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Applying artificial neural network for early 
detection of sepsis with intentionally preserved 
highly missing real‑world data for simulating 
clinical situation
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Abstract 

Purpose:  Some predictive systems using machine learning models have been developed to predict sepsis; however, 
they were mostly built with a low percent of missing values, which does not correspond with the actual clinical situa‑
tion. In this study, we developed a machine learning model with a high rate of missing and erroneous data to enable 
prediction under missing, noisy, and erroneous inputs, as in the actual clinical situation.

Materials and methods:  The proposed artificial neural network model was implemented using the MATLAB ANN 
toolbox, based on stochastic gradient descent. The dataset was collected over the past decade with approval from 
the appropriate institutional review boards, and the sepsis status was identified and labeled using Sepsis-3 clinical 
criteria. The imputation method was built by last observation carried forward and mean value, aimed to simulate clini‑
cal situation.

Results:  The mean area under the receiver operating characteristic (ROC) curve (AUC) of classifying sepsis and 
nonsepsis patients was 0.82 and 0.786 at 0 h and 40 h prior to onset, respectively. The highest model performance 
was found for one-hourly data, demonstrating that our ANN model can perform adequately with limited hourly data 
provided.

Conclusions:  Our model has the moderate ability to predict sepsis up to 40 h in advance under simulated clinical 
situation with real-world data.
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Introduction
Sepsis is a clinical syndrome caused by a dysregu-
lated host response to infection [1]. This inflamma-
tory response can lead to multiple organ dysfunction 
syndrome, including acute respiratory distress syn-
drome, acute renal failure, disseminated intravascular 

coagulation, and even death. For decades, sepsis has been 
considered challenging to treat in hospitals globally given 
its high mortality and high medical costs. Older patients 
aged ≥ 65 years account for the majority (60–85%) of all 
cases of sepsis, as older people are more susceptible to 
infection and have a higher risk of sepsis [2–5]. With the 
older population increasing worldwide, the incidence of 
sepsis may continue to increase, resulting in sepsis being 
a persistent, challenging problem. Identifying early sep-
sis, an early form of infection, is important to prevent 
sepsis progressing to severe condition such as severe 
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sepsis or septic shock; each hour of delayed treatment 
is associated with an approximately 3.6–9.9% increase 
in mortality [6]. Furthermore, in areas of the world with 
the lowest socio-demographic index, the need for greater 
prevention of sepsis is highlighted by Global Burden of 
Disease Study 2017 [7], which emphasized the need to 
identify and to predict sepsis. However, no formal defini-
tion exists for early sepsis. Conflicting results have been 
provided for the ability of warning scores systems such as 
Quick Sepsis-Related Organ Failure Assessment (qSOFA) 
and National Early Warning Score (NEWS) to predict 
early sepsis [8–10]; patients may be misclassified as hav-
ing sepsis based on their inflammation status, leading to 
a higher rate of antibiotic use and Clostridioides difficile 
infection, and antibiotic use did not affect 30-day mor-
tality [11]. Moreover, in patients with systemic inflam-
matory response syndrome (SIRS) without evidence of 
infection, sepsis could not be predicted or identified, as 
SIRS is not always caused by infection [12].

Rapid progress has been made in machine learning in 
the last few years. Machine learning involves computer 
programs that undergo a learning process, with differ-
ent rules attempted and learning performance improved. 
Machine learning is an influential and powerful tool for 
turning information into knowledge and is good at learn-
ing the rules governing a phenomenon [13]. Some studies 
have applied machine learning for data mining for diag-
nosing appendicitis [14] and diabetes [15] and for tumor 
assessment [16].

Applying machine learning with diverse variables and 
indicators has also been investigated. Akram’ s team 
used continuous (minute-by-minute) physiologic data 
to predict sepsis and demonstrated that salient physi-
omarkers are temporally and differentially expressed 
in septic patients [17]. Joseph’ team used physiologic, 
laboratory data and subjective variables to predict onset 
of vasopressor therapy and found that practice-specific 
features denoting measurement recency improved local 
performance [18]. An-Kwok’s team discussed the use 
of an expansive number of physiologic, laboratory, and 
demographic variables to create efficient, automated pre-
diction of acute respiratory failure and acute respiratory 
distress syndrome [19].

Some predictive systems using machine learning mod-
els have been developed to predict or identify sepsis [20]. 
Gradient tree boosting models with 0% missing inputs 
using only vital signs can achieve the performance of 0.90 
area under receiver operating characteristic (ROC) curve 
(AUC) when identifying sepsis and can achieve the per-
formance of 0.84 AUC when predicting sepsis 24 h prior 
to onset [21, 22]. Logistic regression models using labora-
tory data with 7% missing inputs can achieve the perfor-
mance of 0.83 AUC when identifying sepsis [23]. These 

models achieved favorable performance in the presence 
of low-percent missing and erroneous data. Nonethe-
less, in the actual clinical situation, missing and errone-
ous data exist due to several reasons. Some studies have 
reported that these missing and erroneous data have 
become a challenge for machine learning models to con-
vert information into knowledge. The AUC of a gradient 
tree boosting model can decrease from 0.90 to 0.75 in the 
presence of 60% missing data [21].

Artificial neural network (ANN), a machine learning 
model, has been successfully used to solve highly dif-
ficult and complex problems in the field of physical sci-
ences and in organizational research. ANN enables faster 
and efficient data collection and processing [24, 25]. 
Furthermore, as it is regarded as a practical and flexible 
modeling tool, ANN can generalize pattern information 
to new data, and it has information processing character-
istics to learning power, high parallelism, fault tolerance, 
nonlinearity, noise tolerance, and capabilities of generali-
zation [25]. One study used ANN to classify bacteremia 
and nonbacteremia patients with 20 clinical variables, 
including demograpahic variables, vital signs, and labora-
tory data. The AUC of prediction performance was 0.729 
(95% confidence interval [CI]: 0.712–0.728) [26]. Another 
study used ANN for neonatal sepsis diagnosis with 25 
maternal and neonatal features. The prediction perfor-
mance was 0.933 in sensitivity, 0.800 in specificity and 
0.944 in AUC [27].

Above published models could discriminate between 
sepsis and nonsepsis patients. However, a reliable model 
should be established to predict the sepsis onset timing in 
advance using before-sepsis-onset data with a high miss-
ing rate, corresponding to the actual clinical situation. 
Therefore, in this study, we developed a model based on 
ANN for sepsis prediction by using patient vital signs and 
laboratory data comprising up to 80% missing and erro-
neous data as the input, to see an easy shallow network 
is suitable to address these problems or not. First, we 
used ANN to classify sepsis and nonsepsis patients with 
different sepsis onset timings prior to onset. Second, we 
assessed how the different timings prior to onset affect 
prediction performance. Finally, we attempted to pre-
cisely predict the timing of sepsis onset.

Materials and methods
Datasets
The data used in this study were obtained from a public 
domain database, which consisted of Intensive Care Unit 
(ICU) patient records in Beth Israel Deaconess Medical 
Center and Emory University Hospital, including a total 
of 40,336 patient records, collected over the past decade 
with approval from the appropriate Institutional Review 
Boards [28]. Each record consisted of a combination 
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of hourly vital sign summaries, laboratory values, and 
demographic variables. Specifically, the data contained 
40 clinical variables: 8 vital sign variables, 26 labora-
tory variables, and 6 demographic variables. Tables  1 
and 2 present these variables. We changed the defini-
tion of SepsisLabel to correspond to our experiment. A 
summary of vital signs and laboratory value data in the 
dataset is shown in Table  3. The missing rate of vital 
signs ranged from 9.88% (for the heart rate) to 66.16% 
(for temperature). Moreover, the missing rate of labora-
tory data ranged from 82.89% (for glucose) to 99.81% (for 
direct bilirubin). More details of the dataset are provided 
in a previous study [29].

Definition of sepsis onset time
We labeled patient data in accordance with the clinical 
criteria of Third International Consensus Definitions for 
Sepsis and Septic Shock. For each sepsis patient, we spec-
ified the following three time points to define the onset 
time tsepsis of sepsis:

•	 tsuspicion: Clinical suspicion of infection identified as 
the earlier timestamp of intravenous (IV) antibiot-
ics and blood cultures within a given time interval. 
If IV antibiotics were given first, then the cultures 
must have been obtained within 24 h. If cultures were 
obtained first, then IV antibiotics must have been 
ordered within 72  h. In either case, IV antibiotics 
must have been administered for at least 72 consecu-
tive hours.

Table 1  Clinical time series data: vital signs (rows 1–7), demographics (rows 8–13), and outcome (row 14)

*We changed the definition of SepsisLabel to correspond to our experiment. The original definition is as follows: For septic patients, SepsisLabel is 1 if t ≥ tsepsis − 6 and 
0 if t < tsepsis − 6. For nonsepsis patients, SepsisLabel is 0

Measurement Description

1 HR Heart rate (beats per minute)

2 O2Sat Pulse oximetry (%)

3 Temp Temperature (°C)

4 SBP Systolic BP (mm Hg)

5 MAP Mean arterial pressure (mm Hg)

6 DBP Diastolic BP (mm Hg)

7 Resp Respiration rate (breaths per minute)

8 Age Age (years)

9 Gender Female (0) or male (1)

10 Unit1 Administrative identifier for ICU unit (MICU); false (0) or true (1)

11 Unit2 Administrative identifier for ICU unit (SICU); false (0) or true (1)

12 HospAdmTime Time between hospital and ICU admission (hours since ICU admission)

13 ICULOS ICU length of stay (hours since ICU admission)

14 SepsisLabel* For septic patients, SepsisLabel is 1 if t ≥ tsepsis and 0 if t < tsepsis

For non-septic patients, SepsisLabel is 0

Table 2  Clinical time series data: laboratory values

Measurement Description

1 EtCO2 End tidal carbon dioxide (mm Hg)

2 BaseExcess Excess bicarbonate (mmol/L)

3 HCO3 Bicarbonate (mmol/L)

4 FiO2 Fraction of inspired oxygen (%)

5 pH pH

6 PaCO2 Partial pressure of carbon dioxide from 
arterial blood (mm Hg)

7 SaO2 Oxygen saturation from arterial blood (%)

8 AST Aspartate transaminase (IU/L)

9 BUN Blood urea nitrogen (mg/dL)

10 Alkalinephos Alkaline phosphatase (IU/L)

11 Calcium Calcium (mg/dL)

12 Chloride Chloride (mmol/L)

13 Creatinine Creatinine (mg/dL)

14 Bilirubin direct Direct bilirubin (mg/dL)

15 Glucose Serum glucose (mg/dL)

16 Lactate Lactic acid (mg/dL)

17 Magnesium Magnesium (mmol/dL)

18 Phosphate Phosphate (mg/dL)

19 Potassium Potassiam (mmol/L)

20 Bilirubin total Total bilirubin (mg/dL)

21 TroponinI Troponin I (ng/mL)

22 Hct Hematocrit (%)

23 Hgb Hemoglobin (g/dL)

24 PTT Partial thromboplastin time (s)

25 WBC Leukocyte count (count/L)

26 Fibrinogen Fibrinogen concentration (mg/dL)

27 Platelets Platelet count (count/mL)
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•	 tSOFA: Occurrence of organ failure as identified by 
a 2-point increase in the Sequential Organ Failure 
Assessment (SOFA) score within a 24-h period.

•	 tsepsis: Onset of sepsis identified as being earlier than 
tsuspicion and tSOFA as long as tSOFA occurred no more 
than 24 h before or 12 h after tsuspicion

Data preprocessing
Missing values in the original data were intentionally 
preserved for conforming to the actual clinic situation. 
The missing values do become a challenge. Jang-Sikchoi’s 
team used logistic regression as the algorithm, and last 
observation carried forward and K-nearest neighbors as 
imputation methods for sepsis screening [23]. Ujjwol’ s 
team used gradient boosting tree as the algorithm and 
mean value as an imputation method for sepsis predic-
tion [30]. To address this problem and to simulate the 
clinical situation, we imputed the missing values first 
by last observation carried forward. If the initial hourly 
data were unavailable for a variable in the patient record, 
the missing value was imputed with mean value calcu-
lated from the data for the variable in all 40,336 patient 
records. In addition to the original 40 variables, three 
new variables were created as follows: heart rate/systolic 
blood pressure, blood urea nitrogen/creatinine, and oxy-
gen saturation from arterial blood/fraction of inspired 
oxygen.

Machine learning model
ANN was used as our machine learning model in this 
study. ANN pattern recognition was implemented 
using the MATLAB ANN toolbox, which was based 
on stochastic gradient descent (SGD). SGD is an itera-
tive method for optimizing an objective function with 
suitable smoothness properties (e.g., differentiable or 
subdifferentiable). It can be regarded as a stochastic 
approximation of gradient descent optimization, because 
it replaces the actual gradient (calculated from the entire 
dataset) with an estimate thereof (calculated from a ran-
domly selected subset of the data). Particularly, in high-
dimensional optimization problems, this reduces the 

computational burden, achieving faster iterations traded-
off against a lower convergence rate.

We constructed a two-layer feed-forward network, 
with sigmoid hidden and softmax output neurons. The 
output layer was a softmax layer as an activation function 
outputting the probability of sepsis. The error function 
was evaluated based on cross-entropy and the percentage 
of misclassification errors.

The input of the classifier included all 43 variables: 
8 vital sign variables, 26 laboratory variables, 6 demo-
graphic variables, and 3 created variables. To train our 
classifier, the number of hidden neurons was set as 100, 
150 and 200 for one-hourly data; 300, 400 and 500 for 
three-hourly data; and 600, 700 and 800 for five-hourly 
data. The optimized number of hidden neurons was 
found by trial-and-error. Figure 1 provides the schematic 
of our ANN model.

Experiment
Classifying sepsis and nonsepsis patients for predicting sepsis
In this study, 40,336 patients consisted of 2932 sepsis 
patients and 37,404 nonsepsis patients. When training 
artificial intelligence-based models with imbalanced data 
with significantly higher negative results than positive 
results, outcomes tend to be negative [31]. To address 
this problem, we adjusted the ratio of sepsis to nonsep-
sis patients to 1:1 by random matching. Next, to predict 
whether patients will develop sepsis, we extracted one-
hourly data, three-hourly data, and five-hourly data prior 
to onset from all 2932 sepsis patients. How many hours 
prior to onset we would set depended on different experi-
mental conditions. For example, in the one-hourly data 
experiment, the data of 1  h prior to sepsis onset were 
labeled as nonsepsis data initially in the dataset. We then 
defined the data to be sepsis data and used them to train 
our model to predict the status of sepsis 1 h in advance. 
We also randomly extracted one-hourly data, three-
hourly data, and five-hourly data from 2932 nonsepsis 
patients, who were randomly matched to sepsis patients. 
These data were defined as nonsepsis data and used to 
predict the status of nonsepsis.

In the one-hourly data experiment, the number of hid-
den neurons was set as 200. We extracted one-hourly 
data over 0–40  h prior to onset separately from sepsis 
patient records. The details of case numbers are provided 
in Fig. 2. Each set of one-hourly data consisted of 43 vari-
ables. Thus, the number of inputs was 43.

In the three-hourly data experiment, the num-
ber of hidden neurons was set as 500. We extracted 
three-hourly data over 1–3 to 13–15  h prior to onset 
separately from sepsis patient records. The 1–3-h 
three-hourly sepsis data consisted of the data of 1  h, 

Table 3  Summary of vital signs and laboratory data in the 
datasets

Number of patients 40,336

Number of septic patients 2932

Sepsis prevalence 7.26%

Number of rows 1,424,147

Number of entries 10,486,913

Density of entries 19.9%
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2 h and 3 h prior to onset. Each set of three-hourly data 
consisted of 129 variables (3 × 43). Thus, the number of 
inputs was 129.

In the five-hourly data experiment, the num-
ber of hidden neurons was set as 800. We extracted 
five-hourly data over 1–5 to 16–20  h prior to onset 
separately from sepsis patient records. The 1–5-h five-
hourly sepsis data consisted of the data of 1 h, 2 h, 3 h, 
4 h and 5 h prior to onset. Each set of five-hourly data 
consisted of 215 variables (5 × 43). Thus, the number of 
inputs was 215.

Figure  3 shows the schematic of one-hourly, three-
hourly, and five-hourly data experiments.

Using sepsis patient records only for predicting onset timing
We applied one-hourly data in this experiment, the num-
ber of hidden neurons was set as 200, and the number of 
inputs was 43. In sepsis patients, one-hourly data over 
0–40 h prior to onset were extracted separately accord-
ing to the experiment design; these data were termed as 
sepsis data. One-hourly data obtained prior to sepsis data 
were defined as nonsepsis data. We then adjusted the 
ratio of sepsis data to nonsepsis data to 1:1 by random 
matching. Figure  4 shows schematic of the experiment 
using only sepsis patient records.

Model validation and performance measurement
We divided the dataset into two groups: 85% of the data 
into a training group and 15% into a testing group, in 
order to build the 85% training and 15% testing cross-
validation method. The training group was presented 
to the network during training, and the network was 
adjusted according to its error. Furthermore, 17.6% of the 
training group was used in algorithm of Levenberg–Mar-
quardt to prevent over-fitting. The testing group had no 
effect on training and provided an independent measure 
of network performance after training. The training pro-
cess ended when the gradient of performance was less 
than 10−6. Finally, we chose an adequate and well-trained 
model according to its training performance and testing 
performance.

Fig. 1  Schematic of the ANN model

Fig. 2  Case number of the one-hourly data experiment
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The model’s performance was determined using the 
area under the ROC curve (AUC) metric, sensitivity, and 
specificity. Sepsis and nonsepsis were set as positive and 
negative outcomes, respectively. We conducted all the 
experiments at a significance level of 95%.

Results
Classifying sepsis and nonsepsis patients for predicting 
sepsis
In each experiment, we trained 10 models with different 
random relative weights.

Performance in the one-hourly data experiment is 
shown in Table 4, Figs. 5 and 6. The AUC of the training 
group was the highest at 0  h prior to onset, which was 
used for identifying sepsis, and the mean AUC was 0.82. 
With an increase in the number of hours prior to onset, 
performance started to decline, reaching the lowest mean 
AUC 0.76 at 12 h prior to onset. No significant difference 
was found in the AUC performance of 0, 1 and 2 h prior 
to onset. Furthermore, the performance of more than 
12  h prior to onset started to increase. A rebounding 
effect of the AUC performance was observed between 13 

Fig. 3  Schematic of the one-hourly data, three-hourly data, and five-hourly data experiments

Fig. 4  Schematic of the experiment using only sepsis patient records
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and 40 h prior to onset. The mean AUC at 40 h prior to 
onset was 0.786. Thus, our ANN model has the moder-
ate ability to predict whether patients will develop sep-
sis, even up to 40 h prior to sepsis onset. This ability can 
enable clinical health professionals to take appropriate 
measures beforehand to treat sepsis.

Performance in the three-hourly data experiment is 
shown in Table  5 and Fig.  7. The AUC of the training 
group was the highest at 1–3  h prior to onset, with a 

mean AUC of 0.792. Compared with the one-hourly data 
experiment, a higher performance was not found for the 
three-hourly data experiment. Although the AUC perfor-
mance was the lowest (with mean AUC of 0.767) at 7–9 h 
prior to onset and a rebounding effect of the AUC per-
formance was observed between 7–9 and 13–15 h prior 
to onset, no significant difference was found for the AUC 
performance of all three-hourly data experiments.

Performance in the five-hourly data experiment is 
presented in Table  6 and Fig.  8. The AUC of the train-
ing group was the highest at 1–5 h prior to onset, with 
a mean AUC of 0.785. Compared with the one-hourly 
data experiment and three-hourly data experiment, a 

Table 4  Performance characteristics of the one-hourly data 
experiment

Hours 
prior to 
onset

AUC (95% CI) Accuracy Sensitivity Specificity

0 0.821 (0.814–0.828) 0.758 0.836 0.678

6 0.779 (0.772–0.787) 0.731 0.793 0.669

12 0.759 (0.745–0.773) 0.703 0.772 0.633

24 0.791 (0.785–0.797) 0.738 0.817 0.657

36 0.807 (0.793–0.822) 0.742 0.793 0.690
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Fig. 5  Performance characteristics of the one-hourly data 
experiment
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Fig. 6  ROC curves of the one-hourly data experiment

Table 5  Performance characteristics of the three-hourly data 
experiment

Hours 
prior to 
onset

AUC (95% CI) Accuracy Sensitivity Specificity

1–3 0.792 (0.780–0.805) 0.730 0.796 0.665

4–6 0.784 (0.773–0.794) 0.721 0.777 0.665

7–9 0.767 (0.749–0.784) 0.703 0.754 0.654

10–12 0.769 (0.759–0.779) 0.711 0.762 0.660

13–15 0.771 (0.755–0.787) 0.716 0.775 0.642
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Fig. 7  Performance characteristics of the three-hourly data 
experiment

Table 6  Performance characteristics of the five-hourly data 
experiment

Hours 
prior to 
onset

AUC (95% CI) Accuracy Sensitivity Specificity

1–5 0.785 (0.771–0.800) 0.719 0.762 0.676

6–10 0.778 (0.768–0.788) 0.716 0.764 0.668

11–15 0.770 (0.759–0.781) 0.713 0.775 0.652

16–20 0.765 (0.753–0.778) 0.713 0.758 0.668
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higher performance was not found for the five-hourly 
data experiment. The rebounding effect of AUC was not 
observed. With an increase in the number of hours prior 
to onset, performance kept declining, reaching the lowest 
mean AUC of 0.765 at 16–20 h prior to onset. No signifi-
cant difference was observed in the AUC performance of 
all five-hourly data experiments.

Overall, the highest performance was found for one-
hourly data experiment for identifying and predicting 
sepsis, demonstrating that our ANN model can perform 
adequately with limited hourly data provided.

Using sepsis patient records only for predicting onset 
timing
The performance of the experiment using only sepsis 
patient records is shown in Table 7 and Fig. 9. The mean 
AUC of the testing group ranged between 0.605 and 
0.515. Compared with the experiment for classifying sep-
sis and nonsepsis patients, the performance of the experi-
ment using only sepsis patient records was much lower, 
demonstrating that our ANN model is not suitable for 
precisely predicting the onset timing of sepsis or classify-
ing the status of the same patient at different time point. 
Furthermore, no significant difference was found in the 
results at 0–24 h prior to onset, nor were any differences 

found in the results at 28–40 h prior to onset. However, 
the results at 0–24  h prior to onset significantly out-
performed the results at 28–40  h prior to onset, dem-
onstrating that the data closer to sepsis onset had more 
predictive value.

Discussion
Classifying sepsis and nonsepsis patients for predicting 
sepsis
In clinical situations, it is unlikely that the complete data 
of every hour would be available. Missing and erroneous 
data are unavoidable under normal circumstances. None-
theless, our ANN model showed a performance above 0.8 
AUC in the presence of up to 80% missing and errone-
ous data, showing its ability of clinical application and 
proving that the model can predict whether patients will 
develop sepsis before sepsis onset and before significant 
changes in vital signs and laboratory data.

In our experiment, we could even predict whether 
patients would develop sepsis up to 40  h in advance 
prior to sepsis onset, with a performance of 0.786 AUC. 
Although this ANN model cannot precisely predict sep-
sis onset, it can identify patients who will develop sepsis 
40 h in advance, which is valuable information for clinical 
and medical professionals. Therefore, they can provide 
adequate management and treatment 40  h in advance, 
including early source control, fluid therapy, vasoactive 
medications, and antibiotic administration [32]. Accord-
ing to some autopsy studies in adults, the most common 
error in the treatment of sepsis is the delay in diagnosing 
sepsis and infection treatment; this delay is avoidable if 
we are aware of the sepsis status of the patient in advance 
[33, 34]. The Surviving Sepsis Campaign (SCC), a joint 
collaboration between the European Society of Inten-
sive Care Medicine, International Sepsis Forum, and the 
Society of Critical Care Medicine, has also emphasized 
the importance of early source control and antibiotic 
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Fig. 8  Performance characteristics of the five-hourly data experiment

Table 7  Performance characteristics of the experiment using 
only sepsis patient records

Hours 
prior to 
onset

AUC (95% CI) Accuracy Sensitivity Specificity

0 0.593 (0.579–0.607) 0.572 0.572 0.548

4 0.594 (0.581–0.607) 0.573 0.590 0.556

8 0.574 (0.555–0.594) 0.563 0.587 0.539

12 0.605 (0.589–0.621) 0.586 0.611 0.561

24 0.574 (0.566–0.582) 0.548 0.557 0.540

36 0.515 (0.503–0.527) 0.523 0.517 0.529
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Fig. 9  Performance characteristics of the experiment using only 
sepsis patient records
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administration [35]. Furthermore, SCC has shown that 
compliance with adequate early resuscitation and man-
agement bundle could significantly reduce sepsis mor-
tality in hospitals [36]. Many studies have shown the 
benefits and advantages of early medical intervention 
for sepsis, with the early identification of sepsis. There-
fore, our ANN model can be applied in clinical settings to 
provide sepsis onset prediction for clinical and medical 
professionals.

In the one-hourly data, three-hourly data, and five-
hourly data experiments, we found adequate perfor-
mance of the one-hourly data for classifying sepsis and 
nonsepsis patients in advance. The AUC performance 
of the one-hourly data experiment from 1 to 6  h prior 
to onset was between 0.797 and 0.811. The AUC perfor-
mance of the three-hourly data experiment from 1 to 6 h 
prior to onset was between 0.784 and 0.792. The AUC 
performance of the five-hourly data experiment from 1 
to 5 h prior to onset was 0.785. More hourly data as the 
input did not increase the performance of the model. 
Therefore, our ANN model only needs the initial one-
hourly data, demonstrating that we can assess the sepsis 
risk of a patient with the initial vital signs and laboratory 
data.

Other studies have used machine learning models to 
classify sepsis patients and nonsepsis patients. Qing-
qing’s team used gradient tree boosting as the algorithm 
and vital signs as the input. They observed a mean AUC 
of 0.90 at 0  h prior to onset at a 0% missing rate and a 
mean AUC of 0.75 at 0  h prior to onset at a 60% miss-
ing rate [21]. Christopher’ team used gradient tree boost-
ing as the algorithm and vital signs as the input. At a 0% 
missing rate, they observed a mean AUC of 0.88 at 0  h 
prior to onset, mean AUC of 0.84 at 24 h prior to onset, 
and mean AUC of 0.83 at 48 h prior to onset. However, 
the case number was only 375 and 147 at 24 and 48  h 
prior to onset, respectively [22]. Jang-Sikchoi’s team used 
logistic regression as the algorithm and laboratory data 
as the input. They observed a mean AUC of 0.83 at 0 h 
prior to onset at a 7% missing rate [23]. Compared with 
the models in these studies, our ANN model provides 
more advantages in clinical situations, as our model was 
trained with data with an 80% missing rate and imputed 
under clinical situation.

Using sepsis patient records only for predicting onset 
timing
In this experiment, we used our ANN model to clas-
sify every hourly dataset of sepsis patients. We aimed to 
find out whether any significant differences exist in vital 
signs and laboratory data before sepsis onset, which we 
could use to precisely predict the timing of sepsis onset. 
However, favorable performance was not found in this 

experiment, with the highest mean AUC of 0.6. Even 
though we tried to classify the hourly data when sepsis 
occurred, the mean AUC reached only 0.593, demon-
strating that our model is not suitable for classifying 
every hourly dataset of sepsis patient. Therefore, our 
ANN model is not suitable for precisely predicting the 
timing of sepsis onset. An algorithm consisting of time 
series might be considered to build a model to predict the 
precise timing of sepsis onset.

Conclusions
In the experiment using sepsis patient and nonsep-
sis patient records, the mean AUC reached 0.821. Our 
ANN model has the moderate ability to predict whether 
patients will develop sepsis, even up to 40 h prior to sep-
sis onset under simulated clinical situation with real-
world data. In addition, this might imply the presence of 
a significant difference between sepsis patients and non-
sepsis patients, even at 40 h prior to sepsis onset. None-
theless, in sepsis patients, regardless of how many hours 
prior to onset, a significant difference was not found in 
vital signs and laboratory data. This might have resulted 
in the poor performance of our ANN model.

The results showed the effectiveness of our ANN 
model for early classifying sepsis and nonsepsis patient. 
However, the predictive performance still needed to be 
improved. We hope to cope with this issue by optimizing 
the models, using novel imputation methods and pursu-
ing new features closely related to sepsis such as mono-
cyte distribution width [37]. In our ANN model, we have 
demonstrated that given one-hourly input data can iden-
tify and predict sepsis and the accuracy is comparable 
to given three-hourly and five-hourly input data, which 
need extra information from the patients, and the neces-
sity of more hourly data as input will be further investi-
gated in the future.

Limitation
With an increase in the number of hours prior to onset, 
the case number would decrease because some patient 
records would not include the hourly data that were long 
time before the onset of sepsis. It was unclear whether 
this would affect our results. The patient records includ-
ing hourly data long time before the onset of sepsis may 
have more similar patterns, creating difficulty in evaluat-
ing the predication performance of our ANN model.

To validate the mean and last observation carried for-
ward method and perform the noise tolerance capability 
of our ANN model, an experiment using the dataset with 
no missing or erroneous values should be performed. 
However, the dataset consisting of laboratory data from 
blood test is difficult to have no missing value in clinical 
situation. Therefore, there is no hourly data consisting of 
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no missing values for all variables before imputation in 
our dataset, and we cannot perform this experiment.

In comparison to other machine learning models, the 
“black box” nature of ANNs acts as a barrier in provid-
ing biological interpretation of the model. We can hardly 
present the value that the variables provide, relation 
between variables and results, and the threshold of mak-
ing a decision. Furthermore, ANN needs more data for 
training, for it consists of many hidden neurons, which 
means that more parameters are needed to figure out.
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