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Abstract

The distribution of the number of links per species, or degree distribution, is widely used as a summary of the topology of
complex networks. Degree distributions have been studied in a range of ecological networks, including both mutualistic
bipartite networks of plants and pollinators or seed dispersers and antagonistic bipartite networks of plants and their
consumers. The shape of a degree distribution, for example whether it follows an exponential or power-law form, is typically
taken to be indicative of the processes structuring the network. The skewed degree distributions of bipartite mutualistic and
antagonistic networks are usually assumed to show that ecological or co-evolutionary processes constrain the relative
numbers of specialists and generalists in the network. I show that a simple null model based on the principle of maximum
entropy cannot be rejected as a model for the degree distributions in most of the 115 bipartite ecological networks tested
here. The model requires knowledge of the number of nodes and links in the network, but needs no other ecological
information. The model cannot be rejected for 159 (69%) of the 230 degree distributions of the 115 networks tested. It
performed equally well on the plant and animal degree distributions, and cannot be rejected for 81 (70%) of the 115 plant
distributions and 78 (68%) of the animal distributions. There are consistent differences between the degree distributions of
mutualistic and antagonistic networks, suggesting that different processes are constraining these two classes of networks.
Fit to the MaxEnt null model is consistently poor among the largest mutualistic networks. Potential ecological and
methodological explanations for deviations from the model suggest that spatial and temporal heterogeneity are important
drivers of the structure of these large networks.
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Introduction

Describing complex ecosystems as networks of interacting

components and explaining the structure of those interaction

networks is an essential part of understanding the role of

biodiversity in the function and robustness of ecological commu-

nities [1,2]. While food webs, networks of antagonistic consumer-

resource interactions, have a long history of study and are the most

familiar example of ecological networks [3,4,5], significant

attention has recently been focused on networks of mutualistic

interactions such as plants and their pollinators or plants and seed

dispersers [6,7]. These networks provide a valuable overview of

one type of mutualism occurring within a community and several

apparently general patterns in the structure of mutualistic

networks have been found [8,9]. Co-evolutionary processes are

believed to play a strong role in shaping mutualistic communities

[8,9], though others have questioned whether such processes

structure mutualistic networks [10,11].

The distribution of the number of links per species, or degree

distribution, is a widely used summary of the topology of complex

networks [12] that has been studied in both food webs and

mutualistic networks [9,13,14]. Because of its central role in

describing network topology, considerable importance has been

placed on understanding the processes driving the form of the

degree distribution in ecological networks [9,11,13,14]. Interest in

the relative abundance of generalists and specialists motivated

early studies of networks of mutualistic interactions [15,16], and

such networks were found typically to have strongly skewed degree

distributions, with many species with few links and few species with

many links [9,17]. Earlier work found that degree distributions in

mutualistic networks are best-fit by a truncated power law [9], but

recent work does not support that finding [18]. Similar attempts to

fit degree distributions to particular functional forms for food webs

have also produced variable results [13,14,19]. The obvious

difference between the observed skewed distributions and the

binomial distributions of random networks [20] has driven the

assumption that these skewed distributions are a result of

ecological or evolutionary processes shaping species interactions

[7,9].

From early ideas about succession [21,22] through more recent

debates about community assembly [23,24] to current research

into macroecological patterns [25], the debate as to whether

perceived patterns in ecosystem properties are the result of chance,

biological processes or bias in the data has been an enduring

theme in ecological research. The principle of maximum entropy

[26] asserts that the least biased probability distribution satisfying a

set of constraints is the maximum entropy distribution, and any

other distribution would be assuming information not captured by
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the constraints. It has recently been recognized as a powerful tool

in the search for explanations of ecological patterns and has been

used to argue that a number of macroecological patterns can be

predicted with minimal appeal to specific ecological processes

[27,28]. Recently it was shown that a null model for degree

distributions of food webs based on MaxEnt could not be rejected

as a null model for 57% of the food web degree distributions

studied [29]. This very simple MaxEnt model requires a minimal

amount of ecological information: the number of species, the

number of species with no prey (basal species) or predators (top

species), and the number of links in the network.

Since food webs and mutualistic networks are built primarily

from antagonistic and mutualistic interactions respectively, it is

interesting to consider whether the different types of interaction

causes the structure of these two classes of networks to be

significantly different. Mutualistic networks are bipartite networks,

with interactions occurring between two groups of species, here

plants and animals, but not within the groups. While food webs are

not bipartite since they include taxa at many trophic levels and

interactions can occur between animals, an obvious subset of a

food web, the primary producers and their consumers, form a

natural counterpart to the mutualistic plant-animal networks, one

in which the interactions are primarily antagonistic. The different

types of interaction cause different pressures on organism’s

behavior, and so it is reasonable to expect networks dominated

by antagonistic or mutualistic interactions to have different

structure. A study of 14 food webs included as part of a much

larger study of mutualistic networks showed that mutualistic and

antagonistic networks differed significantly in their nestedness [8].

Given that different ecological processes may shape the networks,

it is possible that the degree distributions of these two different

types of networks also have different forms.

The goals of this work are three-fold. First, to test whether a

MaxEnt model like that used to predict food web degree

distributions [29] can predict the degree distributions of

mutualistic networks; second, to compare the deviation of

mutualistic and antagonistic networks from the MaxEnt model

to better understand how the structure of these two classes of

networks differs; and third, to explore how specific features of

some mutualistic networks might influence their degree distribu-

tions and drive them away from the MaxEnt expectation.

Methods

The degree distributions analyzed are from 68 mutualistic

networks compiled for two earlier studies [30,31] and 47 bipartite

networks formed by retaining only the basal taxa (plants and

detritus), their consumers and the links between these two groups

of taxa from food webs used in an earlier study of food web degree

distributions [29]. In these bipartite networks, S is the total number

of taxa, SP is the number of plants or basal taxa (some antagonistic

networks include detritus as a basal node), SA is the number of

animals or consumers and L is the number of connections between

these two groups of taxa. The connectivity of a bipartite network

CB = L/(SASP) is the fraction of possible links that occur. Basic

properties of these networks are given in table S1. In many food

webs, plant nodes are highly aggregated, resulting in a significantly

higher fraction of the antagonistic networks have relatively few

plant taxa (19 of 47 antagonistic networks have SP,10; 7 of 51

mutualistic networks have SP,10, 2-tailed p = 0.0032 Fisher’s

exact test).

None of the bipartite antagonistic networks considered here

have more than 134 species. Since network properties are

generally dependent on the number of nodes and links in the

network [4,32], similar size mutualistic and antagonistic networks

are compared. To avoid comparing very different-sized networks,

the mutualistic networks are split into two groups, the 51 networks

with less than 135 species which are compared with the similarly

sized bipartite antagonistic networks, and a group of 17 large

mutualistic networks with S.140 that have no counterpart

antagonistic networks of a similar scale.

A network’s degree distribution is the distribution of the number

of links attached to each node in the network. The networks

considered here are directed, in that the interactions are

asymmetric. In the food webs, one species is a consumer and the

other a resource while in the mutualistic network the plant gives

up food and receives a reproductive benefit while the animal

receives food and transports reproductive material. It is therefore

useful to consider the degree distribution of each group of nodes in

the bipartite network separately. The distribution of the number of

links connected to the plant or resource species is called the plant

distribution while the distribution of the number of links connected

to the animals or consumers is called the animal distribution. This

means that four types of degree distributions – the plant and

animal distributions of both the mutualistic and antagonistic (food

web) networks – are analyzed here.

The various degree distributions considered here are tested

against a maximum entropy (MaxEnt) distribution [29]. The

MaxEnt distribution is the probability distribution that maximizes

the information entropy subject to a set of information-containing

constraints, and so assumes no prior information other than the

stated constraints. Here the only information used is the number of

nodes in each group of nodes in the bipartite networks and the

number of links between the groups.

In the animal distribution, the potential number of links from

each animal ranges from 1 to SP and the mean number of links

from each animal is L/SA. In the plant distribution, the potential

number of links to each plant ranges from 1 to SA and the mean

number of links to each plant is L/SP. In general, the problem is to

find a discrete distribution on a set of n values {x1,…,xn} (here

{1…SP} or {1…SA}) with mean m (here L/SA or L/SP respectively)

that maximizes H~{
P

i

pi ln pi subject to the constraints
P

i

pi~1 and
P

i

xipi~m. The MaxEnt distribution, found using

Lagrange multipliers, is pi~P(X~xi)~Celxi for i = 1,…,n; the

constants C and l are determined by the constraints given above

[26,33].

The problem addressed here is determining the distribution of the

number of links attached to each node rather than the exact

arrangement of the links, so the system configuration is a vector of SA

or SP counts, each ranging between 1 and SP or SA, rather than a

vector of L species index pairs, with each index ranging between 1

and SA or SP from which a degree distribution could be computed. In

the language of a recent study of MaxEnt applied to species

distributions [34], this is an unlabeled problem; the MaxEnt solution

of the labeled problem gives the random model with a binomial

degree distribution. Implicit in this formulation are uninformative

prior distributions of the probabilities pi; the constraint on the mean

number of links per node is a soft constraint [34].

Two tests of the fit of the MaxEnt models to the empirical data

were used [29]. In the first, the likelihood ratio (G) statistic [35] is

used to compare an observed distribution to some expected

(model) distribution. G is defined as G~2
P

i

Oi ln Oi=Eið Þ where

Oi is the observed frequency, Ei the expected (MaxEnt) frequency

and i indexes through all values in the discrete distribution with

non-zero expected value. A 10,000 trial randomization is used. In

each trial, a sample is drawn from the maximum entropy

Ecological Network Degree Distributions
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distribution and its G value is compared to the G value of the

empirical distribution. The goodness of fit fG, is the fraction of

trials in which G of the empirical distribution is greater than G of

the sample from the maximum entropy distribution. If fG,0.95,

the empirical network’s degree distribution is not significantly

different from the model distribution at the 95% confidence level.

The goodness of fit fG does not differentiate between webs with

overly broad or narrow degree distributions. This is measured by

the relative width of a distribution W = log(sO/sM) where sO is the

standard deviation of the observed distribution and sM is the

standard deviation of the model distribution. For each empirical

web, the distribution of W was computed for 10,000 webs drawn

from the model distribution. The quantity W95 is the deviation of

the empirical value of W from the model median normalized by

the width of the upper or lower half of the central interval of the

model distribution of W at the 95% significance level. Webs with

W95,21 have distributions that are significantly narrower than

the model distributions; W95.1 occurs for distributions signifi-

cantly broader than the model distributions.

Some of the larger empirical systems are characterized by strong

spatial or temporal heterogeneity, for example a system scattered

over several islands with very few species in common across the set

of islands. To help understand the degree distributions of these

systems, I developed a simple heterogeneous-system degree

distribution model in which two identical networks are connected

by their most general animal, with every other species unique to

each sub-network. I create an animal degree distribution by

drawing a sample degree distribution for a sub-system with

specified SA, SP and CB that has a MaxEnt degree distribution and

then build a new degree distribution by connecting two copies of

this sub-system by sharing the most general animal species. This

process is illustrated in figure 1 and leads to a final network with

2SA,- 1 animal species and 2SP plants.

Results

Using criteria for goodness of fit based on both a likelihood ratio

test (fG,1) and relative width (21,W95,1), the MaxEnt model

cannot be rejected as a model for the degree distributions of a large

fraction of the data sets. Overall, the MaxEnt null model cannot be

rejected in 159 (69%) of the 230 degree distributions of 115 networks

tested. The MaxEnt model performed equally well on the plant and

animal distributions, and cannot be rejected for 81 (70%) of the 115

plant distributions and 78 (68%) of the animal distributions.

None of the antagonistic networks have S.134, so the relative

performance of the MaxEnt model on mutualistic and antagonistic

networks is studied in more detail on the 98 networks with S,135;

the 17 mutualistic networks with S.140 are studied separately.

Table 1 shows that using the criteria of goodness of fit based on

both fG and W95, the MaxEnt model cannot be rejected in 151

(77%) of the 196 degree distributions from networks with S,135.

There is clear scale dependence in the fit of the MaxEnt model,

with only 8 of 34 (24%) degree distributions of the larger

mutualistic networks (S.140) well fit by the MaxEnt model.

The results in table 1 for the 51 mutualistic and 47 antagonistic

networks with S,135 show that antagonistic and mutualistic

networks display marked differences in their plant degree

distributions. While the animal distributions of both network

types are equally well predicted by the MaxEnt model, there is

asymmetry in the fit of the MaxEnt model to the degree

distributions of the number of links to plants. The MaxEnt model

cannot be rejected for 84% of the mutualistic network plant

distributions, significantly more than the 64% of antagonistic

network plant distributions for which the MaxEnt model cannot

be rejected (Fisher’s Exact test, 2-tailed p = 0.02).

Figure 2 further explores the differences in the performance of

the MaxEnt model on the different network and degree

distribution types for networks with S,135 by plotting fG versus

W95 and coloring the point to show network size. Figure 1a

(orange data points) shows that compared to the MaxEnt

distributions, the poorly-fit plant distributions of the antagonistic

networks tend to be more broadly distributed (13 of 17 have

W95.0, p = 0.025, binomial test). There is no significant trend in

the width of the poorly-fit plant distributions of the mutualistic

networks (fig. 2a, blue) (5 of 8 have W95.0) or in distribution

width (W95) among the poorly-fit animal distributions of either

network type (fig. 2b, 3 of 10 poorly-fit antagonistic networks

distributions have W95.0; 6 of 10 mutualistic network distribu-

tions have W95.0).

Figure 2b suggests a trend in the width of the animal

distributions related to the size of the network. Regressing W95

against S shows that there is significant scale dependence in the

relative width of the animal distribution in mutualistic and

antagonistic networks (fig. 3). As S grows, antagonistic network

animal distributions are more narrowly distributed than predicted

by the MaxEnt model while the animal distributions of the

mutualistic networks are more broadly distributed than predicted

by the MaxEnt model. No such trends exist in the values of W95 of

the plant distributions.

Figure 4 further examines the scale dependence of the fit of the

large mutualistic networks to the MaxEnt model. There are 17

mutualistic networks with S.140. Most poorly-fit plant and

animal distributions are much broader than predicted by the

MaxEnt model, with the animal distributions having particularly

Figure 1. Schematic showing (a) two bipartite networks
coupled in (b) by making the most general animal species
(marked with a dotted circle in (a)) be the only node shared
across the two subwebs.
doi:10.1371/journal.pone.0017645.g001

Table 1. Number and (fraction) of networks well-fit by the
MaxEnt model for plant and animal degree distributions in
networks with S,135 and S.140.

N
Plant Distr,
Good Fit

Animal Distr,
Good Fit

All, S,135 98 73 (0.74) 78 (0.80)

Mutualistic, S,135 51 43 (0.84) 41 (0.80)

Antagonistic, S,135 47 30 (0.64) 37 (0.79)

Mutualistic, S.140 17 8 (0.47) 0

Both fG,0.95 and 21,W95,1 are required for the degree distribution to be
considered a good fit to the MaxEnt model.
doi:10.1371/journal.pone.0017645.t001

Ecological Network Degree Distributions
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large values of W95. The plant distribution of 9 of these is poorly fit

by the MaxEnt model based on the dual criteria fG,0.95 and

21,W95,1 (fig. 4a). The MaxEnt model is rejected at the 0.95

level for fG for the animal distribution of all 17 large networks.

Only two of these networks have W95,1 (fig. 4b), and these two

networks are the only two seed dispersal networks among the 17

large networks.

I examined two large mutualistic networks in more detail to

explore how specific features of these networks might cause their

degree distributions to be different from the MaxEnt model. The

large network with the most highly anomalous animal distribution,

as measured by W95, is the MULL web. This web is a compilation

of previously published data and new observations of plant-insect

pollination interactions from across the Galápagos archipelago

[36]. Thus these data are from multiple island communities tied

together by a common, generalist pollinator. In the MULL web,

the dominant pollinator is Xylocopa darwini, the Galapagos

carpenter bee [37], pollinating 80 of the 105 plants. The next

most general pollinator interacts with 14 plants. If this highly

general species is removed from the network, the animal

distribution becomes much more narrowly distributed, with W95

droping from 14.7 to 1.34. This shows the important role that one

species can have in shaping the degree distribution. Remaining

deviation from the MaxEnt model is driven by the abundance of

highly specialized pollinators – in the MULL web, 31 of 54 species

(57%) pollinate a single plant, compared to a range of 15% to 37%

(2 S.E. about the mean of 26%) predicted by the MaxEnt model.

The phryganic ecosystem network PTND [38] is another large

network with a very broad animal distribution compared to the

MaxEnt model, with W95 = 7.41. Part of this is because the system

has a dominant pollinator, the European honeybee, Apis mellifera,

which pollinates 104 of the 131 plant species, while the next most

general pollinator interacts with 38 plants. The animal distribution

also has a large number of specialists, with 248 of 666 (37%)

Figure 2. Relative width W95 versus goodness of fit fG of the
MaxEnt model for (a) plant distributions and (b) animal
distributions of 98 networks with S,135. Shading of the data
points shows the number of species in the networks.
doi:10.1371/journal.pone.0017645.g002

Figure 3. Relative width W95 versus number of species S for the
animal distributions of (a) antagonistic networks and (b)
mutualistic networks with S,135. Solid line is linear regression,
dotted lines are upper and lower confidence intervals. In (a) R2 = 0.25,
p,0.001, in (b) R2 = 0.10, p = 0.015.
doi:10.1371/journal.pone.0017645.g003

Ecological Network Degree Distributions
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pollinators specialized on a single plant compared to a range of

20% to 25% (2 S.E. about the mean of 23%) predicted by the

MaxEnt model. The system was observed continuously for 50

months. Even with this level of observation effort, pollinator count

versus time suggests that the full diversity of the system was not

observed. There was also considerable inter-annual variability -

during each calendar year, typically about half of the species in

any one pollinator group were observed, and only about 20% of

pollinators occurred in all years. There is high year-to-year

turnover in both the animal and plant communities, and it is likely

that some specialists are ‘‘apparent specialists’’, where the

observed specialization is caused by undersampling or sampling

in unusual years [39].

These webs have high degrees of spatial (MULL) and temporal

(PTND) heterogeneity. I tested the effects of spatial or temporal

heterogeneity using the heterogeneous-system degree distribution

model, which couples subsystems using a common generalist

animal species, on a range of network sizes. The results for SA = 20,

SP = 20 and CB = 0.25 are representative of the model’s behavior.

The MaxEnt model is always rejected as a model for the resulting

animal degree distribution of the 79 species (SA = 39, SP = 40,

CB = 0.128) network even though the MaxEnt model was used to

create the degree distribution of each sub-network. Compared to

the MaxEnt model, the networks built by connecting two identical

networks are more highly skewed than expected (,W95. = 2.46,

100 iterations) because of the occurrence of a single highly general

pollinator.

Discussion

While degree distributions in mutualistic and antagonistic

networks are strongly skewed, with many species having few

connections and few species having many connections, the results

here show that their shape can usually be explained by a simple

statistical model and does not require a model involving specific

ecological or evolutionary processes. The MaxEnt model is found

to be a good model of the degree distributions of mutualistic and

antagonistic networks more often than it was found to be a good

model for food web degree distributions [29], suggesting that

ecological processes play a more important role in structuring

multi-trophic level food webs than the bipartite networks

considered here. Recently, models based on MaxEnt have also

been used to explain a broad range of macroecological

distributions, such as species-abundance and species area rela-

tionships [27,28,34]. Together, these findings show that a wide

range of large-scale ecological patterns can be explained without

turning to detailed descriptions of the ecological processes at work

in the system.

An earlier null model for degree distributions in mutualistic

networks suggested that species’ degree (number of species it

interacts with) is a function of its frequency of interaction [11].

Other explanations relate species degree to specific trait

combinations making certain links impossible (so-called ‘‘forbid-

den links’’) [9,40] or to a combination of abundance and traits

[41]. Evolutionary network models have also been explored as

explanations for the structure of ecological networks and a range

of degree distributions have been found [42,43]. These models

suggest that the observed exponential-like degree distributions

results from variation in the links passed from parent to child

species during evolution. A recent analysis of the application of

MaxEnt to species abundance distribution argues that it is

common for distributions, each resulting from one or more

mechanistic model, to also be found as a solution of an

appropriately formulated entropy maximization problem [34].

The fact that the formulation used here is so often successful

suggests that its formulation and constraints reflect simple

constraints commonly operating on these systems. The existence

of multiple mechanistic models giving similar degree distributions

suggests that multiple mechanisms can place similar simple

constraints on the degree distributions, whether through trait

distributions or evolutionary processes. This in turn suggests that it

will not be possible to determine which ecological or evolutionary

processes are constraining the structure of mutualistic networks by

studying their degree distributions alone.

When deviations from the MaxEnt model do occur, it is

necessary to question whether they are due to ecological processes

or systematic sampling biases shaping the degree distributions. I

have identified three deviations from the MaxEnt model in the

degree distributions of the networks studied here. Importantly,

these deviations are different in antagonistic and mutualistic

networks, suggesting that different processes at work structuring

networks with different types of links. First, plant distributions of

the mutualistic networks are significantly better fit by the MaxEnt

model than the plant distributions of the antagonistic networks.

Figure 4. Relative width W95 versus number of species S of (a)
plant distributions and (b) animal distributions for 17 net-
works with S.140. Shading of data points shows the goodness of fit
fG of the MaxEnt model.
doi:10.1371/journal.pone.0017645.g004

Ecological Network Degree Distributions
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Second, plant distributions of antagonistic networks tend to be

more broadly distributed than predicted by the MaxEnt model.

This means that antagonistic networks generally have both more

highly vulnerable plant resources and more relatively invulnerable

plant resources than predicted by this simple null model.

Third, there are opposite trends in the scale-dependence of the

relative width of the animal distributions of mutualistic and

antagonistic networks. The animal distribution of large mutualistic

networks tends to be more broadly distributed than predicted by

the MaxEnt model, while the animal distributions of larger

antagonistic networks tend to be more narrowly distributed. Since

pollinators and seed dispersers also consume the plants that they

benefit reproductively, this suggests that highly generalist animals

only occur if they are also conferring a reproductive benefit to

their resource. In food webs, it has been suggested that generalist

intermediate species are uncommon because of their destabilizing

influence on the system [44]. The results presented here suggest

that restricted relative generality of plant consumers is more

common in larger networks.

There are two sources of deviations from MaxEnt distributions

in large mutualistic network animal distributions. First, the degree

distribution can be strongly affected by the presence of a single

highly connected species, causing a markedly high value of W95.

Second, a larger than predicted fraction of species interacting with

a single species can lead to the network having a distribution with

a high value of W95. A detailed examination of two of these data

sets helped reveal potential reasons for their broad animal

distributions.

A recent simulation study [45] suggests that spatial processes

can have important effects on the structure of mutualistic

networks, though did not specifically address their degree

distributions. The simple heterogeneous-system degree distribu-

tion model suggests a biological explanation for the broad degree

distributions seen in the large, low connectance pollination

networks with a small number of super-generalist pollinators.

Strong spatial compartmentalization within sub-networks, leading

to networks that contain relatively high connectance sub-networks

with MaxEnt degree distributions that are interconnected by one

or a small number of highly general pollinators, could lead to the

observed highly skewed distributions.

The MULL network also has a large number of animals that

pollinate a single plant species. Again, questions arise as to whether

this phenomenon is determined by methodology or biology. It

could be driven by the relative abundance of the species involved

and the observation effort expended [11]. Alternatively, it might

be the result of greater than expected specialization of the plant

and animals in this system leading to relatively abundant but

specialized species.

Given the highly variable phenology of plants and the multiple

seasons over which the PTND data [38] were collected, it is likely

that the community is functioning as a set of sub-networks

separated in time, with specialist pollinators active at different

times of year or in different years, connected by common

generalist pollinators that are much more regularly present. Here

time rather than space is leading to heterogeneity in the

community [46], but with a similar effect on the network degree

distribution. Other recent studies suggest that strong temporal

heterogeneity is a common feature of pollination networks, and so

the temporal sampling scheme must be considered when

interpreting the relative degree of specialization among species

[47,48].

Analysis of the deviations from the MaxEnt model in these two

data sets demonstrates how the MaxEnt model can focus attention

on the particular features of degree distributions which require

further explanation. Here, it was found that spatial and temporal

heterogeneity might play an important role in shaping the degree

distributions and other features of the network’s structure. This

possibility was also highlighted in a number of recent studies

[39,45,47,48,49]. Spatio-temporal heterogeneity is another mech-

anism which explains why some links cannot occur (‘‘forbidden

links’’), caused by the lack of species co-occurrence at appropriate

points in their life history. Forbidden links are often hypothesized

to be an important driver of the structure of mutualistic networks

assumed to arise from complementary traits in co-occurring

species [9,40] – here those traits are the spatial or temporal

domains in which the species occur. Some large systems are

composed of loosely coupled small systems which are either, like

MULL, highly spatially heterogeneous or, like PTND, temporally

heterogeneous. The observed degree distribution will then depend

on an observer’s definition of the system’s boundaries.

While the MaxEnt null model is useful for understanding how

ecosystem features such as spatial and temporal heterogeneity can

affect network structure, methodological variability across the

available data limit the ecological insight that can be drawn from

analyses across a broad range of data sets. As noted in earlier

studies, similar limitations driven by variability in data collection

protocols still exist in the data describing antagonistic networks

[29,50,51]. There is a clear need for more consistent data

collection protocols and for systematic studies of the effects of

variability in data gathering procedures and data collection effort

on observed network structure. Despite these issues, the MaxEnt

model successfully describes the degree distributions of bipartite

ecological networks across a wide range of empirical data. Rather

than requiring detailed understanding of the ecological or co-

evolutionary processes at work in these systems, the relative

abundance of specialist and generalist species in these networks

can usually be explained by a simple statistical model.

Supporting Information

Table S1 Data Sets Used. Type: FW = food web; SD = seed

dispersal; P = pollination. S is the number of taxa, SP is the number

of plant taxa; SA is the number of animal taxa; L is the number of

links; CB = L/SBSA is the bipartite network connectance. Details of

sources for food webs are in [29]. Details of sources for mutualistic

networks are in [30] and [31] and the data are available at http://

ieg.ebd.csic.es/JordiBascompte/Resources.html.
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