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ABSTRACT

Legumes play a vital role in maintaining the nitrogen
cycle of the biosphere. They conduct symbiotic
nitrogen fixation through endosymbiotic relation-
ships with bacteria in root nodules. However, this
and other characteristics of legumes, including
mycorrhization, compound leaf development
and profuse secondary metabolism, are absent in
the typical model plant Arabidopsis thaliana.
We present LegumeIP (http://plantgrn.noble.org/
LegumeIP/), an integrative database for compara-
tive genomics and transcriptomics of model
legumes, for studying gene function and genome
evolution in legumes. LegumeIP compiles gene
and gene family information, syntenic and phylogen-
etic context and tissue-specific transcriptomic
profiles. The database holds the genomic se-
quences of three model legumes, Medicago
truncatula, Glycine max and Lotus japonicus plus
two reference plant species, A. thaliana and
Populus trichocarpa, with annotations based on
UniProt, InterProScan, Gene Ontology and the
Kyoto Encyclopedia of Genes and Genomes data-
bases. LegumeIP also contains large-scale micro-
array and RNA-Seq-based gene expression data.
Our new database is capable of systematic
synteny analysis across M. truncatula, G. max, L.
japonicas and A. thaliana, as well as construction
and phylogenetic analysis of gene families across
the five hosted species. Finally, LegumeIP provides
comprehensive search and visualization tools that
enable flexible queries based on gene annotation,
gene family, synteny and relative gene expression.

INTRODUCTION

Legumes have the ability to conduct symbiotic nitrogen
fixation through endosymbiotic interactions with bacteria
residing in root nodules. Thus, these plants play a vital

role in maintaining the nitrogen cycle of the biosphere.
Some legume species are also important resources for
oils, fiber, fuel, lumber, medicine, chemicals and horticul-
tural varieties.
In addition to root nodulation and nitrogen fixation

symbiosis with rhizobia, legumes possess many unique
features that are not found in the typical plant model
Arabidopsis thaliana, including mycorrhization, compound
leaf development, a protein-rich physiology, profuse sec-
ondary metabolism, secondary compounds with valuable
health-promoting properties, glandular trichome develop-
ment and border cells within roots. Therefore, legumes are
considered as another important plant model for studying
physiology, genomics, plant–microbe interaction, sustain-
able agriculture, food production, security and renewable
bioenergy generation.
Legumes have traditionally been divided into three

main subfamilies: caesalpinioids, mimosoids and
papilionoids (1), which all derived from a common
ancestor around 60 million years ago (2). The papilionoids
mainly include two sister clades, phaseoleae and trifolieae,
which constitute >60% of all papilionoids. Of the
two sister clades, the former mostly consists mostly
of tropical, herbaceous species such as the soybean
Glycine max. The latter consists primarily of temperate
species such as Medicago sativa, a species that is closely
related to two model legumes, M. truncatula and
L. japonicus.
Utilizing bacterial artificial chromosome (BAC)-

by-BAC, whole-genome shotgun and second-generation
sequencing approaches, the genomes of three legume
species G. max (http://www.phytozome.net/soybean),
L. japonicus (http://www.kazusa.or.jp/lotus) and M.
truncatula (http://www.medicago.org/genome) have been
sequenced recently (3–5). The results of these sequencing
projects have become invaluable resources for legume
research. Furthermore, large-scale gene expression
profiling of L. japonicus (http://www.brics.dk/cgi-
compbio/Niels/index.cgi), G. max (http://digbio.missouri
.edu/soybean_atlas/) and M. truncatula (http://mtgea
.noble.org/) have been also performed to characterize
tens of thousands of genes in these species (6–8).
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Comparative genomics and transcriptomics approaches
have empowered gene discovery and gene functional char-
acterization. For example, Libault et al. (9) systematically
reviewed the identified transcription factors through
comparative sequence analysis and expression data.
Comparative genomics and transcriptomics, coupled
with comprehensive gene annotation, gene family classifi-
cation and phylogenetic analysis have also been used suc-
cessfully to decipher biological processes that are unique
to legumes, such as nodulation in response to rhizobial
infection. For example, the MtHAP2.1, MtERN and
LjNIN genes, which control nodule development, were
identified by analysis of collinear relationships and gene
expression profiles (10–12).
The Legume Information System (LIS) is a community

portal that hosts a vast quantity of legume-related data,
including gene sequences, transcript sequences such as ex-
pressed sequence tags (ESTs), genetic markers, literature
and external links to multiple legume species (13). The LIS
also provides useful tools such as orthologous gene and
evolutionary event analysis, a chromosome visualization
tool and synteny-view in a genome browser. However, due
to the complexity of tandem duplication and genomic di-
vergence, analysis of synteny or comparison of chromo-
some position only may overlook a large number of
orthologous genes. A typical example is the flavonoid
gene family (14). Isoflavonoids, a subset of this family
(15), are unique to legume species, and most are
involved in mediating host specificity within this plant.
Nevertheless, only a few of these genes could be identified
by collinear analysis since the tandem duplications that
produced this family of flavonoids most likely occurred
after the large-scale genome duplication events.
Combining the analysis of gene families, phylogenetic

context and tissue-specific transcriptomic profiles is a
powerful method for studying complex biological events
(16). The online database PLAZA (17) integrates
large-scale genomics data from several plant species for
plant evolution research; however, a lack of gene expres-
sion data make it less effective in inferring species-specific
gene function and evolutionary history, especially in
legume species.
The recent publication of legume genomics and

transcriptomics data has necessitated the development of
a comprehensive genomics and transcriptomics database
of model legumes. Here, we present LegumeIP, an inte-
grative database for comparative genomics and
transcriptomics of model legumes, for use in studying
gene function and genome evolution in this important
plant family. LegumeIP currently hosts large-scale
genomics and transcriptomics data including the genome
sequences of three model legumes (i.e. M. truncatula, G.
max and L. japonicas) and two reference plant species (i.e.
A. thaliana and Populus trichocarpa) with annotation based
on Uniprot (18), InterProScan (19,20), Gene Ontology
(GO) (21) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (22) and encompassing 222 217
protein-coding gene sequences. LegumeIP also contains
large-scale gene expression data compiled from 104
L. japonicas microarrays, 156 microarrays from the M.
truncatula gene atlas database and 14 RNA-Seq-based

gene expression data from G. max gene atlas database,
with profiles on time-course experiments and different
tissues including four common tissues namely nodule,
flower, root and leaf. In addition, LegumeIP can
perform systematic synteny analysis across M. truncatula,
G. max, L. japonicas and A. thaliana, as well as construct
the gene family and perform gene family-wide phylogen-
etic analysis across the five hosted plant species. Finally,
LegumeIP can perform comprehensive search and visual
representation to enable flexible queries based on gene
annotation, gene family, synteny and relative gene
expression.

LegumeIP is freely available at http://plantgrn.noble.
org/LegumeIP/

DATABASE PRODUCTION

Data source and process

The protein-coding and amino acid sequences for M.
truncatula, L. japonicas and G. max were obtained from
http://www.medicago.org/genome/download/, ftp://ftp.
kazusa.or.jp/pub/lotus/lotus_r2.5/ and ftp://ftp.jgi-psf.
org/pub/JGI_data/phytozome/v7.0/Gmax/annotation/,
respectively. Data for the two outgroup reference species,
A. thaliana and P. trichocarpa, were acquired from ftp://
ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_
release/ and ftp://ftp.jgi-psf.org/pub/JGI_data/
phytozome/v7.0/Ptrichocarpa/annotation/, respectively.
In total, LegumeIP integrates 222 217 protein-coding
gene sequences and 221 706 amino acid sequences.

Large-scale microarray and RNA-Seq-based gene ex-
pression data for M. truncatula, L. japonicas and G. max
were obtained from http://mtgea.noble.org/, http://cgi-
www.cs.au.dk/cgi-compbio/Niels/index.cgi and http://
digbio.missouri.edu/soybean_atlas/, respectively (6–8,23).
Gene expression data for L. japonicas are available only
for version 1.0 genome sequences in the atlas database.
Therefore, we remapped the Affymetrix L. japonicas
GeneChip probesets using BLAST to align CDS se-
quences (Version 2.5) against the GeneChip probe set
target sequences downloaded from the ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) database (E-value
�1e-10). Only the highest-scoring hit was selected. As
the result, LegumeIP integrates data from 104 L. japonicas
microarrays, 156 M. truncatula microarrays and 14
RNA-Seq-based gene expression profiles for G. max,
with profiles on different tissues including four common
tissues (nodule, flower, root and leaf) for all three model
legume species. LegumeIP also integrates data from add-
itional tissues and time-course experiments for individual
species.

Comprehensive gene annotation

Genome sequences were annotated using a series of
manually curated standard databases. The protein se-
quences were first searched against UniProt using
BLASTP with a cutoff E-value �1e-04. The top five
most meaningful query results were considered valid.
This method was also used to annotate protein sequences
against GO, KEGG, Transporter Classification Database
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(TCDB) (24) and Plant Transcription Factor Database
(PlantTFDB) (25). Conserved domains between protein
sequences were identified with InterProScan software
using its default E-value cutoff thresholds (20).

Systematic synteny identification

Alignment of syntenic regions between non-legume and
legume species is an effective approach for identifying
patterns of evolutionary conservation and divergence
across genomes. LegumeIP employs the DAGchainer
program (26) to identify syntenic regions between M.
truncatula, L. japonicas, G. max and A. thaliana. First,
we performed an all-by-all BLASTN search with an E-
value cutoff �1e-10 to identify intraspecies paralogous
pairs and interspecies homologous pairs. Then, we
applied DAGchainer (parameters Z=12, D=10, g=1
and a=5) to discover orthologous pairs of interspecies
collinear regions. Parameters with -s and -i in DAGc
hainer were applied to identify collinear paralogous
pairs in the same species. To all the identified homologous
pairs within syntenic regions, we applied the F3x4 model
from the PAML4.0 software package (27) to estimate the
ratio of the number of non-synonymous substitutions/
non-synonymous site (Ka) to the number of synonymous
substitutions/synonymous site (Ks) (i.e. Ka/Ks).

Cross-species gene family and phylogenetic analysis

Due to the frequent occurrence of tandem duplication or
sequence diversity, the order of orthologous genes within a
collinear/syntenic region may have become disrupted
during evolutionary development (28). To better study
gene function and genome evolution, two groups of
putative gene families were constructed in the five
species based on protein-coding sequence similarity. This
was accomplished by the TribeMCL (29) and OrthoMCL
(30) clustering algorithms that are complementary to each
other. Although TribeMCL outputted fewer gene families,
each resultant family consisted of more member genes but
with a higher false-positive rate that was likely due to the
inherent nature of BLAST hits within the TribeMCL al-
gorithm. In contrast, OrthoMCL yielded a large number
of smaller gene families with a lower false-positive rate. To
construct the TribeMCL gene families, we first performed
an all-by-all BLASTP search of the protein-coding nucleo-
tide sequences from the five plant species using an E-value
�1e-10 as the cutoff threshold. TribeMCL (with default
option I=2.0) was then employed to delineate large gene
families based on the BLAST results. We applied the
OrthoMCL method to construct gene families with
fewer member genes and a lower false-positive rate
based on the same blast result. Application of both algo-
rithms resulted in the grouping of 95.70% of 212 653
protein-coding genes into 12 166 TribeMCL gene
families and 70.40% of all protein-coding genes grouped
into 19 315 OrthoMCL gene families.

To construct phylogenetic trees for the gene families,
multiple sequence alignment was first performed using
the MUSCLE software (31). Unrooted trees were then
created using PHYLIP software (including the seqboot,

proml and consensus programs) with 100 bootstrap
replications.

Analysis of large-scale gene expression data

To enable comparative transcriptomics analysis across the
three model legume species, LegumeIP integrates
microarray-based and RNA-Seq-based gene expression
profiling data from four common tissues, namely
nodule, root, flower and leaf, in its core expression table.
Furthermore, large-scale gene expression profiles for add-
itional tissues and time-course experiments were also
included for individual species. The hosted gene expres-
sion profiling experiments are described in the
Supplementary Materials and Methods. We used a
rank-based method to normalize the gene expression
data. Briefly, the genes identified by each microarray or
RNA-Seq data set were first ranked from lowest to highest
in terms of expression. The ranks were subsequently
divided by the total number of expressed genes.
Furthermore, the expression values from individual
tissues were calculated by averaging the ranks of different
experimental conditions applied to the same tissue.
Clustering of gene families from the three legume

species was estimated based on the Pearson’s correlation
coefficient of normalized expression in the four tissues
using the hierarchical clustering algorithm (32).

Database development

LegumeIP was developed using the Java and Groovy lan-
guages. The system runs on a Linux-based RESIN J2EE
web server architecture using MySQL as its database man-
agement system. Circos software (33) and Gbrowse_syn,
which is a Gbrowse-based synteny browser (34), were
adopted for visualization of macro- and micro-syntenic
relationships, respectively. The interactive phylogenetic
tree is rendered by Archaeopteryx (35) and gene expres-
sion profiles are plotted using the OpenFlashChart
package (http://teethgrinder.co.uk/open-flash-chart/).
Gene cluster is depicted as heatmap in the format of a
background-colored HTML table.

User-friendly web interface for data access

LegumeIP provides a comprehensive web interface for
searching and exploring genes, gene families, syntenic
regions and gene expression patterns. For example,
through a simplified Keyword Gene Search interface,
users can search LegumeIP by gene name, description,
family and specific biological classification system, such
as a GO term, InterProScan domain name, transporter
family, transcription factor family, KEGG pathway or
compound name. In the Advanced Gene Search page,
more complex searching criteria can be used, including
combinations of keywords for querying quantitative
tissue-specific gene expression patterns. The search
results are listed in a table with links for batch download-
ing, a detailed page of comprehensive gene annotations,
plots depicting the transcriptomics profile if applicable
and sequence information. Users can also navigate to cor-
responding synteny and gene family pages using the
‘TribeGroup’, ‘OrthoGroup’ and ‘Included gene in
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synteny’ links. The phylogenetic tree and gene cluster
heatmap are provided in detail on the gene family page.
LegumeIP provides a simplified page to allow users to

explore syntenic regions by chromosome or Contig ID.
The macrosynteny outputs, including interspecies and

intraspecies syntenic regions are represented as Circos
maps (Figure 1A) and a summary table (Figure 1B) with
links to detail pages, such as visualization of microsynteny
in the GBrowse_syn module (Figure 1C) and a list of
genes within the syntenic region.

Figure 1. Web interfaces for (A) searching, (B) exploring and (C) visualizing macrosyntenys and microsyntenys.
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LegumeIP also integrates BLAST search interfaces,
allowing users to search homologous genes or protein se-
quences based on sequence similarity.

DEMONSTRATION OF THE UTILITY OF LEGUMEIP

Below we demonstrate the utility of LegumeIP in discover-
ing and characterizing gene candidates in legumes.
Additional examples are available in the Help page of
the LegumeIP web server.

Mining UGT and p450 genes in M. truncatula with gene
search tools

The UDP-glycosyltransferase (UGT) gene family (36),
which is reportedly involved in the biogenesis of important
secondary metabolites such as flavonoids, is highly
enriched in the legume M. truncatula compared to A.
thaliana. Therefore, much research on plant secondary
metabolism has been focused on this family. Since these
enzymes feature a conserved InterProScan domain,
IPR002213, we used this domain ID as a keyword to
search for UGT genes in the M. truncatula genome. This
search yielded 351 genes as potential UGT candidates for
further study.

CYP84 constitutes a family of cytochrome
P450-dependent mono-oxygenases defined by ferulate
5-hydroxylase activity, which is reportedly mediates a
plant defense mechanism (37). Thus, we searched for
CYP84 genes in the M. truncatula genome using the
keywords ‘ferulate’ and ‘5-hydroxylase’ and found 10 can-
didate genes. Microarray data showing detectable expres-
sion levels (i.e. higher than the 10th percentile in at least
one of the four common tissues analyzed) were available.

These genes likely function as P450-dependent mono-
oxygenases. However, experimental validation is still
required as many of the P450 subfamilies are quite
similar in terms of both sequence and structure.
In both cases, users can batch download all of the can-

didate sequences by clicking on links located on the upper
right-hand corner of the result pages.

Mining SymRK genes for symbiosis analysis in legumes

Symbiosis with rhizobia in the nodule is the source of
nitrogen fixation in legumes. The leucine-rich repeat
receptor kinases [also known as symbiosis receptor-like
kinase (SymRK)] are reportedly involved in the signaling
pathway that mediates early root response to bacterial and
fungi infection in epidermal tissues of root nodules. These
kinases also mediate the uptake of symbiotic bacteria
and fungi into plant cells (38,39). In addition, SymRKs
play an essential role in nodulation initiation.
For example, SymRK in Lotus (previous gene name,
CM0177.3340.r2.m), together with other Nod-factor
genes, was reportedly involved in signaling that leads to
epidermal calcium spikes (40).
Using the keyword ‘SymRK’, we retrieved seven

SymRK genes using LegumeIP. The results further
indicated that all of these genes were assigned into one
family, the TribeMCL00867 group, or according to the
OrthoMCL method, the OrthoMCL07722 group.
Corresponding probesets were available on the
Medicago GeneChip for four of the seven genes, and
each of these was highly expressed in nodule and root
(Figure 2), suggesting their possible roles in nodule initi-
ation. The reconstructed phylogenetic tree demonstrated
that these genes most likely also belong to the same clade
(Figure 3) and gene family, OrthoMCL07722. Synteny

A

B

Figure 2. (A) Expression cluster displayed as heatmap for all expressed member genes in TribeMCL00867 and (B) OrthoMCL07722, which include
SymRK genes.
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analysis further indicated their derivation from common
ancestral genes (Figures 4 and 5). Analysis of the phylo-
genetic tree enabled us to identify two P. trichocarpa genes
located in the same clade (Figure 3), suggesting that the
function of SymRK genes may not be specific to only
legume species and may be related to ectomycorrhiza sym-
biosis in P. trichocarpa. Altogether the results produced
from LegumeIP provide additional support for the
SymRK gene family as the common genetic basis of
root nodule symbiosis (38,39).

CONCLUSIONS AND FUTURE PERSPECTIVES

The rapid growth of legume-related genomics and
transcriptomics data demands development of integrated
databases and advanced bioinformatics analysis tools for

not only efficiently managing, storing, retrieving and
sharing data, but also for effectively integrating, analyzing
and mining large volumes of highly complex information.

LegumeIP compiles data and related analytical tools
such as comprehensive Uniprot-/InterProScan-/GO-/
KEGG-based gene annotations, relative gene expression
data, gene family classification and macrosynteny
analysis. The data and analytical tools are thoughtfully
organized to enable quick searches for genes of interest
through user-friendly web interfaces. Transcriptomics
profiling, synteny and phylogenetic analysis are powerful
tools that can be used to discover gene function, including
identifying genes associated with the symbiotic nitrogen
fixation process in legumes. Moreover, synteny and phylo-
genetic analysis are helpful in better understanding the
evolution of terrestrial plants such as legumes. All of

Figure 3. Phylogenetic tree of the TribeMCL00867 gene family.
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these features demonstrate the enormous potential of
LegumeIP as a vital tool in studying fundamental bio-
logical questions.

We are committed to continually improving LegumeIP.
Additional microarray- and RNA-Seq-based gene expres-
sion data will be populated into the LegumeIP database as
it is made available in public repositories. In addition, we
will integrate large-scale genomic and EST sequences from
different sources, such as the Medicago Hapmap project
(http://www.medicagohapmap.org/).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Material and Methods.
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