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Atherosclerosis has been identified as a chronic inflammatory disease of the arterial vessel wall. Accumulating evidence indicates
that different cells from the tunica intima, media, adventitia, and perivascular adipose tissue not only comprise the intact and
normal arterial vessel wall but also participate all in the inflammatory response of atherosclerosis via multiple intricate
pathways. For instance, endothelial dysfunction has historically been considered to be the initiator of the development of
atherosclerosis. The migration and proliferation of smooth muscle cells also play a pivotal role in the progression of
atherosclerosis. Additionally, the fibroblasts from the adventitia and adipocytes from perivascular adipose tissue have received
considerable attention given their special functions that contribute to atherosclerosis. In addition, numerous types of cytokines
produced by different cells from the arterial vessel wall, including endothelium-derived relaxing factors, endothelium-derived
contracting factors, tumor necrosis factors, interleukin, adhesion molecules, interferon, and adventitium-derived relaxing
factors, have been implicated in atherosclerosis. Herein, we summarize the possible roles of different cells from the entire arterial
vessel wall in the pathogenesis of atherosclerosis.

1. Introduction

As a major public health issue, atherosclerosis in concert with
its related disorders, such as coronary heart diseases, stroke,
and peripheral vascular diseases, has been the leading cause
of mortality and morbidity worldwide [1, 2]. In the recent
years, some of the pioneers have unceasingly devoted them-
selves to investigate the possible mechanisms implicated in
the pathogenesis of atherosclerosis and have made consider-
able progress, such as the “response to inflammation” theory
based on “response to injury” theory [3] and “response to
lipoprotein retention” hypothesis [4–6]. In recent years, the
concept that atherosclerosis is a chronic inflammatory dis-
ease has been extensively accepted [7–10]. In contrast,
uncertainty surrounds whether vascular inflammation is
transmitted as traditionally thought via “inside to outside”
responses emphasizing the indispensable roles of the
intima in the progression of atherosclerosis. Alternatively,
the new paradigm of an “outside to inside” hypothesis is
supported by compelling evidence [11, 12], which predom-
inantly uncovers the functional significance of the tunica

intima, adventitia, and perivascular adipose tissue (also
called perivascular fat, PVAT).

Additionally, classical doctrine indicates that smooth
muscle cells (SMCs) predominantly from the medial have a
crucial impact on the development of atherosclerosis based
on their migration into the intima and proliferation [13].
Thus, this review will shed light on different cells, including
endothelial cells (ECs), SMCs, fibroblasts, and adipocytes
from the tunica intima, media, adventitia, and PVAT and
their related cytokines, and elucidate how these cells contrib-
ute to the pathogenesis of atherosclerosis (Figure 1).

2. The Normal Structure of the Arterial
Vessel Wall

To the best of our knowledge, some of the large and moderate
arteries, such as the aorta and coronary artery, are composed
of the tunica intima, the media, and the adventitia encapsu-
lated by perivascular adipose tissue. Longitudinal vascular
ECs covering the inner surface of blood vessels are crucial
components of the tunica intima and are sequentially
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exposed to shear stress due to frictional force from the
blood flow [14]. The tunica media is saturated with elastic
fibers secreted by sparse SMCs in large arteries (also called
elastic arteries); nevertheless, the media of moderate arter-
ies (also named muscular arteries) is circumferentially
composed of smooth muscle cells side by side together
with disseminated elastic fibers and collagen fibers. As
the outermost layer of arterial vessel wall, the adventitia
consists of fibroblasts, vasa vasorum, nerve endings, and
a few resident inflammatory cells in the loose connective
tissue [15]. PVAT is located in the outside of the adventi-
tia without any organized barrier to insulate the two,
mainly encompassing adipocytes and other infiltrating
immune cells, such as macrophages, T cells, fibroblasts,

and capillary endothelial cells, as reviewed by Szasz and
Webb [16] (Figure 2).

3. The Intima in the Development of
Atherosclerosis

3.1. The Normal Functions of the Intima. As the endocrinal
“organ” of the cardiovascular system, ECs mainly consist of
the intima with extremely activated metabolism and exceed-
ingly complicated functions. For example, ECs secrete
numerous bioactive substances to modulate vascular tone,
such as nitric oxide (NO), prostaglandin I2 (PGI2), and
endothelium-derived hyperpolarizing factor (EDHF), which
are regarded as endothelium-derived relaxing factors
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Figure 1: Roles of different cells from the arterial vessel wall in atherosclerosis. Different cells, including endothelial cells, smoothmuscle cells,
fibroblasts, and adipocytes from the tunica intima, media, adventitia, and perivascular adipose tissue and their related cytokines all participate
in the inflammatory response of atherosclerosis via multiple intricate pathways. Endothelial dysfunction, smooth muscle cell migration and
proliferation, the transformation of fibroblasts into myofibroblasts, and adipokines produced by perivascular adipose tissue are
predominantly implicated in the pathological process of atherosclerosis.
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(EDRFs) as well as endothelin 1 (ET-1), thromboxane A2
(TXA2), angiotensin II (Ang II), and uridine adenosine tetra-
phosphate (UP4A), which belong to endothelium-derived
contracting factors (EDCFs). On the one hand, ECs are
natural barriers of the blood vessel to maintain the smooth-
ness of the tunica intima to prevent the platelet and leukocyte
adhesion and hazardous molecules from invading into arte-
rial vessel wall. On the other hand, the intact endothelium
maintains a physiological equilibrium related to the pro-
cesses of thrombosis via releasing antithrombotic and throm-
botic substances and vascular smooth muscle proliferation by
constituting the basement membrane of collagen together
with the protective layer of SMCs [17]. Interestingly, ECs
exert an important effect on the exchange of substances and
active transport [18].

3.2. Roles of Endothelial Cells in Atherosclerosis. Endothelial
dysfunction (ED) is the primary and a crucial step of the
development of atherosclerosis. Numerous cardiovascular
risk factors, such as obesity and diabetes mellitus, potentially
initiate endothelial cell injury, causing ED [19]. Under
normal conditions, the endothelium regulates vascular
inflammation by secreting NO, whereas a dysfunctional
endothelium accelerates reactive oxygen species (ROS)
generation and increases vascular inflammation, which is
harmful to the vascular system [20]. The damage to the endo-
thelium upsets the balance between vasoconstriction and
vasodilation, which is characterized by increased EDCFs,

especially ET-1, and reduced EDRFs, mainly NO, and initi-
ates a series of pathophysiologic changes that promote or
exacerbate atherosclerosis, including increased vascular per-
meability to lipoproteins and augmented leukocyte adhesion,
platelet aggregation, and generation of cytokines [7]. On the
other hand, various inflammatory cytokines, such as tumor
necrosis factor α (TNF-α), interleukin 1 (IL-1), and IL-6,
induce the endothelium to express vascular cell adhesion
molecule (VCAM), intercellular adhesion molecule (ICAM),
monocyte chemoattractant protein 1 (MCP-1), and other
chemokines, consequently promoting the adherence and
migration of monocytes [21-24]. Once resident in the
intima, monocytes acquire characteristics of tissue macro-
phages. Monocytes augment the expression of scavenger
receptor (SR) and then internalize modified lipoproteins.
The above processes consequently lead to the formation
of foam cells (FCs), which can be regarded as the early
atherosclerotic lesion [8]. After the rupture of the athero-
sclerotic plaque, the physiological balance between anti-
thrombotic and thrombotic substances is disrupted due
to the dysfunction of ECs, which leads to increased
thrombotic substances (e.g., von Willebrand factor
(vWF), TXA2) and attenuated antithrombotic substances,
such as heparin. These effects facilitate the process of
thrombosis, causing devastating consequences [25]. In
conclusion, all the above-mentioned factors contribute to
atherosclerosis, indicating the indispensable roles of endo-
thelial cells in the progression of atherosclerosis.
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Figure 2: The normal structure of the arterial vessel wall. The intima, media, adventitia, and perivascular adipose tissue comprise the intact
and normal arterial vessel wall. Therefore, cells from the arterial vessel wall mainly consist of endothelial cells, smooth muscle cells,
fibroblasts, and adipocytes. Other cells, such as macrophages, dendritic cells, and T cells, also reside in the arterial vessel wall. In addition,
the vasa vasorum promotes blood and oxygen delivery to the arterial vessel wall.
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4. The Media in the Progression of
Atherosclerosis

4.1. The Normal Roles of the Media. As mentioned previ-
ously, the thickness and components of the media between
the tunica intima and adventitia depend on the artery type.
The elastic fibers characterized by extensibility, mainly
forming the media of large arteries, maintain the intact struc-
ture and elastic contraction of arteries. However, the media
of moderate arteries is circumferentially saturated with
smooth muscle cells in a side-by-side arrangement. Owens
recommended that the fully differentiated or mature SMCs
could express a unique repertoire of contractile proteins
(e.g., smooth muscle myosin heavy chain (SM-MHC) or α-
smooth muscle actin (αSMA)), ion channels, and signaling
molecules that are required for its contractile function [26].
During vasculogenesis, SMCs also produce high levels of
extracellular matrices (ECMs), including collagen, elastin,
proteoglycans, cadherins, and integrins that consist of a
major portion of the blood vessel mass [27]. In addition,
other components of media collagen fibers play a crucial role
in connecting and supporting the blood vessel.

4.2. Smooth Muscle Cells Contributing to Atherosclerosis. The
relationship between SMCs and atherosclerosis has consider-
ably drawn attention since Ross et al. proposed that SMCs
have a principal impact on the development of atherosclero-
sis due to their migration into the intima and proliferation
[13]. Interestingly, migrated SMCs are key players in the
process of luminal stenosis after the damage of the intima
and the internal elastic lamina. Once numerous SMCs
migrate to the intima, their excessive proliferation and
apoptosis suppression promote extracellular matrix synthesis
and lipid deposition, consequently facilitating arterial wall
fibrosis and thickening and the luminal stenosis. First, Ruan
et al. and Ishikawa et al. demonstrated that human SMCs
express numerous lipid uptake receptors, such as low-
density lipoprotein receptor (LDLR) and SR, contributing
to the formation of myogenic FCs [28, 29]. Second, SMC
proliferation can be inhibited by NO, which is a key
component of arterial vessel wall remodeling in response to
injury, for example, after angioplasty or vein grafting and
during atherosclerosis formation [30]. Hou et al. provided
new evidence that vasostatin-2 may function as an
atherosclerosis-related factor that inhibits cell proliferation
and cell adhesion in SMCs, which are associated with the
progression of atherosclerosis [31]. In addition, Lang et al.
strongly suggested that luteolin suppresses the migration
and proliferation of SMCs via downregulating Akt and Src
signals [32]. As mentioned above, the migration and prolifer-
ation of SMCs are an indispensable pathological process of
atherosclerosis. In addition, some of the ECMs released by
SMCs strengthen the fibrous cap of the atherosclerotic pla-
que to protect against plaque rupture and thrombosis [33].
Shankman et al. demonstrated that the contribution of SMCs
within atherosclerotic plaques has been extremely neglected
and that the transformation of the SMC phenotype mediated
by KLF4 is crucial in lesion pathogenesis utilizing a Myh11-
CreERT2 ROSA floxed STOP eYFP ApoE−/− mouse model

[34]. In addition, a comprehensive review by Doran et al.
listed numerous cytokines likely produced by SMCs, such
as platelet-derived growth factor (PDGF), transforming
growth factor β (TGF-β), macrophage inhibitory factor
(MIF), interferon γ (IFN-γ), and MCP-1. These cytokines
are likely derived from other cells within lesion cells; thus,
the concrete functions of these cytokines in the progression
of atherosclerosis remain unclear [35].

5. The Adventitia Contributing to
Atherosclerosis

Recently, the adventitia, which is the outermost layer of arte-
rial vessel wall, has attracted considerable interest given its
complex and dynamic roles. Traditionally, the adventitia
was regarded as merely an inert physical barrier separating
tissues to provide support for blood vessels and a scaffold
for the sympathetic nerve system and the vasa vasorum
[36]. However, compelling evidence demonstrated that the
adventitia plays a critical role in coordinating the progression
of atherosclerosis. In 1962, Schwartz and Mitchell demon-
strated that the prevalence and degree of the adventitial cellu-
lar infiltration closely correlated with the severity of the
atherosclerotic plaque [37]. The most common fibroblasts
in the adventitia have the capacity of differentiating into
myofibroblasts mainly activated by TGF-β [38], conse-
quently increasing local expression of inflammatory cyto-
kines and growth factors (GFs) [39, 40]. In addition, Xu
et al. demonstrated that the earliest expression of MCP-1
was detected in the adventitial fibroblasts before the forma-
tion of intimal lesions after feeding ApoE−/− mice a hyperli-
pidic diet [41]. On the other hand, adventitial fibroblast
nicotinamide adenine dinucleotide phosphate hydrate
(NADPH) oxidase-derived ROS is the sensor and messenger
for the early development of vascular disease [42]. For exam-
ple, Liu et al. recommended that NADPH oxidase inhibitors
reduced vascular ROS and the medial area via delivering the
NADPH oxidase inhibitor gene to the vascular adventitia in
C57BL/6 mice [43]. In addition, after the continuous hyper-
lipidic diet administration, the activated fibroblasts (AFs)
derived from ApoE−/− mice displayed augmented NADPH
oxidase activity, O2− production, and increased p47phox
levels compared with wild-type mice. These effects are asso-
ciated with increased proliferation and migration of AFs. In
addition, p47phox knockout mediated by siRNA decreased
the proliferation and migration of AFs in ApoE−/− mice
[44]. Additionally, the vasa vasorum promotes blood and
oxygen delivery to the arterial vessel wall, thus providing a
suitable environment for the development of atherosclerotic
plaque and serving as a conduit for trafficking of resident
and progenitor cells into the media and intima [45]. Addi-
tionally, Hu et al. hypothesized that adventitial transient
receptor potential vanilloid type 1 (TRPV1) and sensory C-
fibers may play a pivotal role in the adventitia, underscoring
the role of the sympathetic nerve system in the development
of atherosclerosis [46].

In addition to fibroblasts, some of the lymphocytes accu-
mulate in the adventitia, as supported by the study that dem-
onstrated that the adventitia is a major site of arterial wall
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inflammation related to lymphocyte infiltration in athero-
sclerotic arteries [47]. T helper 1 (Th1) cells are proathero-
genic cells that secrete proinflammatory cytokines, such as
IL-2, TNF-α, and IFN-γ. In contrast, regulatory T (Treg) cells
are atheroprotective cells that release anti-inflammatory
cytokines (e.g., IL-4, IL-5, IL-9, IL-10, and IL-13). Th2 cells
and Th17 cells are proatherogenic cells and atheroprotective
cells. Natural killer T (NKT) cells are proatherogenic cells;
however, the mechanism remains unclear. B-1 cells exert
antiatherogenic activities via secreting IgM, contributing to
the formation of FCs. B-2 cells stimulate Th1 cells and
dendritic cells (DCs) to play a proatherogenic role. B-2 cells
also secrete IgG, but its proatherogenic role remains to
be elucidated. Innate responsive activator (IRA) cells
exert proatherogenic activities by releasing granulocyte-
macrophage colony-stimulating factor (GM-CSF), which
acts on DCs [48] (Figure 3).

6. Multiple Roles of Perivascular Adipose Tissue
in Atherosclerosis

PVAT is defined as the adipose tissue around the arteries
regardless of location [12] located on the outside of adventitia
without laminar structures or any organized barrier to sepa-
rate the two [16]. The old paradigm suggested that PVAT
was merely a mechanical and structural support tissue for
the blood vessel. More recently, we realized that PVAT not
only stores triacylglycerols/triglycerides and free fatty acids
(FFAs) participating in energy metabolism but also secretes
quantities of adipokines, such as leptin, adiponectin, visfatin,
resistin, TNF-α, IL-6, IL-8, MCP-1, and plasminogen activa-
tor inhibitor 1 (PAI-1), which play indispensable roles in ath-
erosclerosis by mediating SMC migration and proliferation
[49], promoting neointimal hyperplasia and formation [50,
51], stimulating inflammation responses and oxidative stress
[52], and regulating vascular tone [53] (Figure 4). For
instance, Lamers et al. demonstrated that lipid mediators,
such as FFAs and adipokines, affect SMC function via induc-
ing augmented proliferation and inflammatory signaling and
proposed that the increased fatty acids and adipokines
released by PVAT in obesity may disclose the relationships
among SMCs dysfunction, vascular inflammation, and ath-
erosclerosis [54]. Additionally, PVAT plays an indispensable
role in the inflammatory response to atherosclerosis. The
result of proteomic analysis indicated that empirical adipose
tissue (EAT) exhibits increased oxidative stress compared
with subcutaneous adipose tissue (SAT) in patients with car-
diovascular disease, suggesting its possible connection with
myocardial stress. Similarly, perivascular visceral fat results
in endothelial dysfunction and accelerates atherosclerosis as
demonstrated by transplantation of visceral adipose tissue
or SAT immediately adjacent to the right common carotid
artery in ApoE−/− mice [55]. On the other hand, the idea that
elevated levels of leptin may promote neointimal formation
was observed in leptin-deficient ob/ob mice with reduced
neointimal formation. In addition, Takaoka et al. found that
endovascular injury significantly augments proinflammatory
adipokines and attenuates adiponectin in a femoral artery
wire injury mouse and iliac artery balloon injury rat. In

addition, neointimal hyperplasia after vascular injury was
reduced via knockout of TNF-α with decreased upregulation
of proinflammatory adipokines. Regarding the regulation of
vascular tone, adventitium-derived relaxing factors (ADRFs),
which are currently referred to as PVAT-derived relaxing
factors (PVRFs), play a critical role; however, the mechanism
is unclear. Ang 1 to 7 may be potential candidates of PVRFs
given that Ang 1 to 7 act on the endothelium to cause the
release of nitric oxide, which acts as a hyperpolarizing factor
through K (Ca) channels to cause relaxation of the blood
vessel in rat aorta [56]. Whether others factors, such as
adiponectin, leptin, hydrogen sulfate (H2S) generated by
cystathionine gamma lyase (CSE), and palmitic acid
methyl ester (PAME), are PVRF members remains contro-
versial. Taken together, these results all highlight the
proatherogrnic role of PVAT in the development of ath-
erosclerosis based on various studies about the antiathero-
genic effect of PVAT [57, 58].

7. Conclusions

Conclusively, the functional significance of the inflammatory
response in atherosclerosis is increasingly conspicuous.
However, the complicated pathogenesis of atherosclerosis
remains unclear. From our perspective, endothelial dysfunc-
tion, SMCmigration and proliferation, the transformation of
fibroblasts into myofibroblasts, and adipokines produced by
PVAT are predominantly implicated in the pathological pro-
cess of atherosclerosis. We are looking forward to the discov-
ery of positive and effective therapeutic approaches to reduce
the incidence and mortality and ameliorate the prognosis of
atherosclerosis-related disorders via restoring the normal
function of the endothelium or inhibiting the above pro-
cesses. Of course, in view of some controversial ideas, we
should further investigate the possible roles of different cells
from the arterial vessel wall in atherosclerosis to provide a
solid foundation for therapeutic interventions for atheroscle-
rosis and its associated disorders.
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