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Abstract: Natural organic matters (NOMs) are ubiquitous in the environment, but few systematic
studies have examined the influence of NOMs on the sorption ability of magnetic sludge biochar. In
this study, magnetic sludge biochar was synthesized, characterized, and used as a sorbent to remove
tetracycline (TC) from aqueous solutions. The effects of pH, humic acid (HA), and fulvic acid (FA) on
TC adsorption by magnetic sludge biochar were studied using batch experiments. Adding HA and
FA can alter the adsorption behavior of TC, except for its pH dependency. The results of this study
show that relatively low concentrations of dissolved HA (≤8 ppm) and FA (≤5 ppm) promote the
adsorption capacity of TC, but higher concentrations compete against TC for sorption sites on the
surface of magnetic sludge biochar. The results of this study promote a better understanding of the
application of magnetic sludge biochar in real antibiotic wastewater.
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1. Introduction

Magnetic biochar is commonly prepared by impregnation–pyrolysis, chemical co-
precipitation, solvothermal, and reductive co-precipitation [1–3]. Magnetic biochar has a
high surface area, porous structure, appreciable amounts of active sites on its surface, and
good recyclability [4]. Furthermore, using excess sludge to prepare magnetic sludge biochar
could reduce its preparation cost and have great significance in solving the secondary
pollution of inadequately treated sludge [5]. Owing to its extraordinary adsorption capacity,
magnetic sludge biochar has attracted much attention in terms of the removal of various
pollutants, including antibiotics, heavy metals, and dyes [6–8].

Humic acid (HA) and fulvic acid (FA), as two important parts of dissolved organic
matter, are ubiquitous in almost all aquatic ecosystems at concentrations typically ranging
from 0.1 to 10 ppm [9]. The abundant functional groups (aliphatic and aromatic COOH,
OH, OCH3, and aliphatic CO) and special physicochemical properties (hydrophobicity,
aromaticity, and functionality) [10] could give HA and FA a strong affinity for biochar.
Therefore, HA and FA are generally chosen as model NOM molecules in sorption studies.
As reported previously, HA and FA could participate in the interaction between biochar
and pollutants [11]. They could also modify the surface properties of biochar and affect
its adsorption behavior towards various pollutants. Moreover, they could also result in
site competition and pore blockage [12]. Lian et al. [13] reported that HA-coated biochar
(prepared by straws) enhanced the adsorption of sulfamethoxazole but suppressed that of
sulfanilamide on biochar. The effects of adsorbed HA on sulfonamide sorption by biochar
were related to the properties of sorbate, the composition and structure of the HA adlayer,
and concentration. Luo et al. [12] demonstrated that low concentrations of dissolved HA
promoted the removal of ciprofloxacin by sludge biochar, but higher concentrations of
dissolved HA suppressed ciprofloxacin removal. Park et al. [14] indicated that HA could
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change the charge of biochar and increase sorption sites resulting from less aggregation of
biochar particles. In conclusion, the effect of NOM on the adsorption behavior of biochar
varied greatly, which mainly depended on the properties of the biochar, sorbents, NOM
types, and NOM concentrations. However, very little attention has been paid to the effects
of NOM on the sorption of pollutants by magnetic sludge biochar, especially as a function
of pH.

The extensive use of antibiotics has become a serious environmental problem, which
could discharge into various media [15,16] and cause adverse consequences [16]. Among
the commonly used antibiotics, tetracycline (TC) is the most widely used in aquaculture
and pharmacy due to its relatively low cost [17]. TC has been detected in wastewater,
surface, and groundwater, and might cause harm to human health and ecosystems [18,19].
Therefore, in this study, TC was selected as the target organic pollutant.

The objective of this study was to investigate the sorption behavior of TC on magnetic
sludge biochar as a function of pH in the presence of HA and FA. The results of this study
are expected to provide new insights into understanding how magnetic sludge biochar
interacts with organic contaminants in a real water environment.

2. Materials and Methods
2.1. Materials

The activated sludge was sampled from Gaoqiao Wastewater Treatment Plant in
Zunyi, China. Tetracycline (TC, ≥98%), ferrous chloride, and ferric chloride (≥99.9%)
were purchased from Aladdin Industrial Corporation (Los Angeles, CA, USA). HA and FA
were purchased from Macklin Biochemical Technology and Wengjiang Reagent Co., Ltd.
(Shaoguan, China). All other chemicals were of analytical grade and used without any
further purification.

2.2. Preparation of Magnetic Sludge Biochar

Firstly, 5 mL of 1 mol/L HCl was added to 500 mL of sludge (suspended solid
concentration: 14.0 g/L). In order to destroy the cell wall, the agitated mixture (400 rpm,
20 min) was transferred to an ultrasonic cell crusher, pretreated under 59 kHz for 15 min,
and then dried at 105 ◦C overnight. Secondly, magnetic sludge biochar was prepared
according to the reference [20]. For forming Fe3O4 particles on the sludge biochar surface,
5.28 g of FeCl2 and 13.50 g of FeCl3 were dissolved in 500 mL of water, and then 50 g
of dried sludge was added into the aqueous solution. Subsequently, 2 mol/L of NaOH
solution was added to the above mixture until the pH of the suspension reached 10.0 under
vigorous stirring conditions. The solid phase was separated by centrifugation at 4000 rpm
before being vacuum dried at 70 ◦C. Finally, the composite was pyrolyzed at 400 ◦C for 4 h
in a tubal furnace under an N2 atmosphere to prepare magnetic sludge biochar.

2.3. Characterization of Magnetic Sludge Biochar

The morphology of magnetic sludge biochar was characterized by a scanning electron
microscope (SEM, Scios, FEI Company, Hillsboro, OR, USA). The specific surface area and
pore size of magnetic sludge biochar were determined using BSD-PS (Beishide Instruments,
Beijing, China). The surface functional groups of magnetic sludge biochar were obtained
with a FTIR analyzer (VERTEX70 spectrometer, Bruker Co., Bremen, Germany). The
zeta potentials of magnetic sludge biochar were determined using Malvern Zetasizer
(Nano ZS90, Great Malvern, UK). The iron weight ratio in the magnetic biochar was
measured by atomic absorption spectroscopy (AAS, 990SUPER, Beijing Purkinje General
Instrument Co., Ltd., Beijing, China).
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2.4. Batch Sorption Experiment

To examine the influence of HA and FA on magnetic sludge biochar adsorption of TC,
the sorption experiments were conducted in the dark by adding 0.07 g of magnetic sludge
biochar samples into 100 mL of 200 mg/L TC solution at room temperature/25 ◦C (the final
dissolved concentrations of HA and FA were 0, 5, 8, 12, and 15 ppm), before being agitated
in the incubator shaker at 150 rpm. To investigate the effect of pH on the adsorption
behavior of TC in the above conditions, the initial pH of the TC solution was adjusted in
the range of 2.0–8.0 with 0.2 mol/L of HCl or NaOH. At certain time intervals, 2.0 mL
of the suspension was sampled and separated magnetically. Then, the concentrations of
TC and HA in the supernatant were determined by UV–vis (UV–vis, CARY 300, Agilent,
Santa Clara, CA, USA) at 357 nm and 254 nm, respectively. The concentration of FA was
measured with a total organic carbon (TOC) analyzer (Shimadzu 3201, Kyoto, Japan).

3. Results and Discussion
3.1. Characterization of Magnetic Sludge Biochar

The morphology of magnetic sludge biochar was characterized by SEM (Figure 1A).
The surface morphology of the magnetic biochar is similar to that of activated carbon, with
a large number of irregular Fe3O4 particles distributed on its surface. The SEM-EDX results
(Figure 1B) confirmed the existence of Fe species. Moreover, the atom and weight ratio of
iron on the surface of magnetic sludge biochar was 2.8% and 7.1%, respectively. Meanwhile,
the iron weight ratio in magnetic sludge biochar bulk calculated by AAS analysis was 7.8%,
which was consistent with the EDX results. The above results indicate that Fe3O4 exists in
both the surface and the interior of the sludge biochar.
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Figure 1. SEM image (A) and EDX elemental analysis (B) of as-prepared biochar.

The surface and pore features of as-prepared magnetic biochar were detected by a
nitrogen test. As depicted in Figure 2A, the isotherm curves are consistent with the IUPAC
classification type IV curve and the H3-type hysteresis loop. The SBET was calculated as
93.41 m2/g, and the average pore size was 9.017 nm. The isotherm has no obvious inflection
point in the low relative pressure region, indicating that the magnetic biochar has a low
proportion of micropores. The lack of a saturated adsorption platform in the medium
relative pressure area indicates that the biochar has irregular pores and morphologies.
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Figure 2. Characterizations of the magnetic biochar (A) N2 adsorption–desorption isotherm, (B) Zeta
potential, (C) FT−IR, and (D) magnetic separation property.

Figure 2B exhibited the surface zeta potentials of magnetic sludge biochar. The
isoelectric point (pHIEP) of magnetic biochar was estimated to be 5.7. When pH < 5.7, the
surface of magnetic sludge biochar carried a positive charge, while the surface displayed a
negative charge when pH > 5.7.

In order to reveal the functional groups of the as-prepared magnetic biochar, FTIR anal-
ysis was performed (Figure 2C). The strong adsorption peaks at 1037 cm−1 and 1633 cm−1

corresponded to the C-O-C stretching vibration band and C=C bonds in the aromatic
compounds, respectively. The peak at 3389 cm−1 indicated that the magnetic biochar
possessed a significant amount of -OH groups on its surface [21]. The peak at 470 cm−1

was ascribed to the Fe-O stretching bond [22,23]. Finally, the magnetic separation property
was investigated using a separation test (Figure 2D), and the results showed that biochar
could be completely separated from the TC and MS suspensions within 60 s of application
of the magnets.

3.2. Adsorption of TC on Magnetic Sludge Biochar in the Absence of NOM
3.2.1. Effect of Initial pH of TC

Figure 3 exhibited that the sorption capacity of TC was markedly raised as the initial
solution pH increased, and the maximum adsorption amount occurred at pH = 6. In
aqueous solutions, TC will undergo protonation–deprotonation reactions and present
different ionic species, including cation (TC+), molecule (TC◦), and anions (TC− and TC2−)
as the dissociation constants (pKa) of TC are 3.3, 7.7, and 9.7 (shown in Figure S1) [5].
Apparently, when pH ≤ 3.0, the adsorption capacity of TC was very limited due to both
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surfaces of the prepared magnetic biochar and TC being positively charged [24]. As the
pH increased, the adsorption capacity sharply increased, and the adsorption performance
of TC on the magnetic biochar was maximized at pH = 6 (193.3 mg/g). Although the
zeta potential of the magnetic biochar was minimal and TC mainly became neutral, the
maximum adsorption capacity could be explained by the π-π electron donor–acceptor
and hydrogen bonding interactions [25]. Whereas, when the pH increased beyond 6, both
magnetic sludge biochar and the TC (TC− and TC2−) were negatively charged, leading to a
reduction in adsorption levels.

Micromachines 2022, 13, 1057 5 of 10 
 

 

maximum adsorption capacity could be explained by the π-π electron donor–acceptor 
and hydrogen bonding interactions [25]. Whereas, when the pH increased beyond 6, both 
magnetic sludge biochar and the TC (TC− and TC2−) were negatively charged, leading to a 
reduction in adsorption levels. 

 
Figure 3. Effect of initial pH on magnetic biochar (adsorption time: 18 h). 

3.2.2. Effect of Magnetic Biochar Dose  
It was obvious that the adsorption capacity of TC increased with the magnetic 

biochar dose (Figure 4). A higher dose of magnetic biochar resulted in a higher adsorption 
capacity of TC due to more available active sites. Specifically, the adsorption capacity of 
TC reached the maximum when the dosage of the adsorbent was 0.6 g·L−1, and then 
decreased following further additions. 

 
Figure 4. Effect of magnetic biochar dose (adsorption time: 18 h). 

3.3. Effect of HA and FA on the Adsorption Behavior of TC 
Figures 5 and 6 present the effect of different concentrations of HA and FA on TC 

adsorption by magnetic sludge biochar. Overall, adding HA or FA to magnetic sludge 
biochar varied the adsorption behavior of TC significantly but hardly affected its global 
regularity of pH dependency. HA and FA contain different functional groups, including 
carboxylic, phenolic, and aromatic groups [26], which make them carry a negative charge 
over the whole pH range [27]. Therefore, HA and FA could be adsorbed onto the surface 
of magnetic sludge biochar. This may change its surface properties or result in 
competition for the surface sorption sites, thereby affecting the adsorption behavior of TC. 
As shown in Figures 7 and 8, dissolved HA and FA concentrations at the end of the 

Figure 3. Effect of initial pH on magnetic biochar (adsorption time: 18 h).

3.2.2. Effect of Magnetic Biochar Dose

It was obvious that the adsorption capacity of TC increased with the magnetic biochar
dose (Figure 4). A higher dose of magnetic biochar resulted in a higher adsorption capac-
ity of TC due to more available active sites. Specifically, the adsorption capacity of TC
reached the maximum when the dosage of the adsorbent was 0.6 g·L−1, and then decreased
following further additions.
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3.3. Effect of HA and FA on the Adsorption Behavior of TC

Figures 5 and 6 present the effect of different concentrations of HA and FA on TC
adsorption by magnetic sludge biochar. Overall, adding HA or FA to magnetic sludge
biochar varied the adsorption behavior of TC significantly but hardly affected its global
regularity of pH dependency. HA and FA contain different functional groups, including
carboxylic, phenolic, and aromatic groups [26], which make them carry a negative charge
over the whole pH range [27]. Therefore, HA and FA could be adsorbed onto the surface of
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magnetic sludge biochar. This may change its surface properties or result in competition
for the surface sorption sites, thereby affecting the adsorption behavior of TC. As shown in
Figures 7 and 8, dissolved HA and FA concentrations at the end of the experiment partly
reduced, which indicated that dissolved HA and FA were partially adsorbed onto magnetic
sludge biochar over the pH range from 2.0 to 8.0. However, a simple electrostatic interaction
mechanism could not completely account for the pH dependence of the sorption because
when pH > pHPZC (5.7), the HA, FA, and magnetic sludge biochar were all negatively
charged, but as shown in Figures 6 and 8, partial adsorption still occurred. Therefore, it
was suspected that the functional groups of HA and FA interacted with the components of
magnetic sludge biochar, which was responsible for the adsorption of HA and FA.
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A low concentration of dissolved HA (8 ppm) promoted the sorption capacity of TC
from 193.3 to 260.1 mg/g, which then dramatically decreased to 95.4 mg/g with further
increases in dissolved HA to 15 ppm. This could be caused by competition for surface
sorption sites at higher dissolved HA concentrations. Compared with the HA samples, FA
has a less significant influence on the adsorption behavior of TC. Specifically, the presence
of FA (5 ppm) enhanced the sorption capacity of TC from 193.3 to 220.6 mg/g, while a
higher concentration of dissolved FA inhibited the TC sorption capacity. Moreover, HA
and FA showed a major effect on the adsorption of TC at pH ≤ 6 and relatively little effect
at higher pH values. When pH ≤ 3, the adsorption capacity of TC increased dramatically
in the presence of HA and FA. This could be attributed to HA and FA adsorbed on the
surface of magnetic sludge biochar, which could change its surface properties and decrease
the repulsive force. As the pH increased, the functional groups of the adsorbed HA and
FA could enhance the π-π electron donor–acceptor and hydrogen bonding interactions.
As a result, the sorption capacities of TC were enhanced. When the pH was above 6, the
dominant form of tetracycline was the anion; the HA, FA, and magnetic sludge biochar
were more negatively charged; and the amount of HA and FA adsorbed on magnetic
sludge biochar decreased, which resulted in a minimal effect of HA and FA on the TC
adsorption process.
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To further investigate the competing role of HA and FA with or without TC, the
adsorption behaviors of HA and FA in the absence of TC on magnetic sludge biochar were
performed, and the results are shown in Figure S2. Compared with the concentration of the
residual HA and FA in the presence of TC (Figures 7 and 8), the adsorption capacity of HA
and FA on magnetic sludge biochar is almost unchanged with relatively low concentrations
(HA≤ 8 ppm, FA≤ 5 ppm) and when the pH < 3.0 or pH > 6.0. Nevertheless, the adsorption
capacity of HA and FA decreased significantly at pH 3–6 with higher concentrations. These
results (Figures 7, 8 and S2) support the idea that higher concentrations of dissolved
HA and FA at pH 3–6, mainly leading to competition for the surface sorption sites. The
adsorbed HA and FA could, on the one hand, occupy active sites on the surface of magnetic
sludge biochar but, on the other hand, repel the approaching TC molecules sterically, thus
exhibiting competing behavior against the sorption of TC.

HA and FA could efficaciously affect the adsorption capacity as well as the adsorptive
speed of TC. As shown in Figure 9, when the initial HA concentration was below 8 ppm,
the adsorption speed was improved, and the adsorption equilibrium was achieved at 12 h.
Figure 9 also showed that the dissolved HA increased to 15 ppm, the adsorption speed
decreased, and the adsorption equilibrium was achieved at 18 h. Compared with the HA
samples, FA affected the adsorption speed of TC less significantly, but the influence trend
was similar to HA.
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3.4. Adsorption Performance of TC on Magnetic Sludge Biochar in Coexistence of HA and
FA System

Considering the co-existence of HA and FA in some actual water bodies, the adsorption
performance of TC in a coexistence system was also conducted. As shown in Figure S3, the
adsorption capacity and adsorptive speed were intermediate when HA and FA coexisted.
Remarkably, the adsorptive equilibrium had been retained.

The effects of raw materials; biochar, NOM, and adsorbate preparation methods; and
NOM on the adsorption behavior are summarized in Table 1. These findings suggest
that the effects of dissolved NOM (model: HA and FA) on the adsorption of organic
contaminants by biochar were significantly dependent on the properties of sorbate and
biochar, as well as the types and concentration of NOM.
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Table 1. The effect of NOM on the adsorption behavior of organic contaminants by biochar.

Raw Materials Preparation Method NOM Adsorbate Effect Reference

crop straws pyrolysis HA Sulfamethoxazole
sulfonamide

Declined
(2.5–30 ppm)

Improved
(>30 ppm)
Improved

(2.5–30 ppm)

[13]

declined
(>30 ppm)

pine needles
wheat straw

sludge
pyrolysis HA

HA
polychlorinated biphenyls

ciprofloxacin

Enhanced
(10 ppm)
Promoted
(10 ppm)

[28]
[12]

sludge pyrolysis HA
FA tetracycline

Improved
(≤8 ppm)
Improved
(≤5 ppm)

This work

4. Conclusions

In this research, magnetic sludge biochar was successfully synthesized as an adsorbent
for TC adsorption. Considering the complex influencing factors in natural systems, the
adsorption behavior of TC in the absence or presence of HA and FA was investigated. The
adsorption of TC on magnetic sludge biochar was greatly enhanced in the presence of low
concentration HA and FA, but a higher concentration of dissolved HA and FA inhibited TC
adsorption. Since the concentrations of natural organic matter in natural systems rise to a
relatively high level, ranging from 0.1 to 10 ppm, magnetic sludge biochar still exhibited
tremendous potential as an adsorbent for treating antibiotics in wastewater. Moreover,
the application of magnetic sludge biochar for removing antibiotics can provide the dual
benefits of solid waste management and wastewater treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi13071057/s1, Figure S1: Various structures of TC under different
conditions. Figure S2: The adsorption behaviors of HA and FA on magnetic sludge biochar as a
function of pH in the absence of TC (A: HA; B: FA). Figure S3: TC sorption behavior on magnetic
sludge biochar as a function of the co-existence of HA and FA.
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