
ORIGINAL RESEARCH
published: 02 May 2022

doi: 10.3389/fneur.2022.884770

Frontiers in Neurology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 884770

Edited by:

Lingmin Jin,

Guizhou University of Traditional

Chinese Medicine, China

Reviewed by:

Rui Zhao,

Xi’an Polytechnic University, China

Taipin Guo,

Yunnan University of Traditional

Chinese Medicine, China

*Correspondence:

Jie Yang

jenny_yang_jie@126.com

Siyi Yu

cdutcmysy@gmail.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Headache and Neurogenic Pain,

a section of the journal

Frontiers in Neurology

Received: 27 February 2022

Accepted: 22 March 2022

Published: 02 May 2022

Citation:

Xu J, Xie H, Liu L, Shen Z, Yang L,

Wei W, Guo X, Liang F, Yu S and

Yang J (2022) Brain Mechanism of

Acupuncture Treatment of Chronic

Pain: An Individual-Level Positron

Emission Tomography Study.

Front. Neurol. 13:884770.

doi: 10.3389/fneur.2022.884770

Brain Mechanism of Acupuncture
Treatment of Chronic Pain: An
Individual-Level Positron Emission
Tomography Study

Jin Xu 1†, Hongjun Xie 2†, Liying Liu 1†, Zhifu Shen 3, Lu Yang 1, Wei Wei 1, Xiaoli Guo 1,

Fanrong Liang 1, Siyi Yu 1* and Jie Yang 1*

1Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2Department

of Nuclear Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China,
3Department of Traditional Chinese and Western Medicine, North Sichuan Medical College, Nanchong, China

Objective: Acupuncture has been shown to be effective in the treatment of chronic

pain. However, their neural mechanism underlying the effective acupuncture response

to chronic pain is still unclear. We investigated whether metabolic patterns in the pain

matrix network might predict acupuncture therapy responses in patients with primary

dysmenorrhea (PDM) using a machine-learning-based multivariate pattern analysis

(MVPA) on positron emission tomography data (PET).

Methods: Forty-two patients with PDM were selected and randomized into two groups:

real acupuncture and sham acupuncture (three menstrual cycles). Brain metabolic

data from the three special brain networks (the sensorimotor network (SMN), default

mode network (DMN), and salience network (SN)) were extracted at the individual level

by using PETSurfer in fluorine-18 fluorodeoxyglucose positron emission tomography

(18F-FDG-PET) data. MVPA analysis based onmetabolic network features was employed

to predict the pain relief after treatment in the pooled group and real acupuncture

treatment, separately.

Results: Paired t-tests revealed significant alterations in pain intensity after real but

not sham acupuncture treatment. Traditional mass-univariate correlations between brain

metabolic and alterations in pain intensity were not significant. The MVPA results showed

that the brain metabolic pattern in the DMN and SMN did predict the pain relief in the

pooled group of patients with PDM (R2
= 0.25, p = 0.005). In addition, the metabolic

pattern in the DMN could predict the pain relief after treatment in the real acupuncture

treatment group (R2
= 0.40, p = 0.01).

Conclusion: This study indicates that the individual-level metabolic patterns in DMN

is associated with real acupuncture treatment response in chronic pain. The present

findings advanced the knowledge of the brain mechanism of the acupuncture treatment

in chronic pain.
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INTRODUCTION

Acupuncture, a traditional Chinese medical procedure, has been
widely used to alleviate diverse pains for over 2,000 years (1).
The National Institutes of Health have suggested acupuncture
as a potentially useful option for various chronic pain disorders,
such as menstrual pain (2). Primary dysmenorrhea (PDM), a
classic chronic and cyclic pain disorder, is characterized by cyclic
cramping pain in the lower abdomen during menstruation and a
lack of any visible pelvic pathology. PDM affects most women
throughout the menstrual years, with up to 90% of adolescent
females globally reported experiencing it (3). Although PDM is a
common reason for work absenteeism and lower quality of life in
women, the disorder is often under-diagnosed and poorly treated
(4). Several randomized controlled trials (RCTs) further suggest
favorable effects of acupuncture on menstrual pain intensity and
other symptoms of dysmenorrhea (5–7). Moreover, our previous
meta-analysis also demonstrated that acupuncture is safe and
effective in PDM management (8), and real acupuncture could
be more effective than placebo/sham group in pain relief (9).

Although acupuncture has been shown to be effective in
pain relief in patients with PDM, the inter-individual response
of different patients to acupuncture treatment varies greatly
(10–12). Similarity, responses to other treatments for pain
are also be affected by multidimensional individual differences
(13–15). Because pain is a highly personal and subjective
experience, it is not surprising that the outcome of treatment
is influenced by the baseline physiological state of individuals
(16, 17). Thus, the baseline brain characteristics of individuals
might be a useful biomarker to predict differential responses to
intervention strategies.

Neuroimaging biomarkers have recently proven promising for
predicting responses to treatment and are used for elucidating
the underlying brain mechanism for pain relief. For example,
Reggente et al. (18) found that pre-treatment brain connectivity
in the visual network and the default mode network (DMN)
significantly predicted obsessive-compulsive disorder severity
after treatment. Conversely, clinical pre-treatment variables
did not reliably predict post-treatment outcomes, indicating
that brain networks are stronger predictors than more readily
obtained clinical scores. A recent study found that resting-
state regional homogeneity in the temporoparietal junction
was an important predictive factor of treatment effects of
acupuncture in patients with cervical spondylosis neck pain (19).
As such earlier studies show successful applications of brain-
based biomarkers to predict therapeutic effects at the individual
level, the development of quantitative, objective neuroimaging
biomarkers/predictors is of increasing importance to provide
optimal treatment for PDM and provides a useful approach
to illustrate the broad applicability of acupuncture. In the past
few years, neuroimaging studies of PDM have increasingly
and collectively shown that PDM is associated with significant
changes in brain anatomy, function, and metabolism (20–24).
However, no study investigates the individual-level metabolic
biomarker of treatment response in PDM.

In this exploratory study, we thus aimed to investigate
whether individual-level brain metabolic biomarkers in a special

network at baseline can predict acupuncture responses in the
treatment of PDM using multivariate pattern analysis (MVPA)-
based machine-learning techniques. We first acquired metabolic
data from 42 individuals with PDM who underwent fluorine-
18 fluorodeoxyglucose positron emission tomography (18F-FDG
PET-CT) at baseline. Participants were then randomized into a
real group and a sham acupuncture group and treated over the
course of three menstrual cycles. Lastly, MVPA was applied to
explore the optimal metabolic predictors for clinical responses
after treatment in subjects with PDM. To improve the analytic
power and efficiency in this study, we restricted them to some
special networks, such as the DMN, the sensorimotor network
(SMN), and the salience network (SN), where previous studies
found abnormal alterations in patients with chronic pain. We
hypothesized that the individual-level metabolic patterns of these
target networks can predict acupuncture responses in patients
with PDM.

MATERIALS AND METHODS

Participants
A total of 42 patients with PDMwere enrolled via advertisements
and hearsay, and all participants were confirmed through
telephone and face-to-face interviews. This study was
approved by the affiliated Hospital of Chengdu University
of Traditional Chinese Medicine Institutional Review Board.
Before participation, all patients provided voluntary informed
consent. The inclusion criteria for enrollment were fellows: (1)
between the ages of 18 and 30; (2) a regular menstrual cycle
(27–32 days); (3) more than 1 year of PDM history; (4) no
hormones or centrally acting medication in the last 6 months;
(5) cramping pain during menstruation at least 4 on a 0–10
visual analog scale (VAS); and (6) right-handedness. Exclusion
criteria were as follows: (1) organic pelvic diseases; (2) visceral
pain caused by other diseases; (3) a positive pregnancy test; (4)
a history of neurological or psychiatric disorders; and (5) any
contraindications to PET or MRI scanning. During the study,
four cases were dropped out before the first clinical measurement
and imaging scan, and five cases were dropped out before the
first acupuncture treatment. Four cases did not complete all
treatment sessions. Finally, 29 patients completed all clinical
assessments and imaging sessions (Figure 1).

Clinical Assessment
In this study, we used VAS (0= “no pain at all,” 10= “unbearable
pain”) as primary outcome measurement to assess menstrual
pain severity (25). In addition, the Zung Self-Rating Depression
Scale (SDS) and the Zung Self-Rating Anxiety Scale (SAS) were
also used to access the mental state of participants (26, 27).
All clinical assessments were measured at baseline and after 3
menstrual cycles’ acupuncture treatments.

Acupuncture Intervention
Patients were randomly assigned to either the real or sham
acupuncture groups using a computer-generated random-
allocation process. All participants and clinical evaluators were
unaware of the group assignment until the end of the study. Only
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FIGURE 1 | Study design and research flow chart.

the acupuncturists were informed about the treatment allocation
and accordingly delivered real or sham treatment. Two licensed
acupuncturists with at least 3 years of experience performed
acupuncture on two groups of PDM patients. Participants
received a course of acupuncture treatment that lasted 5–7 days
before menstrual onset. The treatments lasted 3 weeks.

Based on the date-driven results of previous research and
expert opinions, the Sanyinjiao (SP6) point was chosen for the
real acupuncture treatment (28). The SP6 is located on the
posterior border of the tibia and 3 cun directly superior to the
tip of the medial malleolus (29). After the skin has been cleaned
with 75% alcohol, 0.25 × 40-mm stainless needles (Hwatuo,
Suzhou, China) were inserted to a depth of 1.0–1.2 cun and
gently twisted, lifted, and thrust at an even amplitude, force, and
speed. “Deqi” sensation of a soreness, numbness, heaviness, and
distension sensation was essential during and after the operation.
A 30-s manipulation was conducted every 10min during 30-min
needling retention. For the sham group, a nearby sham acupoint
was chosen at the same level as the SP6 andXuanzhong (GB39), at
the midpoint of the stomach and gallbladder meridians. Patients
in the sham group had an acupuncture technique comparable
to those in the actual acupuncture group. However, there was

no manipulation following needle insertion, and the “Deqi”
sensation was not required.

Statistical Analysis of Clinical Data
All statistical analyses were conducted in SPSS (SPSS statistical
software, version 22.0, SPSS Inc., Chicago, IL, USA). The inner-
group difference in VAS score (post-treatment minus pre-
treatment) across each treatment group was tested by using
paired t-test. Furthermore, a two-sample t-test has been used
to compare the within-group difference of VAS score change
(post-treatment minus pre-treatment) between the real and
sham acupuncture groups. In addition, the relationships between
before and after treatment clinical features were assessed with
partial correlation analysis, controlling for age and treatment
method. The significant level for all analyses was set at p < 0.05.

Imaging Acquisition
The structural MRI (sMRI) data were acquired to co-register
the brain region to the PET image. A 32-channel radio-
frequency head coil in a 3.0-Tesla magnetic resonance scanner
was used to collectMRI data (DiscoveryMR750, General Electric,
Milwaukee, WI, USA). To limit head motion and scanner
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FIGURE 2 | Regions of interest. Sensorimotor network (SMN): bilateral post-central (S1), and bilateral insula. Salience network (SN): the dorsolateral prefrontal cortex

(dlPFC), and bilateral dorsal anterior cingulate cortex (dACC). Default mode network (DMN): bilateral inferior parietal cortex (IPC), precuneus, isthmus cingulate cortex

(ICC), and posterior cingulate cortex (PCC).

noise, earplugs and tight yet soft foam padding were used. The
following parameters were used to create a high-resolution, T1-
weighted structural image: repetition time= 2,530ms, echo time
= 3.39ms, field of view = 256mm × 256mm, data matrix
= 256 × 256; slice thickness = 1mm, gap = 0mm, and
flip angle = 7◦. Referring to our previous studies (30), 18F-
FDG-PET scanning was prepared at Sichuan Provincial People’s
Hospital using a Biograph Duo BGO scanner (Siemens, Munich,
Germany). The FDG-PET image was scanned in the morning
during the periovulatory phase (the middle 5 days between the
two menstrual periods). After fasting for at least 12 h, patients
underwent the following procedures: (1) fasting plasma glucose
and resting blood pressure measurements at 8 a.m., (2) a 15–
20min peaceful rest in a darkroom, (3) an intravenous injection
of fluorine-18 fluorodeoxyglucose on the back of the right hand
(synthesized with a Mini Tracer accelerator at 0.11 MCi/kg
dosage), (4) a 40-min rest, and (5) a PET-CT scan. Before
picture capture, there was a 40-min uptake period. Patients were
encouraged to stay motionless during scanning by having their
heads immobilized, their ears muffled, and their eyes blinded.

Region of Interest (ROI) Selection
Sixteen ROIs in the cortical region were selected for further
analysis (Figure 2). Four regions were identified as key regions
within the SMN, the bilateral post-central (S1), and bilateral
insula (31, 32), which represent the major ascending pathways
of pain; four regions were selected in the SN, which represent
the descending pathways that modulate pain by inhibiting
nociceptive transmission, such as the bilateral caudal middle
frontal gyrus (a region within the dorsolateral prefrontal cortex,
dlPFC), the bilateral caudal anterior cingulate cortex (a region
in the dorsal anterior cingulate cortex, dACC) (33); and eight
regions were selected in the DMN, which are involved in pain
rumination (34), such as the bilateral inferior parietal cortex
(IPC), the precuneus, the isthmus cingulate cortex, and the
posterior cingulate cortex (PCC).

Imaging Processing and Individual-Level
Metabolic Extraction
The pre-processing of sMRI and metabolic data was conducted
using FreeSurfer and PETSurfer toolbox (version 6.0, http://
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FIGURE 3 | Flowchart of the MVPA procedure. (A) Obtaining quantitative information from preprocessed PDG-PET scans. (B) Extracting metabolism data across all

voxels in all ROIs. (C) Constructing feature matrixes of the SUVR. (D) Building the SVR model with LOOCV to predict each participant’s response to acupuncture.

FDG-PET, fluorodeoxyglucose positron emission tomography; LOOCV, leave-one-out cross-validation; ROIs, regions of interest; sMRI, structural magnetic resonance

imaging; SUVR, standardized uptake value ratio; SVR, support vector regression.

surfer.nmr.harvard.edu/). First, the cortical parcellation and
subcortical segmentation methods have been described in detail
in our prior publications (35, 36). Second, the standardized
uptake value rate (SUVR) was calculated for the metabolic state
in the brain regions. The SUVR is useful for normalizing the
comparison of the significant inter-individual variability in the
global PET signal (37). A symmetric geometric transfer matrix
(SGTM) method was used for partial volume correction (PVC)
where limited scanner resolution causes the activity to appear to
spill out of one region and into another (38). To perform PVC,
the PET data were registered to theMRI data via boundary-based
registration (BBR) using a six degree of freedom linear transform
(39). The MRI segmentation was mapped onto the PET space
in a way that accounted for the tissue fraction effect (38). The
SUVR for each ROI was computed by dividing the intensity of
the ROI by the intensity of the pons at the individual level (39)
(FreeSurfer commands: gemseg, mri_coreg, and mri_gtmpvc).
Third, the SUVR data of the 16 ROIs were extracted from the
processed images at the individual level for further analysis.

Multivariate Pattern Analysis
We attempted to predict clinical symptom alterations after the
treatment based on special metabolic networks. We used linear
support vector regression (SVR) that was implemented with the
LIBSVM toolbox (40) for model training and further prediction
analysis. We used the change in pain severity (VAS change) as
the dependent variable and brain metabolic network features as
independent variables (predictors) while controlling for effects
of age, treatment method (only in the pooled group prediction
analysis, see below), and VAS score at baseline. A leave-one-
out cross-validation (LOOCV) method was used to ensure a

clear separation between training and test sets. LOOCV is
appropriate for preliminary estimate prediction in longitudinally
neuroimaging studies where sample sizes are small (41). To
evaluate the predictive ability of SVR, we calculated the mean
absolute error, defined as the mean discrepancy between actual
and predicted values (42, 43), and the squared prediction-
outcome correlation (R2), defined as the squared correlation
between the prediction and true outcome. Furthermore, we
estimated the probability that random chance would predict the
treatment response and SVR method (permutation test with
10,000 iterations). Because of the small sample size of the present
study, we combined the real and sham groups for a pooled
group MVPA analysis, where the treatment method effect was
controlled as a covariate. In addition, theMVPA analysis was also
conducted within each group separately. Figure 3 illustrates the
individualized prediction framework used in this investigation.

Mass-Univariate Correlation Analysis
To directly compare our multivariate SVR analysis with
traditional mass-univariate correlation analyses, we tested
the association between treatment responses and metabolic
properties in each ROI using a traditional bivariate Pearson
correlation analysis. The significance level was set at p < 0.05.

RESULTS

Demographic Characteristics and Clinical
Results
As shown in Table 1, statistical analysis indicats no significant
difference in age, disease duration, body mass index (BMI),
baseline VAS scores, SDS scores, and SAS scores between the
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TABLE 1 | Demographics and clinical characteristics of each group.

Real (n = 14) Sham (n = 15) T P

Mean SD Mean SD

Age (years) 24.86 1.75 24.53 2.07 0.45 0.653

Duration

(months)

90.57 36.31 97.40 34.09 −0.52 0.606

BMI 19.20 1.15 19.45 1.81 −0.44 0.664

Baseline VAS 6.07 1.07 6.00 1.20 0.17 0.867

Baseline SDS 39.68 7.28 43.42 10.07 −1.14 0.265

Baseline SAS 41.34 5.56 40.55 7.80 0.31 0.758

Post-

treatment

VAS

3.50 1.70 5.30 1.39 −3.14 0.004

Change VAS −2.57 1.55 −0.70 1.62 −3.17 0.004

BMI, body mass index; VAS, visual analog scale; SAS, Self-Rating Anxiety Scale; SDS,

Self-Report Depression Scale.

two treatment groups at the baseline stage (all p > 0.05).
For intra-group comparison, the post-treatment VAS value was
significantly decreased in the real acupuncture group than
baseline (T = 6.19, p = 3.28 × 10−5); however, no change
was detected in the sham acupuncture group throughout the
trial (T = 1.67, p = 0.12). For inter-group comparison, there
was a significant difference in the real acupuncture vs. sham
acupuncture group in the changes of VAS value after three
menstrual cycles of treatment (T = −3.17, p = 0.004). Baseline
VAS scores were not significantly associated with VAS changes
after treatment after controlling for age and treatment methods
in the pooled group analysis (R = −0.34, p = 0.07) and the real
acupuncture group (R=−0.20, p= 0.51). In addition, treatment
responses did not correlate with disease duration, SAS, or SDS
(all p > 0.05). In addition, no significant difference was found in
the SUVR in all selected regions between the two groups (all p >

0.05), see Table 2.

MVPA Analysis Results
The SUVR patterns in the SMN and DMN could predict the
VAS changes in the pooled group (SMN, R2 = 0.20, p = 0.01,
Mean Absolute Error = 2.64; DMN, R2 = 0.14, p = 0.04, Mean
Absolute Error = 2.51). In addition, the mixed SUVR pattern in
the DMN and SMN could predict better for the VAS changes
in the pooled group (R2 = 0.25, p = 0.005, Mean Absolute
Error = 2.70; Figure 4A). In the real acupuncture group, the
SUVR pattern in the DMN could predict the VAS changes after
treatment (R2 = 0.40, p = 0.01, Mean Absolute Error = 2.71;
Figure 4B). No other significant predictor was found in the real
acupuncture or the sham acupuncture group.

Mass-Univariate Correlation Results
To directly compare the multivariate pattern machine-learning
analysis with traditional mass-univariate correlation analyses,
we conducted Pearson correlation analyses. The results are
displayed in Table 3: no significant association between

regional SUVR and VAS changes is found using univariate
correlation analysis.

DISCUSSION

To our knowledge, this is the first study using a brain
metabolic biomarker to predict the pain relief after acupuncture
treatment in chronic pain disorders. MVPA-based machine-
learning approach was employed to explore whether pre-
treatment brain metabolism in three special networks (SMN,
DMN, and SN) can predict acupuncture treatment responses in
patients with PDM. The MVPA results show that mixed DMN
and SMN did indeed predict the observed pain relief in patients
with PDM. Specially, the DMN metabolic pattern could predict
the pain relief after real acupuncture treatment in patients with
PDM. These findings support the brain metabolic mechanism in
the acupuncture treatment for chronic pain.

Multivariate pattern analysis is a widely used machine-
learning approach in the neuroimaging research field (44). This
technique has been used to investigate the pathophysiology of
chronic pain conditions, such as neck pain (19), trigeminal
neuralgia (45), and chronic back pain (46). The present findings
illustrated that metabolic features at baseline may be a useful
predictor for acupuncture treatment responses in patients with
PDM. In our study, the predictive power and strength of MVPA
approaches were validated in two ways. First, we found that
baseline clinical or demographic features were not enough to
predict outcome responses. Our results converge with previous
findings of more accurate predictions from neural than readily
obtained clinical information (47, 48). The MVPA analysis,
where baseline VAS scores were controlled as covariates, suggests
that baseline biomarkers reflect the capacity of an individual
with PDM to return to normalcy (quantified by their VAS
score) after acupuncture, independent of their starting symptom
severity. Second, the traditional mass-univariate correlations
between brain metabolic features and VAS changes were not
significant. MVPA technology can increase sensitivity to subtle
and spatially distributed brain differences, which may not be
detected by traditional approaches (49, 50). We thus demonstrate
the feasibility and reliability of MVPA models for predicting
clinical symptom changes after acupuncture treatment in patients
with PDM.

In our SVR models, the multivariate pattern in the SMN
and DMN significantly predicted the VAS changes. The key role
of the DMN and SMN in predicting responses to acupuncture
is consistent with the central role of these networks in the
pathophysiology of PDM. In some previous studies, brain
abnormalities in areas associated with DMN and SMN have been
confirmed to be related to PDM. For instance, using PET (20)
and sMRI (21, 51), Tu et al. found increases in metabolism
and altered gray matter volumes in brain regions within the
DMN in patients with PDM vs. healthy controls. Of note, the
SMN is involved in the sensory-discriminative aspects of pain.
A resting-state functional MRI (fMRI) study observed a trait-
related reduction of functional connectivity between the DMN
and the SMN during a pain-free phase, indicating that the altered
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TABLE 2 | The SUVR in all selected regions of each group.

Brain Networks Regions Real (n = 14) Sham (n = 15) T P

Mean SD Mean SD

Salience network Left dACC 3.05 0.18 3.09 0.20 1.05 0.30

Left dlPFC 2.75 0.13 2.74 0.10 0.20 0.84

Right dACC 2.77 0.18 2.85 0.24 −1.03 0.31

Right dlPFC 2.68 0.15 2.67 0.12 0.07 0.95

Default mode network Left IPC 2.54 0.12 2.54 0.07 −0.22 0.83

Left ICC 2.50 0.09 2.50 0.14 −0.10 0.92

Left PCC 2.67 0.10 2.69 0.11 −0.45 0.66

Left PCU 2.52 0.11 2.48 0.10 0.87 0.39

Right IPC 2.58 0.10 2.55 0.09 0.72 0.48

Right ICC 2.47 0.17 2.52 0.11 −0.98 0.34

Right PCC 2.63 0.12 2.70 0.10 −1.73 0.10

Right PCU 2.54 0.09 2.56 0.08 −0.48 0.64

Sensorimotor network Left S1 2.17 0.08 2.17 0.09 0.03 0.98

Left Insula 2.93 0.16 2.91 0.15 0.29 0.78

Right S1 2.13 0.08 2.17 0.11 −0.95 0.35

Right Insula 2.88 0.18 2.94 0.11 −0.94 0.35

dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; IPC, inferior parietal cortex; ICC, isthmus cingulate cortex; PCC, posterior cingulate cortex; PCU, precuneus;

S1, postcentral.

FIGURE 4 | Predicting treatment effects using baseline SUVR patterns in special networks. (A) SUVR pattern in the SMN and DMN as a predictor for the pooled

group. (B) SUVR pattern in the DMN as a predictor for the real acupuncture treatment group. DMN, default mode network; SMN, sensorimotor network; SN, salience

network; SUVR, standardized uptake value ratio.

DMN and SMNmay be an ongoing representation of cumulative
menstrual pain (52). Additionally, multiple neuroimaging studies
have suggested that acupuncture may have analgesic effects
by modulating the DMN and SMN (53–56), indicating that
these brain networks also play an important role in mediating
acupuncture effects. For example, Dhond et al. (57) demonstrated
that acupuncture treatment induced hyperconnectivity of the
DMN to pain, memory, and affective regions and also increased
SMN connectivity to pain-related brain regions. Specially, for
the real acupuncture treatment group, we also found that the

metabolic in DMN, not SMN and SN, could predict the treatment
response in PDM. The DMNs have been considered to be
involved in pain rumination (34), and the structural, metabolic,
and functional alterations in DMN have been manifested in
amount of previous neuroimaging studies (21, 51). Taken
together, these findings proposed that metabolic features within
the DMN and SMN can be used not only to identify the
pathogenesis of PDM but also to predict therapy responsiveness,
especially, the DMN metabolic feature could predict the real
acupuncture response for PDM.
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TABLE 3 | The relationship between change of VAS and brain features by using

bivariate Pearson correlation analyses.

Brain network ROI R P

Default mode network Left IPC 0.29 0.12

Left ICC 0.26 0.18

Left PCC 0.25 0.19

Left PCU 0.36 0.05

Right IPC 0.30 0.11

Right ICC 0.37 0.05

Right PCC 0.29 0.13

Right PCU 0.37 0.05

Salience network Left dACC 0.14 0.48

Left dlPFC 0.24 0.20

Right dACC 0.30 0.11

Right dlPFC 0.29 0.13

Sensorimotor network Left S1 0.29 0.13

Left Insula 0.34 0.08

Right S1 0.32 0.09

Right Insula 0.32 0.09

dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; IPC, inferior

parietal cortex; ICC, isthmus cingulate cortex; PCC, posterior cingulate cortex; PCU,

precuneus; S1, postcentral.

It should be emphasized that we combined the two therapy
groups into a pooled group to increase statistical power in
the MVPA analysis. Although we have controlled for the
treatmentmethod as a covariate, the different neural mechanisms
underlying the effects observed in the real and sham acupuncture
groups might have influenced the present results (10). Our
analyses also identify the MVPA model as a potential predictor
for treatment responses in the real acupuncture but not the
sham acupuncture group. Additional studies with larger sample
sizes are needed to examine further predictors for real and sham
treatments in PDM. In summary, our research is in line with
the growing interest in multivariate neuroimaging features and
machine-learning methods for therapeutic outcome prediction
and the tailoring of personalized interventions (58–60). In recent
years, machine-learning-based predictive models have been
successfully applied in a variety of therapies, such as transcranial
magnetic stimulation (61), electroconvulsive therapy (62), and
vagus nerve stimulation (63). These studies are beginning to
unlock the potential and value of machine learning in the
clinical practice.

It is necessary to mention the study’s limitations. First, our
sample size was small, and we only recruited through one single
site. As the sample size is small, the cross-validation method used
here may cause some instability and biased estimates. As a result,
our findings should be interpreted with caution. Larger sample
sizes and multiple site data are needed to verify the findings
in future studies. Second, the present study used the Sanyinjiao
(SP6) point for acupuncture treatment. Our previous study has
manifested that the acupoint has a specific neural response (64),
thus, further studies need to investigate the acupuncture neural
effect with other acupoints. Third, the present study did not
explore the metabolic in brain stem regions, such as the ventral

tegmental area (VTA) and periaqueductal gray (PAG), as the
FreeSurfer does not segment these brain stem regions. The VTA
and PAGhave been shown to play important roles in chronic pain
and are modulated by acupuncture treatment of chronic pain
(65). Future studies should include these brain regions to get a
comprehensive metabolic mechanism knowledge of chronic pain
and acupuncture treatment.

CONCLUSION

The present study shows that individual-level metabolic patterns
of the DMN and SMN can predict the pain relief after
acupuncture treatment for PDM. This preliminary study
supports the potential of metabolic biomarkers and MVPA to
predict therapeutic outcomes in patients with PDM. The present
findings advanced the brain metabolic mechanism of the chronic
pain treatment.
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