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Abstract: Understanding genetic diversity and structure in natural populations and their suitable
habitat response to environmental changes is critical for the protection and utilization of germplasm
resources. We evaluated the genetic diversity and structure of 24 A. chinensis populations using
simple sequence repeat (SSR) molecular markers. The potential suitable distribution of tetraploid
A. chinensis estimated under the current climate and predicted for the future climate was generated
with ecological niche modeling (ENM). The results indicated that the polyploid populations of A.
chinensis have high levels of genetic diversity and that there are distinct eastern and western genetic
clusters. The population structure of A. chinensis can be explained by an isolation-by-distance model.
The results also revealed that potentially suitable areas of tetraploids will likely be gradually lost and
the habitat will likely be increasingly fragmented in the future. This study provides an extensive
overview of tetraploid A. chinensis across its distribution range, contributing to a better understanding
of its germplasm resources. These results can also provide the scientific basis for the protection and
sustainable utilization of kiwifruit wild resources.
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1. Introduction

Kiwifruit is a perennial, dioecious economic fruit that is native to China. It is one of the
best examples of the successful domestication and commercialization of crops in the early
20th century [1]. Kiwifruit is not only rich in vitamin C and minerals but also has medicinal
and ornamental value [2,3]. In recent years, the value of kiwifruit in the international market
is becoming more and more prominent [4]. The total output of cultivated kiwifruit in the
world is about 3 million tons, of which China accounts for about half [1]. The chromosome
ploidy of kiwifruit is complex, with intertaxon ploidy variation having so far been detected
in at least 13 Actinidia species (2n = 2x = 58, 2x, 3x, 4x, 5x, 6x, 7x, 8x, etc.). Previous studies
have shown that Actinidia has experienced at least eight interspecific hybridization events in
the process of evolution [5]. With the rapid evolution of kiwifruit backbone lineages caused
by frequent interspecific hybridization and the formation of hybrid populations derived
from these lineages, reticulate species is an important mechanism for the maintenance of
biodiversity [6]. Actinidia chinensis is the species with the highest domestication level and
the greatest economic benefit among the species of Actinidia [7]. Although the germplasm
resources are abundant, their genetic diversity is also being threatened and challenged [8].
The effective evaluation of germplasm will be needed to ensure the sustainable and healthy
development of the kiwifruit industry globally [9].
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In recent years, the number of studies on the genetic diversity of A. chinensis has
been increasing, providing us with a better understanding of this fruit crop [10,11]. Cross-
breeding between different chromosome ploidy levels of A. chinensis can produce fertile
offspring, which is often accompanied by excellent traits for crop improvement [5,9]. The
most obvious example is that tetraploid varieties have better resistance to canker than
diploid varieties [12]. Tetraploids also yield bigger fruits and better quality, and also have a
better adaptability and faster growth speed [13]. Among the current cultivars, tetraploid
varieties are most prevalent [9]; therefore, it is desirable to evaluate the genetic variation
of tetraploid individuals from natural populations. However, population genetic studies
of tetraploid A. chinensis are scarce, and the origin of tetraploid A. chinensis remains un-
clear [8]. In previous studies, researchers either focused on the analysis of genetic diversity
and the population structure of A. chinensis in limited regions [14] or focused on diploid
populations [8]. Neither the population structure nor genetic diversity of tetraploid A.
chinensis have been reported.

Simple sequence repeat (SSR) markers, which are based on genome sequences, are
easy to use, relatively low in cost, and have high polymorphism and extensive genetic
information. It is the most widely used type of DNA molecular marker to characterize
genetic germplasms, with many alleles at each locus [15]. Previous studies have indicated
that climate is the main environmental factor affecting species distribution at a regional
scale [16]. Ecological niche modeling (ENM) has played an important role in studying the
effects of climate change on species distribution. The Maxent model has been shown to
have the best predictive accuracy and stability [17,18] for revealing the effects of global
climate change on species distribution [19]. In this study, we investigated the genetic
diversity of natural populations of A. chinensis dominated by tetraploid individuals based
on 40 microsatellite markers. In addition, 52 distribution points of tetraploid A. chinensis
were used for niche simulation. The objectives of this study were to (1) evaluate the
genetic diversity of the tetraploid component of A. chinensis; (2) describe the tetraploid
population structure; (3) predict the potential suitable distribution for tetraploid A. chinensis
in both current and future climate; and (4) provide breeding and conservation strategies for
kiwifruit germplasm.

2. Results
2.1. Genetic Diversity of A. chinensis Populations

We detected 758 alleles for 24 A. chinensis populations. The average number of alleles
per locus was 18.9, of which, the minimum number of alleles detected at each locus
was 9 (at UDK96-009 locus) and the maximum number was 28 (at UDK96-034 locus).
The polymorphism information content (PIC) varied from 0.213 (UDK96-028) to 0.924
(UDK96-019), with an average of 0.808 (Table S1). Most of the alleles were shared by the
diploid and tetraploid populations, whereas 239 alleles were unique for the tetraploid
populations and only 6 alleles were unique for the diploid populations (Table S2). At the
population level, the effective number of alleles (Ne) ranged from 3.037 in ZG to 6.437 in
ZY, averaging 5.124 alleles per population. The inbreeding coefficients (Fis) were all greater
than zero, ranging from 0.080 (LA) to 0.389 (DN), with an average of 0.024 (Table 1). The
expected heterozygosity (He) as estimated using GENODIVE ranged from 0.670 (NL) to
0.855 (DN), whereas the He estimated using POLYGENE ranged from 0.636 (ZY) to 0.795
(DN). However, the value of observed heterozygosity (Ho) calculated using POLYGENE
ranged from 0.681 (NL) to 0.808 (LA), and the same trend has been observed in GENODIVE.
The observed gene heterozygosity was lower than the expected gene heterozygosity. On
average, the genetic diversity of the tetraploid population was higher than that of the
diploid population, although it was different in some populations such as LA and PN.
(Figure 1).



Plants 2022, 11, 1154 3 of 14

Table 1. Genetic diversity of 24 A. chinensis populations based on 40 SSR markers.

Population
GENODIVE POLYGENE

Na Ne Ho He Fis Ho He PIC I

GT 5.050 3.709 0.552 0.756 0.269 0.738 0.684 0.648 1.432
NL 4.625 3.109 0.537 0.670 0.198 0.681 0.636 0.598 1.294
ZG 4.250 3.037 0.598 0.672 0.109 0.721 0.636 0.593 1.25
NC 6.400 4.519 0.648 0.787 0.178 0.803 0.746 0.714 1.64
LA 7.525 5.289 0.737 0.802 0.080 0.808 0.761 0.736 1.749
JX 10.250 5.842 0.625 0.805 0.224 0.779 0.775 0.756 1.925

QM 7.750 4.901 0.616 0.829 0.256 0.77 0.763 0.743 1.796
XN 9.675 5.602 0.627 0.803 0.219 0.779 0.772 0.752 1.902
PC 7.000 4.384 0.528 0.811 0.349 0.738 0.735 0.709 1.675
PN 6.675 3.863 0.566 0.698 0.189 0.69 0.682 0.649 1.515
SW 7.575 4.295 0.571 0.770 0.258 0.733 0.721 0.698 1.675
ZY 12.775 6.437 0.534 0.800 0.333 0.755 0.748 0.73 1.908
TS 12.025 6.296 0.594 0.817 0.272 0.78 0.776 0.759 1.99
DN 8.100 5.252 0.522 0.855 0.389 0.75 0.737 0.713 1.738
HJ 11.025 6.118 0.584 0.809 0.278 0.775 0.773 0.754 1.946
LS 10.825 6.092 0.604 0.809 0.253 0.79 0.786 0.766 1.968
TG 9.975 5.446 0.625 0.804 0.223 0.785 0.776 0.757 1.908
WN 10.425 5.772 0.641 0.799 0.197 0.79 0.788 0.768 1.947
ZX 9.475 5.035 0.552 0.782 0.294 0.749 0.741 0.719 1.785
JD 11.375 6.354 0.621 0.822 0.244 0.8 0.795 0.777 2.015
LD 9.850 5.774 0.563 0.816 0.310 0.77 0.763 0.741 1.864
SC 9.150 5.187 0.611 0.801 0.237 0.778 0.778 0.755 1.873
TT 8.800 5.225 0.610 0.804 0.241 0.771 0.77 0.747 1.85
ZJ 9.700 5.434 0.650 0.805 0.193 0.791 0.78 0.759 1.89

Average (2x) 5.570 3.933 0.614 0.737 0.167 0.75 0.693 0.658 1.473
Average (4x) 9.601 5.437 0.592 0.802 0.265 0.767 0.761 0.736 1.851
Average (all) 8.761 5.124 0.597 0.789 0.241 0.764 0.746 0.723 1.772

Na: number of alleles for each population; Ne: effective number of alleles for each population; Ho: observed
heterozygosity; He: expected heterozygosity; Fis: inbreeding coefficient; I: Shannon’s Information Index; PIC:
polymorphic information content.
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Figure 1. Distribution of A. chinensis population diversity based on (a) observed heterozygosity and
(b) expected heterozygosity.

2.2. Genetic Structure and Differentiation of A. chinensis

The pairwise comparisons of genetic differentiation between populations showed that
GST ranged from 0.0002 between populations XN and TT to 0.176 between populations
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ZG and NL. Some populations, for example JX, QM, and XN, were less divergent from
the other populations (Table S3). The results of the Mantel test revealed that geographical
distance (the natural logarithm-transformed) was positively related to genetic distance (as
measured by Slatkin’s linearized FST) among populations (Mantel test: r = 0.369, p < 0.001),
indicating the presence of an isolation-by-distance effect (Figure 2).
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Figure 2. The relationship between genetic differentiation and geographical distance for A. chinensis
populations.

The purpose of the analysis of molecular variance (AMOVA) was to see if there was
any genetic variation across populations as well as within populations. According to
our results (Table 2), the AMOVA revealed that the genetic variation is mostly within
populations (90.99%), whereas only 9.01% of variance was attributed to among-population
differentiation. When the ploidy level was analyzed, only 3.17% of the genetic variation
was distributed among diploids and tetraploids, whereas 96.83% of the total variation
occurred within ploidy types.

Table 2. Analysis of molecular variance (AMOVA) for A. chinensis populations.

Source of Variation DF SS MS Variance
Component

Percentage of
Variation (%) Fixation Index

Among populations 23 2829.428 123.019 5.865 9.01%
FST = 0.090 *Within populations 239 14,154.572 59.224 59.224 90.99%

Among clusters 1 279.915 279.915 1.642 2.50%
FST = 0.025 *Within clusters 261 16,704.085 64.000 64.000 97.50%

Among ploidy types 1 215.479 215.479 2.102 3.17%
FST = 0.032 *Within ploidy types 261 16,768.521 64.247 64.247 96.83%

*: p < 0.001, p values based on 10,000 permutations.

The Bayesian assignment revealed that K = 2 was the best value when LnP(K) was
found to increase and ∆K was maximized (Figure 3b,c). This result suggested that there
are two distinct genetic clusters: cluster 1 (eastern population) and cluster 2 (western
population) (Figure 3a). Although the two clusters were relatively easy to distinguish,
more individuals were shared between them (Figure 3d). As the K value increased, more
and more individuals were found to have mixed ancestry from multiple genetic clusters
(Figure 3d). Geographically, individuals sampled from the same location did not fully
cluster together (Figure 3a). However, the populations in cluster 1 were generally dis-
tributed in eastern China, whereas populations from cluster 2 were distributed westward.
The genetic relationships among A. chinensis individuals were further explored with prin-
cipal coordinate analysis (PCoA), and the results were generally consistent with those
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of STRUCTURE (Figure S1). Furthermore, a neighbor-joining tree was constructed with
genetic distances where populations were also divided into two groups, consistent with
results of both STRUCTURE and PCoA. Diploid and tetraploid populations were mixed in
both genetic groups.
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Figure 3. Population genetic structure of A. chinensis. (a) Geographic distribution of the 24 popula-
tions. Each population is color-coded in different clusters according to the results of STRUCTURE
analysis. The purple and orange dots represent diploid and tetraploid populations, respectively;
(b) the ∆K values are presented for K = 1–20; (c) the likelihood L(K) values presented for K = 1–20;
(d) histogram of the Bayesian assignment for 263 individuals in 24 populations of A. chinensis. STRUC-
TURE plots are presented for K = 2 to K = 4, respectively. Each vertical bar represents one individual
and the capital letters on the abscissa represent different populations; (e) neighbor-joining tree based
on genetic distances for 24 natural populations of A. chinensis. The robustness of each node was
evaluated by 1000 bootstrap replicate.
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2.3. Environmental Niche of Tetraploid A. chinensis

The AUC values of ENM for tetraploids with each climate scenario were high (i.e.,
a greater than 0.9), indicating that all models performed well in predicting the suitable
habitat under all climate scenarios. Under the current climatic scenarios, the potentially
suitable area was a good representation of the actual distribution of tetraploid A. chinensis.
The results of prediction and reclassification showed that the potentially suitable area of
tetraploid A. chinensis accounted for 11.3% of the total land area of China. In addition, the
suitable habitats could be subdivided into hardly suitable habitats, moderately suitable
habitats, and highly suitable habitats, and they accounted for 46.6, 38.2, and 15.5 % of the
total suitable area, respectively (Figure 4).

Plants 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

The AUC values of ENM for tetraploids with each climate scenario were high (i.e., a 

greater than 0.9), indicating that all models performed well in predicting the suitable hab-

itat under all climate scenarios. Under the current climatic scenarios, the potentially suit-

able area was a good representation of the actual distribution of tetraploid A. chinensis. 

The results of prediction and reclassification showed that the potentially suitable area of 

tetraploid A. chinensis accounted for 11.3% of the total land area of China. In addition, the 

suitable habitats could be subdivided into hardly suitable habitats, moderately suitable 

habitats, and highly suitable habitats, and they accounted for 46.6, 38.2, and 15.5 % of the 

total suitable area, respectively (Figure 4). 

 

Figure 4. Potential distributions of tetraploid A. chinensis under current climatic scenarios in China. 

From the predictions of future global warming scenarios, it was found that the po-

tential distribution area of tetraploid A. chinensis decreased substantially under eight dif-

ferent future climate scenarios. The tetraploids’ highly suitable habitats were predicted to 

decrease by up to about 95.3% under the 2081–2100, SSP5_8.5 scenario, the highest level 

of the greenhouse gas emission scenarios. Additionally, the moderately and hardly suita-

ble distribution of tetraploid A. chinensis showed the same decreasing trend. Additionally, 

under the 2081–2100, SSP5_8.5 scenario, the reduction rate of tetraploids’ moderately and 

hardly suitable habitats was found to be the highest, with a total of 50.8% (Figure 5). In 

conclusion, with the intensification of global climate change, the potentially suitable area 

of tetraploid A. chinensis will be gradually lost, and their habitat will be increasingly frag-

mented. 

Figure 4. Potential distributions of tetraploid A. chinensis under current climatic scenarios in China.

From the predictions of future global warming scenarios, it was found that the poten-
tial distribution area of tetraploid A. chinensis decreased substantially under eight different
future climate scenarios. The tetraploids’ highly suitable habitats were predicted to de-
crease by up to about 95.3% under the 2081–2100, SSP5_8.5 scenario, the highest level of the
greenhouse gas emission scenarios. Additionally, the moderately and hardly suitable distri-
bution of tetraploid A. chinensis showed the same decreasing trend. Additionally, under
the 2081–2100, SSP5_8.5 scenario, the reduction rate of tetraploids’ moderately and hardly
suitable habitats was found to be the highest, with a total of 50.8% (Figure 5). In conclusion,
with the intensification of global climate change, the potentially suitable area of tetraploid
A. chinensis will be gradually lost, and their habitat will be increasingly fragmented.
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3. Discussion
3.1. Genetic Diversity of Diploids and Tetraploids

Our results reveal the existence of the high genetic diversity of tetraploid A. chinensis
in subtropical China. The average PIC of the tetraploid populations in this study was also
greater than the average of the diploid populations. This is consistent with the results
of Wang et al. [14], where the average PIC of wild A. chinensis populations from several
hexaploid populations in the Qinling Mountains was higher than the values of present
tetraploid populations. These results imply that polyploid populations generally have a
higher level of genetic diversity compared to diploid populations. The same evidence can
also be found in our Ho or He values of diploids and tetraploids in this study.

In general, the level of genetic diversity possessed by a species reflects its prepared
evolutionary potential. Therefore, species with low levels of genetic diversity are more
likely to become extinct [20]. During the process of production and cultivation, the compre-
hensive performance of tetraploid kiwifruit is often better than that of diploid germplasms,
especially in stress resistance. For example, tetraploid varieties have stronger resistance to
PSA (Pseudomonas syringae pv. actinidiae) than diploid varieties, which has been observed in
many orchards.

3.2. Population Genetic Structure and Differentiation

In this study, A. chinensis individuals formed two genetic groups in both principal
coordinate analysis (PCoA) and Bayesian model-based clustering (Figures S1 and 3d). In
addition, the clustering results of STRUCTURE and PCoA were corroborated by the topol-
ogy of a neighbor-joining tree (Figure 3e). Although some individuals were shared between
these two clusters, it is still easy to distinguish their east/west pattern of geographical
distribution (Figure 3a). In addition, the Mantel test revealed a positive correlation between
genetic divergence (as Slatkin’s linearized FST) and geographical distance (Figure 2), sug-
gesting that genetic differentiation in tetraploid A. chinensis followed a pattern of isolation
by distance. This result is consistent with the previous IBD analysis of A. chinensis diploid
populations [8], indicating an isolation-by-distance effect. The above results suggest that
physical barriers play an additional role in shaping patterns of gene flow between clus-
ters [21], although the genetic differentiation between these two clusters is low (FST = 0.025)
(Table 2). The differentiation between clusters 1 and 2 could be explained by climatic and
geological changes since the Pliocene, which led to the fragmentation of the habitat of A.
chinensis and the development of a geographical barrier, as revealed in our studies [22].

In the present study, of the total genetic variation partitioned, 9.01% was attributed to
the differences among populations, and 90.99% to the differences among individuals within
populations, in agreement with the findings of previous studies on A. chinensis [8,14]. The
low level of genetic differentiation among populations indicated that gene flow among
populations was not limited. The fruit of A. chinensis is a desirable food source for frugivory
animals. Additionally, the seeds of A. chinensis can germinate readily upon maturation and
are potentially capable of establishing a new population. Thus, high levels of gene flow
among A. chinensis population are expected.

3.3. Occurrence of Tetraploids in A. chinensis

Polyploidy is widely distributed in plants, and polyploidization is regarded as a major
force driving plant evolution and speciation [23–25]. Polyploid plants often originate
from diploid ancestors, so they usually exhibit increased vigor and competitiveness [26,27]
and show a preference for distinct habitats with niche expansion [28–30]. This study is
the first report of tetraploid population genetic diversity and structure in A. chinensis.
Although previous studies [22,31] have also involved a few tetraploidy individuals, none
have been able to focus on tetraploidy populations. Tetraploid A. chinensis is generally
considered to be an autopolyploid, and diploid A. chinensis was one of its ancestors [32,33].
All tetraploid populations in this study did not form a single cluster in the STRUCTURE or
PCA analyses. However, the tetraploid populations always clustered into the same groups
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as geographically adjacent diploid populations. This suggests that polyploid populations
likely originated polyphyletically from their neighboring diploid populations and coexisted
with their diploid parents within a certain geographic range. A similar inference has also
been found in previous studies of Galax urceolata [34] and G. pentaphyllum [35]. More
definitive assessment as to whether polyploidization in A. chinensis arose once or multiple
times will require other data such as high-throughput DNA sequence methods.

3.4. Implications for Conservation and Utilization

A. chinensis is listed in the list of the national key protected wild plants. From a
conservation perspective, genetic diversity estimates can be used in making decisions
about the management of extant populations of endangered species. In the present study,
the high level of genetic diversity maintained within wild populations of A. chinensis is
encouraging. However, the result of the ENM showed significant decreases in the area of
the potential distribution of tetraploid A. chinensis under various future climate scenarios.
This suggests that climate change will shrink the potential suitable habitat of tetraploid A.
chinensis under future different emission scenarios. This mainly results from changes in
the distribution of temperature and precipitation, which directly affects the boundaries
and trends of plant growth [36]. With climatic change in the future, the distribution area of
tetraploid A. chinensis will tend to migrate to high elevations, and its habitat will be more
fragmented. Under these scenarios, there will be more pressure on the conservation and
management of tetraploid A. chinensis resources in the future.

The high genetic diversity observed in tetraploid A. chinensis populations suggests
their great potential for kiwifruit breeding. For example, the yellow flesh cultivars “Jintao”
is a tetraploid, which is a Chinese selection from wild resources and is widely planted in
Europe, South America, and China. Moreover, two genetic clusters were revealed in the A.
chinensis populations, suggesting that intraspecies crosses using the individuals from each
of these clusters would be useful in cultivar development of kiwifruit.

4. Materials and Methods
4.1. Sample Collection

We obtained 263 A. chinensis individuals from the National Actinidia Germplasm
Repository of China, which were collected from 24 wild populations (Figure 3a, Table S4) in
2014–2019. The germplasm samples consisted of 43 diploids and 220 tetraploids. The ploidy
levels of most samples were determined in previous studies [22] except 15 individuals from
TS, which were determined in this study (Figure S2) using a flow cytometric measurement
(FCM) with a CyFlow Ploidy Analyser (Partec, Munich, Germany), as per the protocol in
Li et al. [37].

4.2. DNA Extraction and Microsatellite Genotyping

Total genomic DNA was extracted from the silica-gel-dried leaves with the cetyltri-
methylammonium bromide (CTAB) method [38]. The polyphenols and polysaccharides in
kiwifruit leaves were removed at the beginning of extraction. A NanoDrop 8000 spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA) and 1% agarose gels were used to
detect the concentration and quality of the DNA extracted. To assess nuclear DNA polymor-
phism, 263 individuals were genotyped at 40 nuclear microsatellite loci. These microsatellite
polymorphic primer pairs used were a subset of those from Huang et al. [39]. All forward
primers were labeled with four kinds of 5′-fluorescein bases (FAM, HEX, TRAMA, or
ROX). PCR amplification followed the protocol derived from Huang et al. [39]. Fluorescent-
labeled PCR products were supplemented with the internal size standard GeneScan 500
LIZ and separated on a 3730xl DNA Analyzer (Applied Biosystems, Waltham, MA, USA).
The detection bands of 40 markers were scored with Genemapper version 4.1. Microsatel-
lite quality was checked for the presence of scoring errors, and large allele dropout was
examined with MSAnalyser.
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Genotyping microsatellite data corresponding to polyploids can be problematic be-
cause of the difficulties in assigning the correct allele dosage for each locus and individ-
ual [40–42]. In addition, it was also difficult to estimate the allele copy number in tetraploids
based on electropherogram peak height, as in Esselink et al. [41,43]. Thus, we created two
different format datasets for the next analysis. For those analyses (GENODIVE, POLY-
GENE, and STRUCTURE) which allow codominant data or ambiguous genotypes, we
used genotypic data that were exported from Geneious in the GeneMapper format. Others
used the ‘marker phenotypes’ or ‘allelic phenotypes’ dataset which was a binary matrix
created by recording the presence (1) or absence (0) of alleles for each microsatellite locus
per accession [44–46].

4.3. SSR Data Analysis

The standard population genetic diversity statistics (such as FST) in this study could
not be calculated using traditional analytics software [41] because of the tetraploid nature
of most A. chinensis samples and the dosage effect of polyploid alleles. Therefore, we used
POLYSAT 1.5-0 [47] and GENODIVE version 3.04 [44], which can handle genetic data from
polyploids or mixed-ploidy datasets and corrects for the unknown dosage of alleles in
partial heterozygotes.

Genetic diversity was evaluated through the following descriptive statistics: the num-
ber of alleles (Na), effective number of alleles (Ne), and observed (Ho) and expected (He)
heterozygosity and inbreeding coefficient (Fis), all of which were calculated with GEN-
ODIVE. As software developed specifically for the analysis of polyploid genetic data,
POLYGENE v1.2 can take into account both polyploid genotypic ambiguities and dou-
ble reduction [48] and can also infer possible genotypes and their posterior probabilities
based on allelic phenotype and inheritance models. To take advantage of these benefits,
the observed (Ho) and expected (He) heterozygosity, polymorphic information content
(PIC), and Shannon diversity index (I) were also estimated for each population and locus
in POLYGENE v1.2. Differentiation among A. chinensis populations was assessed with
GST [49]. In addition, to investigate the extent of genetic differentiation among A. chinensis
populations, analysis of molecular variance (AMOVA) [50] was implemented in POLY-
GENE. We used AMOVA to examine genetic variation among populations, ploidy, and the
two groups separately. To assess the effect of geographic conditions on genetic divergence,
the isolation by distance (IBD) was tested with a Mantel test of 10,000 permutations to
detect the relationship between geographic distance and genetic distance among popu-
lations. To accommodate the existence of polyploid populations, Slatkin’s linearized FST
was adopted as the measure of genetic distance [51]. Principal coordinate analysis (PCoA)
was performed with the Cavalli-Sforza (1967) chordal distance [52]. Previous studies have
shown that in the absence of dose information, principal coordinate analysis is the distance
measure with the least bias [46].

To reveal the number of clusters, a Bayesian analysis under an admixture model with
correlated allele frequencies was performed with the program STRUCTURE 2.3.4 [53,54].
The potential number of genetic clusters (K) varied from 1 to 20. Ten independent simula-
tions were run for each value of K with 100,000 burn-in steps followed by 1,000,000 Markov
chain Monte Carlo (MCMC) steps. The optimum K was inferred with the online program
STRUCTURE HARVESTER [55,56]. The program CLUMPP v1.1.2 [57] was used to permute
the independent replicates for the optimum value of K. The final bar and pie charts for
the populations was plotted with District v1.1 [58] and ArcMap v10.3 (ESRI, Redlands,
CA, USA). To evaluate genetic relationships, a neighbor-joining tree based on DA genetic
distance was established for A. chinensis populations with POPTREE v.2 [59].

4.4. Species Distribution Models (SDMs)

Ecological niche modeling (ENM) was used to predict suitable current and future
distribution ranges of tetraploid A. chinensis with Maxent v.3.4.0 [60,61]. The present
geographic distribution of tetraploid A. chinensis was represented by 52 data points ex-
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tracted from previous studies [22]. In addition, six bioclimatic parameters were identified
for ENM, which were the same variables used in a previous study [22]. These parame-
ters with identical spatial resolution were downloaded from the WorldClim Databases
(http://www.worldclim.org/, accessed on 1 December 2021) [62]. The future data (i.e.,
2041–2060 and 2081–2100) were downloaded from the BCC-CSM2-MR climate change
modeling data under the shared socio-economic pathway (SSP). The 1–2.6, 2–4.5, 3–7.0, and
5–8.5 scenarios will be ultimately released by IPCC Assessment Report 6 (AR6). Unlike
representative concentration pathways (RCPs), SSPs take into account the socioeconomic
and land use impacts on the development of regional climate change when projecting
greenhouse gas (GHG) emission scenarios for different climate policies in the future [63].
In this study, the model quality was assessed with cross-validation comprising 10 replicates
with 75% of the data for model training and 25% of the data for model testing. The maxi-
mum number of background points was 10,000. To calibrate the model goodness of fit, the
area under the receiver operating characteristics curve (AUC) was examined to verify the
model precision [64]. For further analysis, the result of ENM was imported into ArcGIS
10.3 (ESRI) and classified as four possible habitat types, including “not” (<0.1), “hardly”
(0.1–0.35), “moderately” (0.35–0.65), and “highly” (>0.65) suitable habitats.

5. Conclusions

This study revealed the genetic diversity and structure of 19 tetraploid populations in
A. chinensis. It also compared the genetic diversity and structure between two cytotypes
within the A. chinensis. In addition, changes in potentially suitable regions for tetraploid
A. chinensis were modeled with ENM. Based on the results of our analyses, considerable
levels of genetic diversity exist among tetraploids in A. chinensis, and its potential suitable
area will likely be reduced in the future. These results can serve as basic information by
providing options to breeders to develop, through selection and breeding, new and more
productive varieties that are adapted to changing environments. In addition, this will also
provide a reference basis for the protection of wild tetraploid A. chinensis resources.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11091154/s1, Figure S1: Principal coordinate analysis
(PCoA) of A. chinensis based on 40 SSR markers; Figure S2: Schematic diagram of flow cytometric
histogram of DAPI-stained nuclei of tetraploid A. chinensis (4x) analyzed simultaneously with the
internal standard Actinidia chinensis cv. ‘Hongyang’ (2x). Table S1: Summary statistics for the
40 SSR markers across all A. chinensis populations with metrics of genetic diversity estimated using
GENODIVE 3.04 and POLYGENE version 1.2b.; Table S2: 758 SSR alleles of 263 A. chinensis individuals
sampled from 24 populations; Table S3: Pairwise divergence among A. chinensis populations based
on Nei’s GST; Table S4: Sampling information for A. chinensis populations.
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