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ABSTRACT The emergence of Klebsiella pneumoniae carbapenemases (KPCs), B-lactamases
that inactivate “last-line” antibiotics such as imipenem, represents a major challenge
to contemporary antibiotic therapies. The combination of ceftazidime (CAZ) and
avibactam (AVI), a potent B-lactamase inhibitor, represents an attempt to overcome
this formidable threat and to restore the efficacy of the antibiotic against Gram-
negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC vari-
ants with substitutions in the Q-loop are emerging. We engineered 19 KPC-2 variants
bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli
and identified a unique antibiotic resistance phenotype. We focus particularly on the
CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant
demonstrated less hydrolytic activity, we demonstrated that there was a prolonged pe-
riod during which an acyl-enzyme intermediate was present. Using mass spectrometry
and transient kinetic analysis, we demonstrated that Asp179Asn “traps” B-lactams, pref-
erentially binding B-lactams longer than AVI owing to a decreased rate of deacylation.
Molecular dynamics simulations predict that (i) the Asp179Asn variant confers more flex-
ibility to the Q-loop and expands the active site significantly; (ii) the catalytic nucleo-
phile, 570, is shifted more than 1.5 A and rotated more than 90°, altering the hydrogen
bond networks; and (iii) E166 is displaced by 2 A when complexed with ceftazidime.
These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the
Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI
resistance. The future design of novel B-lactams and B-lactamase inhibitors must con-
sider the mechanistic basis of resistance of this and other threatening carbapenemases.

IMPORTANCE Antibiotic resistance is emerging at unprecedented rates and threat-
ens to reach crisis levels. One key mechanism of resistance is the breakdown of
B-lactam antibiotics by B-lactamase enzymes. KPC-2 is a B-lactamase that inactivates
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carbapenems and B-lactamase inhibitors (e.g., clavulanate) and is prevalent around
the world, including in the United States. Resistance to the new antibiotic
ceftazidime-avibactam, which was designed to overcome KPC resistance, had already
emerged within a year. Using protein engineering, we uncovered a mechanism by
which resistance to this new drug emerges, which could arm scientists with the abil-
ity to forestall such resistance to future drugs.

KEYWORDS KPC-2, avibactam, beta-lactam, beta-lactamase, carbapenemase,
ceftazidime

ntibiotic resistance is becoming an international health care crisis (1). Among the

drug-resistant phenotypes expressed by Gram-negative bacteria, resistance to
B-lactam antibiotics mediated by B-lactamases is the most problematic. The carbap-
enemases, B-lactamases that inactivate carbapenems (imipenem, meropenem, ertap-
enem, and doripenem), are considered by the Centers for Disease Control and Preven-
tion to be among the major threats facing health care providers (2). Of the prevalent
carbapenemases (KPC-2, KPC-3, NDM, OXA-23, OXA-24/40, and OXA-48), the KPCs are
among the most widespread (3). Since the discovery and structural elucidation of
KPC-2, much attention has been focused on mechanistic explanations of why this class
A carbapenemase is resistant to inactivation by the B-lactamase inhibitors clavulanate,
sulbactam, and tazobactam (4-6). The welcome introduction of avibactam, a diazabi-
cyclooctane (DBO) non-B-lactam B-lactamase inhibitor which can inactivate KPC-2, was
a major advance in therapy. As a result of the formulation of ceftazidime-avibactam
(CZA), many clinical isolates bearing KPC-2 or KPC-3 were rendered susceptible, offering
a potential alternative to undesirable antibiotics, such as polymyxins and tigecycline,
which are more toxic and/or less effective than other antibiotics.

The KPC carbapenemase demonstrates a broad substrate profile, including penicil-
lins, cephalosporins, carbapenems, and B-lactamase inhibitors (5). The effects of several
amino acid substitutions were previously studied in KPC-2 and revealed that most
substitutions increase susceptibility to B-lactamase inhibitors and B-lactams, indicating
that this carbapenemase is highly optimized to hydrolyze a wide variety of compounds
(7-11).

One exception has been the study of substitutions at position Arg164 in the Q-loop
(7). Normally, the arginine at this position forms a conserved salt bridge with an aspartic
acid at position 179 in class A B-lactamases (7) (Fig. TA). To understand the structural
significance of this salt bridge, site-saturation mutagenesis was undertaken. Surpris-
ingly, we discovered that amino acid substitutions at Ambler position 164 increased the
MICs for ceftazidime and the ceftazidime-avibactam combination even before clinical
variants demonstrated ceftazidime-avibactam resistance (7, 12). These observations
suggested that the Arg164Ser variant of KPC-2 has an increased capacity to hydrolyze
ceftazidime. Further studies demonstrated that substitutions of alanine, glutamine, and
asparagine at position 179 break this salt bridge and confer increased resistance to
ceftazidime and resistance to the ceftazidime-avibactam combination (12).

What is the biochemical basis of this phenotype? Structural analysis suggested that
Arg164 forms hydrogen bond interactions with other residues within the Q-loop
(Fig. 1A). In contrast, the C-terminal amino acid of the Q-loop (Asp179) displays a more
extensive pattern of hydrogen bonds in the KPC B-lactamase, including hydrogen
bonds to residues outside the Q-loop (Pro67, Leu68, and Arg161) (Fig. 1A). Therefore,
the effects of amino acid substitutions at position 179 may have implications beyond
the Q-loop dynamics and may be different from those seen at position 164. Building
upon knowledge gained from studies of Arg164 and the resistance to ceftazidime-
avibactam that is being presently reported in the clinic (2, 13, 14), we were compelled
to attempt to understand how amino acid substitutions at Asp179 of KPC-2 impact the
enzymatic mechanism, with an emphasis on ceftazidime-avibactam resistance. Our
investigations have particular significance, as ceftazidime-avibactam-nonsusceptible
Asp179Tyr variants in KPC-3 pose a major clinical challenge (2, 15).
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FIG 1 Q-Loop hydrogen bond networking changes due to the aspartate (D)-to-asparagine (N) substi-
tution at Ambler position 179 in KPC-2. (A) KPC-2. (B) Asp179Asn (D179N) variant.

RESULTS AND DISCUSSION

Substitutions at position Asp179 alter KPC-2 S-lactamase expression in Esch-
erichia coli. All 19 amino acid variants at Ambler position 179 in KPC-2 B-lactamase

were engineered. To determine whether these single substitutions alter protein ex-
pression, immunoblots using whole-cell preparations and periplasmic extracts were
probed with an anti-KPC-2 polyclonal antibody (Ab) that is sensitive and specific and
maps to three main linear epitopes of KPC-2 (9). Single amino acid substitutions at
position Asp179 in the Q-loop generally result in decreased levels of expression (Fig. 2),
possibly due to differences in overall protein stability. However, certain variants
(Asp179Asn) maintain notable levels of expression during the exponential phase of the
growth curve.

Microbiological analysis. (i) Asp179 variants of the (Q-loop of KPC-2 and
B-lactam resistance. The impact of site-saturation mutagenesis at Ambler position 179
of KPC-2 on antibiotic resistance was next assessed using whole-cell viability assays.
Twenty-four different B-lactam and B-lactam-pB-lactamase inhibitor combinations were
tested for susceptibility against KPC-2 and the 19 variants expressed in E. coli DH10B
cells (Tables 1 and 2). The Klebsiella pneumoniae KPC-2-containing positive-control
strain maintained resistance (as defined by Clinical and Laboratory Standards Institute
[CLSI] criteria) against all the commercially available B-lactams tested (Table 1). The
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FIG 2 Western blot of whole-cell preparations (A) and periplasmic extracts (B) of KPC-2 Asp179 variants
in E. coli DH10B. vector, DH10B cells containing pBC SK vector; DH10B, unaltered cells. All variants are in
the pBR322 vector except pBC SK-Ser, pBC SK-llu, and pBC SK-Glu.
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E. coli strain containing the KPC-2 construct exhibited resistance to the same panel of
tested antibiotics, including cephalosporins, monobactams, and carbapenems (Table 1).
In contrast, the Asp179 variants (except Asp179Asn) expressed in E. coli generally
showed an increase in susceptibility to the B-lactam antibiotics, possibly attributable to
the attenuated protein expression of the variants (Fig. 2). Notably, striking resistance to
ceftazidime was maintained by all the variants, including the least-expressed Asp179Lys
and Asp179Arg variants (MICs of 64 ug/ml for both variants) (Table 1).

(ii) Addition of avibactam overcomes the ceftazidime resistance mediated
by KPC-2 but not that mediated by the Asp179 variants. The addition of the
B-lactamase inhibitor avibactam abrogated ceftazidime resistance in the KPC-2-
containing strain but, alarmingly, was insufficient to restore susceptibility to any of the
strains harboring the Asp179 variants (Table 2). This supported an earlier observation
that the Asp179Ala, Asp179GIn, and Asp179Asn variants of KPC-2 expressed in E. coli
conferred resistance to ceftazidime-avibactam (12).

(iii) The Asp179Asn variant exhibits a resistant antimicrobial profile. The strain
harboring the Asp179Asn variant stood out among the other 18 variant strains for
conferring levels of resistance to all commercially available B-lactams tested as mono-
therapies except meropenem (the breakpoint for BAL30072 is not yet defined), similarly
to the resistance profile of KPC-2 (Table 1). Notably, the Asp179Asn variant strain
demonstrated elevated resistance to ceftazidime (KPC-2 was measured at 128 ug/ml
compared to Asp179Asn measured at 512 ug/ml) (Table 1) and to the ceftazidime-
avibactam combination (KPC-2 measured at 1 ug/ml versus Asp179Asn measured at
16 wg/ml) (Table 2).

Aztreonam-avibactam and ceftaroline-avibactam, two combinations currently
in clinical trials, effectively showed lower MICs for the Asp179Asn strain. To gain
insight into the therapeutic potential of clinically relevant avibactam combinations,
susceptibility testing against commercially available avibactam (Advanced ChemBlocks)
combined with aztreonam and ceftaroline was conducted on strains containing KPC-2
and each of the variants. Both the KPC-2 and Asp179Asn-containing strains were
resistant to each of these B-lactams in the absence of avibactam (Table 1). Avibactam
restored the susceptibility of KPC-2 to aztreonam and ceftaroline based on the break-
point for the each B-lactam alone. In contrast to the resistance to ceftazidime-
avibactam of the Asp179Asn strain, ceftaroline-avibactam decreased the resistance of
the Asp179Asn strain to an intermediate level based on the breakpoint of ceftaroline
alone (Table 2). The aztreonam-avibactam combination was even more effective,
rendering the Asp179Asn strain susceptible to aztreonam. These data suggest that
ceftaroline and aztreonam may be attractive and viable therapeutic partners for
avibactam against Asp179Asn variants of KPC-2.

Avibactam in combination with imipenem and ceftriaxone lowers the drug
MICs of the Asp179Asn strain; the structure of the R1 side chain in ceftazidime
contributes to ceftazidime-avibactam resistance. To further explore the structure-
activity factors (particularly Asp179Asn) responsible for the increased ceftazidime re-
sistance of the Asp179 variant B-lactamases, experiments using avibactam in combi-
nation with a representative carbapenem (imipenem), a cephalosporin structurally
similar to ceftazidime (ceftolozane; tested in combination with tazobactam), and a
cephalosporin structurally distinct from ceftazidime (ceftriaxone) were conducted with
strains containing KPC-2 and each of the variants. Ceftolozane, a novel cephalosporin,
is the B-lactam most similar in structure to ceftazidime (Fig. 3). Ceftazidime and
ceftolozane differ by only one atom in the R1 side chain, with ceftazidime possessing
a carbon atom (aminothiazole) and ceftolozane a nitrogen atom (aminothiadiazole).
Ceftriaxone is an expanded-spectrum oxyimino-cephalosporin that has been in com-
mercial use for decades. Ceftazidime and ceftriaxone share the same aminothiazole
group but differ on the oxyimino end of R1 (Fig. 3). Ceftriaxone has a less bulky
oxyimino group and lacks the acidic carboxylate group (like the oxyimino group of
ceftaroline).
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FIG 3 Structures of B-lactams and B-lactamase inhibitors. The R1 groups are encompassed by boxes, and circles are used to surround
the R2 groups. The dotted line indicates an R2 group that is observed intact when bound to D179N (Fig. S2).

Both the KPC-2 and Asp179Asn-containing strains were resistant to imipenem,
ceftolozane-tazobactam, and ceftriaxone in the absence of avibactam (Table 1). With
results mimicking the susceptibility to ceftazidime-avibactam, avibactam restored sus-
ceptibility of KPC-2 to imipenem, ceftolozane-tazobactam, and ceftriaxone based on
the breakpoints for the respective B-lactams. The Asp179Asn strain maintained resis-
tance to ceftolozane-tazobactam-avibactam (based on the breakpoint of ceftolozane-
tazobactam), similarly to the ceftazidime-avibactam resistance results (Table 2). In
contrast, avibactam restored the susceptibility of the Asp179Asn strain to ceftriaxone
and imipenem. Ceftriaxone-avibactam was the most effective cephalosporin combina-
tion tested (Table 2), suggesting that the bulkiness and/or the carboxylate group on R1
is the structural moiety that may be primarily responsible for ceftazidime resistance.

Biochemical analysis. (i) The Asp179Asn variant hydrolyzes ceftazidime slowly
but demonstrates a lower K; for ceftazidime. To elucidate the mechanistic differ-
ences between Asp179Asn and KPC-2, each was purified for biochemical analysis. In
previous comparisons of KPC-2 to Asp179Asn performed using periplasmic extracts, we
noted similar rates of ceftazidime hydrolysis (12). However, the previous analysis was
performed using amounts of B-lactamase normalized for nitrocefin (NCF) hydrolysis.
Here, we used 1 uM KPC-2 and Asp179Asn to measure the hydrolysis of ceftazidime
and used a 0.5 uM concentration of each enzyme in the assessment of imipenem
hydrolysis. The Asp179Asn variant hydrolyzed both B-lactams at a much lower rate than
KPC-2 (Fig. 4A and B).

We previously reported a burst in hydrolysis of ceftazidime by KPC-2 (7). Thus, the
conditions were optimized for assessment of early time points in the hydrolysis of
ceftazidime by KPC-2 compared to Asp179Asn. A burst amplitude of 0.16 uM =
0.02 uM was obtained with 2 uM KPC-2 and 25 uM ceftazidime (similarly to our
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FIG4 (A) KPC-2 and Asp179Asn (D179N) (1 uM enzyme) hydrolysis of 25 uM ceftazidime (CAZ) at room temperature. (B) KPC-2
and Asp179Asn (0.5 uM enzyme) hydrolysis of 100 uM imipenem (IMI) at room temperature. (C) Examining pre-steady-state
kinetics using a stopped-flow apparatus and hydrolysis of 25 uM ceftazidime by 2 uM KPC-2 or and Asp179Asn variant at 25°C
for 1,000 s and (inset) 3 s. (D and E) Competitive inhibition curves determined with 50 uM nitrocefin and increasing
concentrations of CAZ with 7 nM KPC-2 (apparent K, 3.5 mM) (D) and 425 nM Asp179Asn (apparent K, 0.13 mM) (E) at room
temperature.

previous results with KPC-2) (Fig. 4C). A higher burst amplitude of 0.57 uM = 0.06 uM
was obtained with Asp179Asn under the same conditions. A burst that occurs prior to
the establishment of the linear steady-state reaction reflects rapid acylation followed by
a relatively slow rearrangement or product formation (equation 1) (16) as follows:
kuc kZ
E+S>EI>E-P>E+P (1)

In such a reaction, the burst decay constant, ky . is given by kyy,: — koc t ko the
burst amplitude, A, is given by A = [Eo] - (k,/k,. + k5)?, where [E0] is the concentration
of active enzyme; and the steady-state rate, k,,, is given by k., = ky/(1 + ky/k,.).

For the experiment represented in Fig. 3, the values were calculated to be k,. =
0.043 + 0.004 s~ ' and k, = 0.097 = 0.010 s~ for KPC-2 and k,. = 0.038 = 0.004 s’
and k, = 0.030 = 0.003 s~ for the Asp179Asn variant. Thus, multiple steps along the
reaction coordinate are likely affected by the substitution, although the effect on the
hydrolysis of the acyl intermediate or product release (k,) appears to be the more
profound.

To compare the apparent affinity of ceftazidime for KPC-2 to its affinity for the
Asp179Asn variant, we used various concentrations of ceftazidime to inhibit hydrolysis
of a reporter substrate, nitrocefin (Fig. 4D and E). More ceftazidime was required with
the wild type (apparent K, 3.5 mM) to reach the same level of inhibition as that seen
with the Asp179Asn variant (apparent K, 0.13 mM), as is expected in a reaction such as
that described in equation 1 in which the k, value is lower for the variant.

(ii) The Asp179Asn variant is a “trap” for -lactams. To further support our kinetic
analysis, timed mass spectrometry was used to probe for mechanistic differences
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between KPC-2 and the Asp179Asn variant. The B-lactamases (E) were incubated with
a substrate (S [ceftazidime, imipenem, or aztreonam]) and an inhibitor (I [avibactam]) at
a molar ratio of 1:1:1 (E:S:), thus establishing a direct competition between the
B-lactam (avibactam) and the B-lactamase.

Several characteristics of the Asp179Asn variant that are distinct from those of the
wild-type enzyme were revealed. KPC-2 preferentially bound avibactam compared to
the tested B-lactams (Fig. 5A; see also Fig. S1 in the supplemental material). This
observation was not surprising as avibactam is a potent inhibitor of KPC-2. Also,
ceftazidime, imipenem, and aztreonam are substrates for KPC-2 and could therefore be
hydrolyzed before they could be detected as mass adducts. In contrast, under the same
conditions, Asp179Asn preferentially bound all the tested B-lactams compared to
avibactam (Fig. 5B and S1).

Asp179Asn binds imipenem for the longest time, with the acyl-enzyme remaining
the predominant species of Asp179Asn at 15 min, unlike ceftazidime or aztreonam (the
acyl-enzymes are undetectable by 15 min). These data suggest that the asparagine
substitution at the 179 aspartate position allows the Asp179Asn B-lactamase to “trap”
the substrate. The decrease in the rate of deacylation, predicted by the transient kinetic
analysis described above, may be sufficient to explain the preferential trapping of
B-lactams compared to avibactam. This step is not involved in the interaction of
avibactam with the B-lactamase (17); therefore, its reaction kinetics are not so strongly
affected.

(iii) Desulfation of avibactam is unique to KPC-2 and is not observed with the
Asp179Asn variant. Desulfation of avibactam is known to occur with KPC-2 (18, 19),
and we show here that it does not occur in the Asp179Asn variant (Fig. 5A and S1).
Possible explanations for the distinct ability of KPC-2 to desulfate avibactam among the
B-lactamases include a lack of hydrogen bonds with the N6 atom and a necessary water
molecule that desulfates avibactam (18). Both the avibactam and desulfated avibactam
bound to KPC-2 are stable complexes still present at 48 h, although the apo-KPC-2 form
becomes more predominant (data not shown).

(iv) Mass spectrometry and the detection of a unique mass adduct. Interestingly,
the reaction of Asp179Asn with ceftazidime produced two protein charge envelopes;
one was the expected primary charge envelope at approximately 1,100 to 2,000 m/z
(29,187 Da mass, corresponding to the predicted mass of 28,719 Da for Asp179Asn in
addition to the 468 Da for ceftazidime minus R2), and the second was a more highly
charged species (at approximately 800 to 1,200 m/z) with a different overall deconvo-
luted mass that was not observed with KPC-2 (Fig. S4; Table 3). The formation and
elimination of this secondary envelope were time dependent, deconvoluted to a single
protein peak with a mass of 29,124 Da, and were unique to Asp179Asn reacted with
ceftazidime or the ceftazidime-avibactam combination. The identity of this +405
adduct with a particular chemical rearrangement in ceftazidime is not obvious. We did
not observe this peak with avibactam in combination with aztreonam or imipenem
(data not shown), eliminating the likelihood of a mass spectrometry artifact. We take
this observation to suggest that the Asp179Asn-ceftazidime complex may undergo an
alternative or additional conformational change during hydrolysis, resulting in an
altered surface charge and a corresponding shift in the mass-to-charge ratio.

In an attempt to understand the mechanistic basis for the formation of the +405
adduct, structurally similar cephalosporins (ceftriaxone, ceftolozane with tazobactam,
and ceftaroline) were tested with the Asp179Asn variant. The mass adducts for
Asp179Asn and ceftazidime, ceftriaxone and ceftolozane, which have good leaving
groups in R2, were consistent with the molecular weights of the antibiotics after
elimination of the R2 group (Fig. S2; Table 3). Ceftaroline, which does not have a good
R2 leaving group, bound to Asp179Asn with an intact R2 group (Fig. S2). Ceftriaxone
and Asp179Asn revealed the expected primary envelope with a deconvoluted mass of
29,114 Da (predicted mass of Asp179Asn of 28,719 Da in addition to the 395 Da of
ceftriaxone minus R2) and a second charge envelope which corresponded to a unique
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#, D179N alone, mass of 28,719 Da.
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TABLE 3 Observed masses (predicted and unexpected) of Asp179Asn (D179N) and KPC-2
B-lactamases as apo-enzymes and adducted to the non-B-lactam-g-lactamase inhibitor
avibactam and to various B-lactams?

. Mass (Da)
Change in S —
Mass category and B-lactamase or adduct mass (Da) D179N KPC-2
Predicted
Enzyme 0 28,719 28,720
+AVI +265 28,984 28,985
+AVI (=S0O,) +168 ND 28,888
+CAZ (—R2) +468 29,187 ND
+CRO (—R2) +395 29,114 ND
+TOL (—R2) +468 29,187 ND
+TAR +606 29,325 ND
+BAL30072 +518 29,237 ND
+IMI +299 29,018 ND
+AZT +434 29,153 ND
Unique (for adducts in a second charge envelope)
+CAZ (—R2) —63 Da +405 29,124 ND
+CRO (—R2) —61 Da +334 29,053 ND

aND, not detected.

mass adduct of 29,053 Da (Fig. S5; Table 3). This adduct equates to ceftriaxone minus
61 Da, which parallels the mass of ceftazidime missing 63 Da in the Asp179Asn-
ceftazidime adduct. These data suggest that a time-dependent modification to the
antibiotic occurs and is selective for Asp179Asn with ceftazidime and ceftriaxone. The
nature and clinical impact of this modification are being explored.

(v) BAL30072, a monosulfactam, lowers the drug MICs of the ceftazidime-
avibactam (CZA)-resistant Asp179 variants. Given the levels of resistance attrib-
uted to the single-amino-acid substitutions at position Asp179 in KPC-2, we were
compelled to test the novel monosulfactam BAL30072 for its efficacy against these
variants (20). BAL30072, like aztreonam, consists of a monocyclic B-lactam scaffold
with an R1 group containing a siderophore moiety and a thiazole ring similar to that
in the R1 group of ceftazidime (Fig. 3). Aztreonam was previously shown to have a
927-fold-higher k,, value and a 3,031-fold-higher k_,/K,, value for KPC-2 than
BAL30072 (20). Bypassing KPC-2 through a lack of positive interactions (high K,,,)
and targeting penicillin-binding proteins (PBP) is therefore likely responsible for the
potent activity of BAL30072 against strains expressing KPC-2.

Here, we found potent activity of BAL30072 against the Asp179 variants of KPC-2
(Table 1). In addition, we conducted mass spectrometry with KPC-2 and the Asp179Asn
variant with BAL30072 (Fig. S3). The Asp179Asn variant bound BAL30072 for longer
than an hour (longer than a typical bacterial division cycle) and longer than any other
antibiotic tested, while KPC-2 did not bind BAL30072 at all. MIC analyses of BAL30072
against KPC-2 and Asp179Asn resulted in the lowest MICs of all the antibiotics tested
(see Table 1). In addition, BAL30072 inhibits penicillin-binding proteins (PBP 1a, PBP 1b,
and PBP 3) (20). On the basis of these observations, BAL30072 could be effective with
strains containing Asp179Asn and is also “trapped” in the active site of Asp179Asn. The
Asp179Asn trapping of this monosulfactam (aztreonam), cephalosporins, and carbap-
enems suggests that trapping is not reserved for select classes or activities of B-lactams.

(vi) Molecular modeling of KPC-2 and Asp179Asn with and without ceftazi-
dime; the Asp179Asn Q-loop is more flexible and mobile. To investigate how the
structural differences induced by the aspartate-to-asparagine substitution in the variant
enzyme could explain the mechanism of ceftazidime resistance and antibiotic “trap-
ping,” molecular modeling of the Asp179Asn variant and KPC-2 in the presence of
ceftazidime was performed (Fig. 6 and S6 to S8).

(vii) Increased flexibility and mobility of the Q-loop in the Asp179Asn variant.
Superimposition of the KPC-2 and Asp179Asn variant models (root mean square
deviation [RMSD] of 0.6 A) revealed that the salt bridge between Arg164 and Asp179
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Asp179Asn (F) with ceftazidime as acyl-enzyme during a 550-ps MDS analysis. {)-Loops and deacylation waters are shown, but
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in KPC-2 is disrupted in the Asp179Asn variant (Fig. 1A and B). The Asp179 residue in
KPC-2 forms a hydrogen bond network with Pro67, Leu68, Arg161, Asp163, and Arg164,
but most of these interactions are absent in the variant (Fig. 1B). The disruption of the
hydrogen bonds and salt bridge between Asp179 and Arg164 in the variant generates an
“open channel” in the middle of the (-loop, enhancing the flexibility of this structure
(Fig. 1A and B). Most of the side chains preserve their conformations (RMSD = =<1 A).
However, the side chains of active-site residues are shifted by 0.5 to 1.5 A and the active site
in a Connolly representation is clearly deeper and wider, showing that the Asp179 variant
has a more “open” conformation than KPC-2 (Fig. S6).

The analysis of trajectory generated during the 0.55-ns simulation of KPC-2 and
Asp179Asn acyl-enzyme complexes with ceftazidime revealed increased mobility of
individual residues of the Q-loop for the Asp179Asn variant (average RMSD of 2 A for
KPC-2 compared to a 6 A average for the variant) (Fig. 6A). The RMSD for the initial
trajectory conformation of the KPC-2 Q-loop increased from 1.5 A for the first 120 ps to
3A (Fig. 6B). Impressively, the predicted movement of the Asp179Asn variant ranged
from 1.4 A for the first 40 ps to a 9 A RMSD (Fig. 6B), showing in real time the increased
mobility of the variant (Fig. 6C [KPC-2] vs. Fig. 6D [variant]).

(viii) Structural impact on acylation. Notably, a significant difference in hydrogen
bond networks in Asp179Asn profoundly alters the position of the catalytic Ser70 in the
oxyanion hole (Fig. S7). Ser70 in KPC-2 is oriented toward the oxyanion hole, forming
hydrogen bonding interactions with Thr237 and a catalytic water; thus, the active site
is “primed” and ready for catalysis. However, the hydroxyl group of Ser70 in the variant
is shifted more than 1.5 A and rotated more than 90° toward Asn170 and Glu166
(Fig. S7). The altered position of Ser70 supports alternative new hydrogen bond
interactions with Lys73 and Asn170, which could make acylation more challenging for
the variant.

(ix) Structural impact on deacylation. The heat map of the hydrogen bonds
generated during the molecular dynamics simulation (MDS) (Fig. S8A to F) suggests two
possible pathways for ceftazidime deacylation by KPC-2. In the first pathway, Glu166
could act as a general base and activate the water molecule for proton transfer (for the
first 10 ps, Glu166 forms a hydrogen bond with Ser70:0v) (Fig. S8A). Subsequently, the
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water is positioned between Glu166:0e and Ser70:0v, allowing the hydrogen bond
between Glu166 and the oxygen Oe and between Ser70 and the Ovy to alternate
between the two hydrogen atoms of the water (Fig. S8B). Alternatively, K73 could serve
as a proton donor (for t > 20 ps, the Lys73 is at a hydrogen bond distance from
Ser70:0) (Fig. S8C). The trajectory of the KPC-2 acyl-enzyme for the first 20 ps shows
the catalytic water positioned at a hydrogen bond distance from Glu166 and Ser70:0y
(Fig. 6E and S8B). Lys73 forms a hydrogen bond with Glu166 and is less than 3 A distant
from Ser70:0v.

In the Asp179Asn variant, the water molecule makes hydrogen bonds with
Glu166:0¢ but not with Ser70:0 (Fig. S8D and E). Instead, for the first 240 ps, Glu166
forms hydrogen bonds with Asn170 and water (Fig. 6E and S8D). Glu166 is 5 A from
$70:07, and the water is positioned at 4.8 A from Ser70:0, unfavorable positioning for
deacylation (Fig. S8E). Lys73 is oriented toward Asn132 and makes hydrogen bonds
with Glu166 (Fig. S8F). After 240 ps, Glu166 and the catalytic water are favorably
repositioned to make interactions with Ser70:0+ to participate in deacylation (Fig. S8E).

Overall, these analyses suggest that Asp179Asn has structural perturbations in the
active site and )-loop and associated hydrogen bond networks that result in decreased
catalytic efficiency, which is consistent with the biochemical analysis that indicates that
the Asp179Asn variant deacylates less rapidly and therefore acts as a “trap” for
B-lactams.

Conclusions. Many single-amino-acid substitutions at positions 164 and 179 in
KPC B-lactamase as well as other class A B-lactamases result in increased ceftazi-
dime resistance and represent a clinical threat as a potential evolutionary adapta-
tion to the widespread use of ceftazidime and other cephalosporins. One variant
B-lactamase that is particularly notable is the KPC-2 Asp179Asn variant, as E. coli
expressing blaypc 5 aspr179asn demonstrated resistance not only to ceftazidime but also
to other B-lactams and B-lactam-B-lactamase inhibitor combinations, including
ceftazidime-avibactam. This laboratory analysis closely recapitulates the clinical obser-
vations being reported showing the emergence of KPC variants resistant to
ceftazidime-avibactam (15). Strikingly, our data show that all strains containing variants
at position 179 had elevated ceftazidime-avibactam MIC values. The clinical appearance
of these variant B-lactamases poses a serious threat to ceftazidime-avibactam (2, 15). In
this study, we also found that the drug MIC values of the KPC-2 variants in an isogenic
background were decreased significantly with BAL30072 used as a monotherapy or
with avibactam (as a model DBO) combined with imipenem, aztreonam, ceftaroline, or
ceftriaxone. Although there was a significant reduction in MIC values when the car-
bapenems alone were tested, the Asp179Asn variant tested resistant to each of the
carbapenems except meropenem (nonsusceptible).

Mass spectrometry showed a potential additional step in the enzymatic scheme for
ceftazidime hydrolysis. Moreover, mass spectrometry data permit us to advance an
explanation for why Asp179Asn shows enhanced ceftazidime resistance but not in-
creased imipenem or aztreonam resistance. We propose that the 5-min “trap” of the
acyl enzyme species serves as a “sink” for ceftazidime while still able being to hydrolyze
it. However, this mechanism requires that the enzyme concentration be sufficient to
“trap” all the ceftazidime, eliminating the intracellular pool of free ceftazidime available
to bind to penicillin-binding proteins. In contrast, imipenem is “trapped,” but to a
greater extent, and is stable at least three times longer, with the Asp179Asn-imipenem
complex persisting as the most predominant species at 15 min. Aztreonam is also
“trapped,” but less so, and the enzyme is subsequently inactivated by avibactam.
Structural studies designed to identify the location and orientation of ceftazidime
intermediates bound to Asp179Asn are needed to tease apart the details of this
complex mechanism. However, it is very clear that the chemical nature of the ceftazi-
dime adducts bound to Asp179Asn changes with time and that secondary-reaction
chemistry is under way during catalysis.
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Consistent with the increase in ceftazidime resistance for the Asp179Asn substitu-
tion in KPC-2, enhanced ceftazidime resistance in the Asp179Asn variant has also been
found with TEM-1 (21) and SHV-1 (22) B-lactamases, indicating that the increased
ceftazidime resistance caused by perturbations at the 179 position is a relatively global
phenomenon for class A B-lactamases. However, the resulting effects seen in the kinetic
characteristics of the Asp179 variants are substrate and enzyme specific. For example,
the increased catalytic efficiency of the Asp179Asn variant in TEM was selective for
ceftazidime among the nine substrates tested and correlated to increased affinity (21).
We found that, relative to KPC-2 B-lactamases, the Asp179Asn variant demonstrated
decreased hydrolysis of ceftazidime and imipenem and enhanced affinity for all sub-
strates tested (aztreonam, ceftazidime, ceftaroline, ceftriaxone, ceftolozane, imipenem,
and BAL30072).

Reduced activity in the Asp179Asn variant of KPC-2 parallels that of the Asp179Asn
variant called P54 in PC-1 in Staphylococcus aureus due to disorder of the Q-loop
induced by dissociation of the salt bridge with Arg164 (23). That study found that the
variant B-lactamase has an alternative interaction between Asp179Asn and Ala69 not
found in PC-1. In addition, Stojanoski et al. showed that mutations in the TEM-1 Q-loop
induced conformational changes that permitted the subsequent enlargement of the
active site to accommodate the large size of ceftazidime (increased burst kinetics) (24).
Likewise, we found a correlation between a larger size in the R1 side group of the
cephalosporins and increased drug MIC values for the Asp179Asn variant. These data
are instrumental in designing effective inhibitors and pairing them with the most
efficacious partner.

We found that BAL30072 shows promising activity against E. coli containing KPC-2
and all variants at position 179. These data raise the possibility that antibiotics such as
monosulfactams may be optimally suited to pairing with DBO inhibitors for resistant
strains. Indeed, several studies have already assessed the use of BAL30072 in combi-
nation therapy (25-28).

In closing, the analyses of Asp179 variants of KPC-2 showed that novel and cata-
lytically versatile B-lactamases are emerging in the clinic and present an unprecedented
challenge to drug development. The results from our biochemical and molecular
studies reveal the basis of this unwelcome phenotype and point to rational approaches
to overcome this resistance.

MATERIALS AND METHODS

Ampicillin (catalog no. A9518), piperacillin (catalog no. P8396), ceftriaxone (catalog no. C5793),
cephalothin (catalog no. C4520), potassium clavulanate (catalog no. 33454), cefotaxime (catalog no.
C7912), and chloramphenicol (catalog no. R4405) were purchased from Sigma-Aldrich. Ceftazidime was
procured from Sigma (catalog no. C3809) and Research Products International (catalog no. 33527), and
the products from the two sources were used interchangeably throughout the experimentation. Imi-
penem was obtained from USP (catalog no. 1337809) and from the commercial source (pharmacy).
Sulbactam was bought from Astatech. Tazobactam (catalog no. 15141) and aztreonam (catalog no.
15151) were purchased from Chem-Impex International. Ceftolozane-tazobactam, cefepime, mero-
penem, ertapenem, and doripenem were obtained from their commercial sources. Ceftaroline was
provided by Allergan. Nitrocefin (catalog no. BRO063G) was purchased from Oxoid. Avibactam was
purchased from Advanced ChemBlocks (catalog no. R16073).

Site-saturation mutagenesis. Escherichia coli containing bla,,c., in pBR322-cat! vector was a gift
from Fred Tenover (previously of the Centers for Disease Control and Prevention, Atlanta, GA) (29). For
16 of the 19 amino acid substitutions, mutagenesis was performed at nucleotides corresponding to
position 179 in bla,c, in the pBR322-catl plasmid using degenerate primers and a QuikChange
site-directed mutagenesis kit (Agilent Technologies; catalog no. 200518-5) per the manufacturer’s
instructions. Resulting plasmids were transformed into E. coli DH10B Electromax cells (Invitrogen).

The blaypc s aspizocir OlAkpcs aspizoisor AN blAypc s pspr70ser g€NES With a ribosomal binding site
(nucleotides 236 to 279) from pET24a+ vector positioned upstream of the bla gene and flanked by Xbal
and BamHlI restriction sites in the pBluescript Il SK vector were purchased from Celtek Genes (Franklin,
TN). The blayec., gene was amplified by PCR (Promega master mix) using T7 and M13 primers and was
subsequently cloned into pCR-XL vector using a Topo XL PCR cloning kit (Invitrogen catalog no.
1647751). After electroporation into E. coli DH10B Electromax cells, plasmid from these cells was digested
with Xbal and BamHI and ligated into pBC SK(+) vector. All nucleotide sequences corresponding to
amino acid substitutions at position 179 in the bla,,, gene were confirmed by sequencing (Molecular
Cloning Laboratories, McLab, South San Francisco, CA) using blasc, primers.
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Expression and purification of KPC-2 and Asp179Asn. The KPC-2 and Asp179Asn variant
B-lactamases were purified from E. coli Origami 2 DE3 (Novagen) cells carrying the pET24a(+)blayp_, or
PET24a(+)bldypc 5 aspizonsn Plasmid as previously described for KPC-2 (7). Single colonies were used to
initiate overnight growth of 5-ml cultures, and ~1.5 ml was used to start a 50-ml overnight culture. An
overnight culture (10 to 12 ml) was added to each flask of 500 ml of super optimal broth (SOB), grown
at 37°C to an optical density at A4, (optical density at 600 nm [ODy,]) of approximately 0.6 to 0.8, and
induced with 0.5 mM isopropyl B-p-1-thiogalactopyranoside (IPTG) for a minimum of 3 h to express the
B-lactamase. The cells were pelleted and frozen at — 20°C for =12 h prior to lysis in 50 mM Tris HCI buffer
(pH 7.4) containing 40 mg/ml lysozyme, 0.1 mM magnesium sulfate, 250 U Benzonase nuclease, and
1 mM EDTA. The supernatant was further purified by preparative isoelectric focusing, eluted from a
Sephadex column with 50 mM Tris-HCI (pH 8.8), subjected to sterile filtration, and purified once again
using fast protein liquid chromatography (FPLC) and a HiTrap Q anion exchange chromatography
column (GE Healthcare Life Sciences catalog no. 17-1154-01). The final sample of protein was concen-
trated using centrifugal filter units with a molecular weight cutoff of 10,000 (Millipore). A final 25%
concentration of glycerol was added to the protein before the reaction mixture was frozen and stored
at —20°C. The purity of the proteins was assessed by quadrupole time of flight (Q-TOF) mass spectrom-
etry (see below). Protein concentrations were determined by measuring absorbance at a wavelength of
A,go and using the protein’s extinction coefficient (Ag; 39,545 M~' cm~") obtained using the ProtParam
tool at the ExPASy Bioinformatics Resource Portal. All experiments using purified Asp179Asn were
performed with multiple batch purifications.

Whole-cell viability assays. Mueller-Hinton (MH) agar-dilution MIC measurements were performed
according to Clinical and Laboratory Standards Institute (CLSI) guidelines as previously described (12, 30).
The MICs are reported as the concentrations at which bacterial growth was no longer observed.
Avibactam was tested at a constant 4 ug/ml in combination with its respective antibiotic partners. All
MIC measurements were performed at least three times.

Protein expression. Immunoblotting was performed to assess protein expression in whole-cell
preparations (9) and periplasmic extracts (12) as previously described. To prepare whole-cell lysates, cells
were grown to an ODg,, of 0.7 to 0.8 using chloramphenicol to maintain the plasmid. One OD, unit of
cells was pelleted at 10,000 rpm for 5 min. The supernatant was removed, and the pellet was frozen at
—20°C. Each pellet was resuspended directly in 50 ul of 5X sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) loading dye and boiled for 10 min. Samples were subjected to vigorous
vortex mixing. A volume of 10 ul of cell suspension was loaded onto each lane of a 10% SDS gel.

For periplasmic extracts, bacterial cultures were first cultured and stamped on MH agar plates per the
CLSI guidelines for MIC determinations. Each culture was scraped from the MIC plate containing 2 ug/ml
ceftazidime, resuspended in 1 ml of phosphate-buffered saline (PBS), and pelleted at 10,000 rpm for
5 min. Each cell pellet was lysed in 100 ul 50 mM Tris-HCI (pH 7.4) mixed with lysozyme, benzonuclease,
MgSO,, and EDTA on a shaking platform. The protein content of cleared supernatant was determined
using the Bio-Rad protein assay. Twenty micrograms of each extract was mixed with 5X SDS-PAGE
loading dye, subjected to vortex mixing, and boiled for 10 min. A volume of periplasmic extract was
loaded onto each lane of a 10% SDS-PAGE gel.

The samples on the SDS-PAGE gel were transferred to a polyvinylidene fluoride (PVDF) membrane,
and nonspecific binding sites on the membrane were blocked for at least 1 h with 5% milk-25 mM
Tris-buffered saline (TBS) (pH 7.4). The membrane was probed using an anti-KPC-2 antibody (1:5,000) (9)
and anti-DnaK (E. coli monoclonal antibody [MADb]; Enzo Life Science catalog no. ADI-SPA-880) (1:30,000)
as a protein loading control with 5% milk-TBS for 3 h at room temperature (or overnight at 4°C). After
at least 10 washes in TBS-0.05% Tween 20 (TBS-T) for 10 min per wash, secondary antibodies (protein
goat horseradish peroxidase [HRP; Bio-Rad catalog no. 170-6425] and goat anti-mouse IgG-HRP [Santa
Cruz catalog no. sc-2005]) were used at 1:10,000 and 1:30,000, respectively, with 5% milk-TBS for 1 h at
room temperature. The Western blot was washed again in TBS-T at least 10 times for 10 min each time
and developed with an Amersham Prime ECL reagent kit (GE Healthcare catalog no. RPN2232) and a
Fotodyne Luminary/FX workstation imaging system.

Mass spectrometry. Five micrograms of B-lactamase was incubated with substrate (ceftazidime,
ceftaroline, ceftriaxone, imipenem, or aztreonam) and/or inhibitor (avibactam or BAL30072) at a molar
ratio of 1:1 in sterile 10 mM phosphate-buffered saline (PBS) at pH 7.4 for a total reaction volume of 20 ul
for the times indicated in the figures. Reactions were quenched with 10 ul acetonitrile and added to 1 ml
0.1% formic acid-water. Samples were analyzed using Q-TOF Waters Synapt-G2-Si and a Waters Acquity
ultrapressure liquid chromatography (UPLC) BEH C, 5 column (1.7-um pore size; 2.1 by 50 mm). MassLynx
V4.1 was used to deconvolute protein peaks. The tune settings for each data run were as follows: capillary
voltage at 3.5 kV, sampling cone at 35, source offset at 35, source temperature of 100°C, desolvation
temperature of 500°C, cone gas at 100 liters/h, desolvation gas at 800 liters/h, and nebulizer bar at 6.0.
Mobile phase A was 0.1% formic acid-water. Mobile phase B was 0.1% formic acid-acetonitrile. The mass
accuracy for this system is =5 Da.

Steady-state kinetics. Steady-state kinetic parameters were determined by using an Agilent 8453
diode array spectrophotometer at room temperature. Each assay was performed in 10 mM PBS at pH 7.4.
Ceftazidime (25 wM) was incubated with 1T M KPC-2 or Asp179Asn, and hydrolysis was measured for 60
minutes. Similarly, imipenem (100 wM) hydrolysis was performed with 0.5 uM KPC-2 or Asp179Asn
B-lactamases. Competitive inhibition of NCF (50 wM) hydrolysis was also performed using 7 nM KPC-2 or
425 nM Asp179Asn and various concentrations of ceftazidime.

September/October 2017 Volume 8 Issue 5 e00528-17

mBio’

mbio.asm.org 15


http://mbio.asm.org

Barnes et al.

Pre-steady-state stopped-flow kinetics. For ceftazidime hydrolysis, 2.0 uM B-lactamase was incu-
bated with 25 uM ceftazidime-10 mM sterile PBS (pH 7.4) at 25°C on an Applied Photophysics SX20
stopped-flow spectrophotometer (260-nm wavelength) using ProData SX software.

Molecular modeling and docking. A structural representation of the Asp179Asn variant of KPC-2
B-lactamase was generated using the crystal coordinates of KPC-2 (PDB: 20V5) and Discovery Studio 4.1
(DS 4.1; Acclerys Inc., San Diego, CA) molecular modeling software as previously described (7, 8). The
crystallographic water molecules were maintained during modeling. The KPC-2 B-lactamase structure
and the variant model were solvated and minimized to an RMS value of 0.03 A using a conjugate
gradient method. To assess the stability of the models and possible conformational changes, molecular
dynamics simulation (MDS) was conducted on the apo-enzymes for 0.55 ns.

Ceftazidime and acyl-ceftazidime were constructed using the Fragment Builder tools and minimized
using a Standard Dynamics Cascade protocol of DS. The intact ceftazidime and acylated ceftazidime were
automatically docked into the active site of KPC-2 and the Asp179Asn variant using the CDOCKER
module of DS. To obtain acyl-enzyme complexes, the most favorable pose of ceftazidime demonstrating
anticipated active-site contacts (such as a short distance [2 to 3 Al between Ser70:0 and C7 of
ceftazidime) was chosen. MDS was conducted for 550 ps on KPC-2 and Asp179Asn as apo-enzymes and
acyl-ceftazidime complexes. The trajectories were saved every 2 ps and analyzed for hydrogen bond heat
maps, distances, etc.
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