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Abstract: In this paper, the shear modulus based equivalent homogenization methods of multi-
layer BCC (body-centered cubic) lattice sandwich structures have been studied using analytical,
experimental, and finite element methods. In the analytical approach, the multiple strut-deformation
patterns were introduced in the derivations of the shear modulus based on Euler–Bernoulli beam
theory and Timoshenko beam theory according to different boundary conditions. The analytical
shear modulus of three types of rectangle shaped sandwich BCC lattice structures was derived. Finite
element models of the BCC lattice structures by ANSYS were conducted to estimate the analytical
solutions. Butterfly style sandwich BCC lattice structures were printed by SLM technology using
304 stainless steel (06Cr19Ni10), and corresponding shear experiments using modified Arcan Rig
experimental devices were conducted to validate the analytical and numerical calculations. Good
agreements were observed among the analytical, numerical, and experimental results.

Keywords: multi-layer BCC lattice structures; homogenization; equivalent shear modulus; shear
experiments; selective laser melting

1. Introduction

Lattice structures are periodic porous structures with many advantages, such as light
weight, high strength, energy absorption, heat insulation, and heat dissipation [1]. Mean-
while, the large open space inside the lattice structures can also be filled with other materials
or structures, which will also support the material-structure-performance integrated (MSFI)
design [2]. Based on the various functions, lattice structures have been widely used in
aerospace [3], medicine [4], and other fields.

Considerable investigations have focused on the shear mechanical properties of lattice
structures. Xiong [5] and Dong [6] studied the shear properties of pyramid and octet lattice
structures made of carbon fiber composites, respectively. Based on the energy method,
Du [7] optimized lattice configurations with maximum shear stiffness. Feng et al. [8]
conducted the shear and bending properties of hourglass lattice structures. They found
that the specific shear strength was higher than that of pyramid structures. Zhang et al. [9]
investigated the compression, shear, and bending properties of X-type lattice structures by
theoretical and numerical simulations. Liu et al. [10] tested tensile and shear properties of
star lattice structures and considered that the structures had large strain effects.

The traditional manufacturing methods of lattice structures include perforated metal
sheet forming, snap fitting, investment casting, and so on. Additive manufacturing [11]
(AM) technology is a new method to fabricate lattice structures. By means of layered
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discrete-laminated stacking, it has obvious advantages in manufacturing special cell config-
urations, hierarchy lattice structures [12], and plate lattice structures [13]. BCC lattices are
bending-dominated lattice structures which are often used as structures in anti-impact and
energy absorption. These body-centered configurations are also suitable for the manufac-
turing characteristics of AM technology. Therefore, BCC lattice structures fabricated by AM
have been widely investigated by many scholars [14]. Tsopanos [15] studied manufacturing
process parameters on the effects of axial compression properties on BCC lattice structures
by laser selective laser melting (SLM). Gumruk [16] examined mechanical properties of
BCC, BCCZ and F2BCC lattice cores under compression, shear, and tension-shear loadings
fabricated by SLM technology using stainless steel. They found the effects of the geometry
and relative density had a great influence on BCC lattice cores. Leary [17,18] investigated
failure modes and absorption properties of BCC cores in various configurations fabricated
by SLM technology using ALSi12Mg and Inconel 625. Li [19] conducted a series of compres-
sion tests of BCCZ manufactured by SLM technology using ALSi12Mg. Lee [20] studied
the mechanical properties of BCC and FCC lattice structures under compression loadings
and considered that Young’s modulus of BCC was higher than that of FCC under boundary
restrained conditions. Lei [21] derived the effects of boundary conditions on the energy
absorption properties of multilayer BCC and BCCZ lattice structures under compression
loadings. The lattice cores were fabricated by SLM technology using ALSi12Mg. How-
ever, shear performance of BCC lattice sandwich structures under boundary constrained
conditions have not been fully investigated in these experiments.

It is the premise of engineering design to master the mechanical properties of lattice
structures. There are three kind of methods to study lattice structures in FEM (Finite element
method), namely beam model, solid model, and homogenization model. The process of
using refined models by beam and solid model can produce the mechanical properties of
lattices correctly. However, it is inconvenient to use the two methods mentioned above to
study lattices in engineering applications, for the amount of calculations and workload
required. Therefore, the homogenization method [22–24] is necessary in studying the
mechanical properties of lattice structures. A significant amount of research has been
undertaken to study the modulus of BCC lattice structures by macro equivalent methods.
Ptochos [25,26] derived the equivalent Young’s modulus and shear modulus of multi-layer
BCC lattice cores. Liu et al. [27] investigated the equivalent Young’s modulus of multi-
layer BCC lattice sandwich on the basis of “macro-single cell” deformation hypothesis.
Yang et al. [28] considered that there were two typical deformation modes of the multi-
layer BCC lattice sandwich in the process of compression loadings according to different
boundary conditions, and derived the equivalent Young’s modulus of multi-layer sandwich
BCC lattices by macro assembly method. Ushijima [29,30] believed that there were two
typical deformation modes in the shear process of BCC lattice. In addition, the equivalent
shear modulus of the two modes was studied by finite elements and theoretical analysis
based on Euler–Bernoulli beam theory. However, the assembly method was induced by a
large number of finite element statistical results. Meanwhile, this assumption has not been
verified by experiments.

In this paper, a new macro equivalent analysis model is proposed to study the shear
modulus of BCC lattice structures. Based on the deformation modes of three topological
shapes of BCC lattice structures in shear loadings, two typical deformation patterns of BCC
cores are conducted. The Timoshenko beam theory and Euler–Bernoulli beam theory are
both applied to determine the shear modulus of the unit cells with different deformation
patterns. Numerical simulation methods are also applied to investigate the deformation
patterns by ANSYS. Two kinds of sandwich BCC lattices are printed by SLM technology
with 304 stainless steel. The shear tests are also carried out using modified Arcan Rig
experimental devices to validate the analytical model and the finite element model.
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2. Shear Modulus Theory Model of Multi-Layer BCC Lattice Structures
2.1. Coordinate Transformation Method

A single cell of a BCC lattice structure is shown in Figure 1. The original coordinate
system is xyz. After two rotations the coordinate system is x2y2z2 According to the coordi-
nate transformation method, the rotating coordinate system changes from the horizontal
direction along x axis to the direction along the bar (x2 axis). The first angle is α by rotation
around the axis y and the second angle is β by rotation around the axis z1.
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Figure 1. Process of coordinate system conversion.

According to the transformation formula of the coordinate rotation matrix, the trans-
formation relation between coordinate matrix X in coordinate system xyz and coordinate
matrix X2 in coordinate system x2y2z2 is:

X2 = ΦX (1)

where Φ is an orthogonal matrix: ΦT = Φ−1

X2 =

 x2
y2
z2

, X =

 x
y
z

, Φ =

 cos α cos β sin β − sin α cos β
− cos α sin β cos β sin α cos β

sin α 0 cos α


As shown in Figure 2, since the BCC lattices are symmetrical during the shear loading

process and the stress states of the four lower members are the same, it is reliable to choose
a typical element to calculate the equivalent shear modulus-like bar AO′.
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Figure 2. Homogenization equivalent method of BCC lattice structure.

For the red bar AO′, the equivalent shear modulus of the force F acting on the plane
xoz is:

G =
τxz

γxz
(2)

where τxz is the in-plane shear stress in the plane xoz, γxz is the in-plane shear strain in the
plane xoz:

τxz =
4F

SABCD
(3)

γxz =
2m
Ly

(4)


(2l)2 = Lx

2 + Ly
2 + Lz

2

Lx = 2l cos β cos α
Lz = 2l cos β sin α

Ly = 2l sin β

(5)

In Formulas (3)–(5), the side lengths of the equivalent hexahedron ABCD− A′B′C′D′

in Figure 2 are Lx, Ly and Lz, respectively. The base area of the plane xoz is SABCD, and the
displacement of point O′ along the axis x is m. The length of the bar AC1 is 2l, then the
length of the bar AO′ in Figure 2 is l.

The parameters of transition matrix Φ in Formula (1) can be determined by the
following Formulas (6) and (7):

cos α =
Lx√

Lx2 + Lz2
(6)

cos β =

√
Lx2 + Lz2

2l
(7)

In the common shear loadings of the BCC sandwich shown in Figure 3, the top nodes
are coupling constrained degrees of freedom and apply shear force in the right direction,
the bottom nodes are all fixed, and the left and right nodes are unconstrained. In this case,
the bars of the multi-layer BCC lattice sandwich are dominated by two typical deformation
modes and the whole model can be partitioned in four parts according to deformation.
One is under the constrained boundary, as mode 1 shown in Figure 3, the other is under
the unconstrained boundary, as mode 2 shows in Figure 3. In mode1, the nodes are in or
very close to the black dotted line, so this mode can be seen as a constrained boundary.
The bottom and top parts belong to mode1. In mode2, the nodes are away from the black
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dotted line, so this mode can be seen as unconstrained boundary. The left and right parts
belong to mode2.
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Figure 3. Deformation pattern of multi-layer BCC lattice structures.

2.2. Equivalent Shear Modulus of Typical Element under Constrained Boundary

As shown in Figure 4, the first deformation pattern (mode1) is the typical element
mode in the constrained boundary of the y direction. The force acting on the point O′

along the axis x in the coordinate system xyz is F and the displacement along the direction
y is zero. The deformation of the point O′ in the coordinate system xyz is (m, 0, 0). The
deformation of the point O′ in the coordinate system x2y2z2 is (δx2 , δy2 , δz2), which can be
calculated by Formulas (8)–(10) using the coordinate transformation method:

δx2 = m cos α cos β (8)

δy2 = −m cos α sin β (9)

δz2 = m sin α (10)
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The acting force of point O′ in the coordinate system x2y2z2 is (Tx2 , Fy2 , Fz2). The
relationship between force and displacement can be calculated as Formula (11)–(13):

δx2 =
Tx2 l
Es A

(11)

δy2 =


Fy2 l3

12Es Iye +
Fy2 l

Esπr2
7+6νs

3 Tim

Fy2 l3

12Es Iye E− B
(12)

δz2 =
Fz2 l3

3Es Ize (13)

where r is the radius of the bar. A is the cross-sectional area of the bar. Ie
y and Ie

z are the
second moment of inertia of the strut circular cross section along the directions y and z,
respectively. A = πr2. Iy

e = Iz
e = πr4

4 . Es is the young’s modulus of the material. νs is
the Poisson’s ratio. In Formula (12), Tim denotes the load-displacement relation based
on Timoshenko beam theory, while E-B denotes the load-displacement relation based on
Euler–Bernoulli beam theory.

According to Formula (1), the relationship between the force F and the acting force
(Tx2 , Fy2 , Fz2) can be obtained as Formula (14):

F = cos α cos β · Tx2 − cos α sin β · Fy2 + sin α · Fz2 (14)

According to Formulas (2)–(14), the equivalent shear modulus G1 under constrained
boundary can be calculated as Formula (15):

Euler− Bernoulli solution :

G1 = πEs
4

sin β

cos α cos2 β sin α

( r
l
)2 · [4 cos2 α cos2 β + 3

( r
l
)2(4 cos2 α sin2 β + sin2 α

)
]

Timoshenko solution :

G1 = πEs
4

sin βπEs
cos α cos2 β sin α

( r
l
)2 · [4 cos2 α cos2 β + 12 cos2 α sin2 β

( l
r )

2
+7+6vs

+ 3 sin2 α
( r

l
)2
]

(15)

Especially, when the BCC lattice cell is a cube structure, we can find Lx = Ly = Lz:

cos α = 1√
2

, cos β =
√

2√
3
.
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In this case, the equivalent shear modulus G1 under constrained boundaries can be
calculated as Formula (16):

G1 =


√

3πEsr2

l2 [ 1
3 + 1

2( l2
r2 +7+6νs)

+ 3
8

r2

l2 ] Tim
√

3πEsr2

l2 [ 1
3 + 7

8
r2

l2 ] E− B
(16)

2.3. Equivalent Shear Modulus of Typical Element under Unconstrained Boundary

The second deformation pattern (mode2) is the typical element mode under the
unconstrained boundary of the y direction. As shown in Figure 5, in the coordinate system
xyz, the displacement of the point O′ along the direction x is m. The point O′ along the
direction y also has the displacement, which is different from mode1. However, in the
coordinate system x2y2z2, the displacement of the point O′ along the direction x2 is zero.
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According to the Formula (1), the displacement of the point O′ in the coordinate system
xyz is (m, 0,− cos α cos β

sin β m). The displacement of the point O′ in the coordinate system x2y2z2

is (0,− cos α
sin β m, m sin α):

δx2 = 0 (17)

δy2 = −cos α

sin β
m (18)

δz2 = m sin α (19)

δz2 =


Fz2 l3

12Es Ize +
Fz2 l

Esπr2
7+6νs

3 Tim

Fz2 l3

12Es Ize E− B
(20)

δy2 =
Fy2 l3

3Es Iye (21)

where the deformation of the point O′ in the coordinate system x2y2z2 is (δx2 , δy2 , δz2).
Projection F to the axis x, according to the Formula (1):

F = − cos α sin β · Fy2 + sin αFz2 (22)
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According to Formulas (2)–(7) and (17)–(22), the equivalent shear modulus G2 under
unconstrained boundary can be calculated as Formula (23):

Euler− Bernoulli solution :

G2 = 3πEs
4
( r

l
)4
( cos2 α+4 sin2 α

sin α cos α cos2 β
) sin β

Timoshenko solution :

G2 = 3π sin βEs
4

( r
l
)2
[ cos α

sin α cos2 β

( r
l
)2

+ 4 sin α
cos α cos2 β

· 1

( l
r )

2
+7+6vs

]

(23)

In particular, when the BCC lattice cell is a cube structure, we can find Lx = Ly =

Lz, cos α = 1√
2
, cos β =

√
2√
3
. In this case, the equivalent shear modulus G2 under free

boundaries can be calculated as Formula (24):

G2 =


3
√

3πEsr2

l2 [ 1
2( l2

r2 +7+6νs)
+ 1

8
r2

l2 ] Tim

15
√

3πEsr4

8l4 E− B
(24)

2.4. BCC Lattice Shear Modulus Assembly under Two Deformations

As shown in Figure 6, the macro representation of a typical rectangle shaped lattice
sandwich structure has three topological shapes: (a) H = B; (b) H < B; (c) H > B. H is the
height of cores, B is the length of cores and W is the width of cores. According to the
deformation mode in Figure 3, the lattice structure of multi-layer BCC can be divided into
four parts according to the macro deformations which are separated along the diagonal
shearing plane. In the case of H = B, the plane intersects the center line, as shown in
Figure 6a. In the case of H < B, the plane intersects in the horizontal center plane, as shown
in Figure 6b. In the case of H < B, the plane intersects in the vertical center plane, as shown
in Figure 6c. The macro-shear modulus assemblies of these three patterns are analyzed
respectively as follows.
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Figure 6. Typical macro-structural form (a) H = B; (b) H < B; (c) H > B.

2.4.1. H = B

When H = B = L, G is the equivalent shear modulus of the whole model, in which the
equivalent shear modulus of the red part is G1, and the shear modulus of the gray part is G2.
The whole model is divided into four parts according to the position, and the macroscopic
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shear modulus of the four parts is G1, G2, G3, G4, respectively. The macro equivalent shear
modulus of the first part in Figure 7a is shown in Figure 7b. Since the shear modulus along
the axis z is the same, it can be analyzed only in plane xy, as shown in Figure 7c.

G1 =
F1L/2
δ1S1

(25)

where F1 is the shearing force subjected to the uniform body, δ1 is the shear deformation
and S1 is the area of the shear plane. Thus, S1 = LW/2:

F1 =

L/2∫
0

qWdx (26)

where q is the shearing force per unit area. Consequently, qWdx is the shearing force of the
segment dx.

Figure 7. Group concept of macro equivalent shear modulus for multi-layer BCC lattice structures
(H = B): (a) the whole model; (b) the first part; (c) the representative unit calculation in x-y plane.

Total deformation of segment dx can be calculated as Formula (27):

δdx =
q(L/2− x)

G2
+

qx
G1

(27)

Because in the shear deformation of each segment dx is equal, Formulas (28) and (29)
can be calculated:

δdx = δ1 (28)

∂δ1

∂x
= 0 (29)

According to Formulas (27)–(29):

q =
1

L
2 G1 + (G2 − G1)x

(30)

Take Formula (30) in Formula (26):

δ1 =
1

G1G2
(31)

According to Formulas (25)–(31)
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The equivalent shear modulus of the first part can be calculated as Formula (32):

G1 =
ln(G2/G1)G1G2

G2 − G1
(32)

In the same way, the equivalent shear modulus of the four parts can be calculated as
Formula (33):

G1 = G2 = G3 = G4 (33)

Consequently, the equivalent shear modulus of the whole part is G = ln(G2/G1)G1G2
G2−G1

.

2.4.2. H < B

As shown in Figure 8a, in the case of H < B,
_
G is the equivalent shear modulus of the

whole model. The whole model is also divided into four parts according to the position,

and the macro shear modulus of the four parts are
_
G1,

_
G2,

_
G3,

_
G4, respectively. The macro

equivalent shear modulus of the first part in Figure 8a is shown in Figure 8b. The shear

modulus
_
G1 in Figure 8b can be easily divided into two parts of which shear modulus are

already known in 2.4.1. One is body A, and the shear modulus is G1, the other is body B,
and the shear modulus is G1. Therefore, the shear modulus of the first part can be analyzed
as shown in Figure 8c.

_
G1 =

FH/2
δS

(34)
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Figure 8. Group concept of macro equivalent shear modulus for multi-layer BCC lattice structures
(H < B): (a) the whole model; (b) the first part; (c) the representative unit calculation in x-y plane.

In the Formula (34), F is the shearing force in Figure 8b. δ is the shear deformation. S
is the area of the shear plane. Thus, S = BW/2: δ1 = F1 H/2

G1S1

δ2 = F2 H/2
G1S2

(35)


F = F1 + F2

δ = δ1 = δ2

S = S1 + S2

(36)

{
S1 = HW

2

S2 = (B−H)W
2

(37)
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In Formulas (35)–(37), δ1, F1 and S1 are the shear deformation, shearing force and
shear area of body A, respectively, while δ2, F2 and S2 are the shear deformation, shearing
force and shear area of body B. respectively, in Figure 8c.

According to Formulas (34)–(37), the equivalent shear modulus of the first part can be
calculated as Formula (38):

_
G1 =

(B− H)G1 + HG1

B
(38)

In the same way, the equivalent shear modulus of the four parts can be calculated as
Formula (39):

_
G1 =

_
G2 =

_
G3 =

_
G4 (39)

Consequently, the equivalent shear modulus of the whole part is
_
G = (B−H)G1+HG

B .

Especially, when the value of B− H reach zero, the
_
G will also move to G.

2.4.3. H > B

In the case of H > B,
^
G is the equivalent shear modulus of the whole model. The

whole model is divided into four parts according to the position, and the macroscopic shear

modulus of the four parts are
^
G1,

^
G2,

^
G3,

^
G4, respectively. The macroscopic equivalent

shear modulus of the first part in Figure 9a is shown in Figure 9b. The shear modulus
^
G1

of Figure 9b can be easily divided in two parts already known. One is body A, of which
shear modulus is G1, the other is body B, of which shear modulus is G2. Therefore, the
shear modulus of the first part can be analyzed as shown in Figure 9c:

^
G1 =

FH/2
δS

(40)
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In Formula (40), F is the shearing force in Figure 9b. δ is the shearing deformation. S
is the area of the shear plane. Thus, S = BW/2.

In Formulas (41)–(44), δ1, F1 and S1 are the shear deformation, shearing force and
shear area of body A, respectively, while δ2, F2 and S2 are the shear deformation, shearing
force and shear area of body B, respectively, in Figure 9c. δ1 = F1(H−B)/2

G1S1

δ2 = F2B/2
G1S2

(41)


F = F1 = F2

δ = δ1 + δ2

S = S1 = S2

(42)

 δ1 = F1 H/2
δ1S1

δ2 = F2 H/2
δ2S2

(43)

S1 = S2 =
HW

2
(44)

The equivalent shear modulus of the first part can be calculated as Formula (45):

^
G1 =

H
(H − B)/G2 + B/G1

(45)

In the same way, the equivalent shear modulus of the whole part is:
^
G = H

(H−B)/G2+B/G
.

Especially, when the value of H − B reach zero,
_
G will also move to G.

3. Experimental and Numerical Simulation Validations

The multi-layer BCC lattice sandwich panel was manufactured by SLM technology.
The material was 304 stainless steel (06Cr19Ni10). The material compositions are shown
in Table 1. The printing machine was RENISHAW AM-400. The printing parameters are
shown in Table 2. The basic size is shown in Figure 10. Figure 10a shows the printed
dumbbell-shaped tensile standard specimen to test Young’s modulus according to ASTM
standard E8/E8M-21. The diameter of the marked section is 6 mm, and the gauge length
is 25 mm. Figure 10b shows the model size of the constrained boundary lattice structure
test piece. The shape of the test piece is butterfly, which is convenient to be fixed with the
fixture device. The cell size of the BCC cores is 4 mm × 4 mm × 4 mm, and the cell number
is 6 × 6 × 6. The designed values of the rod’s slenderness ratio (r/l) are 0.145 and 0.175.
Shear test was carried out by modified Rig experimental devices. The fixture shear test
principle is shown in Figure 11. The experiments were carried out by a UTM5105 100 kN
electronic universal testing machine using a uni-axial tensile loading. The shear loading
process of the test piece is shown in Figure 12. The deformation of the lattice structure was
measured and recorded using the extensometer and the non-contact measuring DIC device.
The loading rate is 2 mm/min.

The Young’s modulus of constitutive material is 202 GPa by uniaxial tensile loading
tests. The Poisson’s ratio is 0.34. The finite element boundary condition is shown in
Figure 13a using the commercial software ANSYS® (ANSYS, Inc., Pittsburgh, PA, USA).
The boundary condition was the fixed support of nodes on the left surface, and the nodes
on the right surface were coupled with all degrees of freedom. Force along the negative
x direction was applied to one of the nodes at the right surface. The lattice structures
were modeled by beam188 beam element. In addition, the testing boundary conditions are
shown in Figure 13b.
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Table 1. Chemical component of material table, wt%.

Element C Cr Ni Si Mn

Values ≤0.08 18~20 8~11 ≤1 ≤2

Element P S N O Fe

Values ≤0.045 ≤0.03 ≤0.25 ≤0.1 other

Table 2. Printing process parameters.

Layer thickness 0.05 mm

Phase angle 67◦

Laser power 250 w

Scan interval 0.11 mm

Scan speed 800 mm/s

Metallic powder 304 stainless steel
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The shear modulus of finite element calculation and theoretical calculation is compared
in Table 3. The shear modulus was calculated by Euler–Bernoulli beam theory. The
whole length of cores is 40 mm, the number of single cells is 7, 10, and 13, and the lattice
slenderness ratio is 0.13, 0.14, and 0.15, respectively. The results show that the relative error
between the equivalent shear modulus calculated by FEM and analytical method is small.
The maximum relative error is 7.55%, and the average relative error is 3.53%. The results
indicate that the theoretical model can be applied to different numbers of lattice structures.

Table 3. Finite Element and Theoretical Derivation Calculation.

No Cell
Number r/l Simulation of Shear

Modulus/GPa
Analysis of

G1/GPa
Analysis of

G2/GPa
Analysis of Shear

Modulus/GPa Error

1 7 × 7 × 7 0.13 1.61
6.46 0.59 1.55

3.83%
2 10 × 10 × 10 0.13 1.66 6.31%
3 13 × 13 × 13 0.13 1.68 7.55%

4 7 × 7 × 7 0.14 1.98
7.55 0.79 1.99

0.48%
5 10 × 10 × 10 0.14 2.03 1.91%
6 13 × 13 × 13 0.14 2.05 2.71%

7 7 × 7 × 7 0.15 2.40
8.73 1.04 2.52

4.67%
8 10 × 10 × 10 0.15 2.45 2.65%
9 13 × 13 × 13 0.15 2.48 1.65%

The deformation shapes of BCC lattice in experiments and simulations are compared
in Figure 14. Figure 14a,c shows the original mode under unloaded conditions, and
Figure 14b,d shows the deformation mode during shear loading. It can be seen that
the deformation of each member in the shear process is in good agreement with that
of the simulation, and the shape of the whole core is similar to a parallelogram. The
element members exhibit a different degree of bending deformation, in which the bending
deformation close to the unconstrained boundary is more obvious. Four planes in red
color are used to depict the boundary envelope of the member under shear forces and
the lattice structures are divided into four zones by the boundary of diagonal inclined
planes in white color. In the left and right diagonal tri-prism regions, the deformation is
approximately translational mode, and each cell element is similar to mode1 in Figure 3,
where the nodes are in or very close to the red dotted line. Meanwhile, in the left and
right diagonal tri-prism regions, the deformation is approximately the combination of
translational and rotational mode, and the deformation of each cell element is similar to
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mode2 in Figure 3. The similar deformation shapes due to boundary effects of this lattice
sandwich structures under loadings were also reported in [28–30].
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Figure 14. Deformation patterns of the sandwich BCC lattice: (a) initial FE model; (b) deformation of
FE model; (c) initial state of sample; (d) deformed sample.

The experimental results of shear modulus are compared with numerical simulation
and theoretical analysis in Table 4. As can be seen from Table 4, the relative error of
shear modulus of multi-layer BCC lattice structure obtained by experiments, theoretical
calculation and numerical simulation is small. The maximum relative error between
theoretical and experimental results is 4.6%, the average relative error of that is 2.78%.
The maximum relative error between numerical and experimental results is 6.84%, and
the average relative error of that is 4.86%. The good agreement of theoretical, numerical,
and experimental data verifies the accuracy of the theoretical model and the numerical
simulation model.

Table 4. Comparison of a multi-layer BCC lattice sandwich structure and equivalent macro shear
modulus between experiment, analysis and simulation.

No
Structure Diameters D/mm Structure

Length L/mm r/l Gexp/GPa Gsim
/Mpa

Gana
/Mpa

Error
(Ana and Exp)Min. Max. Aver.

1 1.17 1.23 1.2 3.464 0.173 3.65 3.50 3.58 1.89%
2 0.95 1.05 1.00 3.464 0.144 2.26 2.12 2.19 3.10%
3 0.93 1.04 0.985 3.464 0.142 2.19 2.04 2.09 4.6%
4 1.19 1.26 1.225 3.464 0.177 3.79 3.72 3.85 1.58%

As shown in Figure 15, the theoretical equivalent shear modulus using Euler–Bernoulli
beam theory, the theoretical equivalent shear modulus using Timoshenko beam theory,
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the equivalent shear modulus of multi-layer BCC obtained by finite element calculations
and experimental results, and the theoretical equivalent shear modulus by [26] are all
compared together where the cell-element slenderness ratio (r/l) is 0.12~0.2. A good
agreement between the analytical, experimental, and numerical results is observed. When
the slenderness ratio (r/l) is 0.12~0.15, the analytical models using two beam theories are
both close to numerical results and experimental results, while using the Euler–Bernoulli
beam theory is nearer to numerical results and experimental results. However, when the
slenderness ratio (r/l) is in 0.15~0.2, the analytical model using Timoshenko beam theory
is closer to numerical results. The experimental results also indicate this phenomenon.
However, the deformation shapes of members with different slenderness ratios are similar.
Therefore, with the increase in slenderness, the bar thickens gradually, and the deformation
of members conforms to the assumption of Timoshenko beam theory. In general, the
theoretical equivalent shear modulus using Timoshenko beam theory is recommended for
engineering applications in the whole range of slenderness ratio (r/l) .

1 

 

 

Figure 15. The curve of the shear modulus versus the slenderness ratio (slenderness ratio
(r/l) = 0.12~0.2) of cubic sandwich BCC lattice structures.

As is shown in Figure 16, the theoretical analysis using Timoshenko beam theory
and numerical simulation of shear modulus versus the slenderness ratio (r/l) to 0.04~0.16
for H > B and H < B are compared. Each single cell size is 4 mm × 4 mm × 4 mm. For
H > B, the number of cells in H direction is 7 and the number of cells in B direction is 5,
so H = 28 mm, B = 20 mm. As for H < B, the number of cells in H direction is 5 and the
number of cells in B direction is 7, so H = 20 mm, B = 28 mm. It can be seen that the shear
modulus of H > B and H < B is nearly the same when the slenderness ratio is small. When
the slenderness ratio (r/l) increases, the shear modulus of both cases increases, but the
shear modulus of H < B increases faster. The great agreement of theory and numerical
simulation verifies the accuracy of the theoretical model under H > B and H < B.
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4. Conclusions

In this paper, the macro equivalent shear modulus of three types of rectangle shaped
sandwich BCC lattices structures with multi-layer boundary conditions is studied by theo-
retical, numerical, and experimental methods. In the theoretical part, the Euler–Bernoulli
beam theory and Timoshenko beam theory are both used to model the shear modulus of
BCC lattice structures. Different slenderness ratio lattices are manufactured by 304 stainless
steel as the constitutive material. Shear tests are also conducted using modified Arcan Rig
experimental devices. The main conclusions are as follows:

(1) The deformation mode of a multi-layer BCC lattice sandwich structure under shear
loading is indicated by two typical deformation modes at the macroscopic scale
partitioned under a diagonal shear plane. One is the constrained boundary, and
the other is unconstrained boundary. Different shear boundary conditions lead to
different shear deformation behaviors.

(2) The macro equivalent shear modulus theoretical model of multi-layer BCC lattice
structures presented in this paper is in good agreement with the experimental and nu-
merical simulation results, and can well reflect the macro shear mechanical properties.

(3) The deformation features of different BCC lattice member exhibit different degrees
of bending under shear loadings. When the slenderness ratio (r/l)of the member in-
creases gradually, the deformation of the member changes from the bending deforma-
tion mode based on the assumption of Euler–Bernoulli beam to the shear deformation
mode based on the assumption of Timoshenko beam. When the slenderness ratio (r/l)
increases, the shear modulus of both cases (H = B, H < B, H > B) increases, but the shear
modulus of H < B increases faster. In general, the theoretical equivalent shear modulus
using Timoshenko beam theory is recommended for multilayer BCC lattices in the
whole range of the slenderness ratio (r/l) for convenience in engineering applications.
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