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Abstract. Mangiferin is a natural polyphenol and the predom-
inant effective component of Mangifera indica Linn. leaves. 
For hundreds of years, Mangifera indica Linn. leaf has been 
used as an ingredient in numerous traditional Chinese medi-
cine preparations for the treatment of bronchitis. However, the 
pharmacological mechanism of mangiferin in the treatment 
of bronchitis remains to be elucidated. Macrophage classical 
activation is important role in the process of bronchial airway 
inflammation, and interferon regulatory factor 5 (IRF5) has 
been identified as a key regulatory factor for macrophage 
classical activation. The present study used the THP-1 human 
monocyte cell line to investigate whether mangiferin inhibits 
macrophage classical activation via suppressing IRF5 expres-
sion in vitro. THP-1 cells were differentiated to macrophages 
by phorbol 12-myristate 13-acetate. Macrophages were 
polarized to M1 macrophages following stimulation with lipo-
polysaccharide (LPS)/interferon-γ (IFN‑γ). Flow cytometric 
analysis was conducted to detect the M1 macrophages. Reverse 
transcription-quantitative polymerase chain reaction was 
used to investigate cellular IRF5 gene expression. Levels of 
proinflammatory cytokines and IRF5 were assessed following 
cell culture and cellular homogenization using enzyme-linked 
immunosorbent assay. IRF5 protein and nuclei co‑localization 
was performed in macrophages with laser scanning confocal 
microscope immunofluorescence analysis. The results of 
the present study demonstrated that mangiferin significantly 

inhibits LPS/IFN-γ stimulation-induced classical activation 
of macrophages in vitro and markedly decreases proinflam-
matory cytokine release. In addition, cellular IRF5 expression 
was markedly downregulated. These results suggest that 
the inhibitory effect of mangiferin on classical activation of 
macrophages may be exerted via downregulation of cellular 
IRF5 expression levels.

Introduction

Mangiferin, (1,3,6,7‑tetrahydroxyxanthone‑C2-β-D-gluco
side) is a natural polyphenol (1), and the predominant effective 
component of Mangifera indica Linn. leaf (Fig. 1) (2-4). For 
hundreds of years, Mangifera indica Linn. leaves have been 
used in southern China as an ingredient in various traditional 
Chinese medicine preparations for the treatment of bron-
chitis. However, the underlying pharmacological mechanism 
of mangiferin in the treatment of bronchitis remains to be 
elucidated. Previous studies have demonstrated mangiferin 
exerts marked anti‑inflammatory properties, and the pharma-
cological mechanism is associated with markedly decreased 
release of proinflammatory cytokines (5,6). Bronchial airway 
inflammation is recognized as a characteristic pathological 
change in bronchitis (7). Peripheral blood monocytes migrate 
into the bronchus and surrounding lung tissue by chemotaxis. 
Monocytes in the lung tissue differentiates into macrophage 
and polarizes to M1 macrophages when activated by lipo-
polysaccharide (LPS) or interferon‑γ (IFN‑γ) (8,9). This 
process is defined as macrophage classical activation (10). 
M1 macrophages produce and release large quantities of 
proinflammatory cytokines, including tumor necrosis factor‑α 
(TNF‑α), interleukin‑1β (IL‑1β), interleukin‑6 (IL‑6) and 
interleukin‑8 (IL‑8) (11,12). Proinflammatory cytokines are 
important in human infection and non-infection immunity, 
however, excessive proinflammatory cytokines may result in 
tissue and cell damage (13,14). Serious tissue and cell damage 
can lead to deteriorating physiological function that may 
be life-threatening. Thus, M1 macrophages are crucial for 
the pathological process of bronchitis development. It may 
be a potential biological target of a therapeutic agent used 
to treat airway inflammation treatment, as targeting it may 
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appropriately regulate polarization to M1 macrophages (15). 
Previous studies demonstrate that IRF5 is critical in macro-
phage polarization to M1 macrophages, as polarization can 
be inhibited by suppression of IRF5 expression in macro-
phages (16,17). It remains to be elucidated whether mangiferin 
inhibits macrophage polarization to M1 macrophages via 
suppressing IRF5 expression, and thus decreasing proinflam-
matory cytokines releasing.

Primary human macrophages are difficult to isolate in 
sufficient quantities from tissue and do not proliferate in 
culture, and the obtained cells often exhibit notable phenotypic 
heterogeneity. Monocyte-derived macrophages, however, are a 
useful option, as human blood monocytes are readily available 
in large numbers and may be differentiated into macrophages 
in vitro (18). Thus, the present study used THP‑1 human 
monocyte to investigate whether mangiferin inhibits classical 
activation of macrophages via suppressing IRF5 expression 
in vitro.

Materials and methods

Mangiferin preparation. Mangiferin was provided by the Key 
Laboratory of Traditional Chinese Medical Pharmacology, 
Guangxi University of Chinese Medicine (Nanning, China). It 
was isolated from leaves of Mangifera indica Linn. harvested 
in the Baise region of China. The preparation method was 
performed as described previously (19). At the end of the 
extraction process, a yellow powder with 97.5% purity was 
obtained (Fig. 1). Purity of the mangiferin powder was detected 
by high performance liquid chromatography (Fig. 2) (20). The 
HPLC measurement was performed on an Agilent 1100 LC 
system (Agilent, Santa Clara, CA, USA) and Elite Hypersil C18 
column (5 µm, 4.6mmIDx250mm), with a gradient system of 
acetonitrile‑0.1% phosphoric acid solution as a mobile phase 
at a flow rate of 1.0 ml/min. The detective wavelength was 
258 nm, the column temperature was 30˚C.

Reagents and devices. Methyl thiazolyl tetrazolium (MTT), 
dimethyl sulfoxide (DMSO), phorbol 12‑myristate 13‑acetate 
(PMA), E. coli O55:B5 lipopolysaccharide (LPS) and IFN‑γ 
were obtained from Sigma‑Aldrich (St. Louis, MO, USA). 
Fetal bovine serum (FBS), L‑glutamine, RPMI 1640, NucBlue 
Fixed Cell ReadyProbes reagent, BlockAid Blocking Solution 
and Image‑iT Fixation/Permeabilization kit were purchased 
from Invitrogen (Thermo Fisher Scientific, Inc., Waltham, 
MA, USA). Mouse anti‑cluster of differentiation (CD) 86‑PE 
monoclonal human antibody (cat. no. 555658; 1:20), mouse 
anti‑CD80‑FITC monoclonal antibody (cat. no. 555683; 
1:20) and LSR Fortessa flow cytometer were obtained 
from BD Biosciences, Franklin Lakes, NJ, USA). Mouse 
anti‑IRF5‑eFluor 660 monoclonal antibodies was bought from 
eBioscience, Inc. (San Diego, CA, USA; cat. no. 50‑9698; 
1:20) and the Membrane and Cytoplasmic Protein Extraction 
kit was obtained from Sangon Biotech Co., Ltd., Shanghai, 
China). TNF‑α, IL-1β, IL‑6, IL‑8 and IRF5 ELISA kits 
were purchased from Cusabio (College Park, MD, USA). A 
Multiskan Spectrum 1500 microplate reader and Applied 
Biosystems 7500 Fast Real‑Time PCR system were obtained 
from Thermo Fisher Scientific, Inc. TCS SP5 II laser scanning 
confocal microscope was purchased from Leica Microsystems 

GmbH (Wetzlar, Germany) and QIAcube nucleic acid puri-
fication device was obtained from Qiagen GmbH (Hilden, 
Germany).

Cell culture and treatment. The THP-1 cell line was 
obtained from the Type Culture Collection of the Chinese 
Academy of Sciences (Shanghai, China), and maintained at 
5x105 cells/ml in RPMI 1640 medium supplemented with 10% 
FBS and 2 mmol/l L‑glutamine at 37˚C in 5% CO2. THP-1 
cells (2x105 cells/ml) were differentiated to macrophages 
using 200 nmol/l PMA for 3 days as previously described by 
Daigneault et al (21). Following the initial 3 days stimulus, 
the PMA-containing media was removed and the cells 
were incubated in fresh RPMI 1640 medium supplemented 
with 10% FBS and 2 mmol/l L‑glutamine. The cytotox-
icity of mangiferin was determined using the MTT assay. 
Macrophages (2 ml/well) were seeded in flat‑bottom 24‑well 
culture plates at a cell density of 5x105 cells/ml at 37˚C in a 
humidified incubator with 5% CO2. Cells were allowed to 
attach and recover for 24 h, and then the cells were treated with 
different concentrations of mangiferin (0, 12.5, 25, 50, 100 
or 200 µmol/l), which was dissolved in RPMI 1640 medium 
containing 0.1% DMSO. Cells treated with an equivalent 
volume of RPMI 1640 medium containing 0.1% DMSO served 
as a blank control (control group). Following treatment with 
mangiferin or DMSO for 24 h, the cells were washed twice in 
PBS and then incubated for 4 h with LPS (1 µg/ml) and IFN‑γ 
(20 ng/ml) to allow polarization to M1 macrophages according 
to a method previously described by Juhas et al (22). Cells 
without mangiferin treatment were regarded as the model 
control group (model group).

Flow cytometric analysis. Flow cytometric measure-
ments were performed using an 11 color LSR Fortessa 
flow cytometer. Forward and side scatter light was used to 
identify cell population and measure size and granularity 
of the cells. Auto-fluorescence was recorded by analyzing 
unstained cells. Fc receptors were blocked by incubating cells 
with 100 µg recombinant human IgG (from the Image-iT 
Fixation/Permeabilization kit; Invitrogen, Thermo Fisher 
Scientific, Inc.) for 15 min at 4˚C prior to antibody staining. 
For detection of cell surface markers, 1 µg CD86‑PE and 
CD80-FITC antibodies were incubated with samples 
containing 3x105 THP‑1 cells for 30 min at 4˚C. Following 
incubation, all cells were washed in PBS and fluorescence was 
compared to unstained controls with 10,000 events recorded. 
A gate with CD86-PE+ and CD80-FITC+ was configured 
to select M1 macrophages. The FlowJo for Windows of 
version 7.1 (Emerald Biotech Co. Ltd, Hangzhou, China) was 
used for analysis.

Confocal microscopy analysis. Following washing twice in 
PBS, cells in the culture dishes were incubated for fixation and 
permeabilization using Image‑iT Fixation/Permeabilization 
kit. Blocking solution was added following removal of 
the permeabilization solution and washing twice with 
PBS. Subsequently, 1 µg of monoclonal anti‑human 
IRF5‑eFluor 660 antibodies and 2 drops of DAPI NucBlue 
Fixed Cell ReadyProbes reagent were added, and incubated 
with cells for 30 min at 4˚C in the dark. Images of whole cell 
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morphology and IRF5 staining were acquired using a Leica 
TCS SP5 II laser scanning confocal microscope.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑PCR). RNA was isolated and purified from cell homogenates 
using RNeasy Plus Mini kit on a QIAcube nucleic acid purifi-
cation device. RNA was reverse transcribed with QuantScript 
RT kit according to the manufacturer's protocol. The primer 
and MGB‑probe used to analyze IRF‑5 gene expression were 

designed and supplied by Invitrogen (Thermo Fisher Scientific, 
Inc.), the sequences are as follows: Forward, 5'‑GTT GTT AAA 
GAG CCT GGC ACC TA-3' and reverse, 5'‑CTG GAG TGT GCA 
GAG ATG ACA CA‑3' for the primer; and 5'‑CCG CTC TCA 
CTT CAT‑3' for the MGB‑probe. RT‑PCR was conducted on an 
ABI 7500 system. Samples were run in triplicate. The thermo-
cycling conditions were as follows: 95˚C for 5 min; 40 cycles of 
95˚C for 30 sec and 60˚C for 90 sec. Data were collected at the 
end of each cycle. Gene copies were calculated from a standard 

Figure 2. High performance liquid chromatograms of (A) mangiferin standard substance and (B) sample. AU, arbitrary units.

Figure 1. Mangifera indica Linn. leaves, mangiferin powder and the chemical structure.

  A   B

Figure 3. Flow cytometry dot plot of CD80+/CD86+ M1 macrophages in each group. Macrophages polarized to M1 macrophages following lipopolysaccharide/
interferon-γ stimulation. Flow cytometric analysis was conducted to detect the M1 macrophages stained with anti-human CD86-PE and anti-human CD80-FITC. 
M1 macrophages were calculated and shown in second quadrant. CD, cluster of differentiation; PE, phycoerythrin; FITC, fluorescein isothiocyantate.
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curve. The PCR results were analyzed with the 7500 software 
2.0 included with the in ABI 7500 real‑time quantitative PCR 
system (Thermo Fisher Scientific, Inc.) (23).

Proinflammatory cytokine and IRF5 protein ELISA. Cells 
were washed twice in PBS. The cell protein was extracted 
with Membrane and Cytoplasmic Protein Extraction kit, the 
supernatants were collected (300 x g for 5 min at 4˚C) and 
cryopreserved at ‑20˚C for the ELISA assays. ELISA kits were 
used to assess the concentrations of TNF-α, IL-1β, IL-6, IL-8 
and IRF5 according to the manufacturer's protocols.

Statistical analysis. All data were analyzed for statistical 
significance using SPSS 13.0 software (SPSS Inc., Chicago, 
IL, USA). Data are presented as the mean ± standard devia-
tion. Statistical analysis was conducted using one-way analysis 
of variance. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Effect of mangiferin on macrophage polarization towards M1 
macrophages. A commonly accepted marker profile for M1 

macrophages is CD80+/CD86+. Cells with CD80+ and CD86+ 

surface markers can be identified as M1 macrophage (24). 
The present study observed few cells with CD80+/CD86+ 

surface markers prior to LPS/IFN-γ stimulation, while large 
quantities of M1 macrophages with high fluorescence intensity 
of CD80+/CD86+ surface markers were detected following 
LPS/IFN-γ stimulation (Figs. 3 and 4). Following treatment 
with different concentrations of mangiferin, the percentage 
of M1 macrophages in each mangiferin-treated group was 
reduced to various degrees. However, there was a statistically 
significant decrease in M1 macrophage percentage and cell 
CD80+/CD86+ surface markers mean fluorescence inten-
sity in the 100 and 200 µmol/l mangiferin groups (P<0.01). 
Furthermore, the decreases in the 100 µmol/l mangiferin 
group was lower than in the 200 µmol/l group, but there was no 
significant difference between the two groups (Figs. 3 and 4).

Effect of mangiferin on cytokine levels in the supernatant. 
With LPS/IFN-γ stimulation, macrophages polarized to M1 
macrophages and released large quantities of proinflammatory 
cytokines, including TNF-α, IL-1β, IL-6 and IL-8. Thus, these 
proinflammatory cytokines in the supernatant can indicate the 
classical activation of macrophages. In the present study, the 
levels of TNF-α, IL-1β, IL-6 and IL-8 levels in the cell culture 
supernatants were increased by LPS/IFN-γ stimulation, and 
were significantly higher in the model group compared with 
the control group (P<0.01; Fig. 5). Following treatment with 
various concentrations of mangiferin, the TNF-α, IL-1β, 
IL‑6 and IL‑8 were significantly decreased by mangiferin at 
doses of 100 and 200 µmol/l (P<0.01), but not at other doses. 
Furthermore, the decrease in the 100 µmol/l mangiferin group 
was lower than in 200 µmol/l, however, there was no signifi-
cant difference between the two groups (Fig. 5).

Effect of mangiferin on macrophage IRF5 expression. An 
important role for IRF5 in macrophage classical activation has 
been previously recognized (16,22). IRF5 is expressed at the 
highest levels in M1 macrophages (17,25). In the present study, 
macrophages in the control group expressed low gene and 
protein levels of IRF5, but significant increases in IRF5 gene 
and protein expression was observed in the model group and 
higher than in the control group (P<0.01; Fig. 6). Following 
treatment with various concentrations of mangiferin, IRF5 
expression levels were significantly decreased by mangiferin 

Figure 4. Bar plots of (A) mean percentage of M1 macrophages and (B) mean fluorescence intensity of CD80+/CD86+ in each group. Data are expressed as the 
mean ± standard deviation. #P<0.01 vs. the control; *P<0.01 vs. the model. CD, cluster of differentiation; LPS, lipopolysaccharide; IFN, interferon.

Figure 5. Levels of TNF‑α, IL-1β, IL-6 and IL-8 in the supernatant of each 
group. LPS/IFN-γ stimulation upregulated the levels of TNF-α, IL-1β, 
IL-6 and IL-8 levels in the model group. Mangiferin at doses of 100 and 
200 µmol/l markedly decreased the levels of TNF‑α, IL-1β, IL-6 and IL-8. 
Data are expressed as the mean ± standard deviation. #P<0.01 vs. the control. 
*P<0.01 vs. the model. TNF-α, tumor necrosis factor-α; IL, interleukin; LPS, 
lipopolysaccharide; IFN‑γ, interferon-γ.

  A   B
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at doses of 100 and 200 µmol/l (P<0.01; Fig. 6), but not at other 
doses. Furthermore, the decrease in 100 µmol/l mangiferin 
group was lower than in the 200 µmol/l group, however, there 
was no significant difference between the two groups (Fig. 6).

Localization of IRF5 protein expression as observed by 
confocal microscopy. IRF5 has been reported to be important 
during macrophage polarization to M1 macrophages (26,27). 
IRF5 protein was detected and nucleus co‑localization was 
observed using fluorescence confocal microscopy to evaluate 
the effect of mangiferin on of IRF5 protein expression during 
macrophage polarization to M1 macrophages. Without 
LPS/IFN-γ stimulation, IRF5 protein expression level was low. 
However, following stimulation by LPS/IFN-γ, IRF5 protein 
expression was significantly increased (Fig. 7). Following treat-
ment with various concentrations of mangiferin, IRF5 protein 
expression levels were significantly decreased by mangiferin at 
doses of 100 and 200 µmol/l (Fig. 7). Furthermore, 100 µmol/l 
mangiferin resulted in a greater decrease in IRF5 protein 
expression levels than 200 µmol/l (Fig. 7).

Discussion

Previous studies have demonstrated that mangiferin exerts a 
number of beneficial biological effects on inflammation (28), 
oxidative injury (29), tumor cell growth (30), microor-
ganism infections (31), metabolic regulations (32), immune 
regulations (33) and radioprotection (34). Among these 

pharmacological activities of mangiferin, its anti‑inflammatory 
activity appears particularly prominently due to its beneficial 
effects against acute or chronic inflammation with various 
causes (35-39). Previous studies have also reported mangiferin 
exerts an anti‑inflammatory effect via altering the biological 
behavior of macrophages to exert its anti‑inflammatory 
activity (40,41), however its sub‑cellular target and molecular 
mechanism remain to be elucidated. Similarly, further 
research is required to understand the effect of mangiferin on 
classical activation of macrophages, which is vital for inflam-
mation. IRF5 has been recognized as a key regulatory factor 
in macrophage classical activation (27,42). However, little is 
known about the association between IRF5 and the effects 
of mangiferin on macrophage classical activation and, thus, 
further research is required.

As a member of the interferon regulatory factor family 
of transcription factors, IRF5 is closely associated with the 
inflammatory reaction and autoimmune response (43,44). 
Previous studies demonstrate inflammatory and autoimmune 
diseases may be associated with increased IRF5 expression 
levels (45,46). IRF5 is also an important regulatory factor 
in cell signal transduction pathway from Toll-like receptor 
(TLR) 7 to TLR9 (47,48). IRF5 can regulate the release of 
multiple cytokines, including TNF-α, IL-1β, IL-6 and a 
number of chemokines, suggesting the inflammatory reaction 
is adjusted and controlled by IRF5 (49).

IRF5 is highly expressed in monocytes, macrophages and 
plasmacytoid dendritic cells, however, it is also expressed in 

Figure 6. Bar plots of IRF5 (A) gene and (B) protein expression in each group. Data are expressed as the mean ± standard deviation. #P<0.01 vs. the control; 
*P<0.01 vs. the model. IFR5, interferon regulatory factor 5; LPS, lipopolysaccharide; IFN‑γ, interferon-γ.

Figure 7. Laser scanning confocal microscope immunofluorescence analysis of IRF5 protein expression in macrophages and nucleus co‑localization. Cells 
were stained using monoclonal anti‑human IRF5‑eFluor 660 antibody (red) and the blue pseudo color is a result of DAPI staining. IRF5, interferon regulatory 
factor 5. 

  A   B
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B cells and T cells (50,51). An important role for IRF5 in the 
macrophage classical activation has been identified. In M1 
macrophages, IRF5 directly upregulates expression of multiple 
proinflammatory cytokines, but suppresses IL‑10 expression, 
an anti‑inflammatory cytokine (25,52). Furthermore, exog-
enous expression of IRF5 in M1 or M2‑polarized (alternatively 
activated) macrophages induces expression of M1‑associated 
cytokines and chemokines (16). Thus, high expression levels 
of IRF5 is characteristic of M1 macrophages, in which it 
directly activates transcription of the genes encoding various 
proinflammatory cytokines. Thus, the present study hypoth-
esizes that macrophage classical activation may be inhibited 
via suppressing IRF5 expression in M1 macrophages using a 
therapeutic agent.

The cell surface markers of M1 macrophages, remain 
disputed, however, previous studies have reported that classi-
cally activated macrophages (M1 macrophages) exhibit high 
levels of CD80 and CD86 markers (53), and their upregulated 
expression is associated with the release of a large quantity 
of inflammatory cytokines (54,55). Thus, CD80+/CD86+ 
cytomembrane markers have been widely accepted as cell 
surface markers for M1 macrophages. Consistent with a 
previous study (24), cell with CD80+/CD86+ surface markers 
were identified as M1 macrophage in the present study. 
Macrophages exhibited few CD80+/CD86+ surface markers 
prior to LPS/IFN-γ stimulation, and reduced proinflammatory 
cytokine levels in cell culture supernatant and lower cellular 
IRF5 expression were also observed. However, CD80+/CD86+ 
cells and levels of proinflammatory cytokines were markedly 
increased following LPS/IFN-γ stimulation, and cellular IRF5 
expression was markedly upregulated. These results indicated 
LPS/IFN-γ stimulation results in macrophage M1 polariza-
tion, and was consistent with previous studies (56,57).

Subsequent experiment results demonstrated that 100 and 
200 µmol/l of mangiferin significantly inhibited LPS/IFN-γ 
stimulation-induced macrophage polarization in vitro (P<0.01), 
and the inhibition of 100 µmol/l of mangiferin was more 
marked than 200 µmol/l. Similarly, mangiferin results in the 
most notable inhibitory effect on cellular IRF5 expression at 
100 µmol/l rather than 200 µmol/l. These results suggest the 
effect of mangiferin was not improved at the highest dose when 
mangiferin was used to inhibit macrophage classical activa-
tion, however, the reason remains to be elucidated. Notably, the 
results of the present study also indicate a possible association 
between the inhibitory effect of mangiferin on macrophage 
classical activation and decreasing cellular IRF5 expression. 
Mangiferin may downregulate cellular IRF5 expression, which 
then affects macrophage classical activation. The results of the 
present study may provide further experimental support for 
research into the anti‑inflammatory properties of mangiferin 
and its underlying mechanism.

Macrophage classical activation is required in the 
normal protective immune response (58), particularly, in the 
early stage of the inflammatory reaction. However, chronic 
inflammatory diseases or excessive inflammation injury are 
not part of the normal protective response and immoderate 
macrophage polarization to M1 macrophages has been consid-
ered to be an important factor in chronic bronchitis or other 
inflammatory diseases (59,60). Mangiferin may inhibit macro-
phage classical activation via suppressing IRF5 expression 

levels. Thus, mangiferin results in beneficial effects against 
diseases with marked macrophage classical activation. This 
pharmacological effect suggest mangiferin may be a potential 
anti‑inflammatory therapeutic agent.

In conclusion, mangiferin can inhibit classical macrophage 
activation in vitro. The depression of cellular IRF5 expression 
was shown to be closely associated with this effect. However, 
more research is required to fully elucidate the mechanism of 
action of mangiferin.
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