1 Computational Analysis of Maize Enhancer Regulatory Elements Using ATAC-STARR-seq

- 2 Alexandre P. Marand*
- 3
- 4 Department of Genetics, University of Georgia, Athens, USA
- 5 *For correspondence: <u>marand@uga.edu</u>
- 6

7 [Abstract] The blueprints to development, response to the environment, and cellular function are 8 largely the manifestation of distinct gene expression programs controlled by the spatiotemporal activity 9 of *cis*-regulatory elements. Although biochemical methods for identifying accessible chromatin – a 10 hallmark of active cis-regulatory elements - have been developed, approaches capable of measuring 11 and quantifying *cis*-regulatory activity are only beginning to be realized. Massively Parallel Reporter 12 Assays coupled to chromatin accessibility profiling present a high-throughput solution for testing the 13 transcription-activating capacity of millions of putatively regulatory DNA sequences in parallel. 14 However, clear computational pipelines for analyzing these high-throughput sequencing-based 15 reporter assays are lacking. In this protocol, I layout and rationalize a computational framework for the 16 processing and analysis of Assay for Transposase Accessible Chromatin profiling followed by Self-17 Transcribed Active Regulatory Region sequencing (ATAC-STARR-seq) data from a recent study in Zea mays. The approach described herein can be adapted to other sequencing-based reporter assays and 18 19 is largely agnostic to the model organism with the appropriate input substitutions. 20 21 Keywords: STARR-seq, ATAC-seq, ATAC-STARR-seq, Regulatory activity, *cis*-regulatory elements, 22 Accessible chromatin, Transcriptional regulation, Enhancers 23 24 [Background] Eukaryotic cells exhibit remarkable functional and morphological diversity despite 25 containing a generally invariant copy of the same genomic sequence. Cellular heterogeneity arises in part due to the activities of cis-regulatory elements (CREs), short DNA binding motifs recognized by 26 27 sequence specific transcription factors (TFs). CREs are often found in clusters termed *cis*-regulatory 28 modules (CRMs) that dictate highly dynamic spatiotemporal patterns of gene expression via the 29 cooperative activities of DNA-bound TFs (Schmitz et al., 2022). For proper activation of transcription, the cell strictly regulates CRM activity by controlling TF access of CRM sequences through 30 nucleosome dynamics. Genome-wide approaches, such as Assay for Transposase Accessible 31 32 Chromatin sequencing (ATAC-seq), have been developed to profile accessible chromatin regions 33 (ACRs) (Buenrostro et al., 2013; Minnoye et al., 2021). In general, CRMs that localize to accessible 34 chromatin reflect active regulatory elements (Marand et al., 2017; Schmitz et al., 2022). Thus, 35 activation and silencing of gene expression is effectively controlled by the relative chromatin 36 accessibility of cognate CRMs.

37 CREs can be classified into distinct functional groups based on their regulatory effect on
 38 transcription, including enhancers, silencers, promoters, and insulators (Schmitz *et al.*, 2022). Of
 39 these, enhancers are of particular interest due to their transcription activating properties that function

40 independent of location and orientation of their target genes, in contrast to the stereotypical locations of promoters surrounding gene transcription start sites (TSSs) (Marand et al., 2017; Schmitz et al., 41 2022). While analysis of chromatin accessibility in distinct tissues and cell types has been central to 42 43 identification of CRMs (Marand et al., 2021), chromatin profiling techniques are largely qualitative and lack the ability to quantitatively estimate regulatory activity. To overcome these challenges, Massively 44 45 Parallel Reporter Assays (MPRA) have been developed to quantify the transcription activating properties of diverse sequences (Melnikov et al., 2012; Arnold et al., 2013;). In particular, Self-46 47 Transcribing Active Regulatory Region with sequencing (STARR-seq) demonstrates the greatest 48 potential for broad application by eliminating the need for homogenous cell lines available only in 49 mammalian models typical of other MPRA methods (Arnold et al., 2013; Ricci et al., 2019; Sun et al., 2019; Jores et al., 2020). Although STARR-seq was originally designed to profile the entire genome for 50 51 regulatory activity, recent implementations have successfully utilized ATAC-seg libraries as input 52 (ATAC-STARR-seq), reducing the search space to potential regulatory regions and offsetting 53 sequencing costs and library complexity requirements (Figure 1). Despite its promise as a powerful 54 approach towards understanding *cis*-regulatory activity, computational analysis of ATAC-STARR-seq 55 data remains challenging, particularly due to a lack of dedicated software and computational pipelines. 56 Here, I present a computational pipeline for analysis of ATAC-STARR-seq data generated in Zea 57 mays L., cultivar B73 (Ricci et al., 2019). After processing and evaluation of data quality, I demonstrate 58 how ATAC-STARR-seq data analysis allows for the interrogation of new biological guestions. The 59 pipeline can be run entirely from the code below or through freely available bash, perl, and R scripts 60 hosted at https://github.com/Bio-protocol/Maize ATAC STARR seq. 61

62

63 Figure 1. Schematic of ATAC-STARR-seq

64 ATAC-STARR-seq begins by first generating an ATAC-seq library. The ATAC fragments are then

- 65 cloned into a reporter assay and transformed into maize protoplasts. After X hours, transformed
- 66 protoplasts are then split into two pools, the first for sequencing the input fragments (ATAC-seq DNA),
- and the second for purifying transcribed (mRNA) ATAC-seq fragments that facilitate their own
- transcription from the reporter construct. Raw sequenced reads for the ATAC-seq input and mRNA
- 69 output are processed and aligned to the maize reference genome and compared to provide estimates
- 70 of cis-regulatory activity.
- 71

72 Equipment

73

74 75 76	Thi	s pipeline assumes that a user has knowledge of shell commands and is comfortable working on a Linux-based operating system.
77	1.	Computational Requirements
78		The following procedure can be run on any Linux-like system. However, this protocol and
79		publicly available code is written for executing commands via a high-performance computing
80		(HPC) cluster managed by a SLURM scheduler. However, the code presented here can be
81		readily converted to TORQUE or other HPC systems. The pipeline assumes a working Perl
82		interpreter version 5.30.0 or greater, and R version 3.6.2 or greater.
83		
84	<u>Softwa</u>	re
85		
86	The foll	lowing analytical procedure makes use of several standard computational tools that are
87	assume	ed to be available in the user's shell environment.
88		
89	So	ftware
90	1.	BWA MEM (Li and Durbin, 2009); v0.7.17; http://bio-bwa.sourceforge.net/bwa.shtml
91	2.	SAMtools (Li et al., 2009); v1.14; <u>http://www.htslib.org</u>
92	3.	BEDtools (Quinlan and Hall, 2010); v2.27.1; https://bedtools.readthedocs.io/en/latest/
93	4.	SRA-toolkit (Leinonen et al., 2011); v2.11.1; <u>https://github.com/ncbi/sra-tools</u>
94	5.	fastp (Chen et al., 2018); v0.20.0; <u>https://github.com/OpenGene/fastp</u>
95	6.	pigz v2.4; <u>https://zlib.net/pigz/</u>
96	7.	MACS2 (Liu, 2014); v2.2.7.1; https://pypi.org/project/MACS2/
97	8.	<i>UCSC binaries</i> (Kent <i>et al.</i> , 2010); v1.04.0;
98		http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/
99	9.	tabix (Li, 2011); v0.2.6; http://www.htslib.org/doc/tabix.html
100	10.	IGV (Thorvaldsdottir et al., 2013); v2.11.1; https://software.broadinstitute.org/software/igv
101	11.	MEME (Grant et al., 2011); v5.4.1; <u>https://meme-suite.org/meme/index.html</u>
102	12.	CrossMap (Zhao et al., 2014); v0.5.1; <u>http://crossmap.sourceforge.net</u>
103	13.	<i>DeepTools</i> (Ramirez <i>et al.</i> , 2014); v3.5.1;
104		https://deeptools.readthedocs.io/en/develop/index.html
105		
106	Inp	but data
107	The	e starting input for this computational pipeline uses paired-end sequencing data from an ATAC-
108	ST/	ARR-seq experiment performed on maize protoplasts (Ricci et al., 2019). The ATAC-STARR-
109	sec	experiment consisted of a DNA input (ATAC-seq library) and a mRNA readout (self-transcribed
110	reg	ulatory regions) to identify genomic regions exhibiting transcription-activating regulatory activity.
111		
112	1.	Transfected ATAC-seq DNA-input FASTQ
113	2.	Transcribed ATAC-seq mRNA FASTQ

114

115 **Procedure**

- 116
- 117 An overview of the ATAC-STARR-seq pipeline is presented in **Figure 2**.

119 Figure 2. Computational workflow for ATAC-STARR-seq data

- 120 Raw sequence ATAC-STARR-seq data is first acquired from NCBI GEO, processed, and aligned to the
- 121 reference genome with *bwa mem*, filtered via *samtools*, reformatted as fragments with *bedtools*, and
- 122 compared via *bedtools* and custom *R* scripts to provide estimates of enhancer activity for downstream123 analysis.
- 124

118

125 A. Download and prepare the requisite data and reference genome sequence

126 1. Raw mRNA ATAC-STARR-seq data generated from transfection of Zea mays leaf ATAC-seq fragments in Zea mays protoplasts, and the accompanying ATAC-seq input fragments, are 127 128 publicly available on NCBI GEO. ATAC-STARR-seg mRNA and DNA input can be downloaded 129 with *fasterq-dump* available from the SRA-Toolkit package: 130 # set variables and download FASTQ files 131 mkdir FASTQ files 132 cd FASTQ files 133 fasterg-dump -o B73 maize DNA input.fastg SRR10964904 134 fasterg-dump -o B73 maize mRNA output.fastg SRR10964905 135 136 2. To save disk space, we will compress the FASTQ files with pigz. By default, pigz uses all 137 available processors or eight if the number of available processors is unknown. Alternatively, 138 139 users can use the unix tool, gzip, to compress the STARR mRNA and ATAC input DNA FASTQ 140 files. 141 # compress fastq files 142 pigz *.fastq 143 144 **# NOT RUN** 145 # Tip: gzip can be used as an alternative to pigz (parallel gzip) 146

147 # gzip *.fastq

148		3.	Download the B73 reference genome sequence and gene annotation. The original article
149			mapped raw reads to version 4 of the B73 maize reference genome. In this case study, I map
150			and analyze maize ATAC-STARR-seq data to version 5 of the B73 maize reference genome to
151			showcase how updated reference genomes and read mapping strategies enable informative
152			reanalysis of publicly available data sets (Hufford et al., 2021).
153			
154			# download reference data
155			cd/
156			mkdir Genome_Reference
157			cd Genome_Reference
158			wget https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/Zm-B73-REFERENCE-
159			NAM-5.0.fa.gz
160			wget https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/Zm-B73-REFERENCE-
161			NAM-5.0_Zm00001eb.1.gff3.gz
162			
163		4.	To map data to the genome reference, we first need to decompress the FASTA file.
164			Constructing reference genome indices is a prerequisite for BWA alignment and allows for
165			faster post-alignment processing of BAM/SAM/BED formatted files with command line tools
166			such as SAMtools and BEDtools.
167			
168			# create indices for reference genome FASTA
169			gunzip Zm-B73-REFERENCE-NAM-5.0.fa.gz
170			samtools faidx Zm-B73-REFERENCE-NAM-5.0.fa
171			bwa index Zm-B73-REFERENCE-NAM-5.0.fa
172			
173	В.	Tri	m adapters and remove low quality reads
174		1.	Illumina platforms may produce reads with adapter sequences on the 3' ends if the DNA insert
175			is shorter than the number of cycles. Additionally, the fidelity of sequencing by synthesis
176			deteriorates with each additional cycle due to phasing, the desynchronization of cycles that
177			results from unremoved terminator caps ultimately leading to greater uncertainty of base calls
178			in later cycles. Removing adapter contamination and low-quality bases increases the total
179			number of alignable reads, particularly important when analyzing a relatively lower sequence
180			complexity experiment, such as ATAC-STARR-seq. We will use fastp to remove sequencing
181			adapters and low-quality reads for the mRNA output and DNA input. A script to perform read
182			trimming can be found here: https://github.com/Bio-
183			protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step01_trim_raw_reads.sh
184			
185			# set variables

186			cd/
187			fastqdir=\$PWD/FASTQ_files
188			dna=B73_maize_DNA_input
189			rna=B73_maize_mRNA_output
190			threads=16
191			
192			# trim and filter DNA input reads
193			fastp -j \$dna.json -h \$dna.html -w \$threads \
194			-i \$fastqdir/\${dna}_1.fastq.gz -I \$fastqdir/\${dna}_2.fastq.gz \
195			-o \$fastqdir/\${dna}_1.trim.fastq.gz -O \$fastqdir/\${dna}_2.trim.fastq.gz
196			
197			# trim and filter mRNA output reads
198			fastp -j \$rna.json -h \$rna.html -w \$threads \
199			-i \$fastqdir/\${rna}_1.fastq.gz -I \$fastqdir/\${rna}_2.fastq.gz \
200			-o \$fastqdir/\${rna}_1.trim.fastq.gz -O \$fastqdir/\${rna}_2.trim.fastq.gzbS - samtools
201			sort - > \$outdir/B73_maize_mRNA_output.raw.bam
202			
203			# tidy up log files
204			mkdir fastp_log_files
205			mv *.json *.html fastp_log_files
206			
207	C.	Ali	gn and process sequenced reads
208		1.	After trimming and quality filtering reads, we align the input DNA and output mRNA reads to
209			the maize B73 version 5 reference genome. To speed up the alignment and downstream
210			processing, we are using 24 CPUs (-t 24) to align the input and output reads. However, users
211			should modify this value to reflect the number of available cores on their system. Additionally,
212			we mark split hits as secondary alignments (-M) to be filtered out downstream as the maize
213			genome is highly repetitive. The output of bwa mem is piped to samtools view for compression
214			(SAM to BAM) and sorted by alignment coordinate prior to further processing to minimize the
215			footprint on disk. A script to perform these steps can be found here: https://github.com/Bio-
216			protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step02_align_STARR_data.sh
217			
218			cd/
219			mkdir BAM_files
220			outdir=\$PWD/BAM_files
221			refdir=\$PWD/Genome_Reference
222			fastqdir=\$PWD/FASTQ_files
223			
224			# align DNA input and pipe to samtools for SAM to BAM conversion

225		bwa mem -M -t 24 \$refdir/Zm-B73-REFERENCE-NAM-5.0.fa
226		\$fastqdir/B73_maize_DNA_input_1.trim.fastq.gz
227		<pre>\$fastqdir/B73_maize_DNA_input_2.trim.fastq.gz samtools view -bS - samtools sort - ></pre>
228		\$outdir/B73_maize_DNA_input.raw.bam
229		
230		# align RNA output and pipe to samtools for SAM to BAM conversion
231		bwa mem -M -t 24 \$refdir/Zm-B73-REFERENCE-NAM-5.0.fa
232		\$fastqdir/B73_maize_mRNA_output_1.trim.fastq.gz
233		<pre>\$fastqdir/B73_maize_mRNA_output_2.trim.fastq.gz samtools view -bS - samtools sort - ></pre>
234		\$outdir/B73_maize_mRNA_output.raw.bam
235		
236	2.	To ensure that only high quality alignments remain, here we remove non-properly paired reads
237		(-f 3), secondary hits (-F 256), alignments with low mapping quality (-q 10), and multiple
238		mapped reads (grep -v -E -e '\bXA:Z:') using a combination of samtools and unix commands.
239		The header, which contains information on the reference genome and the read mapping
240		parameters, is retained in the output by setting the -h flag in the samtools view command.
241		
242		# filter DNA input alignments
243		samtools view -h -q 10 -f 3 -F 256 \$outdir/B73_maize_DNA_input.raw.bam grep -v -E -e
244		'\bXA:Z:' samtools view -bSh - > \$outdir/B73_maize_DNA_input.mq10.pp.unique.bam
245		
246		# filter mRNA output alignments
247		samtools view -h -q 10 -f 3 -F 256 \$outdir/B73_maize_ mRNA_output.raw.bam grep -v -E -e
248		'\bXA:Z:' samtools view -bSh - > \$outdir/B73_maize_mRNA_output.mq10.pp.unique.bam
249		
250	3.	A major difference between analysis of ATAC-seq and STARR-seq data is how assay
251		information is captured by sequencing. For paired-end ATAC-seq, since Tn5 inserts
252		sequencing adapters adjacent to its bound genomic location, chromatin accessibility is
253		encoded as the 5' ends of sequenced reads. In contrast, STARR-seq produces mRNA
254		transcripts from fragments that are capable of activating their own transcription, thus the entire
255		STARR-seq mRNA and DNA fragment is informative for analysis. The following commands
256		extract the coordinates of sequenced fragments by leveraging the CIGAR strings in BAM
257		paired-end alignments for DNA input and mRNA output. A script to extract fragments can be
258		found here: https://github.com/Bio-
259		protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step03_extract_fragments.sh
260		
261		# create output directory
262		mkdir BED_files
263		

264			# variables
265			outdir=\$PWD/BAM_files
266			beddir=\$PWD/BED_files
267			dna=B73_maize_DNA_input
268			rna=B73_maize_mRNA_output
269			
270			# extract DNA input fragments (ignore the warnings from bedtools with respect to "missing"
271			mate pairs, these reflect one of the pairs that had its mate filtered in prior steps)
272			echo " extracting fragments from STARR DNA input"
273			samtools sort -n \$outdir/\$dna.mq10.pp.unique.bam \
274			bedtools bamtobed -bedpe -i - \
275			sort -k1,1 -k2,2n - ∖
276			cut -f1,2,6 - > \$beddir/\$dna.fragments.bed
277			
278			# extract mRNA output fragments
279			echo " extracting fragments from STARR mRNA output"
280			samtools sort -n \$outdir/\$rna.mq10.pp.unique.bam \
281			bedtools bamtobed -bedpe -i - \
282			sort -k1,1 -k2,2n - ∖
283			cut -f1,2,6 - > \$beddir/\$rna.fragments.bed
284			
285	D.	lde	entify regions with enriched activity over background
286		1.	To identify regions of the genome with the capacity to activate transcription, we assess
287			enrichment of mRNA reads relative to the input ATAC-seq fragments using macs2. As macs2
288			is a general peak caller, we need to adjust the default settings to tailor the analysis specifically
289			for ATAC-STARR-seq data. Since this experiment did not use unique molecular identifiers and
290			the number of transcripts from fragment is a direct reflection of its regulatory activity, duplicate
291			mRNA fragments are retained (keep-dup all). To directly use coverages determined by the
292			input fragment coordinates, we turn off the default fragment shifting model (nomodel) and set
293			the input type to BEDPE (-f BEDPE). Additionally, we reduce the maximum gap size between
294			candidate peaks to allow for the identification of fine-mapped regulatory elements within a
295			broader regulatory region (max-gap 50) by setting the minimum peak size to 300 (min-
296			length 300). Finally, we use the background coverage rates in place of the local bias which
297			aids in peak detection (nolambda). A script to perform peak calling can be found here:
298			https://github.com/Bio-
299			protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step04_call_peaks.sh
300			
301			# prepare output directory and input files
302			mkdir Peak_data

303	
304	# generate input files
305	uniq \$beddir/\$rna.fragments.bed > \$beddir/\$rna.fragments.uniq.bed
306	uniq \$beddir/\$dna.fragments.bed > \$beddir/\$dna.fragments.uniq.bed
307	cat \$beddir/\$rna.fragments.uniq.bed \$beddir/\$dna.fragments.uniq.bed sort -k1,1 -k2,2n - >
308	\$beddir/ALL.fragments.uniq.bed
309	
310	# find regulatory regions
311	echo " calling regulatory regions without duplicate removal"
312	macs2 callpeak -t \$beddir/\$rna.fragments.bed \
313	-c \$beddir/ALL.fragments.uniq.bed \
314	keep-dup all \
315	max-gap 50 \
316	min-length 300 \
317	nolambda \
318	nomodel \
319	-f BEDPE \
320	-g 1.6e9 \
321	bdg \
322	-n STARR_wdups
323	
324	# find regulatory regions
325	echo " calling regulatory regions with duplicate removal"
326	macs2 callpeak -t \$beddir/\$rna.fragments.uniq.bed \
327	-c \$beddir/\$dna.fragments.uniq.bed \
328	keep-dup all \
329	max-gap 50 \
330	min-length 300 \
331	nolambda \
332	nomodel \
333	-f BEDPE \
334	-g 1.6e9 \
335	bdg \
336	-n STARR_nodups
337	
338	# find regulatory regions using all unique fragments
339	echo " calling regulatory regions by aggregating all unique fragments"
340	macs2 callpeak -t \$beddir/ALL.fragments.uniq.bed \
341	keep-dup all \

342		max-gap 50 \
343		min-length 300 \
344		nolambda \
345		nomodel \
346		-f BEDPE \
347		-g 1.69e9 \
348		bdg \
349		-n STARR_ALL
350		
351		# clean-up output
352		mv STARR_* Peak_data
353		
354		# merge peaks
355		cd Peak_data
356		cat STARR_wdups_peaks.narrowPeak STARR_nodups_peaks.narrowPeak
357		STARR_ALL_peaks.narrowPeak sort -k1,1 -k2,2n - bedtools merge -i - >
358		STARR_merged_peaks.bed
359		
360	2.	To estimate regulatory activity at fine scale, first we need to create a list of unique intervals
361		based on mRNA and DNA fragments. Next, we count the intersection of mRNA and DNA
362		fragments for each unique interval. Finally, we remove all the temporary files to reduce the
363		footprint on disk. A script to estimate enhancer activity can be found here:
364		https://github.com/Bio-
365		protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step05_estimate_enhancer_activity.
366		sh
367		
368		# variables
369		beddir=\$PWD/BED_files
370		dna=B73_maize_DNA_input
371		rna=B73_maize_mRNA_output
372		ref=./Genome_Reference/Zm-B73-REFERENCE-NAM-5.0.fa.fai
373		
374		# sort the reference
375		sort -k1,1 -k2,2n \$ref > \$ref.sorted
376		
377		# merge RNA/DNA
378		cat \$beddir/\$rna.fragments.uniq.bed \$beddir/\$dna.fragments.uniq.bed \
379		sort -k1,1 -k2,2n - ∖
380		bedtools genomecov -ibga -g \$ref.sorted \

381		sort -k1,1 -k2,2n - ∖
382		cut -f1-3 - > \$beddir/Unique_genomic_intervals.bed
383		
384		# count fragments
385		bedtools intersect -a \$beddir/Unique_genomic_intervals.bed \
386		-b \$beddir/\$rna.fragments.bed \
387		-c -sorted -g \$ref.sorted > \$beddir/\$rna.activity.raw.bed
388		
389		bedtools intersect -a \$beddir/\$rna.activity.raw.bed \
390		-b \$beddir/\$dna.fragments.bed \
391		-c -sorted -g \$ref.sorted > \$beddir/B73_maize_mRNA_DNA.activity.raw.bed
392		
393		# clean up temporary files
394		rm \$beddir/Unique_genomic_intervals.bed
395		rm \$beddir/\$rna.activity.raw.bed
396		
397	3.	We and others define enhancer activity as the enrichment of mRNA transcripts that are
398		produced by DNA fragments in the assay in terms of log2(mRNA/DNA) at unique fragment
399		intervals. Prior to taking the log ₂ ratio of mRNA to DNA, we normalize both the input and
400		output to per million to account for differences in sequencing depth and complexity. A
401		pseudocount of one is added to any interval with at least one RNA or DNA fragment. The
402		following code can also be run from the command line using >Rscript
403		Estimate_Enhancer_Activity.R with the following script: https://github.com/Bio-
404		protocol/Maize_ATAC_STARR_seq/blob/master/workflow/bin/Estimate_Enhancer_Activity.R
405		
406		# open an interactive R session to estimate enhancer activity
407		cd \$beddir
408		R
409		
410		# load data
411		a <- read.table("B73_maize_mRNA_DNA.activity.raw.bed")
412		
413		# reformat
414		rownames(a) <- paste(a\$V1,a\$V2,a\$V3,sep="_")
415		a[,1:3] <- NULL
416		a <- as.matrix(a)
417		colnames(a) <- c("mRNA", "DNA")
418		a <- a[rowSums(a)!=0,]
419		a <- a + 1

420		
421		# normalize
422		a <- a %*% diag(x=1e6/colSums(a))
423		colnames(a) <- c("mRNA", "DNA")
424		a <- as.data.frame(a)
425		
426		# estimate enhancer activity
427		a\$enhancer_activity <- log2(a\$mRNA/a\$DNA)
428		
429		# reformat output
430		rownames(a) <- gsub("scaf_","scaf", rownames(a))
431		df <- data.frame(do.call(rbind, strsplit(rownames(a), "_")))
432		df\$X1 <- gsub("scaf", "scaf_", as.character(df\$X1))
433		mrna <- df
434		dna <- df
435		df\$X4 <- a\$enhancer_activity
436		mrna\$X4 <- a\$mRNA
437		dna\$X4 <- a\$DNA
438		
439		# cap negative activity at 0
440		df\$X4 <- ifelse(df\$X4 < 0, 0, df\$X4)
441		
442		# save enhancer activity BEDGRAPH file to disk
443		write.table(df, file="B73_maize.enhancer_activity.bdg",quote=F, row.names=F, col.names=F,
444		sep="\t")
445		write.table(mrna, file="B73_maize.mRNA.bdg",quote=F, row.names=F, col.names=F, sep="\t")
446		write.table(dna, file="B73_maize.DNA.bdg",quote=F, row.names=F, col.names=F, sep="\t")
447		
448		# exit interactive mode
449		q()
450		
451	4.	To visualize enhancer activity and the normalized mRNA and DNA fragments at any given
452		locus, per million coverage values in bedGraph format from the previous step can be
453		converted into bigwig files (using bedGraphToBigWig from UCSC Utils) for facile visualization
454		using the Integrated Genomics Viewer (IGV) or JBrowse instances.
455		
456		bedGraphToBigWig B73_maize.enhancer_activity.bdg/Genome_Reference/Zm-B73-
457		REFERENCE-NAM-5.0.fa.fai.sorted B73_maize.enhancer_activity.bw
458		

bedGraphToBigWig B73 maize.mRNA.bdg ../Genome Reference/Zm-B73-REFERENCE-

NAM-5.0.fa.fai.sorted B73 maize.mRNA.bw

459

460

461 462 bedGraphToBigWig B73 maize.DNA.bdg ../Genome Reference/Zm-B73-REFERENCE-NAM-5.0.fa.fai.sorted B73_maize.DNA.bw 463 464 5. To view the enhancer activity, mRNA, and DNA fragment bigwig files, download and install IGV 465 (https://software.broadinstitute.org/software/igv/download) on your local machine. 466 467 chr1:259,332,700-259,355,717 Enhancer activity [0 - 5.14] mRNA 0 - 2.091 DN 0 - 2.091 Regulatory region Zm00001eb050910 468 Figure 3. Visualization of ATAC-STARR-seg data in Zea mays 469 470 Normalized (reads per million) coverages of the DNA ATAC-seg input (blue), self-transcribed mRNA fragments (pink), and enhancer activity (purple; log₂[mRNA/DNA]) of a 23-kb window. 471 472 Regulatory regions are shown as black bars, while the grey loops reflect predicted enhancer-473 gene links. 474 475 6. Unpack, bgzip, and index the gene product annotation. Then load all bigwig, narrowPeak, and genome annotation files using "File > Load from File..." in IGV. An example of an IGV 476 screenshot is shown in Figure 3. 477 478 479 # change directory 480 cd ../Genome Reference 481 # unzip 482 483 gunzip Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1.gff3.gz 484 485 # sort by coordinate and remove whole chromosome intervals sort -k1,1 -k4,4n Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1.gff3 | grep -v assembly - > 486 Zm-B73-REFERENCE-NAM-5.0 Zm00001eb.1.sorted.gff3 487 488 # compress with bgzip 489 bgzip Zm-B73-REFERENCE-NAM-5.0 Zm00001eb.1.sorted.gff3 490 491 492 # index with tabix

493	tabix -p gff Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1.sorted.gff3.gz
494	
495	E. Create a list of control regions
496	To assess enrichment of STARR regulatory regions determined by MACS2 relative to random control
497	regions, we first need to identify regions of the genome that can be uniquely mapped given the
498	sequencing output and read lengths. Although there are numerous methods for estimating mappability,
499	I illustrate a simple approach using synthetic reads tailored to the sequencing parameters of the
500	present experiment. First, we generate the same number of random read pairs with the same
501	sequencing length (36 nucleotides) for mRNA and DNA input using the wgsim tool that is supplied to
502	SAMtools. The synthetic reads are then remapped and uniformly processed as the original STARR-
503	seq sequencing experiments to identify regions that are uniquely mappable. By constraining
504	randomized control region selection to uniquely mappable genomic intervals, we ensure that
505	downstream comparisons will not be biased by mappability and repeat composition. A script to
506	construct control regions can be found here: <u>https://github.com/Bio-</u>
507	protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step06_create_control_regions.sh
508	
509	# move into the "Genome_Reference" directory
510	cd ./Genome_Reference
511	
512	# estimate read counts
513	mRNA_counts=\$(samtools view -c ./BAM_files/B73_maize_mRNA_output.raw.bam)
514	DNA_counts=\$(samtools view -c ./BAM_files/B73_maize_DNA_input.raw.bam)
515	
516	# generate simulated reads matching the mRNA output using wgsim from the SAMtools
517	package
518	wgsim -1 36 -2 36 -d 300 -N \$mRNA_counts Zm-B73-REFERENCE-NAM-5.0.fa
519	simulated_STARR_mRNA_r1.fq simualted_STARR_mRNA_r2.fq
520	
521	# generate simulated reads matching the DNA input
522	wgsim -1 36 -2 36 -d 300 -N \$DNA_counts Zm-B73-REFERENCE-NAM-5.0.fa
523	simulated_STARR_DNA_r1.fq simualted_STARR_DNA_r2.fq
524	
525	# compress synthetic fastq files
526	pigz *.fq
527	
528	1. Remap the synthetic reads using the same pipeline as for the original STARR-seq data.
529	
530	# variables
531	outdir=\$PWD/BAM_files

532		refdir=\$PWD/Genome_Reference
533		ref=\$refdir/Zm-B73-REFERENCE-NAM-5.0.fa.fai.sorted
534		fastqdir=\$refdir
535		
536		# align synthetic mRNA output and pipe to samtools for SAM to BAM conversion
537		bwa mem -M -t 24 \$refdir/Zm-B73-REFERENCE-NAM-5.0.fa \
538		<pre>\$fastqdir/simulated_STARR_mRNA_r1.fq.gz \</pre>
539		<pre>\$fastqdir/simualted_STARR_mRNA_r2.fq.gz \</pre>
540		samtools view -bS - \
541		samtools sort - > \$outdir/simulated_STARR_mRNA.raw.bam
542		
543		# align synthetic DNA input and pipe to samtools for SAM to BAM conversion
544		bwa mem -M -t 24 \$refdir/Zm-B73-REFERENCE-NAM-5.0.fa \
545		\$fastqdir/simulated_STARR_DNA_r1.fq.gz \
546		\$fastqdir/simulated_STARR_DNA_r2.fq.gz \
547		samtools view -bS - \
548		samtools sort - > \$outdir/simulated_STARR_DNA.raw.bam
549		
550	2.	Process and filter reads using the original STARR-seq pipeline.
551		
552		# filter synthetic mRNA alignments
553		echo " filtering synthetic STARR mRNA alignments"
554		samtools view -h -q 10 -f 3 \$outdir/simulated_STARR_mRNA.raw.bam \
555		grep -v -E -e '\bXA:Z:' \
556		samtools view -bSh - > \$outdir/simulated_STARR_mRNA.mq10.pp.unique.bam
557		
558		# filter synthetic DNA alignments
559		echo " filtering STARR DNA alignments"
560		samtools view -h -q 10 -f 3 \$outdir/simulated_STARR_DNA.raw.bam \
561		grep -v -E -e '\bXA:Z:' \
562		samtools view -bSh - > \$outdir/simulated_STARR_DNA.mq10.pp.unique.bam
563		
564	3.	Identify uniquely mappable regions.
565		
566		# extract mRNA output fragments
567		echo " extracting fragments from simulated STARR mRNA output"
568		samtools sort -n \$outdir/simulated_STARR_mRNA.mq10.pp.unique.bam \
569		bedtools bamtobed -bedpe -i - \
570		sort -k1,1 -k2,2n - ∖

571			cut -f1,2,6 - > \$refdir/simulated_STARR_mRNA.fragments.bed
572			
573			# extract DNA input fragments
574			echo " extracting fragments from simulated STARR DNA input"
575			samtools sort -n \$outdir/simulated_STARR_DNA.mq10.pp.unique.bam \
576			bedtools bamtobed -bedpe -i - \
577			sort -k1,1 -k2,2n - ∖
578			cut -f1,2,6 - > \$refdir/simulated_STARR_DNA.fragments.bed
579			
580			# merge all fragments (sorting by coordinate at this step may take a while)
581			cat \$refdir/simulated_STARR_mRNA.fragments.bed
582			<pre>\$refdir/simulated_STARR_DNA.fragments.bed \</pre>
583			sort -k1,1 -k2,2n ∖
584			bedtools merge -i - > \$refdir/mappable_genomic_regions.bed
585			
586		4.	Construct control regions using only mappable regions and excluding putative regulatory
587			regions output by MACS2.
588			
589			# create controls
590			peaks=\$PWD/Peak_data/STARR_merged_peaks.bed
591			bedtools shuffle -i \$peaks \
592			-g \$ref \
593			-incl \$refdir/mappable_genomic_regions.bed \
594			-excl \$peaks \
595			sort -k1,1 -k2,2n - > \$PWD/Peak_data/STARR_CONTROL.bed
596			
597	F.	Co	ompare enhancer activity
598		1.	Determine enhancer activity for predicted enhancers output by MACS2 as well as the negative
599			control regions.
600			
601			# create directory to contain analysis
602			cd/
603			mkdir 01_Peak_Analysis
604			cd 01_Peak_Analysis
605			
606			# map maximum enhancer activity to putative regulatory regions (wdups)
607			bedtools map -a/Peak_data/STARR_merged_peaks.bed -
608			b/BED_files/B73_maize.enhancer_activity.bdg -o max -c 4 >
609			STARR_merged_peaks.enhancer_activity.bed

610

611	# map maximum enhancer activity to control
612	bedtools map -a/Peak_data/STARR_CONTROL.bed -
613	b/BED_files/B73_maize.enhancer_activity.bdg -o max -c 4 >
614	STARR CONTROL.enhancer activity.bed

615

616

623

634

617 Figure 4. Analysis of STARR regulatory region enhancer activity.

618	(A) Distribution of enhancer activity for STARR peaks (purple) and random control regions
619	(grey). Dashed red line indicates the 95% quantile of enhancer activity of random control
620	regions. (B) Average (top) and individual site heatmaps of reads per million (RPM) for ATAC-
621	seq input (left), mRNA output (middle) and enhancer activity (right) for control regions, all
622	STARR peaks, and the filtered STARR peak set.

- 2. To remove regulatory regions with enhancer activity similar to background, we filter STARR 624 625 regulatory regions using an empirical false discovery rate (eFDR) based on the matched 626 control regions. A user-specified eFDR threshold identifies the enhancer activity value in the control set that removes 1-eFDR percent of control regions. In this example, we set the FDR 627 to a widely used rate of 0.05. The following code performs and plots eFDR filtering and 628 enhancer activity distributions and can be run from the command line using >Rscript 629 eFDR_Filter_STARR_Peaks.R. Filtering STARR peaks based on eFDR thresholds derived 630 from the control regions is visualized in Figure 4A. An R script of the following code can be 631 632 found here: https://github.com/Bio-
- 633 protocol/Maize_ATAC_STARR_seq/blob/master/workflow/bin/eFDR_Filter_STARR_Peaks.R
- 635 # start an interactive R session
- 636 > R
 637
 638 # load libraries
 639 library(scales)
- 639 library(scales) 640
- 641 # load data

642	starr <- read.table("STARR_merged_peaks.enhancer_activity.bed")
643	con <- read.table("STARR_CONTROL.enhancer_activity.bed")
644	
645	# set missing to 0
646	starr\$V4[starr\$V4=='.'] <- 0
647	con\$V4[con\$V4=='.'] <- 0
648	
649	# convert to numeric
650	starr\$V4 <- as.numeric(as.character(starr\$V4))
651	con\$V4 <- as.numeric(as.character(con\$V4))
652	
653	# get empirical thresholds
654	fdr <- 0.05
655	threshold <- quantile(con\$V4, (1-fdr))
656	
657	# filter STARR regulatory regions
658	filtered <- subset(starr, starr\$V4 >= threshold)
659	
660	# estimate fraction of retained regions
661	frac <- signif(nrow(filtered)/nrow(starr), digits=4)
662	
663	# set up multipanel plot area
664	pdf("Density_eFDR_STARR_Peak_Filtering.pdf", width=5, height=5)
665	
666	# plot control/observed enhancer activities for STARR peaks with duplicates
667	den.starr <- density(starr\$V4)
668	den.con <- density(con\$V4)
669	plot(NA,
670	xlab="Enhancer Activity",
671	ylab="Density",
672	xlim=c(range(range(den.starr\$x), range(den.con \$x))),
673	ylim=c(range(range(den.starr\$y), range(den.con\$y))))
674	polygon(x=c(min(den.starr\$x), den.starr\$x, max(den.starr\$x)),
675	y=c(0, den.starr\$y, 0), col=alpha("darkorchid4", 0.5), border=NA)
676	polygon(x=c(min(den.con\$x), den.con\$x, max(den.con\$x)),
677	y=c(0, den.con\$y, 0), col=alpha("grey80", 0.5), border=NA)
678	abline(v=threshold, col="red", lty=2)
679	mtext(paste0("STARR peaks pass = ",frac," (", nrow(filtered), "/", nrow(starr),")"))
680	

681		legend("right", legend=c("STARR Peaks", "Control Peaks", paste0("eFDR = ", fdr)),
682		col=c("darkorchid4", "grey75", "red"), border=c(NA, NA, "red"), pch=c(16, 16, NA), lty=c(NA,
683		NA, 2))
684		
685		# close device
686		dev.off()
687		
688		# save filtered STARR regulatory regions
689		write.table(filtered, file="STARR_merged_peaks.enhancer_activity.eFDR05.bed", quote=F,
690		row.names=F, col.names=F, sep="\t")
691		
692		# exit R
693		q()
694		
695	3.	We can now assess the relative enhancer activities across all regions for the filtered and
696		unfiltered STARR peaks and controls using DeepTools (Figure 4B). A script to plot heatmaps
697		via DeepTools can be found here: https://github.com/Bio-
698		protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step07_plot_enhancer_activity.sh
699		
700		# load function
701		getmaps(){
702		
703		# input
704		ina=\$1
705		id=\$2
706		dat=/BED_files/*.bw
707		
708		# output
709		outa=\$id.mat.gz
710		outm=\$id.mat.txt
711		fig=\$id.pdf
712		
713		# parameters
714		threads=48
715		window=2000
716		bin=20
717		cols=YIGnBu
718		
719		# create matrix

720		computeMatrix reference-pointreferencePoint center \
721		-S \$dat \
722		-b \$window -a \$window \
723		-R \$ina \
724		missingDataAsZero \
725		-o \$outa \
726		outFileNameMatrix \$outm \
727		-p \$threadsbinSize \$bin
728		
729		# plot heatmap
730		plotHeatmapmatrixFile \$outa \
731		colorMap YIGnBu \
732		-out \$id.heatmap.pdf
733		
734		}
735		export -f getmaps
736		
737		# run for each file
738		getmaps STARR_merged_peaks.enhancer_activity.bed STARR_peaks
739		getmaps STARR_merged_peaks.enhancer_activity.eFDR05.bed STARR_peaks_filtered
740		getmaps STARR_CONTROL.enhancer_activity.bed control_regions
741		
742	G. I	dentification of large regulatory domains in the maize genome
743	1	I. One question these data allow us to ask is whether a relationship exists between the size of a
744		regulatory region and its enhancer activity. So called "super enhancers" in mammalian
745		systems describe hyperactive transcription-activating regulatory domains associated with cell
746		identity that exhibit increased density of TF binding sites compared to typical enhancers
747		(Hnisz et al., 2013). Integration of the STARR peaks and enhancer activities with other data
748		sets allows us to determine whether similar hyperactive regulatory domains exist in maize. To
749		query TF binding site density, we first download position weight matrices of known TFs from
750		the <i>meme</i> database and identify putative TF binding sites using <i>fimo</i> (also from the <i>meme</i>
751		suite) conditioning on a <i>P</i> -value threshold less than 1e-5. A script to identify large regulatory
752		domains can be found here: https://github.com/Bio-
753		protocol/Maize_ATAC_STARR_seq/blob/master/workflow/step08_identify_large_regulatory_do
754		mains.sh
755		
756		# make a new directory for the TFBS analysis
757		cd/
758		mkdir 02_Hyperactive_Regulatory_Region_Analysis

21

759	cd ./02_Hyperactive_Regulatory_Region_Analysis
760	
761	# download and decompress motif databases
762	wget https://meme-suite.org/meme/meme-
763	software/Databases/motifs/motif_databases.12.23.tgz
764	tar -xvzf motif_databases.12.23.tgz
765	rm motif_databases.12.23.tgz
766	
767	# variables
768	threads=16
769	ref=/Genome_Reference/Zm-B73-REFERENCE-NAM-5.0.fa
770	peaks=/01_Peak_Analysis/STARR_merged_peaks.enhancer_activity.eFDR05.bed
771	controls=/01_Peak_Analysis/STARR_CONTROL.enhancer_activity.bed
772	motifs=./motif_databases/ARABD/ArabidopsisDAPv1.meme
773	
774	# extract fasta sequences
775	bedtools getfasta -bed \$peaks -fi \$ref -fo \$peaks.fasta
776	bedtools getfasta -bed \$controls -fi \$ref -fo \$controls.fasta
777	
778	# identify putative TFBS
779	fimooc TFBS_peaks \$motifs \$peaks.fasta
780	fimooc TFBS_controls \$motifs \$controls.fasta
781	
782	# reformat fimo output (filtering p-value > 1e-5) using the perl script provided in the github
783	repository (https://github.com/Bio-
784	protocol/Maize_ATAC_STARR_seq/blob/master/workflow/bin/convertMotifCoord.pl)
785	perl convertMotifCoord.pl TFBS_peaks/fimo.gff sed -e 's/_tnt//g' - sort -k1,1 -k2,2n - >
786	TFBS_peaks.motifs.bed
787	perl convertMotifCoord.pl TFBS_controls/fimo.gff sed -e 's/_tnt//g' - sort -k1,1 -k2,2n - >
788	TFBS_controls.motifs.bed
789	
790	# annotate motif coverage/counts for STARR and control peaks
791	bedtools annotate -
792	i/01_Peak_Analysis/STARR_merged_peaks.enhancer_activity.eFDR05.bed -files
793	TFBS_peaks.motifs.bed -both sort -k1,1 -k2,2n - >
794	STARR_merged_peaks.enhancer_activity.eFDR05.ann.bed
795	bedtools annotate -i/01_Peak_Analysis/STARR_CONTROL.enhancer_activity.bed -files
796	TFBS_controls.motifs.bed -both sort -k1,1 -k2,2n - >
797	STARR_CONTROL.enhancer_activity.ann.bed

798		
799		# extract genes
800		perl -ne 'if(\$_ =~ /^#/){next;}chomp;my@col=split("\t",\$_);if(\$col[2] eq
801		'gene'){print"\$_\n";}'/Genome_Reference/Zm-B73-REFERENCE-NAM-
802		5.0_Zm00001eb.1.gff3 sort -k1,1 -k4,4n - >/Genome_Reference/Zm-B73-REFERENCE-
803		NAM-5.0_Zm00001eb.1.genes.gff3
804		
805		# classify genomic context of STARR and control peaks (you can ignore the warnings from
806		bedtools about inconsistent naming conventions, you can thank the genome assembly team
807		for these annoying, but harmless warnings)
808		bedtools closest -a STARR_merged_peaks.enhancer_activity.eFDR05.ann.bed -
809		b/Genome_Reference/Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1.genes.gff3 -D b >
810		STARR_merged_peaks.enhancer_activity.eFDR05.ann2.bed
811		bedtools closest -a STARR_CONTROL.enhancer_activity.ann.bed -
812		b/Genome_Reference/Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1.genes.gff3 -D b >
813		STARR_CONTROL.enhancer_activity.ann2.bed
814		
815		# clean up
816		mv STARR_merged_peaks.enhancer_activity.eFDR05.ann2.bed
817		STARR_merged_peaks.enhancer_activity.eFDR05.ann.bed
818		mv STARR_CONTROL.enhancer_activity.ann2.bed
819		STARR_CONTROL.enhancer_activity.ann.bed
820		
821	2.	We can now investigate the relationship among regulatory region size, motif density, and
822		enhancer activity to identify putative regulatory domains (Figure 5A-5F). To do so, we will start
823		an interactive R session and load the annotated peak and control files from above. A script to
824		automate the following code can be found here: https://github.com/Bio-
825		$protocol/Maize_ATAC_STARR_seq/blob/master/workflow/bin/Characterize_Regulatory_Regionum{0.5}{\linewidth} and the set of the set of$
826		ns.R
827		
828		# open R
829		> R
830		
831		# Analyze regulatory regions
832		
833		# load libraries
834		library(vioplot)
835		library(dplyr)
836		library(MASS)

library(RColorBrewer)
library(scales)
load data
starr <- read.table("STARR_merged_peaks.enhancer_activity.eFDR05.ann.bed")
control <- read.table("STARR_CONTROL.enhancer_activity.ann.bed")
select random control regions to match the filtered STARR peaks
control <- control[sample(nrow(starr)),]
rename columns for clarity (frac_RR_motif = fraction of regulatory region covered by motifs)
starr[,7:15] <- NULL
control[,7:15] <- NULL
colnames(starr)[4:7] <- c("activity", "motif_counts", "frac_RR_motif", "gene_distance")
colnames(control)[4:7] <- c("activity", "motif_counts", "frac_RR_motif", "gene_distance")
classify
starr\$class <- ifelse((starr\$gene_distance < 0 & starr\$gene_distance > -200), "TSS",
ifelse(starr\$gene_distance < -200 & starr\$gene_distance > -2000, "promoter",
ifelse(starr\$gene_distance > 0 & starr\$gene_distance < 1000, "TTS",
ifelse(starr\$gene_distance == 0, "genic", "intergenic"))))
control\$class <- ifelse((control\$gene_distance < 0 & control\$gene_distance > -200), "TSS",
ifelse(control\$gene_distance < -200 & control\$gene_distance > -2000, "promoter",
ifelse(control\$gene_distance > 0 & control\$gene_distance < 1000, "TTS",
ifelse(control\$gene_distance == 0, "genic", "intergenic"))))
plot distribution
pdf("STARR_peak_control_genomic_distribution.pdf", width=10, height=5)
layout(matrix(c(1:2), nrow=1))
pie(table(starr\$class))
pie(table(control\$class))
dev.off()
estimate regulatory region size (in log10 scale)
starr\$size <- log10(starr\$V3-starr\$V2)
control\$size <- log10(control\$V3-control\$V2)
compare sizes between peaks and controls (sanity check)

876	pdf("STARR_peak_control_sizes.pdf",
877	vioplot(starr\$size, control\$size,
878	ylab="Interval size (log10)",
879	col=c("dodgerblue", "grey75"),
880	names=c(paste0("STARR peaks \n (n=",nrow(starr),")"),
881	paste0("Control regions \n (n=",nrow(control),")")))
882	dev.off()
883	
884	# compare motif counts
885	<pre>pval <- wilcox.test(starr\$motif_counts, control\$motif_counts)\$p.value</pre>
886	pval <- ifelse(pval==0, 2.2e-16, pval)
887	mean.peak <- mean(starr\$motif_counts)
888	mean.cont <- mean(control\$motif_counts)
889	
890	# find 95% quantile for control motif count
891	upper.threshold <- quantile(control\$motif_counts, 0.95)
892	
893	# plot
894	pdf("STARR_peak_control_motif_counts.pdf", width=5, height=6)
895	vioplot(log1p(starr\$motif_counts), log1p(control\$motif_counts),
896	ylab="log2(Motif counts + 1)",
897	col=c("dodgerblue", "grey75"),
898	names=c(paste0("STARR peaks \n (n=",nrow(starr),")"),
899	paste0("Control regions \n (n=",nrow(control),")")),
900	ylim=c(0,8),
901	areaEqual=T,
902	h=0.25)
903	mtext(paste0("Wilcoxon Rank Sum P-value = ", signif(pval, digits=3)))
904	text(1, 7.5, labels=paste0("Mean = ", signif(mean.peak, digits=3)))
905	text(2, 7.5, labels=paste0("Mean = ", signif(mean.cont, digits=3)))
906	points(1, log1p(upper.threshold), col="red", pch="-")
907	points(2, log1p(upper.threshold), col="red", pch="-")
908	dev.off()
909	
910	# split STARR regions by motif counts based on 95% quantile control dist
911	starr\$group <- ifelse(starr\$motif_counts >= upper.threshold, "high", "low")
912	pval <- kruskal.test(starr\$activity, starr\$group)\$p.value
913	pdf("STARR_peak_activity_vs_group.pdf",
914	vioplot(starr\$activity~starr\$group,

915	ylab="Enhancer activity",
916	col=c("dodgerblue4", "dodgerblue"),
917	names=c(paste0("Motif-enriched \n STARR peaks \n (n=",
918	nrow(starr[starr\$group=="high",]),")"),
919	paste0("Motif-depleted \n STARR peaks \n (n=",
920	nrow(starr[starr\$group=="low",]),")")),
921	areaEqual=F,
922	xlab="",
923	h=0.25)
924	mtext(paste0("Kruskal-Wallis rank sum P-value = ", signif(pval, digits=3)))
925	dev.off()
926	
927	# compare STARR region size
928	pval <- kruskal.test(starr\$size, starr\$group)\$p.value
929	pval <- ifelse(pval==0, 2.2e-16, pval)
930	pdf("STARR_peak_size_vs_group.pdf",
931	vioplot(starr\$size~starr\$group,
932	ylab="Interval size (log10)",
933	col=c("dodgerblue4", "dodgerblue"),
934	names=c(paste0("Motif-enriched \n STARR peaks \n (n=",
935	nrow(starr[starr\$group=="high",]),")"),
936	paste0("Motif-depleted \n STARR peaks \n (n=",
937	nrow(starr[starr\$group=="low",]),")")),
938	areaEqual=F,
939	xlab="",
940	h=0.25)
941	mtext(paste0("Kruskal-Wallis rank sum P-value = ", signif(pval, digits=3)))
942	dev.off()
943	
944	# compare motif coverage
945	pval <- kruskal.test(starr\$frac_RR_motif, starr\$group)\$p.value
946	pval <- ifelse(pval==0, 2.2e-16, pval)
947	pdf("STARR_peak_motif_coverage_vs_group.pdf", width=5, height=6)
948	vioplot(starr\$frac_RR_motif~starr\$group,
949	ylab="Fraction motif coverage",
950	col=c("dodgerblue4", "dodgerblue"),
951	names=c(paste0("Motif-enriched \n STARR peaks \n (n=",
952	nrow(starr[starr\$group=="high",]),")"),
953	paste0("Motif-depleted \n STARR peaks \n (n=",

954	nrow(starr[starr\$group=="low",]),")")),
955	areaEqual=F,
956	xlab="")
957	mtext(paste0("Kruskal-Wallis rank sum P-value = ", signif(pval, digits=3)))
958	dev.off()
959	
960	# split by group
961	starr.me <- subset(starr, starr\$group=="high")
962	starr.md <- subset(starr, starr\$group=="low")
963	write.table(starr.me,
964	file="STARR_starrs_peaks.enhancer_activity.eFDR05.ann.high_motif.bed",
965	quote=F, row.names=F, col.names=F, sep="\t")
966	write.table(starr.md,
967	file="STARR_starrs_peaks.enhancer_activity.eFDR05.ann.low_motif.bed",
968	quote=F, row.names=F, col.names=F, sep="\t")
969	
970	

971

Figure 5: Identification of motif-dense enhancer regulatory domains.

(A) Genomic distribution of STARR peaks (left) and control regions (right). (B) Distribution of control region (grey) and STARR peak (blue) interval lengths. (C) Distribution of motif counts in control regions (grey) and STARR peaks (blue). The dashed red line indicates the 95% quantile of motif counts from control regions used to classify STARR peaks into high and low motif count classes. (D) Distribution of enhancer activity for STARR peaks with enriched (dark blue) and depleted (light blue) motif counts.
(E) Distribution of interval lengths for motif-enriched (dark blue) and motif-depleted (light blue) STARR peaks. (F) Distribution of fraction of STARR peak covered by motif for motif-enriched (dark blue) and motif-depleted (light blue) STARR peaks. (G) Heatmap illustrating Z-score transformed motif enhancer activities across intergenic motif-enriched STARR peaks scaled by the relative chromatin accessibility in various maize cell types.

972

973

974	3.	To determine if the large intergenic regulatory domain regions are associated with cell identity,
975		we will compare enhancer activities versus various cell-type-specific accessible chromatin
976		regions (ACRs) leveraging a recent single-cell ATAC-seq (scATAC-seq) dataset from multiple
977		maize organs (Marand et al., 2021). First, download the matrix containing normalized

978	accessibility counts across accessible chromatin regions for each profiled cell type. We then
979	extract ACR genomic coordinates (which are in version 4 of the B73 reference genome) and
980	convert them to version 5 of the B73 reference genome using the CrossMap tool and chain
981	file.
982	
983	# download the counts matrix
984	wget -O maize_scATAC_atlas_ACR_celltype_CPM.txt.gz
985	https://www.ncbi.nlm.nih.gov/geo/download/\?acc\=GSE155178\&format\=file\&file\=GSE1551
986	78%5Fmaize%5FscATAC%5Fatlas%5FACR%5Fcelltype%5FCPM%2Etxt%2Egz
987	
988	# unzip
989	gunzip maize_scATAC_atlas_ACR_celltype_CPM.txt.gz
990	
991	# download chain file
992	wget https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-
993	5.0/chain_files/B73_RefGen_v4_to_Zm-B73-REFERENCE-NAM-5.0.chain
994	
995	# extract coordinates and conform chromosome names to V4 reference
996	cut -f1 maize_scATAC_atlas_ACR_celltype_CPM.txt \
997	grep '^chr' - \
998	perl -ne 'chomp;my@col=split("_",\$_);print"\$col[0]\t\$col[1]\t\$col[2]\n";' - \
999	sed -e 's/chrB73V4ctg/B73V4_ctg/g' - \
1000	sed -e 's/chr//g' - \
1001	sort -k1,1 -k2,2n - > maize_scATAC_atlas_ACRs.bed
1002	
1003	# convert ACR coordinates from V4 to V5
1004	CrossMap.py bed B73_RefGen_v4_to_Zm-B73-REFERENCE-NAM-5.0.chain
1005	maize_scATAC_atlas_ACRs.bed > maize_scATAC_atlas_ACRs.V4_to_V5.txt
1006	
1007	# discard unmapped and split projections
1008	grep -v 'Unmap\ split' maize_scATAC_atlas_ACRs.V4_to_V5.txt \
1009	perl -ne 'chomp; my@col=split("\t",\$_);
1010	print"chr\$col[0]_\$col[1]_\$col[2]\tchr\$col[4]_\$col[5]_\$col[6]\n";' - \
1011	sort -k1,1 -k2,2n - ∖
1012	sed -e 's/chrscaf/scaf/g' - \
1013	sed -e 's/chrB73V4_ctg/chrB73V4ctg/g' - > maize_scATAC_atlas_ACRs.V4_to_V5.clean.txt
1014	
1015	# update ACR coordinates in matrix file using R
1016	> R

1017		
1018		# read into data frames
1019		conv <- read.table("maize_scATAC_atlas_ACRs.V4_to_V5.clean.txt")
1020		mat <- read.table("maize_scATAC_atlas_ACR_celltype_CPM.txt")
1021		
1022		# subset mat rows by retained ACRs after projection
1023		shared <- intersect(rownames(mat), as.character(conv\$V1))
1024		mat <- mat[shared,]
1025		rownames(conv) <- conv\$V1
1026		conv <- conv[shared,]
1027		
1028		# update mat rowIDs
1029		rownames(mat) <- conv\$V2
1030		
1031		# save output
1032		write.table(mat, file="maize_scATAC_atlas_ACR_celltype_CPM.V5.txt", quote=F,
1033		row.names=T, col.names=T, sep="\t")
1034		
1035		# exit R
1036		q()
1037		
1038		# remove temporary files
1039		rm maize_scATAC_atlas_ACR_celltype_CPM.txt maize_scATAC_atlas_ACRs.bed
1040		maize_scATAC_atlas_ACRs.V4_to_V5.txt maize_scATAC_atlas_ACRs.V4_to_V5.clean.txt
1041		
1042		
1043	4.	Intersect the scATAC-seq ACRs with the STARR peaks with enriched motif counts. Load the
1044		scATAC-seq matrix and intersected ACRs/STARR peaks files into R to estimate enhancer
1045		activity enrichment scaled by relative accessibilities across cell types. As the STARR-seq data
1046		was derived from maize seedlings, we fill further restrict the analysis of scATAC-seq cell types
1047		to those derived primarily from maize seedlings. The following code written in R can be
1048		executed with the script named 'motif_enhancer_activity_maize_celltypes.R' and provides
1049		estimates of enhancer activity over various motifs scaled by the relative cell type accessibility,
1050		allowing insights into cell-type-specific transcription factor regulation of active enhancers
1051		(Figure 5G).
1052		
1053		# extract ACR coordinates
1054		cut -f1 maize_scATAC_atlas_ACR_celltype_CPM.V5.txt grep -v 'unknown.5.50' sed -e
1055		's/scaf_/scaf/g' perl -ne 'chomp;my@col=split("_",\$_);print"\$col[0]\t\$col[1]\t\$col[2]\n";' - sed -

30

1056	e 's/scaf/scaf_/g' - sort -k1,1 -k2,2n - > maize_scATAC_atlas_ACRs.V5.bed
1057	
1058	# intersect scATAC ACRs with high motif counts STARR peaks
1059	bedtools intersect -a STARR_starrs_peaks.enhancer_activity.eFDR05.ann.high_motif.bed -b
1060	maize_scATAC_atlas_ACRs.V5.bed -wa -wb >
1061	STARR_starrs_peaks.enhancer_activity.eFDR05.ann.high_motif.scATAC_ACRs.bed
1062	
1063	# map enhancer activity over motifs
1064	bedtools map -a TFBS_peaks.motifs.bed -b/BED_files/B73_maize.enhancer_activity.bdg -c
1065	4 -o max > TFBS_peaks.motifs.enhancer_activity.bed
1066	
1067	# motifs to large regulatory regions
1068	bedtools intersect -a TFBS_peaks.motifs.enhancer_activity.bed -b
1069	STARR_starrs_peaks.enhancer_activity.eFDR05.ann.high_motif.scATAC_ACRs.bed -wa -wb
1070	> TFBS_peaks.motifs.enhancer_activity.bed
1071	
1072	# open R (alternatively, a script to automate the following code can be found here:
1073	https://github.com/Bio-
1074	protocol/Maize_ATAC_STARR_seq/blob/master/workflow/bin/motif_enhancer_activity_maize_
1075	celltypes.R)
1076	> R
1077	
1078	# estimate enhancer activity cell type specificity
1079	
1080	# load libraries
1081	library(RColorBrewer)
1082	library(gplots)
1083	library(edgeR)
1084	
1085	# load data
1086	enh <-
1087	read.table("STARR_starrs_peaks.enhancer_activity.eFDR05.ann.high_motif.scATAC_ACRs.b
1088	ed")
1089	acrs <- read.table("maize_scATAC_atlas_ACR_celltype_CPM.V5.txt")
1090	motifs <- read.table("TFBS_peaks.motifs.ENRICHED.enhancer_activity.bed")
1091	
1092	# subset for representative leaf-derived clusters
1093	keep <- c("bulliform.2.26",
1094	"bundle_sheath.2.16",

1095	"ground_meristem.7.69",
1096	"guard_cell.7.74",
1097	"guard_mother_cell.7.71",
1098	"L1_SAM.4.46",
1099	"leaf_provascular.7.67",
1100	"mesophyll.2.14",
1101	"parenchyma.10.90",
1102	"protoderm.7.72",
1103	"stomatal_precursor.7.75",
1104	"subsidiary.7.68")
1105	all.acrs <- acrs
1106	
1107	# rescale acrs
1108	acrs <- cpm(acrs, log=F)
1109	acrs <- acrs[,keep]
1110	
1111	# subset enhancers by genomic feature
1112	enh <- subset(enh, enh\$V8=="intergenic")
1113	
1114	# get overlapping regions from the scATAC matrix
1115	enh\$ids <- paste(enh\$V11,enh\$V12,enh\$V13,sep="_")
1116	enh <- enh[order(enh\$V11, decreasing=T),]
1117	enh <- enh[!duplicated(enh\$ids),]
1118	shared <- intersect(enh\$ids, rownames(acrs))
1119	rownames(enh) <- enh\$ids
1120	enh <- enh[shared,]
1121	enh\$starrIDs <- paste(enh\$V1, enh\$V2, enh\$V3,sep="_")
1122	
1123	# filter motifs
1124	motifs\$starrIDs <- paste(motifs\$V5, motifs\$V6, motifs\$V7, sep="_")
1125	motifs <- motifs[motifs\$starrIDs %in% unique(enh\$starrIDs),]
1126	
1127	# normalize acrs
1128	acrs <- t(apply(acrs, 1, function(x){x/max(x)}))
1129	
1130	# iterate over each cell type
1131	cts <- colnames(acrs)
1132	outs <- lapply(cts, function(x){
1133	access <- acrs[rownames(enh),x]

1134	names(access) <- enh\$starrIDs
1135	motif.scores <- access[motifs\$starrIDs] * as.numeric(as.character(motifs\$V15))
1136	mtf <- data.frame(motif=motifs\$V4, score=motif.scores)
1137	aves <- aggregate(score~motif, data=mtf, FUN=mean)
1138	score <- aves\$score
1139	names(score) <- aves\$motif
1140	return(score)
1141	})
1142	outs <- do.call(cbind, outs)
1143	colnames(outs) <- cts
1144	vars <- apply(outs, 1, var)
1145	outs <- outs[vars > 0,]
1146	z <- as.matrix(t(scale(t(outs))))
1147	
1148	# # cluster columns
1149	co <- hclust(dist(t(outs)))\$order
1150	
1151	# reorder rows
1152	z <- z[,co]
1153	row.o <- apply(z, 1, which.max)
1154	z <- z[order(row.o, decreasing=F),]
1155	
1156	# cap
1157	z[z < -3] <3
1158	z[z > 3] <- 3
1159	
1160	# get family
1161	tfs <- data.frame(do.call(rbind, strsplit(rownames(z), "\\.")))
1162	cols2 <- colorRampPalette(brewer.pal(12, "Paired"))(length(unique(tfs\$X1)))
1163	tfs\$cols2 <- cols2[factor(tfs\$X1)]
1164	
1165	# visualize
1166	pdf("celltype_starr_motif_activity.pdf", width=10, height=10)
1167	heatmap.2(z, scale="none", trace='none',
1168	RowSideColors=tfs\$cols,
1169	col=colorRampPalette(rev(brewer.pal(9, "RdBu")))(100),
1170	useRaster=T, Colv=F, Rowv=F, dendrogram="none", margins=c(9,9))
1171	dev.off()
1172	

1173	
1174	Acknowledgments
1175	This study was funded by support from the National Science Foundation (DBI-1906869) and the
1176	National Institute of Health (1K99GM144742) to A.P.M. The ATAC-STARR-seq data analyzed in this
1177	study was originally generated by Ricci, Lu, Ji and colleagues (Ricci et al., 2019).
1178	
1179	
1180	Competing interests
1181	A.P.M. declares no competing interests.
1182	
1183	
1184	Supplementary information
1185	1. Data and code availability: All data and code have been deposited to GitHub:
1186	https://github.com/Bio-protocol/Maize_ATAC_STARR_seq
1187	
1188	
1189	References
1190	Arnold, C. D., Gerlach, D., Stelzer, C., Boryn, L. M., Rath, M. and Stark, A. (2013). Genome-Wide
1191	Quantitative Enhancer Activity Maps Identified by STARR-seq. Science 339(6123): 1074-
1192	1077. <go isi="" to="">://WOS:000315452000041</go>
1193	Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013). Transposition of
1194	native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
1195	proteins and nucleosome position. <i>Nat Methods</i> 10(12): 1213-+. < Go to
1196	ISI>://WOS:000327698100025
1197	Chen, S., Zhou, Y., Chen, Y. and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor.
1198	Bioinformatics 34(17): i884-i890. https://www.ncbi.nlm.nih.gov/pubmed/30423086
1199	Grant, C. E., Bailey, T. L. and Noble, W. S. (2011). FIMO: scanning for occurrences of a given motif.
1200	Bioinformatics 27(7): 1017-1018. https://www.ncbi.nlm.nih.gov/pubmed/21330290
1201	Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-Andre, V., Sigova, A. A., Hoke, H. A. and Young, R.
1202	A. (2013). Super-enhancers in the control of cell identity and disease. <i>Cell</i> 155(4): 934-947.
1203	https://www.ncbi.nlm.nih.gov/pubmed/24119843
1204	Hufford, M. B., Seetharam, A. S., Woodhouse, M. R., Chougule, K. M., Ou, S., Liu, J., Ricci, W. A.,
1205	Guo, T., Olson, A., Qiu, Y., Della Coletta, R., Tittes, S., Hudson, A. I., Marand, A. P., Wei, S.,
1206	Lu, Z., Wang, B., Tello-Ruiz, M. K., Piri, R. D., Wang, N., Kim, D. W., Zeng, Y., O'Connor, C.
1207	H., Li, X., Gilbert, A. M., Baggs, E., Krasileva, K. V., Portwood, J. L., 2nd, Cannon, E. K. S.,
1208	Andort, C. M., Manchanda, N., Snodgrass, S. J., Hufnagel, D. E., Jiang, Q., Pedersen, S.,
1209	Syring, M. L., Kudrna, D. A., Llaca, V., Fengler, K., Schmitz, R. J., Ross-Ibarra, J., Yu, J., Gent,
1210	J. I., Hirsch, C. N., Ware, D. and Dawe, R. K. (2021). De novo assembly, annotation, and

1211	comparative analysis of 26 diverse maize genomes. Science 373(6555): 655-662.
1212	https://www.ncbi.nlm.nih.gov/pubmed/34353948
1213	Jores, T., Tonnies, J., Dorrity, M. W., Cuperus, J. T., Fields, S. and Queitsch, C. (2020). Identification of
1214	Plant Enhancers and Their Constituent Elements by STARR-seq in Tobacco Leaves[OPEN].
1215	The Plant Cell 32(7): 2120-2131. <u>https://doi.org/10.1105/tpc.20.00155</u>
1216	Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. and Karolchik, D. (2010). BigWig and BigBed:
1217	enabling browsing of large distributed datasets. Bioinformatics 26(17): 2204-2207. < Go to
1218	ISI>://WOS:000281738900023
1219	Leinonen, R., Sugawara, H., Shumway, M. and International Nucleotide Sequence Database, C.
1220	(2011). The sequence read archive. Nucleic Acids Res 39(Database issue): D19-21.
1221	https://www.ncbi.nlm.nih.gov/pubmed/21062823
1222	Li, H. (2011). Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics
1223	27(5): 718-719. https://www.ncbi.nlm.nih.gov/pubmed/21208982
1224	Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform.
1225	Bioinformatics 25(14): 1754-1760. https://www.ncbi.nlm.nih.gov/pubmed/19451168
1226	Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin,
1227	R. and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and
1228	SAMtools. Bioinformatics 25(16): 2078-2079. https://www.ncbi.nlm.nih.gov/pubmed/19505943
1229	Liu, T. (2014). Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by
1230	sequencing protein-DNA interactions in embryonic stem cells. Methods Mol Biol 1150: 81-95.
1231	https://www.ncbi.nlm.nih.gov/pubmed/24743991
1232	Marand, A. P., Chen, Z., Gallavotti, A. and Schmitz, R. J. (2021). A cis-regulatory atlas in maize at
1233	single-cell resolution. Cell 184(11): 3041-3055 e3021.
1234	https://www.ncbi.nlm.nih.gov/pubmed/33964211
1235	Marand, A. P., Zhang, T., Zhu, B. and Jiang, J. (2017). Towards genome-wide prediction and
1236	characterization of enhancers in plants. Biochim Biophys Acta Gene Regul Mech 1860(1):
1237	131-139. https://www.ncbi.nlm.nih.gov/pubmed/27321818
1238	Melnikov, A., Murugan, A., Zhang, X., Tesileanu, T., Wang, L., Rogov, P., Feizi, S., Gnirke, A., Callan,
1239	C. G., Kinney, J. B., Kellis, M., Lander, E. S. and Mikkelsen, T. S. (2012). Systematic
1240	dissection and optimization of inducible enhancers in human cells using a massively parallel
1241	reporter assay. Nature Biotechnology 30(3): 271-277. https://doi.org/10.1038/nbt.2137
1242	Minnoye, L., Marinov, G. K., Krausgruber, T., Pan, L., Marand, A. P., Secchia, S., Greenleaf, W. J.,
1243	Furlong, E. E. M., Zhao, K., Schmitz, R. J., Bock, C. and Aerts, S. (2021). Chromatin
1244	accessibility profiling methods. Nature Reviews Methods Primers 1(1): 10.
1245	https://doi.org/10.1038/s43586-020-00008-9
1246	Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
1247	features. Bioinformatics 26(6): 841-842. https://www.ncbi.nlm.nih.gov/pubmed/20110278

1248	Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. and Manke, T. (2014). deepTools: a flexible platform
1249	for exploring deep-sequencing data. Nucleic Acids Res 42(Web Server issue): W187-191.
1250	https://www.ncbi.nlm.nih.gov/pubmed/24799436
1251	Ricci, W. A., Lu, Z., Ji, L., Marand, A. P., Ethridge, C. L., Murphy, N. G., Noshay, J. M., Galli, M., Mejia-
1252	Guerra, M. K., Colome-Tatche, M., Johannes, F., Rowley, M. J., Corces, V. G., Zhai, J.,
1253	Scanlon, M. J., Buckler, E. S., Gallavotti, A., Springer, N. M., Schmitz, R. J. and Zhang, X.
1254	(2019). Widespread long-range cis-regulatory elements in the maize genome. Nat Plants
1255	5(12): 1237-1249. https://www.ncbi.nlm.nih.gov/pubmed/31740773
1256	Schmitz, R. J., Grotewold, E. and Stam, M. (2022). Cis-regulatory sequences in plants: Their
1257	importance, discovery, and future challenges. Plant Cell 34(2): 718-741. < Go to
1258	ISI>://WOS:000761460300008
1259	Sun, J., He, N., Niu, L., Huang, Y., Shen, W., Zhang, Y., Li, L. and Hou, C. (2019). Global Quantitative
1260	Mapping of Enhancers in Rice by STARR-seq. Genomics Proteomics Bioinformatics 17(2):
1261	140-153. https://www.ncbi.nlm.nih.gov/pubmed/31201999
1262	Thorvaldsdottir, H., Robinson, J. T. and Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): high-
1263	performance genomics data visualization and exploration. Brief Bioinform 14(2): 178-192.
1264	https://www.ncbi.nlm.nih.gov/pubmed/22517427
1265	Zhao, H., Sun, Z. F., Wang, J., Huang, H. J., Kocher, J. P. and Wang, L. G. (2014). CrossMap: a
1266	versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30(7):
1267	1006-1007. <go isi="" to="">://WOS:000334078300017</go>
1268	
1269	