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Simple Summary: Genomic selection models aim at predicting the performance of individuals with
the use of genomic markers. In animal breeding, prediction models are seldomly tested for their
ability to predict new individuals’ performance under different environmental conditions, despite
the changes in management and diet that the industry undergoes. In this study, we propose a
method to use milk infrared spectra as descriptors of environmental variation among herds. These
descriptors can be incorporated in genomic prediction models similarly to how genomic markers are
included. The inclusion of environmental descriptors is shown to improve the predictive ability for
new genotypes under new environmental conditions.

Abstract: The purpose of this study was to provide a procedure for the inclusion of milk spectral
information into genomic prediction models. Spectral data were considered a set of covariates, in
addition to genomic covariates. Milk yield and somatic cell score were used as traits to investigate. A
cross-validation was employed, making a distinction for predicting new individuals’ performance
under known environments, known individuals’ performance under new environments, and new
individuals’ performance under new environments. We found an advantage of including spectral
data as environmental covariates when the genomic predictions had to be extrapolated to new
environments. This was valid for both observed and, even more, unobserved families (genotypes).
Overall, prediction accuracy was larger for milk yield than somatic cell score. Fourier-transformed
infrared spectral data can be used as a source of information for the calculation of the ‘environmental
coordinates’ of a given farm in a given time, extrapolating predictions to new environments. This
procedure could serve as an example of integration of genomic and phenomic data. This could
help using spectral data for traits that present poor predictability at the phenotypic level, such as
disease incidence and behavior traits. The strength of the model is the ability to couple genomic with
high-throughput phenomic information.

Keywords: genomic selection; spectral data; genotype by environment interaction

1. Introduction

Genomic prediction models are oriented towards predicting the performance of new
individuals with the use of genomic markers. The ability of genomic prediction models
to predict across environments in livestock is seldomly tested. In addition, these environ-
mental effects will exert the same pressure on each candidate; such models do not need
to account for effects other than the genetic one. However, environmental components
definitely exert an effect on the phenotype, which needs to be considered in extrapolat-
ing predictions to new environments, i.e., ensuring the portability of the predictions to
different environmental conditions. In addition, these environmental changes could exert
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different effects depending on the genotype, and different genotypes may react differently
to environmental changes [1,2]. In other words, there could be a presence of genotype by
environment interaction (GxE).

In breeding plans, the new genotypes are usually tested in herds (or flocks, or stations)
that are part of an established organization, which means that these genotypes are tested
under known environmental conditions. Sometimes, new herds could join the breeding
program, or the same herds could make changes in management, either intentionally or
unintentionally [3,4]. In addition, some environmental conditions are not fully controllable
by the farmers, meaning that some environmental variables could fall outside the known
range. For example, climate change could lead livestock to experience environmental
conditions not experienced before [5,6], making the heat load parameter fall outside of the
known range. Figure 1 shows the three different scenarios for the prediction of performance
under new genotypes and/or environmental conditions.
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Figure 1. Cross-validation scheme for combinations of genotypes (sires) and environments (herds) to
be included in the validation sets. Sires 1 to 10 are considered known or proven. Herds 1 to 4 are
considered known environments. Phenotypic information belonging to sires 1 to 10 and herds 1 to 4
could be considered a training set and labeled as section (A). The performance of known sires could
be extrapolated to new herds (5 and 6); this would correspond to section (B), i.e., known genotypes
in new environments. Conversely, prediction of new sires’ performance (11 to 16) in known herds
corresponds to section (C). Finally, the most challenging scenario would be to predict the performance
of new sires in new herds, i.e., section (D).

Here, sires (i.e., genotypes, families) are reported in rows, while herds (i.e., envi-
ronments) are reported in columns. Each herd show several herd-year-season classes,
which define the temporary environmental variance within the permanent location. Sires
1 to 10 are considered known or proven. Likewise, herds 1 to 4 are considered known
environments, already being part of the breeding organization. Phenotypic information
belonging to sires 1 to 10 and herds 1 to 4 is considered a training set and labeled as section
‘A’. The performance of known sires could be extrapolated to new herds (5 and 6), which
differ from the known ones for a number of parameters. This would correspond to section
B, i.e., known genotypes in new environments. Conversely, the prediction of new sires’
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performance (11 to 16) in known herds is what is commonly practiced in genomic selection,
and that would correspond to section C. Finally, the most challenging scenario would be
to predict the performance of new sires in new herds, i.e., section D. Although scenarios
C and D might seem unrealistic, we should keep in mind that herd management and
environmental conditions are in constant change, and this scenario is more relevant when
farming conditions (e.g., diet, climate) tend to change quickly. Therefore, there is aneed to
consider predictions for new environments in the same way that we consider predictions
for new genotypes. For the former, the use of environmental covariates might be useful.

In the implementation of cross-environment genomic prediction, the choice of the
environmental covariates is not trivial. Several attempts have been taken in using dif-
ferent sets of variables, from climate records to management parameters [7–9], and from
geographical to spatial coordinates [10,11]. Some authors have also proposed the use of
the estimates for contemporary group itself or some a posteriori estimation of it, in order
to make full use of the data [12,13]. Here, a first model needs to be implemented using
the contemporary group as a fixed, cross-classified effect. Best linear unbiased estimates
(BLUE) of contemporary groups are then merged back to the original dataset and used as a
fixed linear covariate. This is needed to obtain variables that only contain environmental
variability and are not collinear to the genetic component (or any other). The average
phenotypic value of a contemporary group could include some environmental variation,
because not all genotypes are included in every contemporary group. Therefore, such
BLUE provide an average contemporary group performance, adjusted for genetic (and
other) effects; therefore, their variation is determined by the environmental component
alone. However, this method shows a pitfall in cross-validation, since the trait itself needs
to be recorded in the environmental classes (i.e., herds) used for validation. This brings the
need to use a predictor that can be (easily and cheaply) recorded in new environmental
classes before the actual trait has to.

In the era of high-throughput phenotyping, there is a need to re-think animal breeding
models to account for the vast amount of data generated by the fast-developing field of
sensor technology [14]. Fourier-transformed, mid-infrared spectral (FTIR) information
offers an alternative as an inexpensive, high-throughput predictor or indicator. FTIR is
largely used in the agricultural and livestock industries for the high-throughput assess-
ment of several qualitative measures, especially when the phenotype would be expensive
to measure using wet-lab chemistry. Several studies have investigated how to include
this source of information into breeding programs [15–17]. One potential use of spectral
information could be to include all the spectral variables into the model as environmental
descriptors [18]. This approach does not require the development of calibration equations
for the prediction of specific variables; instead, it only requires the extraction of the en-
vironmental component from this variable (and the removal of the genetic component).
The calibration equation used in this approach will be implicit in the use of the spectral
covariates in the prediction model, which can be updated at every round of genetic evalua-
tion. Even in absence of knowledge about the association between specific wavenumbers
and the trait of interest, this allows us to inform the models about the ‘environmental
coordinates’ of the phenotype to predict. If, supposedly, some wavenumbers are associated
with the presence of certain fatty acids in the milk, and it is the herd diet determining
the presence of those fatty acids, the FTIR absorbance at those wavenumbers will contain
information about the diet. In support of this hypothesis, FTIR spectral data have been used
to successfully discriminate milk samples based on feeding or grazing systems [19,20]. The
spectral wavelengths have also been shown to be in association with diseases incidence [21]
and the cows’ metabolic status [22], which suggest the strong relationship between the
spectral data and the herd status, in general. Overall, expecting the presence of systematic
environmental variation in the milk spectrum, such environmental variation could be used
for different modeling purposes at no cost because of the routine collection and storage
of spectral data. The environmental variation present in the spectrum could be associated
with certain environmental conditions (e.g., heat stress), therefore giving the possibility to
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be used as indicator. In addition, the spectral data show high dimensionality, which relates
to the possibility to capture complex environmental variation. All this could be exploited
in prediction models aimed at predicting outside of the known environmental range, but a
proper (cross-) validation is needed.

The objective of this study was to test the value of FTIR information as environmental
covariates in genomic prediction models, for the prediction of new genotypes in new
environments.

2. Materials and Methods
2.1. Phenotypic Data

Phenotypic data used in this study came from the Lactanet Canada database. Test-day
records for milk yield (MY), somatic cell score (SCS), and mid-infrared spectral data were
made available together with test dates, herd identifiers, and pedigree information. Spectra
data included absorbance for 1060 wavenumbers (WVN) from FOSS MilkoScan FT6000
spectrophotometers (Foss, Hillerød, Denmark). Each WVN refers to a specific wavelength
in the infra-red range of the spectrum [23]; the WVN have a discontinuous numbering
from 5010 to 925 cm−1. Information about lactation number and stage of lactation was also
available. The herd-year-season class (HYS) was created by combining year and season of
test date with the herd. Seasons were created as in Rovere et al. [23], i.e., January–March,
April–June, July–September, and October–December. Stage of lactation classes were created
as 13 monthly classes, with the 13th class including records up to the 18th month of lactation.
An open ‘fourth or later’ lactation number class was also created. Stage and number of
lactations were combined into 52 number by stage of lactation (NSL) classes.

The initial dataset included more than 10 million records on 1.3 million cows. Editing
was performed by removing test-day records beyond the 18th month of lactation (540 days),
removing cows with less than 12 records available and HYS classes with less than 20 records.
Merging the spectral data generated a dataset that included 1,540,935 records, from
84,131 cows. Records were removed if records for any of the spectral variables exceeded
the five standard deviations from the mean. Hereinafter, this dataset will be referred to as
Data1full. A reduced dataset, including only herds with at least 30 HYS classes, was also
created and will be referred to as Data1reduced (N = 571,440). Both datasets are described in
Table 1.

Table 1. Descriptive statistics for the datasets including test-day records and used in the study.

Data1full Data1reduced

Number of records 1,540,935 571,440
Number of cows 84,131 29,057
Numbers of sires 5759 3540
Number of dams 69,665 23,523

Number of individuals in pedigree 419,586 177,916
Number of herds 768 214

Number of herd-year-season classes 28,222 9766
Milk Yield, kg 35.66 (10.36) 35.47 (10.42)

Somatic Cell Score 2.36 (1.92) 2.38 (1.92)

2.2. Genomic Data

Genomic information for 1992 bulls was provided by The Semex Alliance. Individuals
were genotyped with the Illumina SNP50 Beadchip. A total of 45,187 SNPs were available.
Editing included the removal of markers with call rate below 0.90 and minor allele frequency
below 0.05. After editing, 38,024 markers were left for analysis. Only 483 bulls will be then
used for analysis; see below.
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2.2.1. Data Analysis Overview

This study proposes a multi-step approach. First, environmental information had to
be extracted from the phenotypic and spectral data (steps 1 and 2). Then, the Kernel-based
genomic prediction models were implemented on the condensed information as extracted
from the first step. The Kernel-based models were used for variance components estimation
(step 3) and cross-validation (step 4).

2.2.2. Step 1: Estimation of Herd-Year-Season Deviations

Datasets Data1full and Data1reduced were used in the first step of the study. This step
aimed at the estimation of Best Linear Unbiased Estimates (BLUEs) for the HYS classes in
order to build environmental covariates to be used in the next steps [12,13]. Milk yield, SCS
and each spectral wavenumber was analyzed using the following model:

yijkl = NSLi + HYSj + ak + pk + εijkl (1)

where yijkl is the phenotypic record for the lth observation of the kth cow, in the jth HYS and
ith NSL class, NSLi is the fixed effect of the ith number by stage of lactation class, HYSj is
the fixed effect of the jth herd-year-season class, ak is the additive genetic effect of the kth

individual, pk is the cow permanent environmental effect of the kth individual, and εijkl is
the residual.

The vector of additive genetic effects was defined as a ∼ N
(
0, Aσ2

a
)
, where A is a

pedigree-derived numerator relationship matrix and σ2
a is the additive genetic variance.

The vector of cow permanent environmental effects was defined as p ∼ N
(

0, Iσ2
p

)
, where

I is an identity matrix and σ2
p is the cow permanent environmental variance. The vector

of residuals was defined as ε ∼ N
(
0, Iσ2

ε

)
, where σ2

ε is the residual variance and I is an
identity matrix.

Variance components estimates for each wavenumber and production traits were
obtained using Data1reduced using the software Gibbs2f90 [24] version 1.86; a total of 35,000
iterations were run, discarding the first 5000 as burn-in and thinning every 10 iterations. As
no specifications about the prior were passed to the program, the variance components were
assigned flat priors (i.e., no shrinkage) and fixed effects were assigned bounded uniform
priors. For the random effects, the software uses normal distribution priors with mean
equal to 0 and variance equal to the estimated variance at each iteration. Convergence was
assessed by visual inspection of trace plots and Geweke’s test implemented in the ‘coda’
package in R [25]. Once the variance components were estimated, the model solutions
and their standard errors (for the fixed and random effects) necessary for the following
steps were obtained using Data1full and the software BLUPf90 [26] by fixing the variance
components to the estimated values.

Heritability (h2) and repeatability (r2) were defined as h2 = σ2
a

σ2
a+σ2

p+σ2
e

and

r2 =
σ2

a+σ2
p

σ2
a+σ2

p+σ2
e
.

A dataset containing all the BLUEs for the HYS effect was created, including solutions
for MY, SCS, and all the 1060 wavenumbers. The HYS BLUEs for each MY, SCS, and
WVN were centered to null mean and unit variance. Principal components (based on the
covariance matrix) were extracted from the HYS BLUEs for the 1060 wavenumbers using
the native R function princomp [27].

2.2.3. Step 2: Calculation of Herd-Year-Season Daughter-Yield-Deviations

Using solutions from models in step 1, daughter-yield deviations for each bull in
each herd-year-season class (hysDYD) were calculated [9]. The hysDYD were defined by
pre-correcting the phenotypic data for the number by stage of lactation class, then averaged
by sire-HYS class. The hysDYD were then weighted for the within-HYS effective daughter
contribution (EDC) to account for the different amount of information contained in each
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hysDYD value, given by the different number of sire’s daughters and their records. Here,
EDC were calculated following the sixth method proposed by Fikse and Banos [28]. Using
Data1full, a total of 518,669 hysDYD observations were made available. These were edited
by keeping only those belonging to genotyped sires and showing an EDC of at least 1.6,
forcing sires to be present in at least 3 HYS classes, HYS classes to show at least 3 sires
and herds having at least 3 HYS classes. This generated Data2, which contained 16,891
observations on 483 sires, 406 herds and 3316 HYS classes (Table 2).

Table 2. Descriptive statistics for the datasets including herd-year-season daughter-yield-deviations.

Data2

Number of sire-herd-year-season classes 16,891
Minimum EDC 1 per class 1.60
Average EDC 1 per class 2.9

Maximum EDC 1 per class 29.9

Number of herd-year-season classes 3316
Minimum frequency per hys class 3
Average frequency per hys class 5.1

Maximum frequency per hys class 29

Numbers of sires 483
Minimum frequency per sire 3
Average frequency per sire 35.0

Maximum frequency per sire 781

Number of herds 406
Minimum frequency of HYS per herd 3
Average frequency of HYS per herd 8.2

Maximum frequency of HYS per herd 25
1 EDC: effective daughter contribution.

2.2.4. Step 3: Estimation of Variance Components

Different models including additive genetic and environmental effects were imple-
mented, as well as models that included their interaction. Variance components estimation
was carried out using dataset Data2. A model with the two main effects was first defined as:

yij = µ+ gi + ej + εij (2)

where µ is the intercept, yij is the hysDYD for the ith sire in the jth HYS, gi is the additive
genetic effect of the ith sire, ej is the environmental effect for the jth HYS, and εij is the
random residual. The vector of additive genetic effects was defined as g ∼ N(0, Gσ2

g),
where G is a genomic relationship matrix and σ2

g is the estimated additive genetic variance.
The genomic relationship matrix was built according to the first method described by
VanRaden [29] using the software preGSf90 [30]. The vector of environmental effects ej was
defined in different ways depending on the model. A baseline model (Base) was defined
and considered the environmental effect as random uncorrelated, i.e., e ∼ N(0, Iσ2

e),
where I is an identity matrix and σ2

e is the environmental variance. A set of models
considered the environmental effect which included covariance matrices among the HYS
classes (also known as Kernels [31,32]). Here, the vector of environmental effects was
defined as e ∼ N(0, Eσ2

e), where E is a matrix that reports the covariance among the HYS
classes based on the environmental covariates. Such covariance matrix is built as E = XX′,
where X is a matrix that contains the environmental covariates (in columns) for each HYS
class (in rows). The columns in X report the environmental covariates (e.g., BLUE for MY,
SCS and the WVN) centered to null mean and unit variance, so that the E matrix does not
need to be rescaled.

In fitting the model, since data involve multiple records per sire and HYS class, the ge-
netic covariance structure of additive effects was defined as ZGZ′, while the environmental
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covariance structure was defined as WEW′, where Z is the (sire by observation) incidence
matrix and W is the (HYS class by observation) incidence matrix [7], while G and E were
as defined above.

The choice of the environmental covariates to be included in X defined the model. In
model AWN, HYS BLUEs for all the 1060 wavenumbers were used. This means that X was
a matrix with 1060 columns and a number of rows equal to the number of HYS included in
the analysis, i.e., 16,891 (Table 2). In models PC2, E is a two-column matrix with the first
two principal components extracted from the HYS BLUEs. Similarly, PC10 included the
first 10 principal components, while model PC20 included the first 20, PC30 included the
first 30 and model PC40 included the first 40 principal components. The first 2, 10, 20, 30
and 40 components absorbed 62.7%, 89.5%, 93.8%, 95.8%, and 96.6% of the whole WVN
variance, respectively. In model PROD, covariance was defined on HYS BLUEs for MY and
SCS, defining a X matrix with 2 columns.

A summary of the environmental covariates used in the models is reported in Table 3.

Table 3. List and definition of the environmental covariates as they were used in the 8 models.

Model Definition of Environmental Covariates

BASE Uncorrelated HYS classes.
AWN Covariance based on the 1060 WVN 1.
PC2 Covariance based on the first 2 principal components of the 1060 WVN.

PC10 Covariance based on the first 10 principal components of the 1060 WVN.
PC20 Covariance based on the first 20 principal components of the 1060 WVN.
PC30 Covariance based on the first 30 principal components of the 1060 WVN.
PC40 Covariance based on the first 40 principal components of the 1060 WVN.

PROD Covariance based on MY and SCS.
1 WVN: Fourier-transformed infrared wavenumber.

A model with the interaction between the additive genetic and environmental effects
was also defined, as in:

Yij = µ+ gi + ej + geij + εij (3)

where yij, µ, gi, ej and εij are as defined in equation [3], and geij is the interaction term.
The vector for the interaction effect was defined as ge ∼ N(0,

[
ZGZ′◦WEW′

]
σ2

ge),
where ZGZ′◦WEW′ denotes the Hadamard product between the additive genetic and
environmental kernels, and σ2

ge is the variance for the interaction term [7,9]. Again, the
environmental component was defined in different ways depending on the environmen-
tal covariates included in E. For each set of environmental covariates, a model as in
Formula (2) (without interaction term) and a model as in Formula (3) (with the interaction
term) were implemented.

2.2.5. Step 4: Cross-Validation

The relevance of each set of environmental covariates to improve the prediction models
was tested using cross-validation. As outlined above, the predictive ability for models that
differ for their inclusion of environmental covariates needs to be tested on schemes that
introduce new genotypes but also new environments.

The model validation was carried out as a repeated four-fold cross-validation. This
involved the following steps: (1) sampling 100 sires and 100 herds from Data2; (2) defining
the validation sets (B, C, and D altogether, Figure 1) as the records belonging to the sampled
100 sires and 100 herds; (3) defining the training set (A, as pictured in Figure 1) as the
remainder of Data2; (4) fitting the models on the training set in order to obtain solutions for
all the sires and HYS classes, including those for which the phenotypes were removed from
the training set; (5) obtaining predictions for the training and validation sets by summing
the respective solutions as defined by each model; (6) calculating the prediction accuracy as
the Pearson correlation between predicted and observed hysDYD. The prediction accuracy
was calculated separately for each of the sections B, C, and D: the hysDYD that belonged
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to the sampled herds and the non-sampled sires were assigned the B validation set, the
hysDYD that belonged to the sampled sires and the non-sampled herds were assigned the
C validation set, and the hysDYD that belonged to both the sampled sires and sampled
herds were assigned to the D validation set.

The six steps of the cross-validation were repeated 20 times in order to have an
appropriate representation of sires and herds in the training and validation sets. For each of
the 20 replicates, a unique combination of new sires and new herds was sampled to define
the four sections (A, B, C, and D), and each replicate generated a value of accuracy for each
section. On average, 60% of the records were assigned to the training set (section A), 40%
of the records were assigned to the validation set, 18% in section B, 15% in section C and
7% in section D. The mean and standard deviation of the accuracy over the 20 replicates
were calculated and used to compare model performance.

2.2.6. Model Implementation for Steps 3 and 4

All models were fitted using the R function BGLR [33]; kernels were used using the
Reproducing Kernel Hilbert Spaces definition after eigenvalue decomposition was carried
out [34]. The environmental effect in Base was implemented as a Bayesian Ridge regression.
A total of 75,000 iterations were run, discarding the first 25,000 as burn-in and thinning
every 10 iterations. Convergence was assessed by visual inspection of trace plots and the
Geweke’s test implemented in the ‘coda’ package in R [25].

3. Results
3.1. Variance Decomposition of Spectral Data

Heritability and repeatability for each of the 1060 WVN is reported in Figure 2. Esti-
mates of heritability and repeatability for MY and SCS are also reported as horizontal lines
in the same plot (solid line for MY, dashed line for SCS). Estimates of heritability were 0.20
and 0.11 for MY and SCS, respectively, while estimates of repeatability were 0.40 and 0.34.
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Figure 2. Heritability and repeatability for each of the 1060 wavenumbers used in the study. The
solid blue and red lines report the heritability and repeatability estimates for milk yield, while the
dashed lines report the same parameter estimates for somatic cell score. Each wavenumber refers to a
specific wavelength in the infra-red range of the spectrum and show a discontinuous numbering that
goes from 5010 to 925 cm−1.
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The heritability estimates show different values across the WVN range, and repeatabil-
ity estimates appear to follow a pattern similar to the heritability, suggesting that the cow
permanent environmental contribution is constant across the wavenumbers. Both heritabil-
ity and repeatability were stable between, approximately, WVN 5000 and 4200 (with values
around 0.18 and 0.23, respectively); a decline in both parameters’ estimates brought them
to the null value around WVN 3600, with the exception of a peak around WVN 3700 (0.30
for heritability, 0.38 for repeatability). The null estimate values were found for WVN from
3600 to 3070, with the exception of a short peak around WVN 3450 (0.03 for heritability,
0.04 for repeatability). Starting from WVN 3050, both parameters increased dramatically
for most of the remainder of the WVN, with some exceptions. While the heritability values
were, on average, around 0.35, and the repeatability values were around 0.45, lower values
were found between WVN 2600 and 2500 (0.2 heritability, 0.25 repeatability) and between
WVN 1670 and 1610, showing null values for both parameters. Below WVN 1610, both
parameters showed irregular estimates, with heritability being 0.38 and repeatability being
0.46, on average.

3.2. Genotype, Environment and Their Interaction on the Studied Traits

Figures 3 and 4, on the top panel, the proportion of variance explained by the additive
genetic effect (G), environmental effect (E), and their interaction (GxE) term. For MY,
the E component was the strongest effect, at least for models Base and PROD. When
spectral kernels were used, the E component was still large with model AWN but smaller
with models PC10 to PC40. The E component was almost null with model PC2. The
G component was somewhat constant across models, with a slight inflation when the
E component was smaller, suggesting some tradeoff between the two effects. The GxE
component was mostly small, with the exception of the PROD and PC models. For SCS, the
E component was smaller in magnitude but followed the same pattern, with the exception
of the PROD model, which showed low estimates. The G component was constantly larger
than the E component. The GxE component was still small but larger in proportion to the
other two components, especially for model PROD.

Model Base considered the E component as a random uncorrelated effect; therefore,
the solutions for the HYS classes were assumed to be independent and without constraints.
This model showed the largest estimates of environmental variance across both traits. For
MY, model PROD showed similar E estimates, suggesting that the two covariates (BLUE
for MY and SCS) describe the whole variation among herds. For SCS, model PROD showed
lower E magnitude than Base, suggesting that there is environmental variation not fully
captured by the two covariates. Model AWN was the spectra-enabled model that captured
most of the E variance for both traits. The models that used the principal components
of the WNV showed scarce ability to absorb variance, although there was an increase in
variance absorbed for both traits when increasing the number of principal components
used. This suggest that all the variation in the FTIR spectral data could, and should, be
used for maximizing the (environmental) variance explained by the model.

The GxE component was small as expected. Still, it absorbed ~4% and ~3% of the
variance for MY and SCS, respectively, under model PROD. Other models showed lower
estimates of the GxE components.
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Figure 4. Proportion of variance components explained by the additive genetic effect (G), environ-
mental effect (E), and their interaction (GxE) term, together with predictive ability of the respective
models under the different scenarios for somatic cell score (SCS). The black dots (and bars) refer to
the models that included the G and E terms, the blue dots (and bars) refer to the models that included
the G, E, and GxE terms.
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3.3. Cross-Validation, without the Inclusion of the GxE Interaction Term

Results for the three cross-validation scenarios (Figure 1) are reported in the lower
panels of Figures 3 and 4 for MY and SCS, respectively. Dots represent the average pre-
dictive ability across the twenty replicates; error bars report the standard deviation of the
prediction accuracy across the replicates. The black dots (and bars) refer to the models that
included the G and E terms, the blue dots (and bars) refer to the models that included the
G, E and GxE terms. The model Base included the E term as an uncorrelated random effect
(no Kernel included); therefore, the interaction term could not be fitted.

The section B reports a scenario where information from ‘known’ sires is predicted
under new environments. Here, the model that used an uncorrelated random effect (Base)
to fit the E component underperformed compared to models that included environmental
covariates. For MY, the predictive ability for the Base model was 0.20, while models PROD
showed 0.75, followed by models AWN with 0.50. The rest of the models showed lower
predictive ability, still larger than Base. Only model PC2 showed comparable performance
to the Base model. For SCS, again, all covariate-based models performed better than the
Base model (0.24), but with smaller margin. The best-performing models were AWN and
PROD (0.29 and 0.30, respectively). PC again showed comparable performance to Base.

Section C reports a scenario comparable to genomic selection, with the information
from new sires being predicted under known environments. For both traits, only model
PROD was able to outperform model Base (0.68 vs. 0.61 for MY, 0.25 vs. 0.16 for SCS). All
other models underperformed model Base, with PC2 showing the worst performance.

Section D reports genomic prediction results achieved for new sires into new environ-
ments. The two traits showed a different pattern. For MY, all models outperformed Base,
which has null (~0.0) prediction accuracy. The best performing model was again PROD,
followed by AWN. PC2 was again the lowest performing covariate-informed model (0.10).
For SCS, smaller differences were found between models, but some models outperformed
Base (0.13). PROD was again the best performing model (0.24), followed by AWN. All other
models performed similarly to Base.

3.4. Cross-Validation, with the Inclusion of the GxE Interaction Term

All models that included the GxE interaction term performed equally, if not slightly
worse, than the respective model without the term. This could be a reflection of the small
magnitude of the estimated GxE effect.

4. Discussion
4.1. Spectral Information in a Precision Livestock Farming Framework

The field of phenomics is rapidly gaining attention, appearing promising for the non-
finite nature of the phenomes as opposed, for example, to the genomes [14]. Milk spectral
data have already been used for decades yet remain an important source of information
at the commercial level. The literature on the use of milk spectral data for predicting
phenotypes of interest is vast. Using spectral data, while some traits can be better predicted
than others, lately, the interest has shifted towards the integration of spectral and genomic
information. In its simplest implementation, spectral-predicted phenotypes can be included
in multi-variate models together with the wet-lab measured phenotype of interest [35,36].
This has shown some improvement in predictive ability, although such improvement
largely depends on the trait and the quality of the spectral calibration equations. In
different implementations, these two sources of data have been successfully integrated in
the same models for the prediction of both fat and protein composition [37,38], where both
genomic markers and spectral information served as predictors. The difference between
the methods proposed in the other studies [37,38], and this study resides in the fact that,
here, spectral information was only used for its environmental component. Although the
comparison was not made in a straightforward manner, the two approaches serve different
purposes. We opted for using only the environmental component of the spectrum for the
assumptions that (i) the genomic markers would absorb the genetic component and (ii) the
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explicit purpose of modeling environmental variation. In addition, the modeling of the
GxE component would have been hampered by the presence of genetic variation in the
spectral data [12,18].

4.2. Variance Decomposition of Spectral Data

This study took advantage of a large dataset that included productive records but
also spectral data. To the authors’ best knowledge, this study has used the largest spectral
dataset for variance components estimation up to date. The first step in this study involved
extracting the environmental variation from the spectral data.

The estimates of heritability for all the spectral wavenumbers show a similar pattern
as found in previous research. Both Rovere et al. [23], who worked on a subset of this
dataset, and Wang and Bovenhuis [37], who worked on a different dataset, found the same
pattern for heritability across the spectral variables.

4.3. Spectral Information as Environmental Covariate

Based on results from the present study, the environmental component of mid-infrared
spectra could be used as covariate in genomic prediction models. The estimation of variance
components for MY and SCS using Kernel regression shows promising results, with a
sizable and constant genetic component and different contribution of the environmental
kernel depending on the covariates used. Model PROD, which uses the BLUEs of the traits
themselves as covariates, shows the largest estimation of variance for MY, but spectral
information shows larger estimates for SCS. These results could be due to the fact that SCS
shows little HYS variation per se (0.08), which reflects the inability of the MY/SCS BLUE
estimates to represent that environmental variation. Conversely, the AWN model was able
to capture more environmental variation for SCS.

The approach used in this study for the use of spectral information in genomic pre-
diction models is similar to the one used by Krause et al. [18], who used hyperspectral
information (based on reflectance) of wheat canopy to inform prediction models. In that
study, an effort to integrate genomic and spectral information into the same model was
carried out: the environmental variation for a given genotype in a given site-year was
extracted in order to remove the collinearity between the genomic and spectral covariates,
which makes it even more similar to this study. Wheat canopy, just like milk composition, is
determined by both genetic and environmental effects, so that the same statistical methods
can be applied to pursue the improvement of genomic prediction models.

4.4. Genomic Predictions across Environments

This study used solely milk yield and somatic cell score as phenotypes of interest.
Other routinely recorded traits, such as fat and protein percentage, could not be used
because they are nowadays predicted using infrared spectroscopy [39], which would have
led to an inherent collinearity between the phenotype and the spectral predictors. Although
the relevance of such traits is acknowledged, we could not proceed with the analysis of
those traits for this reason.

The results from the cross-validation are different depending on the scenario, as
expected. Predictions based on spectral data have been found to provide dramatically
different results based on how the training and validation sets were created. Wang and
Bovenhuis [37] reported that across-herd predictions of bovine methane emissions showed
much lower accuracy than within-herd predictions. Dadousis et al. [40], in predicting goat
milk coagulation traits, showed that model predictive ability depended largely on the
farm(s) included in the validation set.

In prediction scenario C, to be considered equivalent to a common genomic selection
scenario, none of the environmental covariates provided meaningful contribution to the
predictive ability of the models. Such covariates appear as non-informative when pre-
dictions are drawn to known environments, i.e., there is no need to extrapolate to ‘new’
environmental conditions.



Animals 2022, 12, 1189 14 of 16

In scenario B, where predictions for the ‘known’ genotypes were extrapolated to new
environments, PROD was the best-performing model, with stronger advantage over Base
for MY. Unfortunately, model PROD is unrealistic and should only be used for comparison,
as an upper bound that the environmental-covariate-informed model could reach. In order
to implement model PROD, phenotypes for the ‘new’ environments need to be measured in
order to obtain the best linear unbiased estimates for the same environments. If phenotypes
are available for these environments, predictions are then not needed, which totally defeats
the purpose of predicting the performance in such environments. Spectral information
seems promising in providing environmental coordinates for the ‘new’ environments.
Model AWN did not outperform model PROD but did outperform model Base in scenarios
B and D. Especially in the latter, where predictions for new genotypes are extrapolated
to new environments, there was a large advantage of model AWN over model Base,
indicating the need to inform the prediction models with environmental covariates but also
the opportunity in using the spectral data as sources of environmental variation.

4.5. The Dimensionality of Milk Spectral Data as Environmental Descriptors

In this study, we also attempted to reduce the dimensionality of the spectral data by
using the most relevant principal components to build the environmental kernel. The use
of the principal components did not seem to provide any advantage. Yet, it appears that
a number of components larger than 40 would be needed to fulfill the potential of the
spectral data to absorb phenotypic variance or predict across environments. In fact, the first
40 principal components only explained about 65% of the total spectral variation, which
was made up of 3316 HYS classes.

5. Conclusions

The present study showed a simple procedure to include the environmental compo-
nent of the spectral information into genomic predictions models as a set of covariates using
Kernel regression. The results showed that this method was particularly advantageous
when genomic predictions for new genotypes under new environmental conditions have
to be obtained. Fourier-transformed infrared spectral data represent a useful source of
information for the calculation of the ‘environmental coordinates’ of a given farm in a given
time.

Farming conditions are evolving, and livestock will be subject to new environmental
conditions. Genomic prediction models could take advantage of environmental informa-
tion in order to extrapolate candidates’ performance to new environments. In general, the
goal is to link the different environmental blocks (e.g., herds, herd-year-season classes)
using some function that could be reflective of their management strategies or general envi-
ronmental conditions. The herds are no longer considered independent but are assumed to
be connected based on the covariates used. Because of this connection between the herds,
a practical implementation of this method could be to obtain FTIR-derived coordinates
for each new herd season. These coordinates would then be used in a second genomic
prediction model such as the one used in this study. For any trait of interest, the model
would yield genomic predictions for new herd seasons based on the genomic information
and the FTIR-derived coordinates.

This approach could be particularly advantageous in presence of a large genotype by
environment component, which was not detected in this study. Part of this reason could be
the limited number of models tested, since the study was oriented towards the use of the
spectral data rather than the estimation of this component.

Suggesting a different use of spectral information, this study is an example of the
integration of genomic and phenomic data. With the proposed procedure, calibration equa-
tions are not needed because only the environmental component of the spectral variables is
used. This could help using spectral data for traits that present poor predictability at the
phenotypic level, such as disease incidence and behavioral phenotypes. Further research
should focus on the reduced computational challenge of incorporating the spectral data.
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