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Child‑directed speech is optimized 
for syntax‑free semantic inference
Guanghao You1,2*, Balthasar Bickel1,2, Moritz M. Daum2,3,4 & Sabine Stoll1,2

The way infants learn language is a highly complex adaptive behavior. This behavior chiefly relies on 
the ability to extract information from the speech they hear and combine it with information from the 
external environment. Most theories assume that this ability critically hinges on the recognition of at 
least some syntactic structure. Here, we show that child‑directed speech allows for semantic inference 
without relying on explicit structural information. We simulate the process of semantic inference with 
machine learning applied to large text collections of two different types of speech, child‑directed 
speech versus adult‑directed speech. Taking the core meaning of causality as a test case, we find that 
in child‑directed speech causal meaning can be successfully inferred from simple co‑occurrences of 
neighboring words. By contrast, semantic inference in adult‑directed speech fundamentally requires 
additional access to syntactic structure. These results suggest that child‑directed speech is ideally 
shaped for a learner who has not yet mastered syntactic structure.

Understanding the meaning of words is one of the cornerstones of language learning. Learners need to cope with 
the meaning of many thousands of words with intricate meaning nuances and connotations across many different 
contexts. The basic mechanisms in this endeavor rely on cognitive abilities such as the categorization of objects 
and  events1–6, and socio-cognitive abilities such as gaze following, joint attention, and gesture  interpretation7–11. 
Meaning of words can be understood through cross-situational learning, relating the words with their extra-
linguistic referents occurring in various  situations12–14.

However, words and their meanings rarely occur in  isolation15,16 and this obscures simple matching of sound 
patterns with perceived objects or events in the world. In most cases, understanding what a word means requires 
understanding its surrounding words in an utterance—or as the linguist John Rupert Firth put it over 70 years 
ago: “You shall know a word by the company it keeps”. In fact, word co-occurrences have been shown to reflect 
semantic associations of words, thus efficiently capturing intricate word  meanings17,18. Learning these associations 
requires a highly efficient machinery of distributional learning, which is a fundamental learning mechanism that 
relies on statistical distributions of elements in the linguistic and extra-linguistic  environment13,19–24. Children 
use statistical distributions from the speech they hear for inferring various  phonological25–28 and grammatical 
 generalizations29–33.

For learning meaning, however, most current theories agree that distributional information alone is not suf-
ficient. For example, the theory of “syntactic bootstrapping” proposes that children critically rely on syntax to 
infer  meaning34. Support for this proposal comes from evidence that children rely on syntactic frames of argu-
ment structure to elicit causative  meanings35. It has been generally posited that children recognize that words are 
not simply serialized like beads on a string, but that they are part of compositional syntactic structures, either 
by drawing on abstract innate  rules36,37 or by detecting item-specific  constructions38,39. Indeed, the composi-
tional syntax of language has been posited as a property that is so fundamental for language that its recognition 
demarcates human learners from other  animals40, even if the underlying processing machinery may become 
fully mature only relatively late in brain  ontogeny41.

Here, we test this proposal in the example of causation as a key dimension of meaning in human language 
and  cognition42–44 and concept formation in language  learning45–47. Causation is one of the cornerstones of event 
conceptualization and one of the main topics in conversation (“Who did it?”, “Why did it break?”). But how 
can infants learn the general meaning of causation? In a sentence with a causal clause such as “The vase broke 
because it fell down”, such inference is facilitated by the explicit conjunction “because”. Causation can also be 
openly marked by fixed constructions as in “She had her assistant type the report”. Here the verb “had” indicates 
the causation meaning of the utterance. However, causation is often only implicitly entailed. For example, in “I 
broke the window”, there is no dedicated marker that signals my actions as the cause of the breaking event. Given 
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the absence of a formal linguistic marker in most causal verbs in English, how can infants infer the common 
meaning of causation in words like break, kill, enable, lead, bend etc. and thereby learn to understand the causal 
structure of the events involved? And what cues from the linguistic context can children rely on in this process?

In line with received theory, previous research suggests a critical role of syntactic structures for the under-
standing of causative concepts. For example, a sentence like “He broke the vase” comes with a syntactic structure 
of the causative verb “break”, which contains a subject and an object. Concretely, the structure assigns “he” the 
role of the subject of the sentence in an active voice sentence, while labeling “the vase” as the object. This in turn 
invites the interpretation of “he” as the causer and “the vase” as the causee of the action “break”. Accordingly, 
the recognition of such structures may help infants narrow down verb meanings. This theory is supported by 
experimental evidence that children can successfully detect structural cues in the input (such as word order or 
grammatical markers) to infer the relevant syntactic frames, either in the  abstract34,35,48–53 or with more concrete 
 items54,55, and to extract meanings from these frames. As this ability has been found in children at age 2 or even 
earlier, it is plausible that it plays a critical role outside experimental settings as well.

However, the input that children receive in natural environments may contain so much richer statistical 
information that cue-based inferences of syntactic structures might not be needed when children learn causative 
concepts. For example, hearing a sentence like “You will hurt yourself if you break the glass”, the word “break” is 
probabilistically associated with the meaning of the subsequent expression “the glass” already without knowing 
that “the glass” is the object of “break” in syntax. In addition, the verb “hurt” provides not only thematic infor-
mation but also indicates the result caused by “break”, again regardless of the syntax. As the range of contexts 
expands, further thematically-related items become relevant, indicating, for example, the difference between a 
physical and a social change of state (“break the glass” vs. “break the rule”). In an extreme scenario, if presented 
only the list of words “hurt”, “break” and “glass”, one could still possibly make the same inference with no syntax 
at all. Hence, even without recognizing syntax, the causative meaning of “break” will be understood differently 
from non-causative meanings. In fact, it has been recently found that reduced syntax does not hinder us from 
communicating with Broca’s  aphasics56 or in a language with simple  grammar57, as inference is possible from 
co-occurring  words58,59.

To assess whether such contextual information is indeed sufficient to learn meaning, we employed a computa-
tional method that systematically tests and compares different sets of information in natural speech. We thereby 
automated the process of semantic inference with computational power, grounded by the theory of distributional 
learning. We ask two questions. First, does the range of available information about causal semantics via distribu-
tional learning differ in child-directed speech from other speech genres? Second, is the raw immediate semantic 
context (the meaning of surrounding words in the same utterance) indeed already sufficient, or does a learner 
need to recognize and use syntactic structures for successful inference of causatives? Among many sources of 
linguistic input, child-directed speech is the primary one where children are immersed. Both the amount and 
the quality of child-directed speech have been shown to directly influence children’s language  development60–65. 
In addition, most theories emphasize that child-directed speech differs from adult conversation both in terms of 
structure, lexical richness, and  intonation66, potentially facilitating language  learning67,68. We therefore compare 
distinctiveness of the information distribution between the genres child-directed speech and adult conversation 
and, as a control with more complex structure, written language.

We used transcribed and annotated speech of these three different genres, collected in what is technically 
known as corpora. To obtain insight into learning opportunities from real-life input, we simulated the human 
parser in testing for syntactic and semantic information. We tested different manipulations of semantic and 
syntactic information in the speech addressed to 14 English learning children from the Manchester  corpus69,70 
recorded in natural interactions, adult conversation from the spoken part of the British National Corpus (BNC)71, 
and written language from the written part of the BNC. Each corpus was sampled by recording session to reach 
an approximately equal number of tokens of ca. 3.2 million each. Every sentence was parsed into lexical words 
(lemmas), tagged for word class and annotated for grammatical dependencies with  spaCy72, a standard natural 
language processing toolkit.

We applied a distributional learning algorithm, namely word embeddings (Word2Vec) with an adjustable 
 window17. This window is a means of controlling the length of text around the target word that serves as the 
search space. The algorithm is based on co-occurrence features and therefore can be used to examine which 
features of surrounding words help in category generalization of a target word.

We evaluated the quality of causative inference in each model by examining the discrimination it achieves 
between selected sets of causatives (23 words) and non-causatives (9 words)73,74. We measured discrimination 
success by the extent to which the obtained pairwise cosine distance between causative and non-causative mean-
ings exceeds baseline distances between randomly selected words.

Results
In Study 1, we tested for a genre difference in causative discrimination of raw utterances. We regressed the 
above-baseline distance on speech genre using a hierarchical Bayesian model (Fig. 1A). Child-directed speech 
was set as the reference level of speech genre. Individual verbs (both causatives and non-causatives) were treated 
as group-level factors, with both random intercepts and slopes, so that biases in verb selection were controlled.

The results show that the cosine distance exhibited by child-directed speech largely shifts from the baseline 
to the positive when the window is small, suggesting above-chance discrimination of causative meanings. In 
particular, with window size 1, the cosine distance significantly surpasses the baseline (96.6% of the posterior 
samples are above 0, see Fig. 1A). By contrast, both adult conversation and written language lead to substantially 
less discriminative power than child-directed speech, especially when the window size increases. Predicted 
cosine distances are all close to or below the baseline (see Fig. S1 in Supplementary information). Leave-one-out 
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cross-validation75,76 reveals that models with genre as a predictor leverage almost all of the total weight in pre-
dictive performance (see Fig. S2 in Supplementary information). In order to examine what aspects of semantics 
might be learned, we performed clustering analysis for the model with window size 1 in child-directed speech 
using neighbor  joining77 (see Sect. S1 and Figs. S3 and S4 in Supplementary information). Prototypical causa-
tives, together with other words with causal semantics, can fall under the same cluster (see the example cluster in 
Fig. S4), further suggesting that the specific semantic domain of causatives can be inferred from raw utterances.

A likely reason for the increased discriminative power and the inference of causal semantics in child-directed 
speech is the extensive involvement of nominals and the repetitive nature of the elements that surround each verb. 
Child-directed speech shows a higher proportion of nominals around verbs across all windows than the other 
genres, especially within the smallest window size (Fig. 1B) where performance is best (Fig. 1A). These nominals, 
at the same time, display much less variation in child-directed speech, thus suggesting higher repetitiveness (as 
measured by the Shannon entropy per window size; Fig. 1C). Furthermore, the words around the verb vary much 
less in their word class in child-directed speech than in the other genres (Fig. 1D). For instance, for the verb 
“open”, we find a high proportion of the string “PRONOUN open PRONOUN” in child-directed speech (77 out 
of 974 uses of “open” as a verb), as well as a number of occurrences of “PRONOUN open DET NOUN”, such as 

Figure 1.  Causative meanings are better discriminated than what is expected by chance in child-directed 
speech (CDS) but not in adult conversation and written language, regardless of how many neighboring words 
are included in a window (A). Credible intervals represent highest posterior densities. A likely cause of this 
is increased repetitiveness of the contexts around verbs (B–D, all shown with bootstrapped error estimates): 
Child-directed speech shows a higher proportion of nominals surrounding verbs, especially with the smallest 
window (B); These nominals around verbs are more repetitive in child directed-speech than in the other genres, 
as measured by Shannon entropy (C); Verbs are surrounded by a less varied range of word-class constructions in 
child-directed speech as measured by Shannon entropy (D). Both entropies increase with larger windows due to 
richer samples, which corresponds to the decrease in learning performance (A).
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“shall I open the lid?” or “why don’t you open the tin?”. Other causative meanings occur in very similar frames 
(e.g., “break” as in “mummy would break the hat” and “don’t break the doll”, or “turn” as in “turn the knob” and 
“shall I turn the page?”). The repetitive nature and frequency of such frames are known to critically help learn 
 categories31,78. Here, the causative category can be learned from a frequent frame that describes an agent acting 
on an patient undergoing change.

In Study 2, we assessed the extent to which additional structural information improves the identification of 
causative meanings. Specifically, we tested whether access to word class information (tags like “noun” or “verb”) or 
syntax (in the form of dependency relations) improves causative discrimination beyond the baseline performance 
on raw text (Fig. 2A). Our models again include individual verbs as group-level factors (both random intercepts 
and slopes). Results show that in child-directed speech, the additional information does not improve causative 
inference (Fig. 2B; across window sizes, 0 is included in all 90% CIs and almost all 80% CIs). In other words, 
the frames from which meaning is inferred need not contain any information beyond word co-occurrences. 
Also, models with additional information on word class and dependencies have considerably worse predictive 
performance in cross-validation than models without this information (Fig. S2 in Supplementary information).

Figure 2.  “Raw” gives the lexical entries of the original text, “word class” shows the word-class tags surrounding 
the verbs, and “syntax” denotes the dependencies that the verbs open (in the CLEAR  style90 as tagged by 
spaCy). The dependencies are represented by arrows with the relation tags on top. The training data for each 
layer (word class vs. syntax) consists of both the raw utterances and the information from the respective layer 
(A). Discrimination of causative meanings remains stable or deteriorates when further syntactic information is 
made available in child-directed speech, but mostly improves when such information is made available in adult 
conversation and written language (B). Credible intervals represent highest posterior densities.
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This is strikingly different with adult conversation and written language. Here, models achieve above-baseline 
causative discrimination only with access to additional information. As already noted in Study 1, raw text alone 
yields worse-than-baseline discrimination, especially when window sizes increase. Causative inference is pos-
sible only with access to word class or syntax information. In particular, syntax has a consistent impact in both 
adult-directed genres except with window size 1, while word classes enhance the performance only in adult 
conversation and show only marginal improvements in written language. Models with additional syntactic 
information leverage considerably more weight in predictive performance than in child-directed speech (except 
again in window size 1; see Fig. S2 in Supplementary information). A likely reason for the exceptional pattern in 
window size 1 is that short windows contain only insufficient cues from syntactic information. Larger windows 
contain richer syntactic information from which the learning algorithm profits.

Discussion
Our results suggest that child-directed speech is ideally suited to a statistical learner who has little access to 
structural information but excels in recognizing, memorizing and generalizing patterns from frequently repeated 
patterns in raw input. This ability is a critical endowment of infants that has been experimentally demonstrated 
for the learning of various sound  patterns24,66,79–81. By using a distributional learning algorithm to thoroughly 
examine words with their respective contexts at the utterance level, we predict that when learning meaning, 
children may leverage the statistical idiosyncrasies in child-directed speech, including the repetitive nature 
and the excessive involvement of nominals that we discovered. As the word embeddings algorithm neutrally 
examines all the co-occurrence patterns (not limited to patterns accompanying verbs) in the corpus, our results 
may allude to the general characteristics such as simplicity and repetitiveness in child-directed speech, which 
can facilitate semantic inference.

Such facilitation of raw input of child-directed speech might be relevant to the typical co-occurring words 
in transitive frames in English for causatives. However, the window-size-one frame of raw text does not seem to 
help with the causative discrimination in adult conversation and written language; neither do the frames of size 
two and three help, although they are also likely to capture the typical transitivity. This indicates that compared 
to child-directed speech, raw utterances of adult conversation and written language may generally contain more 
diversely distributed information surrounding causative verbs, thus supplying less explicit transitive or causa-
tive frames to support semantic inference. Distributional learning in these two genres significantly profits from 
additional structural information. This indicates that syntax may differ across the speech genres. While adult 
conversation and written language may contain rich structural information, syntax might stay rudimentary in 
child-directed speech and therefore exerts little additional impact on meaning discrimination. This again reso-
nates with our findings in Study 1, where raw input without structural information suffices in semantic inference, 
and it is consistent with neurobiological evidence that the syntactic processing system matures only quite late in 
 childhood41, at an age where children have fully acquired the meaning of causative  verbs82.

It should be noted that the raw utterances in our studies are maximally syntax-free when processed by the 
model, even excluding the information of word order (the Word2Vec algorithm dissolves the order of contextual 
words in its predictive training; see more detail in Methods). In other words, the raw learning materials are simple 
word co-occurrences that entail no explicit syntactic information of any kind. Hence, the causal inference via 
statistical learning in our results of the “raw” layer can be fully accounted for by syntax-free information as the 
learning resources. Although the syntax-free condition is of theoretical interest and causative semantics indeed 
emerges from this learning condition, word order may be considered so fundamental in language learning (and 
processing) that disregarding it may seem unnatural. Our goal here, however, was to test whether generalizing 
causative semantics is even possible without presupposing knowledge about word order. To simulate a learner 
who attends to order, future studies may incorporate word order in the near-syntax-free training of raw utter-
ances. Here, models that are sensitive to sequential information (e.g.,  BERT83) would be useful. At the same time, 
however, such models require long sequences with closed contexts and may not realistically mirror the short 
individual chunks characteristic of child input and rapid conversation.

We end by pointing out two limitations of our studies. First, while we simulate possible mechanisms, we do 
not directly test how children actually perceive and process the raw utterances. It has been shown that syntactic 
knowledge may emerge from raw  input31,33,78, which can facilitate semantic  inference34,35. As much as we rec-
ognize such emergence of syntax, it does not contradict our findings that raw input is sufficient for semantic 
inference, as our model is not informed of the potential syntactic knowledge. In fact, both semantic inference and 
syntactic abstraction, if any, can be the end products of distributional learning from raw input alone, and these 
two processes do not necessarily depend on each other. That said, when both processes take place extensively, 
there is likely close interaction between them, and the raw utterances and the syntactic information may work 
in synergy to render the best semantic inference, as suggested by our results for adult conversation and written 
language. Child-directed speech, by contrast, does not benefit from this synergy, at least with the word-class 
and dependency syntax that we take into account. At the very least, our findings clearly speak to the distinction 
between child-directed speech and the other speech genres. Distributional information is uniquely shaped in 
child-directed speech, which is an important facilitator for young children to learn word meanings.

Second, by taking English, an analytic language, as a test case, we only focus on distributional context at the 
word level in the present research. There has been evidence that learning from contextual frames universally relies 
on items at the morpheme level instead of the word  level78. Also, for morphologically complex languages such 
as Turkish, previous studies have revealed the importance of verbal morphology and case marking for language 
comprehension, especially for understanding causal  meaning84–86. Hence, to generalize our findings to typologi-
cally diverse languages, future research should look at semantic learning from distributional information in raw 
input at both word and morpheme levels.
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Methods
Corpora. We used three corpora as the training source for the genres child-directed speech, adult conversa-
tion, and written language. As corpus for child-directed speech, we extracted the adult speech directed to the 
target children in the Manchester Child Language  Corpus69,70. The 12 children in the Manchester  Corpus69 are 
aged from 20 to 36 months, while the 2 children in the MPI-EVA-Manchester Corpus are intensively recorded 
when they are 2 and 4 years old. For the adult conversation corpus we extracted naturalistic conversations from 
the British National Corpus. The written corpus uses written texts from the British National  Corpus71. The origi-
nal size of these corpora vastly differs (Table S1 in Supplementary information). We therefore extracted subsets 
of the same size of the two other corpora to ensure the comparability of the three corpora.

Since the word embeddings algorithm iterates through the tokens in the corpus, we sampled the corpora to 
approximately an equal number of tokens, which was the maximum number of tokens we could obtain from 
the child-directed speech in the Manchester corpus. Thus, no sampling was involved in the Manchester corpus. 
Crucially in the sampling process for the other two genres, we took one session with all of its utterances at a time 
to maintain the coherence of semantics in our training sources. Otherwise, random sampling of utterances from 
all sessions might have included more infrequent words that lack deep inference. Table S2 in Supplementary 
information shows the summary of the sampled corpora.

Data processing. We based our studies on the lemmatized utterances from the selected corpora. These lem-
matized utterances formed the fundamental “raw” layer in the studies. Lemmatization was a necessary step in 
our approach to obtain sufficient occurrences of each word type to generate the embeddings. It was feasible for 
English, an analytic language, as the lemmas are minimally obscured by affixation.

We mainly tested for two layers of syntactic information, as shown in Fig. 2A, which included (i) word-class 
tags in layer “word class” and (ii) relation tags from dependencies in layer “syntax”. Besides, to probe how the 
semantic inference is impacted by the abstractness of syntactic information, we modeled an additional layer 
“lexicon” that included dependency structure in the form of lexical words, that is, syntax is represented implicitly 
by concrete words based on their dependency structure (see Sect. S2 and Fig. S5 in Supplementary information). 
These three layers were combined with the lemmatized utterances to form the sources for subsequent model 
training. Concretely, when fed to the algorithm, the training instances from the syntactic layers were shuffled 
with the the raw utterance, in order to simulate an unbiased order of processing semantics and syntax of each 
 utterance87–89. Details are given as below.

Lemmatization and tagging. We applied the spaCy natural language processing  toolkit72 for lemmatization, 
word-class tagging, and dependency tagging in the CLEAR  style90 as tagged by spaCy. The main considera-
tion behind this universal processing manner was a unified standard for all the comparisons to be conducted. 
The original lemmas and annotations, including word-class tagging and dependency tagging, employ different 
standards and naming conventions. For instance, lemmas of pronouns in the Manchester corpus keep their 
original forms instead of transforming to the hw (headword) as in the BNC (e.g., “him” being “him” in the 
Manchester corpus while being “he” in the BNC). Worse, no dependency information is available in BNC. We 
therefore used a universal processing tool to enhance the consistency of data forms across corpora and ensure 
the comparability of results in different corpora. Nonetheless, an additional test using existing hand-tagged 
annotations from the Manchester corpus was also conducted, so as to ensure that the effects of our main studies 
were not substantially affected by automatic parsing. Results of this additional test are reported in Sect. S3 and 
Fig. S6 in Supplementary information.

In all three syntactic layers, verbs were kept as their lemmas, since we were particularly interested in the cat-
egorization of verb meaning. Additionally, in order to maximally infer from the words and tags in dependencies, 
minimal dependency subtrees were extracted to strengthen the co-occurrence patterns potentially learned by the 
distributional algorithm. Every subtree consisted of a dependency head and its direct dependents, so the number 
of subtrees was determined by the number of dependency heads in one utterance. Table S3 in Supplementary 
information gives an example of subtrees extracted for the utterance in Fig. 2A.

Start and end of utterances. We added additional special symbols to mark the start and the end of each utter-
ance. This was driven by the consideration of the major limitation of Word2Vec training on short utterances. For 
instance, when the algorithm encounters a one-word utterance, no co-occurrence pattern is to be inferred, but 
this utterance, if consisting of only a verb, could suggest semantic and syntactic features such as argument struc-
ture and imperative mood (e.g. “Run!” with the start and the end markers could be understood as an imperative 
and intransitive structure). Even worse, the proportion of one-word utterances is large in child-directed speech 
(Table S4 in Supplementary information), which might greatly influence the overall vectorization. Hence, we 
employed special symbols “ ∧∧ ” and “$$” to mark the start and the end of each utterance respectively. The layer 
of word class also included this marking to reinforce the learning. On the other hand, minimal dependency 
subtrees were fragmented and extracted from each full utterance; therefore, this additional marking was not 
employed in the layers “syntax” and “lexicon”.

The training of context was thus at the utterance level bound by the start and the end, without being extended 
to the context in discourse. Although the broader sense of context in discourse can be beneficial, it remains 
problematic to determine what turns in discourse are relevant to the current utterance. Besides, the scope of 
syntactic information is limited within each utterance. We therefore only focused on context in each utterance 
in the present research.
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Training with Word2Vec. Word embeddings. We used the original word embeddings model proposed by 
Mikolov et al.17 in our studies. This model is based on simple word co-occurrences and can be easily built from 
scratch computationally, which suits our objectives of simulating distributional learning. Concretely, word em-
bedding algorithms resemble human distributional learning by building connections between contextual frames 
and target words, and are able to represent word meaning in high-dimensional space. Compared to more com-
plex models such as the transformer model  BERT83, which achieves desirable performance with attention over 
long sequences (even by concatenating short  sequences91), Word2Vec models do not rely on long utterances, 
which are rare in child-directed speech: the mean length of utterances is 4.19 (Table S4 in the Supplementary 
Information) and concatenating utterances would be problematic due to non-adjacent or often distant turns of 
child-directed speech in the corpora. Instead of using sequential information, the Word2Vec models exploit an 
adjustable model to determine the range of contexts. Such a window includes text from both sides of the target 
word, e.g., when the window size is 1, it includes 3 words, the target word in the middle and one word on each 
side. With each window of word co-occurrences, the algorithm employs a neural network to predict the central 
unit from the context, or vice verse, where the order of contextual words is dissolved (i.e., all contextual words 
are treated equally regardless of their position in the context). This is crucial for excluding word order as a poten-
tial syntactic factor involved in training. Suppressing word order maximally ensures that no structural informa-
tion of any kind is involved in the training of raw utterances, thus simulating a syntax-free learning condition. 
Moreover, we intended to generate one vector for each word type and calculate the overall distances between 
verb types, for which the original Word2Vec is better suited than the contextualized token-level embeddings of 
 BERT83 and similar models.

Mikolov et al.17 propose two models within the framework of word embeddings—continuous bag of words 
(CBOW) and skip-gram (SG). While CBOW employs an averaging step where the semantics of context words 
is fused, SG better preserves the feature of each individual context word without averaging. In addition, SG 
yielded better performance in the original word similarity  tasks17. We therefore chose SG as the method for our 
semantic representation.

We utilized the word embeddings toolkit developed by Rehurek and  Sojka92. We set the dimension of vectors 
to 200 and the number of iteration to 100 to generate robust embeddings, and this setup was the same for all 
models to ensure the comparability of the semantic representations. Higher dimension and iteration can help 
capture word semantics more  effectively93 (see Fig. S7 in Supplementary information for a test of lower dimen-
sionality which can reduce the quality of embeddings). The loss in the training progress is shown in Fig. S8 in 
Supplementary information. Results suggest that the models fit well and the loss does not correlate with window 
size, genre, or annotation layer.

Further, we capitalized on the adjustable window to control the length of context, ranging from 1 to maxi-
mum 6 words on both sides, constrained by the capacity of information processing by  humans94. Considering 
the varying mean length of utterances in different corpora (Table S4 in Supplementary information), no window 
was presumably deemed optimal. Therefore, it is beneficial to examine the performances with a dynamic range 
of context. Table S5 in Supplementary information shows the amount of context within each window size in 
training across three genres. The differences between window sizes are similar across genres, except that there is 
more data for larger windows in adult conversation and written language than in child-directed speech.

Measure. To evaluate how the causative meaning was discriminated by the models, we retrieved prototypical 
causatives that commonly exist across human  languages73 and non-causatives based on the definition proposed 
by  Shibatani74. In particular, to reduce the impact of transitivity in the discrimination task, we included verbs 
that can be used intransitively in the category of causatives (e.g., “begin”, “open”) and transitive verbs in the cat-
egory of non-causative (e.g., “like”, “take”). The selected verbs are listed below.

• Causatives (23): begin, boil, break, burn, change, close, destroy, dry, fill, finish, freeze, gather, kill, lose, melt, 
open, raise, roll, sink, spread, stop, teach, turn

• Non-causatives (9): die, go, look, talk, want, like, think, say, take

To check the semantic similarity between causatives and non-causatives, we employed the metric of cosine 
distance in a pairwise  manner17. For each causative i  with the vector ci each non-causative nj in the set of 
non-causatives:

Accordingly, the distance ranged from 0 to 2. For each model, the result included a list of 207 distance 
measures.

Main studies and data analyses. In Study 1 we investigate the role of raw utterances in causative discrim-
ination across different genres. Accordingly, only the lemmatized utterances were used as the training source 
for word embeddings. We trained embeddings for each window (from 1 to 6) with each genre (child-directed 
speech, adult conversation, written language), therefore obtaining 18 sets of pairwise cosine distances in the end. 
Since child-directed speech was set as the reference level, the baseline performance was calculated by averaging 
cosine distance of 10000 random pairs of frequent verbs in the embeddings models of child-directed speech, 
defined as appearing at least 10 times in each corpus. Subsequently, a Bayesian hierarchical model was built for 
distance scores within each window:

distance(i,j) = 1− cos(θ(i,j)) = 1−
ci · nj

�ci��nj�
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Individual causative and non-causative verbs involved in the distance measures were treated as random 
factors, with both random intercept and random slope included. We examined the posterior distribution of the 
coefficient of “genre” to account for the effect of genre-specific information, and the posterior distribution of the 
intercept to assess the performance in child-directed speech compared to the respective baseline.

Study 2 examines the role of the additional layers “word class” and “syntax”. Like in Study 1 we measured the 
pairwise cosine distance between causatives and non-causatives in the embeddings models. For the baselines we 
calculated the mean distance of 10000 random pairs of frequent verbs for the models trained from raw utterances 
only. Hence, there were 18 baselines for 3 genres with their 6 windows respectively (see Fig. S9 in Supplementary 
information). For each genre within each window, a Bayesian hierarchical model was again built to examine the 
effect of syntactic layers on the cosine distance, i.e. the causative discrimination:

The layer of raw utterances was set as the reference, and the coefficient of “layer” thus suggests the effect of 
syntactic information on causative discrimination.

In all models, the priors of both the intercept and the coefficient were set as a weakly informative Student-t 
distribution with location 0, degree of freedom 5, and the default scales as in the R package rstanarm95 (10 
for intercepts and 2.5 for coefficients). Student-t distribution allows thicker tails to reduce the bias around 0. All 
models were fitted in Stan with help of rstanarm.

For model comparison we used Pareto-smoothed importance sampling as an efficient approximation of leave-
one-out cross-validation and report bootstrapped Akaike weights (“Pseudo-BMA+”76). The results are shown 
in Fig. S2 in Supplementary information.

In addition, to take into consideration the uncertainty of the baselines (see Fig. S9 in Supplementary infor-
mation), we reanalyzed the data with models that account for the measurement error of the dependent variable 
(see Sect. S4 and Figs. S10 and S11 for more detail).

Probing distributional features in verbal constructions. We conducted three analyses to shed light 
on the distributional features in verbal constructions in different genres: (i) the average proportion of nominals 
in verbal constructions, (ii) the Shannon  entropy96 of these nominals, and (iii) the entropy of verbal construc-
tions per window size in the form of word-class tags (e.g. “NOUN verb NOUN” with window 1). For each genre 
with each window size, we bootstrapped 1000 verbal constructions for analyses (i) and (iii) and 1000 nominals 
for analysis (iii) to compute the respective measure, with the iteration of 1000.

Data availability
Data and codes can be accessed https:// osf. io/ hcj7y/? view_ only= 87bf2 6f234 3c4a9 ebc93 d69aa af6ed db.
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