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It is pressing to understand how animal populations evolve in response to climate
change. We argue that new sequencing technologies and the use of historical samples
are opening unprecedented opportunities to investigate genome-wide responses to
changing environments. However, there are important challenges in interpreting the
emerging findings. First, it is essential to differentiate genetic adaptation from phenotypic
plasticity. Second, it is extremely difficult to map genotype, phenotype, and fitness.
Third, neutral demographic processes and natural selection affect genetic variation
in similar ways. We argue that Drosophila melanogaster, a classical model organism
with decades of climate adaptation research, is uniquely suited to overcome most
of these challenges. In the near future, long-term time series genome-wide datasets
of D. melanogaster natural populations will provide exciting opportunities to study
adaptation to recent climate change and will lay the groundwork for related research
in non-model systems.

Keywords: cline, wild populations, global warming, genomic adaptation, climate adaptation, natural selection,
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INTRODUCTION

Variation in environmental conditions across space can result in local adaptation, where
populations are more fit to the environment in which they evolved (Kawecki and Ebert, 2004).
With climatic conditions changing at an alarming rate (Diffenbaugh et al., 2018), populations will
need to migrate to more favorable climates, modify their phenotypes via plasticity or evolutionary
change, or face extinction (Hoffmann and Sgro, 2011; Waldvogel et al., 2020). Thus, understanding
the causes and consequences of local climate adaptation is fundamental to predict species responses
to future changes in climate.

A promising way to understand climate adaptation lies in the use of historical samples. Given
the historical nature of the evolutionary process, samples from multiple timepoints can help better
identify the targets of selection. Combined with recent advances in sequencing technologies, it is
now possible to compare entire genomes of present and past populations (Leonardi et al., 2016).
For example, Alves et al. (2019) used modern and historical rabbit specimens to identify the genetic
basis of resistance to myxoma virus, which decimated rabbit populations in the 1950s. Likewise, Bi
et al. (2019) sequenced modern and historic museum specimens to investigate the role of climate
change in driving genomic changes over the last century in two chipmunk species.

Historical samples can also inform long-standing debates in evolutionary biology, such
as whether adaptation is limited by the supply of mutations (Karasov et al., 2010) or
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whether migration can facilitate adaptation (Pennings and
Hermisson, 2006). With historical samples, it would be possible
to watch the sweep of beneficial mutations in action. If adaptation
is limited by mutations, then we would expect swept alleles to
be rare before they sweep through the population (Feder et al.,
2021). If multiple populations are sampled, then you could ask
whether alleles that sweep through one population were already
present in other populations. Both of these questions are essential
to understanding the impact that climate change will have on
species, and can be useful for designing conservation strategies
(Matz et al., 2018) or predicting species’ responses to climate
change (Fuller et al., 2020).

Although these advances present exciting opportunities
to understand local climate adaptation and better predict
responses to climate change, there are important challenges
in obtaining and interpreting historical genomic datasets.
First, it is critical to discern between genetic adaptation and
phenotypic plasticity. Second, it remains difficult to map
genotype, phenotype, and fitness. Third, it is hard to disentangle
the role of adaptive and demographic processes in shaping
genetic variation. In this perspective article, we discuss these
challenges and argue that classical model organisms, such as
Drosophila melanogaster, are uniquely suited to overcome most
of these difficulties.

Drosophila melanogaster AND CLIMATE
ADAPTATION

Drosophila melanogaster is native to southern-central Africa and
has adapted to temperate climates around the world. It colonized
Europe around 1,400 years ago, and North America and Australia
around 150 years ago (Keller, 2007; Sprengelmeyer et al.,
2020). D. melanogaster climate adaptation has been intensely
studied over the last few decades. Natural fly populations show
clear latitudinal patterns at the phenotypic and genotypic level
(Figure 1). Flies from higher latitudes are bigger, darker, more
stress tolerant, and show higher incidence of reproductive
diapause than populations from lower latitudes (Adrion et al.,
2015). Similar patterns of variation have been observed at
seasonal and altitudinal scales (e.g., Pitchers et al., 2013; Bergland
et al., 2014; Behrman et al., 2018).

Drosophila is an amenable model to study genetics of
climate adaptation not only because of its peculiar colonization
history. Species in this group have short generation times
and can be easily reared in the laboratory. This allows for
experimental validation; for instance, one can measure fitness
of flies from different populations under various conditions to
directly test selection hypotheses (Fabian et al., 2015). More
recently, studies have shown that it is even possible to rear flies
in their natural environment, with outdoor cages (Rudman et al.,
2019). Drosophila is a remarkably diverse group, with almost
unparalleled genomic resources (e.g., Kim et al., 2020), and so
comparative genomics studies are within reach. For instance, by
comparing D. melanogaster and Drosophila simulans, Machado
et al. (2016) found that the ability to overwinter is necessary for
adapting to temperate environments.

Spatiotemporal sampling efforts are unparalleled in
D. melanogaster. Because flies have short generation times,
the system is highly compatible with empirical time series
studies. Time series studies can differ in depth of past
evolutionary history. Dobzhansky (1943) demonstrated
that some inversions cycle with the seasons in Drosophila
pseudoobscura. In D. melanogaster, many variants seem to cycle
seasonally in a single temperate population (Bergland et al., 2014)
as well as across many different locations worldwide (Machado
et al., 2021). Two consortiums in Europe and North America,
DrosEU and the DrosRTEC, have been sampling and sequencing
wild D. melanogaster populations annually since 2014 across
multiple locations (Kapun et al., 2020, 2021; Machado et al.,
2021). These efforts are expected to continue for the foreseeable
future, increasing even further spatiotemporal resolution. Other
studies went even far back in time and compared classical
latitudinal patterns published decades ago with more recent data
(Umina et al., 2005; Cogni et al., 2014, 2017). Efforts to sequence
specimens collected decades ago are just now starting to emerge
(Veeramah et al., 2020; John Pool, personal communication).
Theoretically, one could go even deeper in time by sequencing
museum specimens (Wandeler et al., 2007), but it is unclear
whether museums have enough disposable specimens. Future
advances in DNA sequencing with minimal tissue availability
could make this more feasible.

DISENTANGLING GENETIC ADAPTATION
AND PHENOTYPIC PLASTICITY

Phenotypic plasticity can challenge interpretation of climate
adaptation. Most of the examples of biological responses to
climate change observed for a wide range of organisms seem
to be due to phenotypic plasticity and not adaptation to a new
environment (Parmesan, 2006; Gienapp et al., 2008; Merilä and
Hendry, 2014). In a recent study, both plasticity and genetic
changes were found to contribute to climate change response
(Ramakers et al., 2019). Thus, to understand how adaptation
can contribute to organisms’ resilience to climate change, it is
crucial to discern between plasticity and genetic adaptation as the
cause of trait changes (Kellermann and van Heerwaarden, 2019;
Kellermann et al., 2020).

In Drosophila, plasticity and adaptation can be distinguished
with two different approaches. First, lineages from divergent
populations can be reared in the laboratory under similar
environmental conditions. Plastic phenotype responses are
expected to disappear when divergent populations are reared in
the same conditions, whereas genetic adaptations should persist
(Ayrinhac et al., 2004; Mitchell et al., 2011). Selection experiments
in the laboratory can be used to quantify the contributions of
phenotypic plasticity and genetic adaptation (Garland and Kelly,
2006). With these experiments, it is possible to exert selection on
a single environmental condition (e.g., temperature) and measure
responses at the phenotypic and genomic levels (Barghi et al.,
2019). Then, the adapted lineages can be reared under different
conditions to tease apart the role of phenotypic plasticity. Climate
adaptation can be complex, making it difficult to be addressed
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FIGURE 1 | Spatial and temporal variation in Drosophila melanogaster. (A) Flies vary in size, color, and many other phenotypic and genotypic traits across the east
coast of the United States. Alleles related to climate adaptation are expected to be correlated with latitude (B) and seasons (C). For example, diapause incidence
and the frequency of an allele that encodes for diapause inducibility in the couchpotato gene vary predictably with latitude (D) and seasons (E). Data from Schmidt
et al. (2005) and Cogni et al. (2014).

in laboratory settings which are known to have many subtle
environmental differences. However, recent Drosophila studies
have shown that flies can be raised in outdoor cages, under
conditions which are remarkably similar to those which natural
wild populations experience (Rudman et al., 2019, 2021).

Second, genetic adaptation can be disentangled from
phenotypic plasticity by studying changes at the molecular level,
that is with direct observation of allele frequency changes in
natural populations. For example, Umina et al. (2005) observed
a shift over 20 years in a classic D. melanogaster latitudinal cline
in the alcohol dehydrogenase polymorphism. The frequency
of the warmer-adapted allele increased in frequency along the
cline, presumably in response to warmer and drier conditions.
There are also examples in other Drosophila species of changes
in chromosome inversion frequencies correlated with climate
warming (Balanya et al., 2006, 2009; Batista et al., 2012). These
direct observations of genetic changes can refute the phenotypic
plasticity hypotheses. However, it is not clear if the observed
shifts reflected changes in local selection, a progressive invasion
of warm-adapted genotypes from lower latitudes/altitudes, or a
combination of both (Balanya et al., 2006).

CONNECTING GENOMIC VARIATION TO
PHENOTYPES AND FITNESS

Another major challenge is to connect segregating genomic
variation to variation in phenotypes and fitness. Even in the
best studied model species, examples of phenotypes that were

mapped to major effect loci are scarce (e.g., Schmidt et al.,
2008) (but see Erickson et al., 2020). For most clinal phenotypes
in D. melanogaster, such as body size and longevity, the
underlying genetic architecture is more complex, with many
minor effect alleles explaining only a small proportion of the
phenotypic variation (Mackay et al., 2012). One would expect
that the variants that underlie clinal traits might display clinal
patterns in their allele frequencies. This approach has been
successfully used in humans where height-increasing alleles are
systematically elevated in frequency in the north compared to
southern European populations (Berg and Coop, 2014), and in
D. melanogaster where polymorphisms associated with diapause
varies clinally (Erickson et al., 2020). However, in another
D. melanogaster example, the frequency of polymorphisms
associated with desiccation tolerance does not vary clinally as
expected (Rajpurohit et al., 2018). Other phenotypes have not
yet been tested, but if results similar to the desiccation example
are observed, it could indicate low statistical power on genome-
wide association studies or complex epistatic and genotype-by-
environment interactions.

In D. melanogaster, these challenges can be overcome in a
few ways. New panels with much larger number of recombinant
inbred lines can substantially increase the power of GWAS
studies to identify minor effect alleles and epistatic interactions
(King et al., 2012; Cogni et al., 2016). Further, there exist
diverse collections of wild-caught flies, which can be used in
mapping and experimental evolution studies (Grenier et al., 2015;
Lack et al., 2016). By harnessing the immense natural variation
in D. melanogaster, mapping power can be greatly increased
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(Gasch et al., 2016). The system also allows for laboratory
experiments under different environmental conditions, and
genotype-by-environment interactions can be directly measured
(e.g., Lazzaro et al., 2008).

An alternative to the major challenges in genotype-to-
phenotype mapping would be to rely on already known instances
of climate adaptation in D. melanogaster. Genome-wide patterns
of clinal, altitudinal, and seasonal adaptation have been well
characterized in the system, so we can make clear predictions on
the shifts in allele frequencies expected by climate change, even
without linking genotypes to particular phenotypes. Alleles with
higher frequency in warm regions are expected to increase in
frequency as the climate becomes warmer over time (Figure 2;
Umina et al., 2005; Cogni et al., 2017).

DIFFERENTIATING NEUTRAL AND
ADAPTIVE PROCESSES

The final challenge is that inferring the role of selection in
shaping genetic variation in natural populations is not trivial.
If selection is pushing traits to different optima across space,
the loci underlying the selected traits should be excessively
differentiated between populations (Endler, 1977). Similarly,
environmental conditions that determine fitness are expected
to be correlated with allele frequency at the relevant loci
(Figure 1) (Kawecki and Ebert, 2004). Although these features
of genomic data are indicative of local adaptation, the evidence
is correlative in nature and may be confounded by non-adaptive
processes. For example, demographic processes alone can create
correlations between allele frequencies and the environment
(Caracristi and Schlötterer, 2003).

One way to strengthen the hypothesis of adaptation is to
look for parallel patterns of variation in different continents,
between altitude and latitude, and between latitude and season
(Paaby et al., 2010; Klepsatel et al., 2014; Cogni et al., 2015;

Rodrigues et al., 2020). However, much of adaptation may not
result in parallelism due to redundancy (Barghi et al., 2019).
That is, particularly for polygenic traits there may be many
alternative ways of reaching an adaptive peak. For example, couch
potato clines associated with diapause are observed in North
America, but not in Australia (Lee et al., 2011; Cogni et al.,
2014). D. melanogaster is nonetheless a great system to dissect the
genetic bases of adaptation in detail (Tauber et al., 2007; Schmidt
et al., 2008; Erickson et al., 2020).

Other features of genomic data can be used to disentangle
demography and selection. Most importantly, selection alters not
only allele frequencies but also haplotype frequencies. Indeed, it is
possible to discern between different demographic scenarios and
models of selection with haplotype data (Garud et al., 2021). One
can obtain phased genomic data more easily forDrosophila, either
by sequencing inbred lines (which are mostly homozygous) or
haploid embryos (Langley et al., 2011).

Historical sampling can help differentiate the role of adaptive
and non-adaptive forces in driving changes over time and across
space. With historical samples, it is possible to directly measure
the rate of allele frequency change, which is expected to be
particularly high for loci under selection. A few methods have
been developed to use time series allele frequency data to detect
loci evolving non-neutrally (reviewed in Malaspinas, 2016), but
more powerful methods that consider other features of genomic
data, such as haplotypes, have yet to be developed.

The stability of trait–environment correlations, which is a
hallmark of local adaptation, can also be assessed with historical
samples (Figure 2). In the short term, stable correlations are
strong evidence for natural selection (Cogni et al., 2014),
because spurious correlations due to demography are expected
to be transient. However, as populations respond to changing
climate conditions, we expect the underlying trait–environment
correlations to change as well. Depending on how climate change
affects fitness, clines can become less steep, with flies from high
latitudes becoming more similar to flies from low latitudes or shift

FIGURE 2 | In organisms with well-characterized patterns of clinal genomic variation, we can make clear predictions on the expected shifts in allele frequencies due
to climate change. With strong climate change, clines can weaken (blue) so that the frequency of a warm-adapted allele increases in higher latitudes; or shift (red) so
that the frequency of the warm-adapted allele increases along the cline. If the change in climate is not strong, but the cline is being maintained by selection, clines
should be more stable (black).

Frontiers in Genetics | www.frontiersin.org 4 July 2021 | Volume 12 | Article 676218

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-676218 July 7, 2021 Time: 18:35 # 5

Rodrigues and Cogni Genomic Responses to Climate Change

entirely so that the frequency of the warm adapted allele increases
across the entire range. In the case of D. melanogaster, it would
be interesting to quantify the effect of climate change on local
adaptation by looking specifically at loci that are known to be
relevant to climate adaptation, such as the inversion 3R Payne or
the loci underlying diapause and metabolism (Cogni et al., 2014;
Lavington et al., 2014; Siddiq and Thornton, 2019). Have clines at
these loci weakened or shifted in the past 50 years?

CONCLUSION

Time series genomic datasets are bound to help the study of
climate adaptation. Indeed, historical samples have been recently
used to study global environmental change (Key et al., 2016;
Lang et al., 2019). Here, we discussed some of the major
challenges in studying adaptation with modern and historical
genomic data. We argued that the decades of climate adaptation
research make Drosophila an ideal system to study genomic
responses to climate change using historical samples. In the
coming years, the emergence of temporal genomic datasets will
provide exciting opportunities to study adaptation to climate in
Drosophila (Kapun et al., 2020; Veeramah et al., 2020; Machado
et al., 2021) and will lay the groundwork for similar approaches
in non-model systems.
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