Drosophila [9] and mice [29], suggesting that RJ may contain

longevity-promoting factors that can act in diverse species across

phyla. This lifespan-extending activity of RJ in C. elegans was not

diminished by protease treatment of RJ (Fig. 2), indicating that

proteins in RJ are not responsible for the lifespan extension. The

water-eluted fraction of pRJ (pRJ-Fr.4) had some lifespan-

extending activity (Fig. 3), suggesting that water-soluble com-

pounds, such as sugars, amino acids, vitamins or peptides

including protein-proteolysis products, may have such activity.

Although RJ could extend lifespan (Fig. 1, Table S1), neither the

EtOH-soluble (RJ-Fr.1) nor the water-soluble (RJ-Fr.2) fraction of

RJ exhibited lifespan-extending activity (Fig. S1, Fig. S2). It is

Figure 1. The effects of RJ on the lifespan of C. elegans. The survival curves of N2 hermaphrodites treated with RJ (0 (control), 1, 10 or 100 mg/
ml) are shown. These substances were administered at 20uC, from the young adult stage until death. Day 0 corresponds to the L4 molt. The
percentage of live worms is plotted against adult age. Detailed parameters are presented in Table S1.
doi:10.1371/journal.pone.0023527.g001

Figure 2. The effects of pRJ on the lifespan of C. elegans. The survival curves of N2 hermaphrodites treated with pRJ (0 (control), 1, 10 or
100 mg/ml) are shown. The experiment was performed as described in Figure 1 Legend. Detailed parameters are presented in Table S1.
doi:10.1371/journal.pone.0023527.g002

Lifespan-Extending Effects of Royal Jelly
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unclear why this activity was not found in either RJ-Fr.1 or RJ-

Fr.2. One possibility is that the concentrations of the lifespan-

extending agents in RJ-Fr.1 and RJ-Fr.2 used in this study may be

above or below the narrow dose range that can extend lifespan.

We found that 10-HDA extended the lifespan of C. elegans

(Fig. 7). This is the first evidence that 10-HDA, a defined natural

component of RJ, can extend organismal lifespan. 10-HDA is

known to have several pharmacological activities such as

antibacterial [57], antitumor [58], anti-inflammatory [59], and

anti-angiogenic [60] as well as the ability to promote neurogenesis

[61] and collagen production [62]. Additionally, 10-HDA is

known to possess growth-inhibitory activity in honeybee queens

[63]. The present observations demonstrate that 10-HDA can also

perform more integrative functions, such as extending organismal

lifespan.

The 30% MeOH-eluted fraction of pRJ (pRJ-Fr.5) generated by

ODS column chromatography exhibited higher lifespan-extending

activity than did pRJ-Fr.4 (Fig. 3, Fig. 4, Table S1). This result can

be partly explained by the higher concentration of 10-HDA in

pRJ-Fr.5. Furthermore, the finding that the lifespan extension

induced by both pRJ-Fr.5 and 10-HDA was greater than that

induced by each treatment alone but was less than additive (Fig. 9,

Table S3) suggests that part of the lifespan extension by pRJ-Fr.5

was likely due to the 10-HDA contained in pRJ-Fr.5.

A variety of intricate regulatory networks have been shown to

control lifespan [2]. Among them, IIS has been well established as a

fundamental pathway that regulates the lifespan of C. elegans,

Drosophila and mice [64]. It has been suggested that this pathway is a

key determinant of the lifespan differences between honeybee

queens and workers [65]. Reduced IIS extends the lifespan through

Figure 3. The effects of pRJ-Fr.4 on the lifespan of C. elegans. The survival curves of N2 hermaphrodites treated with pRJ Fr.4 (0 (control), 5, 10
or 25 mg/ml) are shown. The experiment was performed as described in Figure 1 Legend. Detailed parameters are presented in Table S1.
doi:10.1371/journal.pone.0023527.g003

Figure 4. The effects of pRJ-Fr.5 on the lifespan of C. elegans. Survival curves of N2 hermaphrodites treated with pRJ-Fr.5 (0 (control), 10, 25 or
100 mg/ml). The experiment was performed as described in Figure 1 Legend. Detailed parameters are presented in Table S1.
doi:10.1371/journal.pone.0023527.g004
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DAF-16, a FOXO transcription factor in C. elegans [66-68]. We

found that pRJ-Fr.5 induced nuclear localization of DAF-16 (Fig.

S3), indicating that pRJ-Fr.5 activated DAF-16. However, our

results showed that the mean-lifespan extension by pRJ-Fr.5 in N2

was greater than that in the daf-16 deletion mutant (Fig. 3, Fig. 4,

Table S1), indicating that pRJ-Fr.5 extended the lifespan by both

DAF-16-dependent and DAF-16-independent mechanisms. This

finding is consistent with the notion that pRJ-Fr.5 extends the

lifespan in part through the IIS-DAF-16 pathway and in part

through some other mechanism.

We performed DNA microarray and real-time RT-PCR analyses

to identify pRJ-Fr.5-regulated genes. In these genes, ins-9 was down-

regulated by pRJ-Fr.5. Among the 40 known insulin-like peptides in

C. elegans, INS-1 [69], INS-7 [53], INS-11 [70], INS-18 [71] and

DAF-28 [72], [73] have been reported to be regulators of lifespan.

Similar to ins-1 and daf-28, ins-9 is also expressed in chemosensory

neurons such as ASI [74], which plays an important role in lifespan

determination [74], [75]. Interestingly, the expression of ins-7 has

been reported to be regulated by IIS-DAF-16 [76]. We also

suggested that ins-9 expression is also controlled by IIS-DAF-16

from the finding that the DBE and DAE are overrepresented in the

upstream regions of ins-9 (Table 1).

We also found that pRJ-Fr. 5 down-regulated dod-19, dao-4 and

fkb-4 and up-regulated dod-3 (Fig. 5, Table S2), gene expression

changes that are also observed when IIS is reduced [52], [53]. The

dod-19 gene encodes an unknown protein; however, intriguingly, it is

one of the known determinants of lifespan [53]. It is also interesting

to note that fkb-4 encodes a homolog of the mammalian protein

FKBP [52], which binds to the immunosuppressant FK506 and

rapamycin. FKBP is involved in the mammalian target of

rapamycin (TOR) pathway [77–82] and in diverse cellular

functions, including protein folding and the modulation of oxidative

stress [83]. FKBP also has neural roles [84], [85]. Inhibition of the

TOR pathway has been found to increase lifespan in a variety of

species, including yeast, nematodes, flies, and mice [86–91]. The

deletion of both fkb-4 and fkb-5, another FKBP gene, results in

lethality under cold conditions [92], and it has been observed that

cold conditions affect lifespan in C. elegans [3]. Interestingly, the

TOR pathway works as an energy- and nutrient-sensing pathway to

determine the queen/worker differentiation in honeybees [93].

Further research is necessary to determine whether these genes are

actually involved in the lifespan extension mediated by pRJ-Fr.5.

Recent investigations have provided evidence of common

longevity regulation pathways between nematodes, insects and

Figure 5. The effects of pRJ-Fr.5 treatment on gene expression in C. elegans. Relative expression levels of genes (ins-9, dod-3, dod-19, dao-4,
and fkb-4) in N2 hermaphrodites treated with pRJ-Fr.5 (0 (control) or 25 mg/ml) for 24 h starting at the L4 stage. Data are expressed as the mean 6 S.E.
(n = 3). *: p,0.05; **: p,0.01, compared with control (Student’s t test).
doi:10.1371/journal.pone.0023527.g005

Table 1. DAF-16 promoter elements in the upstream region
of genes commonly regulated by reduced IIS and pRJ-Fr.5.

Gene Cosmid no.
DBE
TTGTTTAC

DAE
CTTATC

dod-3 C24B9.9 3 1

dod-19 ZK6.10 1 3

fkb-4 ZC455.10 1 1

dao-4 ZC373.6 1 1

ins-9 C06E2.8 2 2

The number of DAF-16-binding elements and DAF-16-associated elements in
the 2kb upstream of each gene is shown.
doi:10.1371/journal.pone.0023527.t001
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mammals [1], [64], [87], [90], [91]. The further identification and

characterization of the longevity-promoting compounds contained

in RJ will broaden our understanding of the gene networks involved

in longevity regulation in diverse species and may lead to the

development of nutraceutical interventions in the aging process.

Materials and Methods

Nematode strains and culture conditions
The C. elegans strains were maintained at 20uC on nematode

growth medium (NGM) agar with Escherichia coli OP50 as a food

source, as previously described [94]. The N2 Bristol strain was used

as the wild-type C. elegans. The mutant strain used in this study was

CF1038: daf-16(mu86) I and TJ356: zIs356 [Ex(daf-16::gfp + rol-6)].

Royal jelly and protease treatment
Fresh RJ, which was produced by honeybees (Apis mellifera L.)

foraging on Brassica sp. in China, was obtained from Api Co., Ltd.,

Gifu, Japan. RJ hydrolyzed by Protease N (pRJ) was prepared as

previously described [95]. The following drugs and chemicals were

purchased and used: 10-HDA (Alfresa Pharma Co., Ltd., Osaka,

Japan) and Protease N ‘‘Amano’’ (from Bacillus subtilis; Amano

Enzyme Inc. Aichi, Japan).

Fractionation of RJ
Fresh RJ (1 kg) was mixed with water (1 L), hexane (2 L) and

EtOH (4 L), and then shaken slowly overnight at room

temperature. This mixture was filtered through No. 2 filter paper

and then the extracts were concentrated under pressure until they

Figure 6. The effects of pRJ-Fr.5 on the lifespan of daf-16(mu86) mutants. The survival curves of daf-16(mu86) mutant hermaphrodites
treated with pRJ-Fr.5 (0 (control) or 25 mg/ml). The experiment was performed as described in Figure 1 Legend. Detailed parameters are presented in
Table S1.
doi:10.1371/journal.pone.0023527.g006

Figure 7. The effects of 10-HDA on the lifespan of C. elegans. The survival curves of N2 hermaphrodites incubated with 10-HDA (0 (control), 10,
25, 50 or 100 mM) are shown. The experiment was performed as described in Figure 1 Legend. Detailed parameters are presented in Table S3.
doi:10.1371/journal.pone.0023527.g007

Lifespan-Extending Effects of Royal Jelly
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became a dark yellow material (RJ-Fr.2). This residue was dried by

heating under reduced pressure and then mixed with 5% EtOH.

The supernatant from this suspension was then freeze-dried (RJ-

Fr.1). The yields of RJ-Fr.1 and RJ-Fr.2 were 40.9% and 16.0%,

respectively.

Fractionation of pRJ
pRJ (20 g) was mixed with water and then chromatographed on

an ODS column. The column was eluted stepwise with water and

30% (v/v) aqueous MeOH. Each fraction (1 L each) was collected

and freeze-dried. These fractions were designated as pRJ-Fr.4

(15 g in the H2O phase) and pRJ-Fr.5 (3.8 g in the 30% MeOH

phase).

Determination of lifespan
Eggs that were isolated with hypochlorite were placed on fresh

NGM agar plates containing UV-killed E. coli strain OP50, unless

otherwise stated. UV-killing was used to avoid any effects of live E.

coli on the compounds examined in this study and any effects of

these compounds on growth of live E.coli. To kill the OP50, plates

covered with OP50 were UV-irradiated as previously described

[96]. Worms were raised until the L4 molt and were subsequently

transferred onto a new plate containing 40 mM 5-fluoro-29-

deoxyuridine (FUdR, Sigma Aldrich, St. Louis, MO, USA) to

prevent self-fertilization. The day of transfer at the L4 molt was

counted as 0-day adult in the lifespan assay. The worms were

transferred to fresh plates daily, and the number of surviving

Figure 8. The effects of 10-HDA on the lifespan of daf-16(mu86) mutants. The survival curves of daf-16(mu86) mutant hermaphrodites
incubated with 10-HDA (0 (control), 10, 25, 50 or 100 mM) are shown. The experiment was performed as described in Figure 1 Legend. Detailed
parameters are presented in Table S3.
doi:10.1371/journal.pone.0023527.g008

Figure 9. The effects of 10-HDA and/or pRJ-Fr.5 on the lifespan of C. elegans. The survival curves of N2 hermaphrodites incubated with 10-
HDA (0 or 25 mM) and/or pRJ-Fr.5 (0 or 25 mg/ml) are shown. The experiment was performed as described in Figure 1 Legend. Detailed parameters
are presented in Table S3.
doi:10.1371/journal.pone.0023527.g009

Lifespan-Extending Effects of Royal Jelly
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worms was monitored until death unless otherwise stated. Worms

were judged to be dead when they did not respond to a

mechanical stimulus. To focus on aging, worms that had become

desiccated on the side of the plate after crawling off, that displayed

extruded internal organs or that died because of progeny hatching

inside the uterus (matricidal death) were excluded from our

analysis. The results of the survival assays were analyzed using the

Kaplan-Meier method, and significance was measured with the

log-rank test using the statistical analysis package StatMate III

(ATMS, Tokyo, Japan).

Treatment with compounds
EtOH solutions of RJ, pRJ and RJ-Fr.1, aqueous solutions of

RJ-Fr.2, pRJ-Fr.4 and pRJ-Fr.5 as well as 10-HDA in DMSO,

were added to liquid NGM that had been autoclaved and cooled

to 50uC. The media were immediately dispensed into Petri dishes.

Experiments involving RJ, pRJ and RJ-Fr.1 were performed in

parallel with those involving a control group treated with 0.1%

EtOH; and experiments involving 10-HDA were conducted in

parallel with those involving a control group treated with 0.03%

DMSO.

DNA microarray analysis
The C. elegans N2 strains were treated with pRJ-Fr.5 (0 (control)

or 25 mg/ml) for 24 h beginning at the L4 stage. A total of 8,000-

10,000 worms were collected for each sample. The worms were

homogenized in TRIzolH Reagent (InvitrogenTM, Carlsbad, CA)

using a Precellys 24 (Bertin Technologies, Montigny-le-Breton-

neux, France). Total RNA was extracted with a PureLinkTM RNA

Mini kit (InvitrogenTM). The Agilent C. elegans (V2) Gene

Expression Microarray, 4x44K (G2519F-020186) was used for

global gene expression analysis. This microarray contains 43,803

C. elegans complementary DNA (cDNA) probes, each consisting of

a single 60-oligomer oligonucleotide sequence. Target RNA

labeling and hybridization were performed according to the

protocol for one-color microarray-based gene expression analysis

using the Quick Amp Labeling Kit (Agilent Technologies, Santa

Clara, CA). In brief, 500 ng of RNA was transcribed using the

oligo(dT)-based T7 promoter primer and MMLV-RT in the first-

and second-strand cDNA synthesis reactions. The double-stranded

cDNAs were used as templates for the preparation of fluorescent

complementary RNAs (cRNAs) in the presence of T7 RNA

polymerase and cyanine 3-CTP dye in an in vitro transcription

reaction. The labeled cRNAs were purified, fragmented, and

hybridized to microarrays in a rotating hybridization oven at

10 rpm for 17 h at 65uC. After hybridization, the microarrays

were washed according to the manufacturer’s instructions and

scanned using an Agilent DNA Microarray Scanner with Scan

Control software (Agilent Technologies). The resulting images

were processed, and the raw data were collected using the Agilent

Feature Extraction software. The gene expression data were

analyzed using GeneSpring GX 11 (Agilent Technologies). The

signal intensity of each probe was normalized by a percentile shift,

in which each value was divided by the 75th percentile of all the

values in its array. The microarray data discussed in this

publication have been deposited in NCBI’s Gene Expression

Omnibus (GEO) and are accessible through the GEO Series

accession number GSE26094 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE26094). To identify the genes with

biological significance, we applied flags attributed to the signal

intensity of each probe, the fold change, and the Student’s t-test

values. All the data are MIAME compliant.

Real-time RT-PCR analysis
Total RNA was reverse-transcribed to cDNA using a High

Capacity cDNA Reverse Transcription kit (Applied Biosystems),

and subjected to real-time PCR using the SYBR Premix Ex Taq II

(Perfect Real Time) (TaKaRa) and the Thermal Cycler Dice Real

Time System (TaKaRa). The following primers were used: ins-9

forward, 59-GGCGAGAAGAACCTTGGAAAC-39; ins-9 reverse,

59-ACAGCACAGCTTAGAGAGATCCTG-39; ins-20 forward,

59-TCATCATCACAGGCACAAAGG-39; ins-20 reverse, 59-GC-

AAAATATCATCATCCGTCAGG-39; ins-23 forward, 59-CAG-

AGCTTCACGTTCGTAGGG-39; ins-23 reverse, 59-GAACAG-

TACTCGGTTGGACTTGG-39; dod-3 forward, 59-AAGCCAT-

GTTCCCGAATGAG-39; dod-3 reverse, 59-GCTGCGAAAAG-

CAAGAAAATG-39; dod-19 forward, 59-ACCGTTCCCAGTTT-

TACAGTCC-39; dod-19 reverse, 59-TATTTTGAGGCGCGGA-

TACAC-39; dao-4 forward, 59-GCACATTACAAATGCTTCA-

AGGAC-39; dao-4 reverse, 59-TGACACCCTCATCCCCATA-

AC-39; fkb-4 forward, 59-CTATGCGAGGAATGTGTATTG-

GAG-39; fkb-4 reverse, 59-TGGACAGTGTAATAGAGTGGCT-

GAC-39; rla-1 forward, 59-ACCGGCGAGAAGATCGCTAC-39;

rla-1 reverse, 59-CGGAAGAGACAGAAGTGATGAGG-39. The

relative expression level of each gene was calculated using the

comparative Ct method. Ribosomal protein, Large subunit, Acidic

(P1) family member (rla-1) was used as an internal control gene.

Analysis of pRJ-Fr.5 components
Sugar content was estimated by orcinol/sulfuric acid analysis.

Peptide content was estimated by the Lowry method. The

molecular weights of peptides were estimated by HPLC analysis

on a Superdex Peptide HR 10/30 column (Pharmacia Biotech,

Uppsala, Sweden). The 10-HDA content was determined using

HPLC with a Consmosil 5C18-MS-II column (Nacalai Tesque,

Tokyo, Japan) at 40uC. The column was eluted with a mobile

phase of 10 mM phosphate buffer (pH 2.5) and MeOH

(1960:1540, v/v) at a flow rate of 1.0 ml/min.

Supporting Information

Figure S1 The effect of RJ-Fr.1 on the lifespan of C. elegans. The

survival curves of N2 hermaphrodites incubated with RJ-Fr.1 (0

(control), 10, 25 or 100 mg/ml) are shown. The RJ-Fr.1 was given

at 20uC from 0-day adult until death. Day 0 corresponds to the L4

molt. The percentage of live worms is plotted against adult age.

Detailed parameters are presented in Table S1.

(TIF)

Figure S2 The effect of RJ-Fr.2 on the lifespan of C. elegans. The

survival curves of N2 hermaphrodites incubated with RJ-Fr.2 (0

(control), 10, 25 or 100 mg/ml) are shown. The RJ-Fr.2 was given

at 20uC from 0-day adult until death. Day 0 corresponds to the L4

molt. The percentage of live worms is plotted against adult age.

Detailed parameters are presented in Table S1.

(TIF)

Figure S3 The effect of pRJ-Fr.5 treatment on DAF-16 nuclear

translocation. DAF-16 nuclear translocation was examined in a

daf-16::gfp transgenic N2 line (zIs356, TJ356). The animals were

treated with pRJ-Fr.5 (0 or 25 mg/ml) for 24 hrs. [A] Images of

DAF-16::GFP animals. The arrowheads show the nuclear

localization of DAF-16::GFP. [B] The translocation of DAF-

16::GFP into the intestinal nuclei was not seen in untreated

animals, whereas a fraction of pRJ-Fr.5-treated animals exhibited

DAF-16::GFP translocation. The percentage of animals with

nuclear-localized (black) and diffuse (gray) DAF-16::GFP in
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intestinal cells is shown. N = 58 (untreated) and 102 (pRJ-Fr.5

treated).

(TIF)

Table S1 Effects of RJ or pRJ on the lifespan.

(XLSX)

Table S2 Differentially regulated genes by pRJ-Fr.5 treatment.

(XLSX)

Table S3 Effects of 10-HDA and/or pRJ-Fr.5 on the lifespan.

(XLSX)
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