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Suppl.Methods 

Alcohol Drinking. Rats first drank under a 2-bottle choice intermittent access to alcohol 
paradigm, with access to alcohol (20% v/v), or water in a second bottle. Alcohol access began on 
Monday, Wednesday, and Friday at ~1 hour into the dark cycle, and lasted 16-24 hours each day. 
Following ~3 months of IA2BC, rats were switched to drink alcohol (20% v/v) or water for 20 
min/day Monday-Friday (1-4). Non-drinking rats lived in the same room but never had access to 
alcohol. 

Telemetry Surgery. Alcohol was withheld from rats for approximately 48-72 hours prior to 
surgery to prevent complications. Using antiseptic surgical techniques, rats were put under 
isoflurane anesthesia and implanted with a telemetry device (type PTA-M-C, part# E-430001-
IMP-130) from TSE Systems Inc. (Chesterfield, MO), with instruction and assistance from TSE 
personnel. The telemetry device consisted of a silicone elastomer transmitter (8.3 mm in by 16.5 
mm x 4 mm), and a thin, plastic-sheathed wire which had a small sleeve at the distal tip which 
detected changes in blood pressure within the artery. The surgery required two incisions, one in 
the midline of the abdominal cavity (to place the transmitter), and a second where the abdomen 
meets the left thigh to access the left femoral artery. The femoral artery was carefully dissected 
from the adjacent femoral vein and femoral nerve, and then dilated through topical application of 
2% injectable lidocaine. Suture silk was used to temporarily occlude the femoral artery, and then 
a small needle puncture was made into the vessel. The wire with telemeter at the end was 
inserted into the blood vessel, the silk suture was loosened slightly, and the wire tip advanced 
until it sat approximately between the iliac bifurcation and the renal arteries within the 
abdominal aorta. This was assisted by a removable trocar which led the wire. Once the wire was 
in place, the suture silk was lightly tied to the femoral artery to keep the wire from slipping and 
to assist in closing the small puncture to prevent bleeding. To confirm placement within the 
abdominal aorta, real-time blood pressure trace was assessed using NOTOCORD-hem software 
(Instem, Staffordshire, UK). As the aorta is the major arterial vessel emerging from the heart, it 
provides accurate information about HR and blood pressure. Nonabsorbable sutures were used to 
attach the transmitter unit to the inner musculature of the abdominal wall. Finally, the animal is 
sewed up with absorbable sutures, provided pain relieving drugs (carprofen 5mg/kg and 
buprenorphine 0.03mg/kg), and placed in their homecage for recovery. 

Suppl. Figure Legends 

Suppl.Fig.1. No average behavioral differences between drinkers and non-drinkers, in (A) 
food intake (Fs<1.56, ps>0.2), (B) latency to approach food (log, Fs<2.3, ps>0.13), (C) number 



of approaches (Fs<2.35, ps>0.13), (D) time in center (log, Fs<1.99, ps>0.16), or (E) latency to 
grab food (log, Fs<0.9, ps>0.3). 

Suppl.Fig.2. No average HR/HRV differences between drinkers and non-drinkers for 
nearly all measures. (A-C) HR (A) at baseline (sex: F(1,46)=16.17, p=0.0002, other Fs<0.9, 
ps>0.3), (B) during NSF (sex: F(1,46)=10.96, p=0.0018, other Fs<1.1, ps>0.3), and (C) % change 
from basal to NSF (log, sex: F(1,46)=6.399, p=0.0149, other Fs<0.3, ps>0.6). (E-G) SDNN (E) at 
baseline (log, sex: F(1,46)=22.08, p<0.0001, other Fs<0.7, ps>0.4), (F) during NSF (log, Fs<1.5, 
ps>0.2) , and (G) % change from basal to NSF (log, sex: F(1,46)=10.90, p=0.0019, other Fs<0.7, 
ps>0.4). (H-J) rMSSD (H) at baseline (log, sex: F(1,46)=3.645, p=0.0624, other Fs<0.2, ps>0.7), 
(I) during NSF (log, Fs<1.5, ps>0.2), and (J) % change from basal to NSF (log, Fs<2.7,
ps>0.11). (K-M) SDNN/rMSSD (K) at baseline (log, sex: F(1,46)=27.12, p<0.0001, other 
Fs<1.97, ps>0.18), (L) during NSF (log, sex: F(1,46)=4.246, p=0.0450, other Fs<0.8, ps>0.4), and 
(M) % change from basal to NSF (log, sex: F(1,46)=13.51, p=0.0006; interaction: F(1,46)=5.289,
p=0.0260; drinker-vs-naïve: F(1,46)=0.885, p=0.3518). Thus, there was an effect of drinking 
condition for percent change in SDNN/rMSDD, although with multiple corrections, this would 
not be considered significant. 

We note that, when comparing drinkers and controls in humans, some studies find no HR 
differences (6,7) or higher HR in drinkers (8-11), and many observe lower basal HFHRV with 
AUD (7,8,12-14), although with some considerations. One study (10) found no AUD vs control 
differences in rMSSD, HFHRV, or LFHRV, but did observe greater average entropy with AUD 
(a non-linear HRV measure). In addition, moderate to heavy drinkers (non-AUD) can have 
higher HFHRV (15), and resting HRV is greater in people drinking lower levels of alcohol (1–2 
drinks/day), but reduced in people consuming more than that (13). One possibility is that some 
human studies may reflect more advanced AUD stages. For example, Hwang and colleagues (10) 
noted no HRV changes with alcohol cues, while another study (16) found rMSSD increases to 
alcohol cues associated with more alcohol problems. However, Hwang et al. (10) noted that 
AUDIT scores in their study were ~19, but 10-12 in (16). Thus, HRV changes may vary with the 
level of drinking problems, and our rats would not reflect the highest-level problem drinkers. 

Suppl.Fig.3. Raw data and scatter plots for basal and NSF HR/HRV measures. 
Also, we ran two-way ANOVAs on the basal-vs-NSF HRV measures, even though some 

groups for each measure were not normal, to compare basal versus NSF measures (within-
subject), and across females and males. Results for SDNN and SDNN/rMSSD were similar to 
log-normalized data (Fig.2). For SDNN, there was a significant effect of sex (F(1,48)=22.19, 
p<0.0001), basal versus NSF (F(1,48)=127.1, p<0.0001), and interaction (F(1,48)=5.961, 
p=0.0184). Thus, female basal SDNN was lower than males, and males had a greater drop in 
SDNN than females. However, there were no significant changes for rMSSD (sex: F(1,48)=0.984, 
p=0.3262; basal-NSF: F(1,48)=3.659, p=0.0618; interaction: F(1,48)=1.621, p=0.2091). Even so, 
SDNN/rMSSD showed a significant effect of sex (F(1,48)=20.91, p<0.0001), basal versus NSF 
(F(1,48)=103.3, p<0.0001), and interaction (F(1,48)=17.56, p=0.0001). 

Suppl.Fig.4. First approach latency. With significant effects for both rMSSD and SDNN, there 
was no association between latency to first approach and SDDN/rMSSD, (A) at baseline 
(females: F(1,20)=0.123, R2=0.006, p=0.7294; males; F(1,25)=0.008, R2=0.000, p=0.9309), or (B)



during NSF (females: F(1,20)=0.267, R2=0.013, p=0.6110; males: F(1,25)=2.651, R2=0.096, 
p=0.1160). 

Suppl.Fig.5. Examining whether higher HR was associated with reduced HRV, a 
mathematical relationship which could impact HRV interpretations. (A-C) For baseline HR 
measures, female HR (and trends in males) was associated with (A) lower SDNN (female 
F(1,21)=37.11, R2=0.639, p<0.0001; male F(1,25)=3.514, R2=0.123, p=0.0726), (B) lower rMSSD 
(female F(1,21)=27.49, R2=0.567, p<0.0001; male F(1,25)=4.218, R2=0.144, p=0.0506), and (C)
lower SDNN/rMSSD ratio (female F(1,21)=4.632, R2=0.181, p=0.0432; male F(1,25)=1.227, 
R2=0.047, p=0.2785). (D-F) For NSF HR measures, both sexes had significantly lower HRV 
with higher HR, including for (D) SDNN (female F(1,21)=8.368, R2=0.285, p=0.0087; male 
F(1,25)=21.96, R2=0.468, p<0.0001) and (E) rMSSD (female F(1,21)=12.55, R2=0.374, p=0.0019; 
male F(1,25)=20.88, R2=0.455, p<0.0001), but not (F) SDNN/rMSSD (female F(1,21)=2.606, 
R2=0.110, p=0.1214; male F(1,25)=3.308, R2=0.117, p=0.0809) which may be due to concurrent 
decreases in both SDNN and rMSSD. Together, data in (A-F) suggest that HRV was lower under 
conditions with higher HR, females at baseline and NSF, and males during NSF. (G-I) Even so, 
basal HR did not correlate with (G) the change in SDNN (NSF minus basal, female F(1,21)=0.954, 
R2=0.043, p=0.3398; male F(1,25)=3.226, R2=0.114, p=0.0846), or (H) change in rMSSD, 
although a trend in males (female F(1,21)=0.035, R2=0.002, p=0.8539; male F(1,25)=3.835, 
R2=0.133, p=0.0614), and where (I) higher basal HR correlated with smaller change in 
SDNN/rMSSD in females (F(1,21)=4.812, R2=0.186, p=0.0397) but not males (F(1,25)=0.666, 
R2=0.026, p=0.4221). Thus, these data support the possibility that higher HR was associated 
with reduced HRV, which might impact HRV patterns seen with latency to first approach food 
(Fig.4). On the other hand, results in (G,H) suggest that there was some dynamic range for HRV 
measures to change, separate from basal HR. *,**,*** p<0.05, p<0.01, *** p<0.001. 

Suppl.Fig.6. HR: number of  approaches and time in center. HR did not relate to (A,B) 
number of approaches (A) at baseline (males: F(1,25)=1.824, R2=0.068, p=0.1889; females: 
F(1,19)=3.511, R2=0.156, p=0.0764) or (B) during NSF (males: F(1,25)=0.159, R2=0.006, 
p=0.6939; females: F(1,19)=0.270, R2=0.014, p=0.6092). (C,D) HR was also not correlated with 
time in center (C) at baseline (males: F(1,25)=0.732, R2=0.028, p=0.4005; females: F(1,19)=0.053, 
R2=0.003, p=0.8205) or (D) during NSF (males: F(1,25)=1.826, R2=0.068, p=0.1887; females: 
F(1,19)=0.991, R2=0.050, p=0.3320). 

Suppl.Fig.7. Males with a larger change in SDNN/rMSSD from baseline to NSF had more 
approaches (F(1,25)=5.938, R2=0.192, p=0.0223), which was not observed in females 
(F(1,19)=1.095, R2=0.055, p=0.3085). 

Suppl.Fig.8. Relation between different NSF behaviors. (A) After removing a male outlier 
(600s latency to approach), there was no relation between food intake and latency to first 
approach in females (F(1,20)=0.596, R2=0.029, p=0.4491) or males (F(1,25)=2.201, R2=0.081, 
p=0.1504). (B) No relation between food intake and number of approaches in females 
(F(1,19)=0.697, R2=0.035, p=0.4142) or males (F(1,25)=0.714, R2=0.028, p=0.4063). (C) Food 
intake was significantly and negatively correlated with latency to first grab food in females 
(F(1,19)=21.94, R2=0.536, p=0.0002) and males (F(1,25)=55.64, R2=0.690, p<0.0001). However, no 
HR/HRV measure correlated with latency to grab food (not shown). *** p<0.001. 



Suppl.Fig.9. rMSSD measures across the session, centered on the time to grab food. See 
Figure 9 legend for details. No differences across analysis time points for rMSSD (C,D, female: 
Friedman stat=1.444, p=0.4857, male: Friedman stat=0.947, p=0.9474). 

Suppl.Fig.10-14. In these figures, we show correlations between different NSF behavioral 
measures and the log transformation of each HR/HRV measures. Overall, sex and behavior 
differences were similar to those described in the manuscript using the raw values of the 
different HR/HRV measures. Statistical testing is described in the figure for each panel. 
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Log HR/HRV data for Food Intake
female F=4.425, p=0.0476; male F=1.412, 
p=0.2460; p=0.0270 diff in slopes female p=0.9150; male p=0.5367 female F=6.136, p=0.0218; male F=0.305, 

p=0.5854; p=0.0734 diff in slopes

female p=0.2665; male p=0.8215 female p=0.9015; male p=0.9687 female p=0.5637; male p=0.5345

female p=0.0880; male p=0.1197 female p=0.9880; male p=0.2139
female F=5.977, p=0.0234; male F=0.099, 
p=0.7560, p=0.0590 diff in slopes

female p=0.2948; male p=0.6665 female p=0.4689; male p=0.4693
female F=6.136, p=0.0218; male F=0.305, 
p=0.5854, p=0.0734 diff in slopes, 
p=0.0181 diff in intercepts

Frasier et al., Fig.S10
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female p=0.1384; male p=0.8027 female F=11.13, p=0.0033; male F=0.200, 
p=0.6584; p=0.0374 diff in slopes female p=0.1537, male p=0.5493

female p=0.0688; male p=0.7187 female F=5.139, p=0.0346; male F=0.189, 
p=0.6677; p=0.0707 diff in slopes female p=0.2847, male p=0.7620

female p=0.7066; male p=0.9597 female p=0.6103; male p=0.1284 female p=0.8802, male p=0.1632

female F=5.925, p=0.0244; male F=1.347, 
p=0.2567, p=0.1219 diff in slopes, 
p=0.0001 diff in intercepts

female F=14.23, p=0.0012; male F=0.282, 
p=0.6003, p=0.0291 diff in slopes female p=0.1537, male p=0.5493

Frasier et al., Fig.S11



0 5 10 15 20
2.5

2.6

2.7

2.8

Number of Approaches

lo
g 

H
R

 b
as

al

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of Approaches

lo
g 

ra
tio

 b
as

al

0 5 10 15 20
2.5

2.6

2.7

2.8

Number of Approaches

lo
g 

H
R

 d
ur

in
g

0 5 10 15 20
0

50

100

150

Number of Approaches

lo
g 

ra
tio

 N
SF

/b
as

al
 (%

)

0 5 10 15 20
0

50

100

150

Number of Approaches

lo
g 

HR
 N

SF
/b

as
al

 (%
)

0 5 10 15 20
0.0

0.5

1.0

1.5

Number of Approaches

lo
g 

rM
SS

D
 d

ur
in

g

0 5 10 15 20
0.0

0.5

1.0

1.5

Number of Approaches

lo
g 

rM
SS

D
 b

as
al

0 5 10 15 20
0.0

0.5

1.0

1.5

Number of Approaches

lo
g 

SD
N

N 
du

rin
g

0 5 10 15 20
0.0

0.5

1.0

1.5

Number of Approaches

lo
g 

SD
N

N
 b

as
al

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of Approaches

lo
g 

ra
tio

 d
ur

in
g

0 5 10 15 20
0

50

100

150

Number of Approaches

lo
g 

SD
N

N
 N

SF
/b

as
al

 (%
)

0 5 10 15 20
0

50

100

150

Number of Approaches

lo
g 

rM
SS

D
 N

SF
/b

as
al

 (%
)

Log HR/HRV data for Number of Approaches
female p=0.2737; male p=0.8220 female F=0.566, p=0.4613; male F=5.567, 

p=0.0264; p=0.0576 diff in slopes

female F=0.659, p=0.4271; male F=4.455, 
p=0.0450;  p=0.4867 diff in slopes, 
p=0.0044 diff in intercept

female p=0.1206; male p=0.6956 female p=0.1898; male p=0.6762 female p=0.8651; male p=0.4558

female p=0.9693; male p=0.4781

female F=0.442, p=0.1898; male F=19.70, 
p=0.0002, p=0.1255 diff in slopes, 
p=0.2551 diff in intercept

female F=1.289, p=0.2704; male F=8.140, 
p=0.0086, p=0.5973 diff in slopes, 
p<0.0001 diff in intercepts

female p=0.0695; male p=0.2019 female p=0.6055; male p=0.6763
female F=0.659, p=0.4271; male F=4.455, 
p=0.0450, p=0.4867 diff in slopes, 
p=0.0044 diff in intercepts

Frasier et al., Fig.S12
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Log HR/HRV data for Time in Center

female p=0.8650; male p=0.0983
female F=0.000, p=0.9871; male F=5.186, 
p=0.0316; p=0.0402 diff in slopes female p=0.6995, male p=0.3301

female p=0.8890; male p=0.4538 female p=0.6428; male p=0.4120 female p=0.6084, male p=0.6929

female p=0.7807; male p=0.0636
female F=0.343, p=0.5653; male F=9.215, 
p=0.0055, p=0.0090 diff in slopes female p=0.9200, male p=0.3837

female p=0.7925; male p=0.4225 female p=0.3275; male p=0.1842 female p=0.6995, male p=0.3301

Frasier et al., Fig.S13




