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Purpose: There is an emerging interest of applying magnetic resonance imaging (MRI)

to radiotherapy (RT) due to its superior soft tissue contrast for accurate target delineation

as well as functional information for evaluating treatment response. MRI-based RT

planning has great potential to enable dose escalation to tumors while reducing

toxicities to surrounding normal tissues in RT treatments of nasopharyngeal carcinoma

(NPC). Our study aims to generate synthetic CT from T2-weighted MRI using a deep

learning algorithm.

Methods: Thirty-three NPC patients were retrospectively selected for this study with

local IRB’s approval. All patients underwent clinical CT simulation and 1.5T MRI within

the same week in our hospital. Prior to CT/MRI image registration, we had to normalize

two different modalities to a similar intensity scale using the histogram matching

method. Then CT and T2 weighted MRI were rigidly and deformably registered using

intensity-based registration toolbox elastix (version 4.9). A U-net deep learning algorithm

with 23 convolutional layers was developed to generate synthetic CT (sCT) using 23 NPC

patients’ images as the training set. The rest 10 NPC patients were used as the test set

(∼1/3 of all datasets). Mean absolute error (MAE) and mean error (ME) were calculated to

evaluate HU differences between true CT and sCT in bone, soft tissue and overall region.

Results: The proposed U-net algorithm was able to create sCT based on T2-weighted

MRI in NPC patients, which took 7 s per patient on average. Compared to true CT,

MAE of sCT in all tested patients was 97 ± 13 Hounsfield Unit (HU) in soft tissue,

131 ± 24 HU in overall region, and 357 ± 44 HU in bone, respectively. ME was

−48 ± 10 HU in soft tissue, −6 ± 13 HU in overall region, and 247 ± 44 HU in bone,

respectively. The majority soft tissue and bone region was reconstructed accurately

except the interface between soft tissue and bone and some delicate structures in

nasal cavity, where the inaccuracy was induced by imperfect deformable registration.

One patient example was shown with almost no difference in dose distribution using

true CT vs. sCT in the PTV regions in the sinus area with fine bone structures.
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Conclusion: Our study indicates that it is feasible to generate high quality sCT

images based on T2-weighted MRI using the deep learning algorithm in patients

with nasopharyngeal carcinoma, which may have great clinical potential for MRI-only

treatment planning in the future.

Keywords: synthetic CT (sCT), magnetic resonance imaging (MRI), deep learning, convolutional neural network

(CNN), nasopharyngeal carcinoma (NPC), U-net

INTRODUCTION

There is an emerging interest in applying magnetic resonance
imaging (MRI) during radiation treatment (RT) (1, 2). This is
mainly because MRI can provide superior soft tissue contrast
without ionizing radiation. MRI offers more consistent and
accurate target delineation in head and neck cancers, brain
tumors, sarcomas, and tumor sites in the abdomen and pelvis
(3–6). It has been reported that applying MRI to RT has
great benefits to improve radiation dosimetry and to increase
therapeutic ratio, such as reducing toxicity to critical organs
and enabling dose escalation to tumor sites to achieve survival
gains (4, 7). In addition, not only anatomical but also functional
information can be obtained non-invasively using MRI, which
makes MRI suitable for quantitative and longitudinal evaluation
of treatment response (8–10). Therefore, MRI integrated with the
conventional CT-sim in RT planning has become an essential step
in modern RT process (1–3).

As we know, nasopharyngeal carcinoma (NPC) is a common
malignancy in Southeast Asia. Integrating MRI to RT in
patients with NPC can be especially helpful due to its relatively
complicated target structures and surrounding critical normal
tissues. Accurate delineation of critical structures and tumors in
NPC may not only help patients gain survival but also improve
life quality. However, there are multiple challenges in integrating
MRI to clinical RT. The acquisition time of MRI pulse sequences
is typically much longer than CT, since the MRI scanning
protocol generally includes not only localizer, T1 weighted, T2
weighted, diffusion weighted imaging (DWI) but also dynamic
contrast enhanced (DCE) sequences. Also, parameters of MRI
pulse sequences such as bandwidth, TR, TE and the receiver coils
need to be manipulated based on patients’ anatomical sites or
pathological examinations. MRI in general is more technically
challenging to radiation physicists and physicians compared to
CT. Hence, MRI technologists may need more time to adjust
complex parameters or to optimize coils during anMRI scan (11).
Secondly, MRI is inherently susceptible to motion artifact and
geometric distortion (1, 2, 11, 12). For example, the geometrical
uncertainty of ∼2 and 2–3mm was observed for the brain and
pelvic sites, respectively (13, 14). Such systematic errors can lead
to RT target miss and compromise local control.

Another well-known challenge lies in the conversion of
electron density or HU values in synthetic CT based on MR
images. CT images can be used for radiation treatment planning
is because they can be directly scaled to photon attenuation
map. However, MRI does not provide such information (11, 12).
Currently there are three methods of mapping HU based on the

intensity of MR images (15, 16): atlas-based (17), voxel-based
(18), and hybrid type (19). The atlas-based method of producing
synthetic CT images may require CT to MRI registration where
CT and MRI atlas scan pair can correspond anatomically (17).
In contrast, voxel-based method is focused on using voxel by
voxel mapping based on intensity or spatial location of the MRI
images acquired from different MRI pulse sequences (18). The
hybrid method combines atlas- and voxel-based methods, where
deformable registration from the atlas-based method and local
pattern recognition from the voxel-based method are applied
to obtain attenuation information in the MR images. From this
point of view, our proposed deep learning method where both
registration and voxel-by-voxel patterns are learned through
U-net, can be considered as the hybrid method.

In fact, machine learning and deep learning have been applied
to many medical fields including radiation oncology (20), which
has main components of data, model, cost or loss of the
model, and model optimizer. Topics of how to apply and what
are the challenges of machine learning, neural networks, and
artificial intelligence (AI) to the clinical RT process have been
discussed previously on the red journal (21). Here we aim to
apply deep learning algorithms such as the U-net convolution
neural network (CNN) approach to convert T2-weighted MRI to
synthetic CT.

MATERIALS AND METHODS

To convert the T2-weighted MRI to synthetic CT images, there
were four major steps in our method illustrated in Figure 1:
(1) MR image normalization into the similar intensity scale; (2)
voxel-based rigid and deformable registration for CT and MRI;
(3) U-net model training with 2/3 datasets; (4) U-net model
testing with the rest 1/3 datasets and evaluation of the synthetic
CT images.

Data Acquisition
Thirty-three nasopharyngeal carcinoma (NPC) patients were
retrospectively selected for this study with the approval of our
hospital’s internal review board (IRB). All patients underwent
CT simulation in the head-first supine position with the Civco
5-point head, neck and shoulder mask on a GE Discovery
CT scanner (Milwaukee, WI, USA) prior to RT planning with
resolution of 512 × 512, slice thickness of 2.5mm, 120 kVp and
300 mAs. Within the same week of CT acquisitions, diagnostic
MRI was obtained using 1.5 T Siemens Avanto MRI scanner
(Erlangen, Germany) in our hospital, where T2 weighted MRI
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FIGURE 1 | The workflow diagram of generating synthetic CT from T2-weighted MRI using U-net.

FIGURE 2 | The architecture of U-net used in this study. The size of input images is 512*512*1 pixels. Blue box is multi-channel feature map, and the number on the

top-left of the box is channel number. White box is batch normalization. Gray box is leaky ReLU. Green box is dropout module.

was acquired using fat-saturated (FS) turbo spin echo (TSE) with
resolution of 256× 256 and slice thickness of 5 mm.

Image Preprocessing
Prior to the rigid and deformable registration between T2
weighted MRI and CT images, we had to normalize the two
imaging sets of different modalities to a similar intensity scale
using the histogram matching method (Figure 1’s first step:
MRI normalization). Although lacking of a normalized intensity
scale of MRI had no impact on clinical diagnosis provided by
radiologists, it would influence the quality of image registration
and deep learning, which highly depended on the similarity
of image intensity between MRI and CT to achieve high-
quality results. We used histogram matching method, which was
independent of patients’ image sets and specific brands of the
MRI scanner used (22). In our study, the normalization process
took account of all the NPC patients’ samples by identifying
10 decile landmarks in the histogram of each MR image and
calculated the mean values of each landmark as the standard
scale. It was used to transform the MR images of the same
protocol and body region to the standard scale (23).

To conduct rigid and deformable registration of the MRI
and CT imaging modalities, we used an open source image
registration package called elastix (version 4.9) (24, 25), where the
traditional iterative intensity-based image registration method
was applied. For all NPC patients, the rigid image registration
was performed followed by deformable registration. In the
rigid registration, multi-resolution registration method was used,
and the optimizer was adaptive stochastic gradient descent. In
the deformable registration, multi-metric and multi-resolution
registration method was used with advanced Mattes mutual
information as the similarity metrics and transform bending
energy penalty for smooth displacement (26) (Figure 1’s second
step: Image registration).

After image normalization and image registration steps
described as the above, a U-net deep learning method was
developed to generate synthetic CT from T2-weightedMRI using
23 convolutional layers of CNN, shown in Figure 2. To train and
evaluate the U-net model, the 33 patients’ dataset were randomly
divided into two groups: 23 were used as the training set (∼2/3 of
the total datasets) and the rest 10 were used as the test set (∼1/3
of the total datasets) (Figure 1’s third and fourth steps).
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FIGURE 3 | The comparison of CT and synthetic CT for two representative MR images. (A) MR image in the neck region; (B) real CT image aligned with (A);

(C) synthetic sCT converted from MR image (A); (D) difference map between (B,C); (E) MR image in the head region; (F) real CT image; (G) synthetic sCT image;

(H) difference map between (F,G). Gray bar in (H) indicated the mapping from CT number to gray scale in the difference maps.

U-Net as a Deep Learning Algorithm
The U-net CNN structure consists of a contracting path and
an expansive path (27), shown in Figure 2. The contracting
path follows the typical architecture of a convolutional
network. It consists of the repeated application of two
3 × 3 convolutions (unpadded convolutions), each followed
by a rectified linear unit (ReLU) and a 2 × 2 max
pooling operation with a stride of 2 for down-sampling.
At each down-sampling step, we doubled the number of
feature channels.

In contrast to the contracting path, the expansive path is
composed of an up-sampling of the feature map followed
by a 2 × 2 convolution (i.e., “up-convolution”) that halved
the number of feature channels, a concatenation with the
correspondingly cropped feature map from the contracting
path, and two 3 × 3 convolutions, each followed by a
ReLU. The cropping is necessary due to the loss of border
pixels in every convolution. At the final layer, a 1 × 1
convolution was used to map each 64-component feature
vector to the desired number of classes. In the final layer,
a convolution was used to map the feature to the desired
value, which was the intensity of the synthetic CT. Therefore,
in the expansive path, a large amount of image features
was used to reconstruct a new image of the same size as
the input one. The implementation of our U-net was shown
in Figure 2.

Here we used batch normalization and leaky ReLU in our
network, which was different from the classical U-net (27).
Our U-net was developed in Keras framework which was a
high-level neural network API with Tensorflow as the backend.
In total, the U-net network in our study had 23 convolutional
layers. To allow a seamless tiling of the output segmentation
map, we also selected the input tile size such that all 2 × 2
max-pooling operations were applied to a layer with an even
x- and y-size.

Evaluation
The 33 NPC patients were randomly divided into two groups:
23 as the training set and 10 as the test set. The U-net model
described in the previous section was trained through feeding
MRI and CT images from the training set into the neural
network. The synthetic CTs were generated using the trained
model for the test set.

To visually inspect the difference between true CT and
synthetic CT, difference maps were generated. The pixel intensity
of the difference map was the absolute difference between real CT
and synthetic CT. Darker region in the difference map indicated
smaller errors of CT values or HU number in the region of
synthetic CT, and vice versa.

The mean absolute error (MAE) and mean error (ME)
were used to quantify the absolute difference and mean
difference within the body, respectively. The body masks were
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FIGURE 4 | The comparison of true CT and synthetic CT for bone. The first column is true CT images. The second column is the synthetic CT images. The third

column is the difference maps. (A–C) Showed bone in the neck region. (D–F) Showed bone in the head and nasal region. Gray bar indicated the mapping from CT

number to gray scale in the difference maps.

generated using OTSU’s thresholdingmethod andmorphological
operations (28, 29).

MAE =
1

n

n
∑

i=1

∣

∣CT (i) − sCT(i)
∣

∣ (1)

ME =
1

n

n
∑

i=1

(CT (i) − sCT(i)) (2)

where n is the total number of pixels within the body outline.
CT(i) is the ith pixel in real CT image, and sCT(i) is the ith pixel
in the synthetic sCT.

To further evaluate the accuracy of synthetic CTs in different
tissues, the threshold of 300 HU was used on the true CT images
to separate the bone and soft tissues. The MAEs andMEs in bone
and soft tissues were calculated, respectively.

RESULTS

Comparison of True CT and Synthetic CT
Images
An example of the T2-weighted MRI, true CT-sim, synthetic
CT, and MAE differences in the axial view of two representative
slices was shown in the first to fourth column in Figure 3. Soft

tissues in the synthetic CT (Figures 3C,G) had similar intensities
as the true CT (Figures 3B,F). The major difference between true
CTs and synthetic CTs was in the air-bone and bone-soft tissue
interface (Figures 3D,H: the MAE map).

Figures 4, 5 showed the axial view for bone and soft tissues,
respectively. The bone structures in synthetic CTs was well-
reconstructed by our model, such as the nasal bone (Figure 4E)
and bone marrow (Figures 4B,E). The soft tissues in synthetic
CTs had the similar intensity as the real ones (Figures 5B,E).
However, the interface between bone and soft tissues had higher
deviation, and the delicate structures in nasal cavity were blurred
in the synthetic CTs (Figure 5B). The majority soft tissue and
bone region was reconstructed accurately except the interface
between soft tissue and bone and some delicate structures in
nasal cavity, where the inaccuracy might be induced by imperfect
deformable registration.

Quantitative Analysis
The summary of HU difference between the true CT and
synthetic CT images was listed in Table 1. Compared to true
CT, MAE of sCT in the 10 tested patients was 97 ± 13 HU
in soft tissue, 131 ± 24 HU in overall region, and 357 ±

44 HU in bone, respectively. ME was −48 ± 10 HU in soft
tissue, −6 ± 13 HU in overall region, and 247 ± 44 HU in

Frontiers in Oncology | www.frontiersin.org 5 November 2019 | Volume 9 | Article 1333

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Synthetic CT Based on MRI in NPC

FIGURE 5 | The comparison of true CT and synthetic CT for soft tissues. The first column is true CT images. The second column is the synthetic CT images. The third

column is the difference maps. (A–C) Showed soft tissue in the head and nasal region. (D–F) Showed soft tissues in the neck region. Gray bar indicated the mapping

from CT number to gray scale in the difference maps.

bone, respectively. As shown in Table 1, MAE and ME varied
in different patients. The synthetic CTs of Patient #1 had the
lowest deviation in overall body, bone, and soft tissues (overall
body: MAE = 91; bone: MAE = 300; soft tissue: MAE = 75;
unit: HU). The synthetic CTs of Patient #3 had the largest
deviations in overall body, bone, and soft tissues (overall body:
MAE = 170; bone: MAE = 430; soft tissue: MAE = 118;
unit: HU).

We also calculated ME to evaluate the average errors
of each patient. In most patients (patient #1, 2, 4, 5, 6,
7, 9, 10), the synthetic CTs overestimated the CT number
in the overall body region. Only in 2 patients (patient #3,
8), the CT number in synthetic CTs were underestimated,
especially in the bone region. We noted that the CT number
of bones in synthetic CTs was underestimated, while CT
number of the soft tissues was overestimated using our
U-net algorithm.

The GPU-based U-net model was trained with 23 patients’
datasets using 20 h. The average time for each test patient was
only 7 s. The total time of converting T2-weighted MRI to
sCT for all 10 test patients using our deep learning algorithm
was <1 min.

DISCUSSION

We have developed a feasible deep learning algorithm for
converting MRI to HU maps to facilitate the MR-only treatment
planning in the future. Based on the performance metrics such as
MAE and ME, our soft tissue and overall region had acceptable
HU differences. However, the bone region had larger errors due
to less pixels of bone area compared to those of soft tissue and
hence much less samples for training. In addition, bone regions
have a large range of HU values, typically from several hundreds
to several thousandHU numbers, whichmakes the trainingmore
difficult than the narrower range of HU numbers in soft tissue.
One way to improve the results in the bone region is to separately
train soft tissue and bone (30); another approach is to acquire
ultrashort TE (UTE) MRI sequence to obtain better labeling of
the bone region in MR images (31).

As mentioned in the previous review articles by Edmund

et al. (15), there is no obvious favorable method among different

types of MRI contrast(s) in the generation of synthetic CT to

increase the accuracy. The reason we use the 2D images of T2-
weighted MRI to generate synthetic CT images is simply due to
its popularity in the existing radiotherapy workflow for target
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TABLE 1 | Summary of all 10 test patients.

MAE: soft tissue MAE: bone MAE: overall region ME: soft tissue ME: bone ME: overall region

Patient 1 75 300 91 −32 191 −15

Patient 2 98 323 126 −58 178 −26

Patient 3 118 430 170 −49 312 15

Patient 4 109 370 145 −55 279 −8

Patient 5 79 303 100 −34 227 −6

Patient 6 104 369 136 −39 258 −1

Patient 7 93 343 120 −43 242 −9

Patient 8 93 421 158 −61 293 12

Patient 9 105 363 137 −50 274 −5

Patient 10 95 352 128 −57 217 −20

Mean ± SD 97 ± 13 357 ± 44 131 ± 24 −48 ± 10 247 ± 44 −6 ± 13

delineation. In our study, it took 20 h to train the U-net model
with 23 patients’ MRI and CT datasets. The average time for
each test patient was only 7 s. The total time of converting T2-
weighted MRI to sCT for all 10 test patients using our deep
learning algorithm was<1min, which has great clinical potential
for online MRI conversion in the future.

It has been noticed by Edmund et al. (15) that the current
performance metrics such as MAE and Dice do not reflect the
corresponding dosimetric and geometrical agreement between
the true CT and synthetic CT. Therefore, more unambiguous
metrics should be developed, where the results should not depend
on the selected CT number threshold (for example, our study
used HU = 300 as the threshold for bone and soft tissue).
Another concern of the synthetic CT methods is about the
clinical implementation to the existing RT workflow. For the
brain, it has been shown that a bulk density assignment may
be sufficient for RT treatment planning (32). However, the head
and neck region is more challenging in planning with many
close-orientated organs at risk (OAR). Therefore, we may need
more accurate HU maps in the conversion using the pixel-based
deep learning method. We noticed there were underestimations
in bones and overestimations in soft tissues. The use of L2
distance (mean squared error) as the loss function could cause
the image blurring, which tended to predict an average CT value
of both bone and soft tissues. The low prediction accuracy in the
interface could be due to the errors of image registration and
suboptimal prediction model. To encourage less blurring and
improve the prediction accuracy, the L1 distance and a more
complicated neural network with more fitting parameters could
be introduced.

We have noticed several limitations in this study. First, the co-
registration ofMRI and CT-sim images may introduce systematic
errors. It has been reported that MRI-CT co-registration may
introduce geometrical uncertainties of ∼2mm for the brain and
neck region (13) and of 2–3mm for prostate and gynecological
patients (14). Although our MRI and CT were acquired within
the same week and similar scan position, the T2-weighted MRI
was acquired in the department of diagnostic radiology without
head and neck masks and without the flat couch top, the patients’
chin position of CT-sim was still slightly different from that
of MRI. Therefore, the rigid and deformable registration using

the open source software could introduce geometrical errors,
which makes the U-net downstream more difficult to accurately
map HU values pixel-by-pixel. Furthermore, MRI has more
geometrical distortion inherently compared to CT due to its
gradient non-linearity and magnetic field inhomogeneity (33). In
addition, patients inside the MRI bore can introduce geometrical
distortion from susceptibility effect and chemical shift, which
is difficult to correct. The traditional way of applying MRI to
radiation treatment planning (RTP) is to acquire diagnostic MRI
and then to conduct deformable image registration of MRI to the
planning CT. The patient position of diagnostic MRI scans may
be different from that of CT-sim or treatment position, which
can introduce systematic errors (3, 34). Therefore, in order to
minimize error and increase accuracy of deep learning-based
MRI conversion to CT, we should use the MRI simulation with
exactly the same immobilization devices as the CT simulation,
which will be possible in 6 months when we have an in-
department new MRI simulator.

The second limitation lies in the U-net deep learning
algorithm. Deep learning algorithms are widely available, such
as deep convolutional network (what we used), recurrent neural
network (RNN), deep residual network (DRN), generative
adversarial network (GAN), long/short term memory (LSTM).
However, they may be susceptible to overfitting, difficult to
interpret, or issues of accuracy. It has been reported that the deep
CNN method competed favorably compared to the atlas-based
method in the MRI conversion process (29). Here we used U-
net CNN in the synthetic CT generation from T2-weighted MRI.
However, U-net only interprets the non-linear mapping between
MR and CT images through the training process. GAN, for
example, has great potential to develop a better understanding of
the non-linear relationship by generating images and improving
the output through the discriminative algorithm (35). In the
future, the structure of deep learning networks can be optimized
to enhance accuracy and reduce the non-linear mapping error in
the MRI conversion of CT numbers.

The third limitation is the sample size. It has been observed
in our study that increasing the sample size can significantly
improve the image quality and accuracy of the synthetic CT. For
example, we started with 13 patients as the training set and later
increased the sample size to 23 patients in the training set. The
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FIGURE 6 | The dose distribution and DVH comparison between true CT and synthetic CT in an example NPC patient. Three slices of true CT are shown on the left

(A,C,E); Three corresponding slices of synthetic CT are shown on the right (B,D,F). The DVH comparison based on true CT and synthetic CT is shown in (G). The

translucent red region is high-risk PTV with prescription dose of 69.96Gy; the translucent green region is intermediate-risk PTV with prescription dose of 60Gy; the

translucent blue region (not shown in axial views here) is low-risk PTV with prescription dose of 54.4Gy. DVH with squares and triangles is based on true and synthetic

CT, respectively.
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MAE of HU difference map has been decreased significantly.
Also, we didn’t use image augmentation to increase data sets
in our study, which may help to improve the accuracy of MRI
conversion to synthetic CT.

In order to compare the dose distribution using true vs.
synthetic CT, one patient example was selected with the tumor
in the sinus area and nearby fine bone structure (Figure 6). The
mean HU value difference between true CT and sCT in the
bone region was 191. The mean difference between true CT
and sCT in the soft tissue region was 32. The treatment plan
using the true CT was constructed with two full RapidArc in
the Eclipse TPS v13.5 (Varian Medical Systems) and clinically
approved by radiation oncologists. The dose distribution was
subsequently recalculated based on sCT in the same treatment
planning system. The three PTV regions, which were high-risk,
intermediate-risk, and low-risk PTVs, as shown in DVH and
isodose lines in Figure 6, had almost no difference between true
and synthetic CT. For instance, the difference of D98% between
the high-risk, intermediate-risk, and low-risk PTVs using true
CT and sCT was <1%.

In summary, a promising method of synthetic CT generated
from MRI has been proposed. Our pixel-based U-net deep
learning algorithm of converting T2-weighted 2D MRI to HU
mapping shows clinical potential of feasibility and simplicity
with acceptable accuracy in soft tissue and overall region in the
nasopharyngeal cancer site, which can be improved in the future
by increasing the sample size of training data, acquiring same
setup position of CT-sim vs. MRI-sim, and applying advanced
neural networks such as GAN for better non-linear mapping.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by IRB, CAMS Shenzhen Cancer Hospital. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

YW conceived the idea, collected data, and wrote the manuscript.
CL developed the U-net coding. XZ debugged the program and
analyzed results. WD checked results and revised the manuscript.

FUNDING

This study was sponsored by Shenzhen City Sanming Project
(Grant no: SZSM201812062).

ACKNOWLEDGMENTS

We thank Dr. Dehong Luo in the Department of Diagnostic
Radiology at CAMS Shenzhen Cancer Hospital for advices
regarding the CT and MRI acquisition.

REFERENCES

1. McGee KP. MRI in radiation oncology: underserved needs.Magn Reson Med.

(2016) 75:11–4. doi: 10.1002/mrm.25826

2. Dirix P, Haustermans K, Vandecaveye V. The value of magnetic resonance

imaging for radiotherapy planning. Semin Radiat Oncol. (2014) 24:151–9.

doi: 10.1016/j.semradonc.2014.02.003

3. Dawson LA, Menard C. Imaging in radiation oncology: a perspective.

Oncologist. (2010) 15:338–49. doi: 10.1634/theoncologist.2009-S106

4. Haie-Meder C, Pötter R, Van Limbergen E, Briot E, De Brabandere M,

Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-

ESTRO Working Group (I): concepts and terms in 3D image-based 3D

treatment planning in cervix cancer brachytherapy with emphasis on

MRI assessment of GTV and CTV. Radiother Oncol. (2005) 74:235–45.

doi: 10.1016/j.radonc.2004.12.015

5. Voroney JP, Brock KK, Eccles C, Haider M, Dawson LA. Prospective

comparison of computed tomography and magnetic resonance imaging

for liver cancer delineation using deformable image registration. Int

J Radiat Oncol Biol Phys. (2006) 66:780–91. doi: 10.1016/j.ijrobp.2006.

05.035

6. Emami B, Sethi A, Petruzzelli GJ. Influence of MRI on target volume

delineation and IMRT planning in nasopharyngeal carcinoma. Int J Radiat

Oncol Biol Phys. (2003) 57:481–8. doi: 10.1016/S0360-3016(03)00570-4

7. Steenbakkers RJ, Deurloo KE, Nowak PJ, Lebesque JV, van Herk M, Rasch

CR. Reduction of dose delivered to the rectum and bulb of the penis using

MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys.

(2003) 57:1269–79. doi: 10.1016/S0360-3016(03)01446-9

8. Muruganandham M, Clerkin PP, Smith BJ, Anderson CM, Morris A,

Capizzano AA, et al. 3-Dimensional magnetic resonance spectroscopic

imaging at 3 Tesla for early response assessment of glioblastoma patients

during external beam radiation therapy. Int J Radiat Oncol Biol Phys. (2014)

90:181–9. doi: 10.1016/j.ijrobp.2014.05.014

9. Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong

Q, et al. Functional diffusion map: a noninvasive MRI biomarker for early

stratification of clinical brain tumor response. Proc Natl Acad Sci USA. (2005)

102:5524–9. doi: 10.1073/pnas.0501532102

10. Padhani AR. Diffusion magnetic resonance imaging in cancer management.

Semin Radiat Oncol. (2011). 21:119–40. doi: 10.1016/j.semradonc.2010.10.004

11. Plewes DB, Kucharczyk W. Physics of MRI: a primer. J Magn Reson Imaging.

(2012) 35:1038–54. doi: 10.1002/jmri.23642

12. Owrangi AM, Greer PB, Glide-Hurst CK. MRI-only treatment

planning: benefits and challenges. Phys Med Biol. (2018) 63:05TR01.

doi: 10.1088/1361-6560/aaaca4

13. Ulin K, Urie MM, Cherlow JM. Results of a multi-institutional benchmark

test for cranial CT/MR image registration. Int J Radiat Oncol Biol Phys. (2010)

77:1584–9. doi: 10.1016/j.ijrobp.2009.10.017

14. Wang D, Doddrell D. Geometric distortion in structural magnetic

resonance imaging. Curr Med Imaging Rev. (2005) 1:49–60.

doi: 10.2174/1573405052953029

15. Edmund JM, Nyholm T. A review of substitute CT generation

for MRI-only radiation therapy. Radiat Oncol. (2017) 12:28.

doi: 10.1186/s13014-016-0747-y

16. Johnstone E, Wyatt JJ, Henry AM, Short SC, Sebag-Montefiore D,

Murray L, et al. Systematic review of synthetic computed tomography

generation methodologies for use in magnetic resonance imaging-only

radiation therapy. Int J Radiat Oncol Biol Phys. (2018) 100:199–217.

doi: 10.1016/j.ijrobp.2017.08.043

17. Dowling JA, Lambert J, Parker J, Salvado O, Fripp J, Capp A, et al.

An atlas-based electron density mapping method for magnetic resonance

imaging (MRI)-alone treatment planning and adaptive MRI-based prostate

Frontiers in Oncology | www.frontiersin.org 9 November 2019 | Volume 9 | Article 1333

https://doi.org/10.1002/mrm.25826
https://doi.org/10.1016/j.semradonc.2014.02.003
https://doi.org/10.1634/theoncologist.2009-S106
https://doi.org/10.1016/j.radonc.2004.12.015
https://doi.org/10.1016/j.ijrobp.2006.05.035
https://doi.org/10.1016/S0360-3016(03)00570-4
https://doi.org/10.1016/S0360-3016(03)01446-9
https://doi.org/10.1016/j.ijrobp.2014.05.014
https://doi.org/10.1073/pnas.0501532102
https://doi.org/10.1016/j.semradonc.2010.10.004
https://doi.org/10.1002/jmri.23642
https://doi.org/10.1088/1361-6560/aaaca4
https://doi.org/10.1016/j.ijrobp.2009.10.017
https://doi.org/10.2174/1573405052953029
https://doi.org/10.1186/s13014-016-0747-y
https://doi.org/10.1016/j.ijrobp.2017.08.043
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Synthetic CT Based on MRI in NPC

radiation therapy. Int J Radiat Oncol Biol Phys. (2012) 83: e5–11.

doi: 10.1016/j.ijrobp.2011.11.056

18. Kim J, Glide-Hurst C, Doemer A, Wen N, Movsas B, Chetty IJ.

Implementation of a novel algorithm for generating synthetic CT images from

magnetic resonance imaging data sets for prostate cancer radiation therapy.

Int J Radiat Oncol Biol Phys. (2015) 91:39–47. doi: 10.1016/j.ijrobp.2014.

09.015

19. Tyagi N, Fontenla S, Zhang J, Cloutier M, Kadbi M, Mechalakos J,

et al. Dosimetric and workflow evaluation of first commercial synthetic

CT software for clinical use in pelvis. Phys Med Biol. (2017) 62:2961–75.

doi: 10.1088/1361-6560/aa5452

20. Bibault JE, Giraud P, Burgun A. Big Data and machine learning

in radiation oncology: state of the art and future prospects.

Cancer Lett. (2016) 382:110–7. doi: 10.1016/j.canlet.2016.

05.033

21. El Naqa I, Brock K, Yu Y, Langen K, Klein EE. On the fuzziness of machine

learning, neural networks, and artificial intelligence in radiation oncology. Int

J Radiat Oncol Biol Phys. (2018) 100:1–4. doi: 10.1016/j.ijrobp.2017.06.011

22. Nyúl LG, Udupa JK Zhang X. New variants of a method of mri

scale standardization. IEEE Trans Med Imaging. (2000)19:143–50.

doi: 10.1109/42.836373

23. Shah M, Xiao Y, Subbanna N, Francis S, Arnold DL, Collins DL, et al.

Evaluating intensity normalization on mris of human brain with multiple

sclerosis. Med Image Anal. (2011) 15:267–82. doi: 10.1016/j.media.2010.

12.003

24. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix:

a toolbox for intensity-based medical image registration. IEEE

Trans Med Imaging. (2010) 29:196–205. doi: 10.1109/TMI.2009.20

35616

25. Shamonin DP, Bron EE, Lelieveldt BP, Smits M, Klein S, Staring M,

et al. Fast parallel image registration on CPU and GPU for diagnostic

classification of Alzheimer’s disease. Front Neuroinform. (2014) 7:50.

doi: 10.3389/fninf.2013.00050

26. Leibfarth S, Mönnich D, Welz S, Siegel C, Schwenzer N, Schmidt

H, et al. A strategy for multimodal deformable image registration

to integrate PET/MR into radiotherapy treatment planning.

Acta Oncol. (2013) 52:1353–9. doi: 10.3109/0284186X.2013.8

13964

27. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for

biomedical image segmentation. In: International Conference on Medical

Image Computing and Computer-Assisted Intervention. Munich: Springer

(2015). p. 234–41.

28. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans

Syst Man Cybern. (1979) 9:62–6. doi: 10.1109/TSMC.1979.4310076

29. Han X. MR-based synthetic CT generation using a deep convolutional neural

network method.Med Phys. (2017) 44:1408–19. doi: 10.1002/mp.12155

30. Korhonen J, KapanenM, Keyriläinen J, Seppälä T, TenhunenM. A dual model

HU conversion fromMRI intensity values within and outside of bone segment

for MRI-based radiotherapy treatment planning of prostate cancer.Med Phys.

(2014) 41:011704. doi: 10.1118/1.4842575

31. Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Technical Note: deep

learning based MRAC using rapid ultra-short echo time imaging. Med Phys.

(2018) 45:3697–704. doi: 10.1002/mp.12964

32. Jonsson JH, Karlsson MG, Karlsson M, Nyholm T. Treatment planning using

MRI data: an analysis of the dose calculation accuracy for different treatment

regions. Radiat Oncol. (2010) 5:62. doi: 10.1186/1748-717X-5-62

33. Devic S. MRI simulation for radiotherapy treatment planning. Med Phys.

(2012) 39:6701–11. doi: 10.1118/1.4758068

34. Schmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol.

(2015) 60: R323–61. doi: 10.1088/0031-9155/60/22/R323

35. Kazemifar S, McGuire S, Timmerman R, Wardak Z, Nguyen D, Park Y, et al.

MRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic

CT images generated using a deep learning approach. Radiother Oncol. (2019)

136:56–63. doi: 10.1016/j.radonc.2019.03.026

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Wang, Liu, Zhang and Deng. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 10 November 2019 | Volume 9 | Article 1333

https://doi.org/10.1016/j.ijrobp.2011.11.056
https://doi.org/10.1016/j.ijrobp.2014.09.015
https://doi.org/10.1088/1361-6560/aa5452
https://doi.org/10.1016/j.canlet.2016.05.033
https://doi.org/10.1016/j.ijrobp.2017.06.011
https://doi.org/10.1109/42.836373
https://doi.org/10.1016/j.media.2010.12.003
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.3389/fninf.2013.00050
https://doi.org/10.3109/0284186X.2013.813964
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1002/mp.12155
https://doi.org/10.1118/1.4842575
https://doi.org/10.1002/mp.12964
https://doi.org/10.1186/1748-717X-5-62
https://doi.org/10.1118/1.4758068
https://doi.org/10.1088/0031-9155/60/22/R323
https://doi.org/10.1016/j.radonc.2019.03.026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN)
	Introduction
	Materials and Methods
	Data Acquisition
	Image Preprocessing
	U-Net as a Deep Learning Algorithm
	Evaluation

	Results
	Comparison of True CT and Synthetic CT Images
	Quantitative Analysis

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


