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Abstract: The electroencephalogram (EEG) introduced a massive potential for user identification.
Several studies have shown that EEG provides unique features in addition to typical strength for
spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes
can capture on the scalp at different places. However, selecting which electrodes should be used
is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by
optimization methods. In this work, a new approach to select the most representative electrodes is
introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and
β-Hill Climbing optimizer called FPAβ-hc. The performance of the FPAβ-hc algorithm is evaluated
using a standard EEG motor imagery dataset. The experimental results show that the FPAβ-hc
can utilize less than half of the electrode numbers, achieving more accurate results than seven
other methods.

Keywords: EEG; biometric; β-hill climbing; flower pollination algorithm; feature selection; auto-repressive

1. Introduction

Over many years, our world has transferred into a digital community, where each
subject lives with an unique digital identifier [1]. Indeed, there are many identifiers, such
as identification passwords and cards. At the same time, these identifiers can be easily
circumvented, stolen, and forgotten [2]. Therefore, personal characteristics or behaviors
can be used to strengthen identification applications. Such techniques, so-called biometrics,
use several in-person information to allow more robust identification systems, such as face
and voice recognition, fingerprint information, and iris data, among others [3].

On the other hand, the widespread and influential deployment of biometric systems
leads to a new challenge, which is called “spoofing” [1,4]. Such an attack is classified as the
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most dangerous in security systems since it is designed to break the biometrics systems’
security, thus allowing unwarranted persons to obtain admission to the system [2].

In real life, there have already been several spoofing attacks on biometrics systems,
such as face spoofing (printed photos and 3D mask attacks [5,6]), fake fingerprints (gummy
fingers), finger–vein systems fooled through a piece of paper [7], iris recognition systems
fooled by an eyeball opposite to the scanner of iris, and voice recognition fooled by replay-
ing a voice recording opposite to the recognition system speaker [7]. Therefore, people are
looking for biometric authentication systems that can grant access to a person based on
invisible characteristics, thus becoming harder to be attacked by an external threat. In this
context, one shall refer to user authentication based on brain signals, which can be captured
by the well-known electroencephalogram (EEG) exam [8].

The EEG is a clinical test that places electrodes on the person’s scalp to detect the
brain’s electrical activities, which are further recorded for visualization purposes. Such
information reflects the voltage currents inside the brain from ionic flows concerning the
neurons’ activity [2]. Approaches to capture electrical brain signals can be categorized as
invasive and non-invasive [9], where the former ones require surgery to embed electrodes
in the brain. The electrocorticography brain–computer interface (ECoG BCI) is an example,
which is usually intended for recording the movements of the arm [2]. Other signal types
are used in the non-invasive approaches, such as functional magnetic resonance imaging
and magnetoencephalography.

Many studies have proposed to solve issues relevant to identification in biometric
applications. For instance, Jayarathne [10] gathered signals as a biometric approach from
21 test subjects to verify their identity. The authors employed the EMOTIV EEG Headset
with 14 channels. The Common Spatial Patterns were used for feature extraction and
Linear Discriminant Analysis for classification purposes. The proposed approach achieved
a 96.97% recognition rate, which motivated the authors to claim that EEG signals might be
an excellent approach to replace PINs when accessing ATMs. However, the selection of
relevant channels that produces the optimal subset of EEG features is of prime importance
for (i) reducing computational complexity, (ii) reducing over-fitting, and (iii) eliminating
inconveniences during clinical application [11]. Table 1 presents some studies we thought
might be relevant to EEG channel selection.

According to Table 1, many studies have worked on the channel selection problem
with different methodologies such as Common Spatial Patterns, optimization, Pearson
correlation coefficient, and additional connectivity metrics. Most existing works were
implemented based on the data extracted from 64 EEG channels. Furthermore, most
works reduced the number of channels and presented significant classification accuracy. In
contrast, refs. [10,11] reported good classification performances, but the number of selected
channels is still high. On the other hand, some studies have reduced channels up to 50%,
but with a moderated classification rate.

Recently, several researchers proposed the use of optimization approaches to solve
challenges with non-stationary signals [1,6,12,13]. In addition, EEG-based user identi-
fication with supervised classification and optimization methods has shown significant
improvements compared to traditional techniques [2,14,15].
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Table 1. Some relevant works related to EEG channel selection.

Work Approach Case Study Channels Selected Accuracy

Rodrigues et al. [1] Binary Flower Pollination with OPF Person Identification 64 45 86%

Fraschini et al. [16] Different connectivity metrics Person Identification 64 N/a N/a

Gaur et al. [17] Person correlation coefficient Motor Imagery 118 36.58 78.08%

Kaur et al. [11] Principal Component Analysis Person Identification 64 64 97.73%

Idowu et al. [18] Modified Particle Swarm Optimization Motor Imagery 64 30.4 91.89%

Jayarathne et al. [10] Common Spatial Patterns Person Identification 14 14 96.97%

Signal acquisition is one of the significant problems concerning the EEG-based user
identification technique, which is performed by placing electrodes on the head of a hu-
man [19–21]. In addition, such a process is usually uncomfortable since it requires good
knowledge to place the sensors correctly. Additionally, some questions must be considered:
“Is it essential to place all these electrodes on the head of persons?” and “Whether not,
may we detect the most significant ones for user identification and then utilize fewer
electrodes?”.

The above questions led our work to model the EEG channel selection as an opti-
mization problem. Flower Pollination Algorithm (FPA) is a robust optimization method
and has been successfully applied to many real-world problems [22]. Although FPA has
proved to be a great success in finding optimal solutions to many issues, it suffers, like
metaheuristic algorithms, from the inability to generate new solutions when it is stuck in
local minima [23]. According to [1], the authors tested several meta-heuristic algorithms
for EEG channel selection, with FPA achieving the most accurate results. However, it still
has some problems, such as being stuck in local minima. For this reason, we propose to
hybridize FPA with the local search optimizer β-hill climbing (β-hc) [24].

This work is one of the first to employ hybrid optimization methods with super-
vised classification methods for biometric user identification using EEG. The main point
of hybridizing any two approaches is to complement their advantages and avoid their
shortcomings. This work aims to learn the most critical EEG channels by proposing a
hybrid approach composed of β-hc and FPA, named “FPAβ-hc”. Therefore, we expect to
obtain more accurate results when applying optimization approaches to select optimal EEG
channels. The main contributions of this work are summarized as follows:

1. To evaluate the proposed FPAβ-hc for EEG-based user identification. Such a hy-
brid approach aims to improve local pollination in FPA to avoid being stuck in
local minima.

2. To perform an extensive study to select the most suitable classifier to guide the
optimization process using FPAβ-hc. Our experiments showed that Support Vector
Machines with Radial Basis Function (SVM-RBF) obtained the most effective results,
thus being the preferred approach in this work.

The remainder of this article is organized as follows: Section 1 presents the main
concepts regarding EEG signals, as well as related works about EEG-based identification.
The proposed method is detailed in Section 2. The results are discussed in Section 3, the
discussion is provided in Section 4, and the conclusions and future works are set out in
Section 5.

2. Proposed Method

This section provides a detailed explanation of the proposed approach for EEG channel
selection through FPAβ-hc, which comprises five steps such that every stage’s output acts
as an input to the other one. The proposed approach is depicted in Figure 1.
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Figure 1. Proposed EEG-based user identification system using FPAβ-hc.

2.1. EEG Signal Acquisition

The EEG signal acquisition step is carried out over a typical EEG signal dataset. By
using a brain–computer interface software called the BCI2000 system, the EEG signals are
gathered from 109 healthy persons [25]. The EEG signals are acquired from 64 electrodes
(i.e., channels), and 12 motor/imagery tasks are performed by every subject (i.e., 12 EEG
signals records for each individual). Furthermore, AR features with three different numbers
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of coefficients are derived from these recordings: AR5, AR10, and AR20. To reduce the
dispersion of the EEG patterns and quickly process the extracted features, we compute the
mean value of each electrode. The electrode distribution used in this work is depicted in
Figure 2.

Figure 2. Distribution of the electrodes used in the study.

2.2. Pre-Processing

The original EEG signal is separated into six sub-signals, each comprising 10s. We
utilized a notch filter, and a band-pass for denoising purposes for the EEG signal can be
corrupted during recording.

2.3. Feature Extraction

Feature extraction plays a significant role in any authentication system. Therefore,
the primary purpose of this step is to find unique information from the EEG signals. In
this work, two feature extraction methods have been used to represent features: Wavelet
Transform and Auto-regressive (AR) models. This work uses the Yule–Walker method to
estimate the AR coefficients using the least-squares method with three different numbers
of coefficients, i.e., 5, 10, and 20, as suggested by Rodrigues [1].

First, we need to keep these features in a standard format of rows and columns.
In general, the rows represent the AR feature values of each channel (electrode), and
the columns represent the input EEG signals. Finally, a bidimensional matrix will be
constructed. Figure 3 shows the final EEG dataset representation from data recorded from
several subjects.

Figure 3. EEG feature representation.
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Notably, not all features are helpful for final decisions. Some of them will increase the
complexity or will lead to achieving high miss-classification rates. We model the problem
of selecting proper AR features as an optimization problem using the objective function
defined in Section 2.4, where the channels that achieved the best results are the ones that
will be selected.

2.4. Objective Function

Since the proposed method is initially designed to handle continuous-valued opti-
mization problems, we need to map each possible solution onto a binary-valued position,
for the EEG channel selection problem requires encoding each possible solution as a binary
vector, where ‘0’ means the channel will not be selected and ‘1’ otherwise [1]. To restrict
binary solutions only, we need to use the so-called “transfer function” Z, which refers to
the Z-shaped transformation function. The primary purpose of using a transformation
function is to convert a real-valued solution to another one with binary values suitable for
the channel selection problem. This transformation function has been used in [1], where Z
can be defined as follows:

Z( f (st
i)) =

{
1 φ > σ( f (st

i))

0 otherwise,
(1)

where

σ( f (st
i)) =

1

1 + e− f (st
i )

, (2)

and φ ∼ U(0, 1). Figure 4 illustrates how to build such a binary vector and to select the
optimal EEG subset channels using the proposed FPAβ-hc.

Figure 4. EEG channel selection using the proposed approach (FPAβ-hc).

Three steps must be considered when selecting the optimal subset of channels. First, a
random initialization of the binary vector (representing the EEG channels) is conducted,
where ‘1’ refers that a given channel will be selected, and ‘0’ denotes that the channel will
not be selected. Second, the FPAβ-hc starts searching the space to find the optimal subset
of channels, i.e., the one that can provide the highest accuracy rate based on Equation (3).
Finally, we discard all channels with ‘0’ values and keep the remaining ones.
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The objective function used to evaluate the classification performance of EEG channel
selection is formulated below:

Acc =
TA + TR

TA + FA + TR + FR
× 100 (3)

where Acc denotes the objective function (accuracy rate) calculated for each row of the AR
feature matrix, and TA, TR, FA, and FR represent the true acceptance, true reject, false
acceptance, and false reject rates, respectively.

Algorithm 1 presents the proposed method that employs BFPAβhc for EEG-channel
selection using the SVM-RBF classifier and Equations (1) and (2) as the transfer function.

Algorithm 1 Hybridizing Flower Pollination Algorithm with β-hill climbing for EEG Channels Selection.

1: Input:
2: Initialize a population of N flowers/pollens with random solution
3: Find the best solution G∗sol in the initial population
4: Define a switch probability p ∈ [0, 1]
5: Channels = {Ch1, Ch2, . . . , ChD}
6: for a = 1 to N do
7: Evaluate fitness value of f (sol) based on 10-fold-CSV SVM and Accuracy rate of EEG Channels Selection [Equation (3)]
8: end for
9: Find G∗sol , where G∗sol ∈ (1, 2, . . ., N)

10: itr = 0
11: while itr < Total_iterations do
12: for j = 1 to N do
13: for i = 1 to number o f channels(D) do
14: if rnd ≤ p then
15: Draw a (d-dimensional) step vector L which obeys a Levy distribution
16: Global pollination via solitr

i = solitr−1
i + L ∗ (G∗sol − solitr−1

i )

17: sigmoid(solitr
i ) = 1

1+e
−solitri

18: if sigmoid(solitr+1
i ) > U(0, 1) then

19: sol′itri,j = 1
20: else
21: sol′itri,j = 0
22: end if
23: else
24: Draw f rom a uni f orm distribution ∈ [0, 1]
25: Randomly choose j and k among all solution
26: Do local pollination via solitr

i = solitr−1
i + ∈ (solitr

j − solitr
k )

27: sigmoid(solitr
i ) = 1

1+e
−solitri

28: if sigmoid(xitr
i ) > U(0, 1) then

29: sol′itri,j = 1
30: else
31: sol′itri,j = 0
32: end if
33: end if
34: end for
35: Run β-hill climbing algorithm using sol′itri,j .

36: while Stop criterion is not met do
37: New− sol′itri,j = N −Operator(sol′itri,j )

38: New− sol′′itri,j = β−Operator(New− sol′itri,j )

39: if f (New− sol′itri,j ) ≤ f (New− sol′′itri,j ) then
40: replace (New− sol′itri,j ) by (New− sol′′itri,j )

41: end if
42: end while
43: sol′itri,j = New− sol′′itri,j

44: end for
45: Update G∗sol , where G∗sol ∈ (1, 2, . . . , N)
46: itr = itr + 1
47: end while
48: Output
49: Return G∗sol : best channels subset with highest accuracy rate.
50: End
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2.5. Experimental Setup

The dataset D is partitioned into three subgroups, D = D1 ∪ D2 ∪ D3, which stand
for the training, validation, and test sets, respectively. In addition, we decided to use
50% of the dataset for training purposes and 20% and 30% for the test and validation
datasets, respectively, as suggested by Rodrigues et al. [1]. We adopted the classification
accuracy of a Support Vector Machine with Radial Basis Function (SVM-RBF) over the
validation set as the objective function to assist the optimization process. The main idea is
to employ training and validation sets to find the subset of EEG features that maximize the
classification accuracy over the latter. Finally, we select the best subgroups of channels that
provide the highest accuracy rates and train the classifier once more. The final accuracy
is assessed over the test set. The experiments have been performed utilizing a Lenovo
Ideapad 310 PC, Intel Core-i7 with 2.59 Ghz processor, 8 GB of RAM, and Windows 10.
The FPA and FPAβ-hc parameter values are presented in Table 2. Notice that T refers to
the maximum number of iterations used in the experiments. These parameters have been
selected based on our previous works [13,24].

Table 2. Parameter setting up.

Algorithm Parameters

FPA p = 0.8, N = 64, D = 20, and Titr = 100
β-hc β = 0.5, N = 64, D = 1, and Titr = 100

3. Results

This section details the experiments used to evaluate the proposed approach; stan-
dard approaches in Section 3.1; comparison against standard FPA, β-hc, and FPAβ-hc in
Section 3.2; and, finally, comparison with State-of-the-Art in Section 3.3.

3.1. EEG Classification Using Standard Machine Learning Approaches

Eight classifiers are selected from the literature according to their performance in
EEG applications and evaluated their effectiveness to guide the optimization process
proposed in the work: Linear Support Vector Machines, Artificial Neural Networks (ANN),
Optimum-Path Forest (OPF), k-Nearest Neighbors (k-NN), Support Vector Machine with
Radial Basis Function, Linear Discriminant Analysis (LDA), Decision Tree (J48), and Naive
Bayes. Table 3 presents the parameter setting for these classifiers.

Table 3. Parameter setting up.

Classifier Parameters

LDA Preset = Linear, covariance structure = Full
LinearSVM C = 1.00 × 1011, Gamma = 0.01, Kernel = Linear, Standardize data: True
KNN Kernel = Fine, Distance weight: Equal, Distance: Euclidean, Standardize data: True
ANN Hidden layer = 32, Learning Rate = 0.3, binary splits = True
Naivebayes C = 0.691, Gamma = 0.95, binary splits = True
J48 confidence factor = 0.25, binary splits = False, seed = 1
OPF – –
RBF-SVM C = 1.00 × 1011, Gamma = 0.01, Kernel = RBF

Since the proposed approach is non-deterministic, we computed the mean accuracy
rate over 25 runs for avoiding bias outcomes as used in [1]. To evaluate the proposed
approach, we considered five measures: (i) Accuracy (Acc), (ii) Number of selected channels
(No. Ch), (iii) Sensitivity (Sen), (v) Specificity (Spe), and (iv) F-Score.

Table 4 presents the performance of FPAβ-hc with different classifiers. Regarding
AR5 model, it has been observed that FPAβ-hc-SVM-RBF outperforms all methods on all
evaluation measurements. The LDA stands out as the second-best approach with the five
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best values of Acc, Sen, Spe, and F-Score measures. Concerning AR10 and AR20, FPAβ-hc-
SVM-RBF outperforms other methods for all evaluation metrics. Similar to its performance
in AR5, LDA stands out as the second-best performance method with the five best values
for Acc, Sen, Spe, and F-Score in AR10 and AR20 models. One of the exciting details in
Table 4 concerns that the proposed method (FPAβ-hc-SVM) achieved zero misclassification
rates with the AR20 model.

Table 4. Comparison against FPAβ-hc-SVM-RBF and other classifiers.

Dataset Measure FPAβ-hc-
SVM-RBF

FPAβ-hc-
LSVM

FPAβ-hc-
LDA

FPAβ-hc-
ANN

FPAβ-hc-
NB β-hc-OPF FPAβ-hc-

J48
FPAβ-hc-

KNN

Acc 94.5619 52.66 90.13 35.46 85.20 79.73 80.13 83.06
No. Ch 34 40 40 43 39 39 43 43

AR5 Sen 0.9476 0.5266 0.9013 0.3546 0.852 79.73 0.8013 0.8306
Spe 0.9943 0.5704 0.8776 0.2827 0.8772 81.55 0.8351 0.8719

F-Score 0.9473 0.5038 0.8790 0.2765 0.8469 78.61 0.7880 0.8223

Acc 97.9619 50.66 93.46 20.40 76.66 78.53 69.73 80.13
No. Ch 36 39 36 39 37 37 42 45

AR10 Sen 0.9796 0.5066 0.9346 0.2040 0.7666 0.7853 69.73 80.13
Spe 0.9943 0.5152 0.9430 0.1744 0.8199 0.8281 0.7068 83.83

F-Score 0.983 0.4661 0.9304 0.1494 0.7574 0.7809 0.6620 79.12

Acc 100 50.66 85.6 20.40 83.40 78.66 76.00 81.46
No. Ch 35 36 36 39 39 41 42 47

AR20 Sen 1 0.5066 0.856 0.2040 0.8346 0.7866 0.7600 0.8146
Spe 1 0.5152 0.8822 0.1744 0.8605 0.8214 0.8218 0.8511

F-Score 1 0.4661 0.8505 0.1494 0.8263 0.7775 0.7610 0.8110

Furthermore, a statistical test is applied to determine whether there is a significant
difference between FPAβ-hc-SVM-RBF and others. This study stated a null hypothesis as
follows: “channel subset chosen by FPAβ-hc-SVM-RBF for user authentication is no better
than channel subset chosen by FPAβ-hc with other classifiers”. The statistical test is based
on the classification accuracy Acc obtained by all methods on the testing data. A t-test was
conducted to test the hypothesis in this study, where the significance level was set to 0.05.
As one can observe in Table 5, the p-value for all tests was below 0.05, which means the
hypothesis is rejected. Accordingly, the channel subset obtained by FPAβ-hc-SVM-RBF is
significantly better than FPAβ-hc with other classifiers, thus handling EEG-based person
identification better.

Table 5. t-test result between FPAβ-hc-SVM-RBF and other approaches.

FPAβ-hc-
LSVM

FPAβ-hc-
LDA

FPAβ-hc-
ANN

FPAβ-hc-
NB β-hc-OPF FPAβ-hc-

J48
FPAβ-hc-

KNN

AR5

Mean 0.5266 0.9013 0.3546 0.852 0.8306 0.8013 0.8306
STD 0.0452 0.0520 0.0652 0.0232 0.0672 0.0774 0.0672

t-value 44.00 3.9338 43.6743 17.6180 8.1506 8.9398 8.1506
p-value 0.00001 0.000134 0.00001 0.00001 0.00001 0.00001 0.00001

AR10

Mean 0.5066 0.9346 0.204 0.7666 0.7853 0.6973 0.8013
STD 0.0421 0.0485 0.0483 0.0249 0.0566 0.0711 0.0599

t-value 41 2.09 62.64 22.46 12.95 16.32 11.27
p-value 0.00001 0.020736 0.00001 0.00001 0.00001 0.00001 0.00001

AR20

Mean 0.5066 0.8560 0.2040 0.8346 0.7866 0.7600 0.8146
STD 0.0421 0.0579 0.0483 0.0436 0.0461 0.0498 0.0389

t-value 57.32 12.18 80.62 18.53 22.62 23.56 23.3
p-value 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
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3.2. Comparison against Standard FPA, β-hc, and FPAβ-hc

After selecting the best classifier for the EEG-based person identification problem (i.e.,
SVM-RBF), standard FPA, β-hc, and FPAβ-hc are compared to select the best one for further
comparison with some state-of-the-art techniques. Figure 5 depicts the convergence ratio,
and the frequency of chosen electrodes for standard FPA and FPAβ-hc for 25 runs during
the experimental evaluation using AR-5, AR-10, AR-20, and Wavelet Transform WT.

Figure 5. Convergence rate and the frequency of channel selection for FPAβ-hc and FPA.

Table 6 presents the overall results concerning the comparison between standard FPA,
β-hc, and FPAβ-hc. It is clear from the experimental outcomes that the proposed method
considerably improves the results considering all auto-regressive coefficients. Regarding
the number of selected channels, the proposed approach showed quite good performance.
On the other hand, β-hc selected the lowest number of channels, but it yielded worse results
than the proposed method concerning the remaining measures (i.e., Acc, Sen, Spe, and
F-Score). Even though β-hc obtained the lowest number of channels, it has less classification
accuracy when compared with FPAβ-hc.



Sensors 2022, 22, 2092 11 of 16

Table 6. Comparison between FPA, β-hc and FPAβ-hc.

Dataset Measure FPA-SVM-RBF FPAβ-hc-RBF-
SVM β-hc-RBFSVM

Acc 93.3523 94.5619 93.2
No. Ch 37 34 31

AR5 Sen 0.9395 0.9476 0.928
Spe 0.9935 0.9943 0.9963

F-Score 0.93 0.9473 0.929

Acc 97 97.9619 94.2667
No. Ch 40 36 30

AR10 Sen 0.9795 0.9796 0.9422
Spe 0.9935 0.9943 0.9936

F-Score 0.97 0.983 0.9412

Acc 99.523 100 89.6
No. Ch 38 35 33

AR20 Sen 0.995 1 0.8899
Spe 0.9935 1 0.9884

F-Score 0.995 1 0.8811

EEGAcc 78.1714 79.48 77.2
No. Ch 33 39 33

WT Sen 0.7817 0.7949 0.772
Spe 0.9757 0.9772 0.9747

F-Score 0.7727 0.7854 0.7632

The proposed approach provides an excellent compromise between the number of
selected channels and the remaining evaluation measurements compared to β-hc. Figure 6
depicts the results considering all measures. Additionally, we conducted the Wilcoxon
signed-rank statistical test to check if there is a substantial variance between standard
FPA and FPAβ-hc. The statistical outcomes are tabulated in Table 7 in terms of P-value,
w-value, z-value, and T-Sig. For all experiments (i.e., AR models and WT), FPAβ-hc results
are significantly better than basic FPA. The proposed FPAβ-hc-SVM obtained success in
achieving the best results compared with standard FPA and β-hc EEG channel selection.
This points out the power of hybridization to complement their advantage and avoid their
shortcomings (i.e., FPA and β-hc).

Table 7. Wilcoxon signed-rank test between FPA and FPAβ-hc.

Dataset p-Value w-Value z-Value T-Sig FPAβhc

AR5 0.05 0 −8.329 0.00058 ++
AR10 0.05 72.5 −0.1894 0.008493 ++
AR20 0.05 12.5 −2.3062 0.002088 ++
WT 0.05 0 −0.14 0.00334 ++

++ indicates a significant inclination to FPAβ-hc.
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Figure 6. Performance results of the proposed approach over different feature extraction methods.

3.3. Comparison with State-of-the-Art

The proposed FPAβ-hc-SVM-RBF is compared against six different state-of-the-art
approaches. These methods were carefully selected from the literature, where some are
used as a metaheuristic algorithm to select the optimal number of channels: Binary Flower
pollination Algorithm with OPF classifier (BFPA-OPF) [1], hybrid FPA with β-hill climb-
ing [2], Genetic algorithm (GA) [26], and a deep learning approach proposed in [27,28]. The
comparison involved two criteria, i.e., the accuracy rate and the number of selected chan-
nels. The proposed FPAβ-hc showed significant superiority in accuracy criteria, achieving
100% of recognition rate. However, concerning the number of selected, it is ranked third.
Figure 7 and Table 8 present a comparison of the accuracy rate using the proposed approach
against the methods mentioned earlier.
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Figure 7. Comparison of the proposed approach with state-of-art methods.

Table 8. Comparison of the proposed method (FPAβ-hc-SVM) with state-of-the-art approaches.

Method Accuracy (%) No. Ch Total Channels No.

BFPA-OPF [1] 86.7 45 64
FPAβ-hc-SVM-RBF [2] 96.04 35 64

Convolutional Neural Network [27] 78.2 16 64
Convolutional Neural Network [27] 84.15 64 64

EEG 1D-convolutional [28] 99.58 16 64
GA [26] 98.17 9 32

Proposed approach 100 35 64

4. Discussions

As aforementioned, the primary purpose of this study is to evaluate the proposed
FPAβ-hc-SVM for EEG-based user identification. In this work, we modeled the channel
selection task as an optimization problem and introduced the SVM classifier for EEG-
based biometric user identification. One can observe the proposed methods achieved
similar accuracy rates using SVM considering three different autoregressive coefficients
and wavelet features, with an advantage to FPAβ-hc-SVM when compared to standard
FPA and β-hc optimizers.

Concerning the number of selected channels, FPAβ-hc-SVM has succeeded in reducing
up to half of the total electrodes. The proposed algorithm reduced the total number
of electrodes from 64 to 34, 36, 35, and 39 for AR5, AR10, AR20, and WT, respectively.
Moreover, we can observe that different AR coefficients provide different accuracy rates
regarding the EEG-based person identification task. The proposed approach obtained 100%
of accuracy using only 35 sensors and with AR20 features.

Another exciting feature of FPAβ-hc-SVM concerns the location of the selected elec-
trodes. It is worth noticing that the proposed method showed that the most common
sensors are located on the frontal, occipital, and parietal lobes, although they also spread
along with the head. Such finding is an interesting observation, which means FPAβ-hc-
SVM tried to identify channels not too close to each other to obtain relevant details from
all over the human brain. Table 6 shows a comparison of the proposed method against
some state-of-the-art techniques. It is worth noting that FPAβ-hc-SVM achieved the highest
accuracy rate when compared to other methods. However, considering the number of
selected channels, some improvements are still needed to achieve a minimum number of
channels selected, such as the application of multi-objective optimization.
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Compared with the previous work, the proposed approach achieved more accurate
results using the same feature extraction method (AR5). The accuracy rate was 93.76%,
while the number of channels selected is 32 for the previous work. Here, the proposed
method achieved an accuracy rate of 94.56% using 34 channels for the AR5 features. Overall,
the proposed method archived the best accuracy results (100%) with only 35 channels,
where the previous work achieved the best results with an accuracy of 96 with the same
number of selected channels (i.e., 35 channels).

5. Conclusions and Future Works

In this work, we proposed a hybrid approach composed of the Flower Pollination
Algorithm and the β-hill climbing algorithm (FPAβ-hc-SVM) to address the challenge
of channel selection in EEG-based biometric person identification. The hybrid approach
between FPA and β-hc algorithm has been designed to improve the local pollination part of
the FPA to overcome local minima. It is worth mentioning that another version of hybrid
FPA was also introduced in [2]. However, the main differences between the proposed
approach and the previous ones are: (i) the hybridization in [2] is used to enhance the
quality of the best-achieved solution, but here, the hybridization is used for local pollination
solutions; (ii) the feature extraction techniques used in [2] were time domain, frequency
domain, and time-frequency domain, and the feature extraction methods used here are
computed by wavelet features and auto-regressive features; (iii) furthermore, in [2], the
10-fold cross-validation method is used for the training–testing stage, while in this study, a
training–validation–testing stage is used.

The primary purpose of this work is to demonstrate that all electrodes are not needed
to achieve a high accuracy rate. Therefore, this paper is introduced to model the problem
of channel selection as an optimization problem. The channel’s subset that optimizes the
recognition ratio over a validation set is employed as the fitness function.

The proposed approach (FPAβ-hc-SVM) is tested using a standard EEG dataset with
64 EEG channels and the data recorded from 109 individuals. In addition, the performance
of the proposed method is evaluated using five criteria, which are (i) Accuracy, (ii) F-Score,
(iii) Recall, (v) Specificity, and (iv) the number of the channel selected. The FPAβ-hc-SVM
was tested using two different feature extraction methods, i.e., Wavelet feature s(WT) and
Auto-regressive models with three different coefficients (i.e., AR5, AR10, and AR20). The
outcomes of the experiments presented the introduced method excelled both standard
FPA and the one proposed by [1,2,26–28]. It is worth noting that, while retaining high
accuracy rates, the number of sensors has been lessened by half. Additionally, the outcomes
displayed a positive correlation between the number of features obtained from the EEG
signal and the accuracy ratio. Such a finding suggests that the proposed approach can
remove duplicate and undesirable features while retaining specific features.

On the other hand, the current version of the proposed algorithm has some limitations,
which are as follows:

1. The proposed algorithm was tested by splitting EEG datasets into three subgroups, i.e.,
training, validating, and test sets. This approach may lead to overfitting the results.
We recommended trying the FPAβ-hc-SVM using k-fold-cross-validation approach
instead.

2. The FPAβ-hc-SVM technique was tested using WT features and auto-regressive mod-
els only. Future work may recommend testing the proposed method over different
features. In addition, we recommend investigating the usage of a multi-objective
approach.
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