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Abstract

There is increasing evidence showing that pleiotropy is a widespread phenomenon in com-

plex diseases for which multiple correlated traits are often measured. Joint analysis of multi-

ple traits could increase statistical power by aggregating multiple weak effects. Existing

methods for multiple trait association tests usually study each of the multiple traits sepa-

rately and then combine the univariate test statistics or combine p-values of the univariate

tests for identifying disease associated genetic variants. However, ignoring correlation

between phenotypes may cause power loss. Additionally, the genetic variants in one gene

(including common and rare variants) are often viewed as a whole that affects the underlying

disease since the basic functional unit of inheritance is a gene rather than a genetic variant.

Thus, results from gene level association tests can be more readily integrated with down-

stream functional and pathogenic investigation, whereas many existing methods for multiple

trait association tests only focus on testing a single common variant rather than a gene. In

this article, we propose a statistical method by Testing an Optimally Weighted Combination

of Multiple traits (TOW-CM) to test the association between multiple traits and multiple vari-

ants in a genomic region (a gene or pathway). We investigate the performance of the pro-

posed method through extensive simulation studies. Our simulation studies show that the

proposed method has correct type I error rates and is either the most powerful test or com-

parable with the most powerful tests. Additionally, we illustrate the usefulness of TOW-CM

based on a COPDGene study.

Introduction

Complex diseases are often characterized by many correlated phenotypes which can better

reflect their underlying mechanism. For example, hypertension can be characterized by sys-

tolic and diastolic blood pressure [1]; metabolic syndrome is evaluated by four component

traits: high-density lipoprotein (HDL) cholesterol, plasma glucose and Type 2 diabetes,
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abdominal obesity, and diastolic blood pressure [2]; and a person’s cognitive ability is usually

measured by tests in domains including memory, intelligence, language, executive function,

and visual-spatial function [3]. Also, more and more large cohort studies have collected or are

collecting a broad array of correlated phenotypes to reveal the genetic components of many

complex human diseases. Therefore, by jointly analyzing these correlated traits, we can not

only gain more power by aggregating multiple weak effects, but also understand the genetic

architecture of the disease of interest [4].

Even though genome-wide association studies (GWASs) have been remarkably successful

in identifying genetic variants associated with complex traits and diseases, the majority of the

identified genetic variants only explain a small fraction of total heritability [5]. Furthuer, a

gene is the basic functional unit of inheritance whereas the GWAS are primarily focused on

the paradigm of single common variant. However, most published GWASs only analyzed

each individual phenotype separately, although results on related phenotypes may be reported

together. Large-scale GWAS of complex traits have consistently demonstrated that, with few

exceptions, common variants have moderate-to-small effects. Therefore, it is important to

identify appropriate methods that fully utilize information in multivariate phenotypes to detect

novel genes in genetic association studies.

In GWAS, several methods have been developed for multivariate phenotypes association

analysis [3] to test association between multivariate continuous phenotypes and a single com-

mon variant. To our knowledge, current multivariate phenotypes association methods can be

roughly classified into two categories: univariate analysis and multivariate analysis. Univariate

analysis methods perform an association test for each trait individually and then combine the

univariate test statistics or combine the p-values of the univariate tests [6–9]. Even though

such methods are computationally efficient, they neglect the omnipresent correlation between

individual phenotypes and may reduce the power compared to multivariate analysis. Multivar-

iate analysis methods jointly analyze more than one phenotype in a unified framework and

test for the association between multiple phenotypes and genetic variants. Multivariate analysis

methods include multivariate analysis of variance (MANOVA) [10], linear mixed effect mod-

els (LMM) [11], and generalized estimating equations (GEE) [12]. Another special approach is

to consider reducing the dimension of the multivariate phenotypes by using dimension reduc-

tion techniques. The common method for dimensionality reduction is principal component

analysis (PCA) [13] which essentially finds the combination of these phenotypes and assumes

that the transformed phenotypes are independent. The limitation of this method is that it can

not properly account for the variation of phenotypes or genotypes. It is also hard to interpret

the meaning of principle components of the multivariate phenotypes, especially in practice.

Recent studies show that complex diseases are caused by both common and rare variants

[14–20]. Gene-based analysis requires statistical methods that are fundamentally different

from association statistics used for testing common variants. It is essential to develop a novel

statistical method to test the association between multiple traits and multiple variants (com-

mon and/or rare variants). In this article, we develop a statistical method to test the association

between multiple traits and genetic variants (rare and/or common) in a genomic region by

Testing the association between an Optimally Weighted combination of Multiple traits

(TOW-CM) and the genomic region. TOW-CM is based on the score test under a linear

model, in which the weighted combination of phenotypes is obtained by maximizing the

score test statistic over weights. The weights at which the score test statistic reaches its maxi-

mum are called the optimal weights. We also use extensive simulation studies to compare

the performance of TOW-CM with MANOVA [10], multi-trait sequence kernel association

test MSKAT [21] and minimum p-value [22]. Simulation studies demonstrate that, in all the

simulation scenarios, TOW-CM is either the most powerful test or comparable to the most
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powerful test among the four tests. We also illustrate the usefulness of TOW-CM by analyzing

a real COPDGene study.

Methods

We consider a sample with n unrelated individuals. Each individual has K (potentially corre-

lated) traits and has been genotyped at M variants in a considered region (a gene or a path-

way). Denote yik as the kth trait value of the ith individual and xim as the genotype score in

additive coding of the ith individual at the mth variant. Let Y = (Y1, � � �, YK) denote the random

vector of K traits and X = (X1, � � �, XM) denote the random variable of the genotype score at M
variants for these n individuals where Yk = (y1k, � � �, ynk)T and Xm = (x1m, � � �, xnm)T. Consider a

linear combination of Y denoted as Yw ¼
PK

k¼1
wkYk, where w = (w1, � � �, wK)T.

We model the relationship between the combination of multiple continuous traits with the

M genetic variants in the considered region using the linear model

XM

k¼1

wkyik ¼ b0 þ b1xi1 þ � � � þ bMxiM þ �i ð1Þ

where β0 is the intercept and β = (β1, � � �, βM)T is the corresponding vector of coefficients. To

test the association between the combination of the multiple traits and the M genetic variants

is equivalent to test the null hypothesis H0: β = 0 under Eq (1). We use the score test statistic to

test H0: β = 0 under Eq (1). Let P ¼ In � 1

n 1n1
T
n and then the test statistic is:

S ¼ UTV � 1U ð2Þ

where U = (PX)0 PYw and V ¼ 1

n ðPYwÞ
0

PYwðPXÞ
0

PX. The score test can be rewritten as a

function of w:

SðwÞ ¼ n �
w0Y 0PXðX 0PXÞ� 1X 0PYw

w0Y 0PYw
ð3Þ

where P = P0 and PP0 = P. We propose to maximize S(w) to get the optimal weight and then

define the statistic to evaluate the association between the optimally weighted combination of

the target traits and test genetic variants.

When D = Y0 PY is positive definite, maximizing S(w) is equivalent to maximizing

SðwÞ ¼
w0LL� 1Y 0PXðX0PXÞ� 1X0PYL� TLTw

w0LL0w
ð4Þ

where L is the lower triangular matrix obtained from the Cholesky decomposition of D = LLT.

However, the matrix of D is usually not full rank because of existing correlation between multi-

ple traits. If the matrix D is semi-positive define matrix, we introduce a ridge parameter λ0, for

which we suggest the choice l0 ¼
ffiffiffiffiffiffiffiffi
1=n

p
, where n is the number of individuals in the testing

data, and modify the adjustment to mitigate the effect of the non-positive matrix D in order to

avoid the instability: D = Y0 PY + λ0I. Let C = L−1 Y0 PX(X0 PX)−1 X0 PYL−T and c be the eigen-

vector corresponding to the largest eigenvalue of the matrix C, then S(w) is maximized when

L0(w) equals c. Hence Eq (4) is maximized when wo = L−T c. In a special case, if all the traits we

consider are independent and M = 1, we can get an analytical weight referred to [22]:

wk ¼
ðPXÞTðPYkÞ

ðPYkÞ
T
ðPYkÞ

¼
XTPYk

YT
k PYk

ð5Þ
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for the kth phenotype, k = 1, 2, 3, . . ., K. The Eq (5) is equivalent to wk ¼
CorrðYk;XÞffiffiffiffiffiffiffiffiffi

YT
k PYk

p where the

numerator is the correlation coefficient between the kth phenotype Yk and the genotypic vari-

ant X and the denominator can be viewed as the variance of the kth phenotype Yk. It means

that wk has same direction with the correlation between the phenotype Yk and the genotypic

variant X, and puts big weight to the kth trait when it has strong association with the genotypic

variant and/or it has low variance.

We define the statistic to test an optimally weighted combination of multiple traits

(TOW-CM), Ywo ¼
PK

k¼1
wo

kYk, as

T ¼
wo0Y 0PXðX0PXÞ� 1X0PYwo

wo0Y 0PYwo
ð6Þ

We use permutation methods to evaluate P-values of T. The TOW-CM method can also be

extended to incorporate covariates. Suppose that there are p covariates. Let zil denote lth covari-

ate of the ith individual. We adjust both trait value yik and genotypic score xim for the covariates

by applying linear regressions. That is,

yik ¼ a0 þ a1zi1 þ � � � þ apzip þ �ik and

xim ¼ a0m þ a1mzi1 þ � � � þ apmzip þ tim

Let ~yik and ~xim denote the residuals of yik and xim, respectively. We incorporate the covariate

effects in TOW-CM by replacing yik and xim in Eq (6) by ~yik and ~xim. With covariates, the statis-

tic of TOW-CM is defined as:

TTOW� CM¼ Tjyik¼~yik;xim¼~xim

Comparison of tests

We compared the performance of our method (TOW-CM) with the following methods: 1)

Multivariate Analysis of Variance (MANOVA) [10]; 2) Multi-trait Sequence Kernel Associa-

tion Test (MSKAT) [21]; 3) Minimum p-value based on the p-values of the individual trait

TOW [22] (denoted as minP).

Simulation

In simulation studies, we use the empirical Mini-Exome genotype data including genotypes

of 697 unrelated individuals on 3205 genes obtained from Genetic Analysis Workshop 17

(GAW17). Two differen type of variants (Common variants: minor allele frequency (MAF)>

0.05 and Rare variants: MAF<0.05) are chosen from a super gene (Sgene) including four

genes: ELAVL4 (gene1), MSH4 (gene2), PDE4B (gene3), and ADAMTS4 (gene4). The pattern

of the allele frequency distribution of the Sgene is similar as the 3205 genes’ [22]. In our simu-

lation studies, we generate genotypes based on the genotypes of 697 individuals in these four

genes. The genotypes are extracted from the sequence alignment files provided by the 1,000

Genomes Project for their pilot3 study (http://www.1000genomes.org). To generate the geno-

type of an individual, we generate two haplotypes according to the haplotype frequencies.

We test K = 4 related traits with a compound-symmetry correlation matrix and consider

two covariates: a standard normal covariate z1 and a binary covariate z2 with P(z2 = 1) = 0.5.

We generate trait values based on genotypes by using the following models:

yk ¼ 0:5z1 þ 0:5z2 þ Zk þ �k k ¼ 1; 2; 3; 4

Test genetic association with multiple traits using optimally weighted combination

PLOS ONE | https://doi.org/10.1371/journal.pone.0220914 August 9, 2019 4 / 17

http://www.1000genomes.org
https://doi.org/10.1371/journal.pone.0220914


where � = (�1, �2, �3, �4) is zero-mean normal with variances 1 and correlation ρ. We set the

magnitude of correlation |ρ| to 0.2, 0.5, and 0.8, and the signs of symmetric location of covari-

ate matrix are randomly chosen from (-1,1). η = (η1, η2, η3, η4) are contributions from a set of

genotypic variants, which are simulated as follows.

For type I error, phenotypes are generated under the null model i.e. η = 0. To evaluate

power, we randomly choose one common variant and nc (20%) rare variants as casual variants.

We assume that all the nc rare causal variants have the same heritability and the heritability of

the common causal variant is twice of the heritability of rare causal variants. That is, we model

the genotypic variants’ contribution to disease risk as Zk ¼ bcxc þ
Pnc

j¼1
bkjxj; k ¼ 1; � � � ; 4

where xc and xj denote the common variant and rare variant, respectively. βc and βkj represent

the corresponding effect size. Let h and hk denote the heritability of all the causal variants for

all the K traits and for the kth trait, respectively. We generate K random numbers t1, � � �, tK
from a uniform distribution between 0 and 1, and the heritability of kth trait denotes

hk ¼ htk=
PK

k¼1
tk. For the kth trait, we assign the effect size of common variants

bc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk

varðxcÞð1 � hkÞð1þ RÞ

s

ð7Þ

and the magnitude of the effect of rare variants

jbkjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hkR

varðxcÞð1 � hkÞncð1þ RÞ

s

ð8Þ

where R denotes the ratio of the heritability of rare causal variants to the heritability of the

common causal variant.

For power comparisons, we conducted simulations under the four scenarios: each time

only the first L traits are associated with the set of variants, L = 1, 2, 3, 4, respectively. Intui-

tively, in the first scenario (L = 1), when only the first trait is associated with the variants set,

the minP method (it equals to test the first trait alone) may have good performance. However,

we will show that by simultaneously testing correlated null traits, our proposed method

(TOW-CM) could actually improve the detection power compared to test the first trait alone.

When there are multiple correlated traits that are associated with the rare variants set, the pro-

posed TOW-CM would offer vastly improved detection power than the minimum p-value

based approach. In each scenario, we also consider different percentage of risk variants for

rare variants.

Simulation results

Table 1 summarizes the estimated type I error rates of our method TOW-CM with other three

comparable methods under different significance levels and different magnitude of trait corre-

lation |ρ|. The type I error rates are evaluated using 10000 replicated samples and the P-values

are estimated using 10000 permutations for TOW-CM and minP. For the 10000 replicated

samples, the 95% confidence intervals (CIs) for the estimated type I error rates of nominal lev-

els 0.05, 0.01, and 0.001 are (0.046, 0.054), (0.008, 0.012), and (0.0004, 0.0016), respectively.

From this table, we can see that all of the estimated type I error rates are either within 95% CIs

or close to the bound of the corresponding 95% CIs, which indicate that the type I error rates

of all methods are controlled under all considered scenarios.

In power comparisons, the P-values of TOW-CM, minP are calculated using 1000 permuta-

tions, while the P-values of MANOVA and MSKAT are calculated by asymptotic distributions.

The powers of all the four tests are evaluated using 1000 replicated samples at a nominal

Test genetic association with multiple traits using optimally weighted combination
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significance level of 0.05. Figs 1–6 present the power under significance level 0.05 for L = 4, 3,

2, 1 respectively.

These figures show the power comparisons of the four tests (TOW-CM, MANOVA,

MSKAT and minP). Power is a function of the total heritability based on three cases (all causal

are risk variants, 90% causal are risk variants, and 80% causal are risk variants) for each specific

scenario L. These figures show that TOW-CM is consistently the most powerful test among

the four tests, and MANOVA is the second most powerful test when genotypes of genetic vari-

ants have impact on more than 1 traits. MSKAT is consistently less powerful than the other

two multivariate tests (TOW-CM and MANOVA) most likely because there are only 8% vari-

ants with MAF in the range of (0.01,0.035) in Sgene which the simulations are based on. Simi-

lar to SKAT, MSKAT will lose power when the MAF of causal variants are not in the range

(0.01,0.035) [23]. The minP method is consistently less powerful than TOW-CM and MAN-

OVA because they ignore the traits’ dependence by directly using minimum of the P-values of

testing the four single traits. Overall, we can see that they suffer power loss when the correla-

tions among traits increase.

Table 1. The estimated type I error rates for TOW-CM, minP, MANOVA and MSKAT.

α = 0.05

Sample Size TOW-CM minP MANOVA MSKAT

1000 |ρ| = 0.2 0.054 0.055 0.055 0.045

|ρ| = 0.5 0.054 0.052 0.054 0.046

|ρ| = 0.8 0.052 0.049 0.053 0.048

2000 |ρ| = 0.2 0.050 0.053 0.052 0.049

|ρ| = 0.5 0.048 0.050 0.052 0.049

|ρ| = 0.8 0.048 0.053 0.052 0.051

3000 |ρ| = 0.2 0.049 0.051 0.052 0.050

|ρ| = 0.5 0.053 0.055 0.050 0.049

|ρ| = 0.8 0.048 0.049 0.053 0.050

α = 0.01

1000 |ρ| = 0.2 0.012 0.010 0.010 0.009

|ρ| = 0.5 0.011 0.008 0.011 0.010

|ρ| = 0.8 0.012 0.010 0.010 0.007

2000 |ρ| = 0.2 0.012 0.012 0.011 0.008

|ρ| = 0.5 0.010 0.012 0.010 0.009

|ρ| = 0.8 0.010 0.010 0.011 0.010

3000 |ρ| = 0.2 0.010 0.013 0.010 0.011

|ρ| = 0.5 0.012 0.011 0.010 0.010

|ρ| = 0.8 0.010 0.011 0.011 0.010

α = 0.001

1000 |ρ| = 0.2 0.0014 0.0010 0.0012 0.0008

|ρ| = 0.5 0.0004 0.0008 0.0010 0.0007

|ρ| = 0.8 0.0010 0.0011 0.0010 0.0009

2000 |ρ| = 0.2 0.0013 0.0012 0.0007 0.0012

|ρ| = 0.5 0.0016 0.0012 0.0007 0.0008

|ρ| = 0.8 0.0011 0.0010 0.0010 0.0005

3000 |ρ| = 0.2 0.0005 0.0013 0.0008 0.0009

|ρ| = 0.5 0.0011 0.0012 0.0008 0.0011

|ρ| = 0.8 0.0011 0.0011 0.0009 0.0005

https://doi.org/10.1371/journal.pone.0220914.t001
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Fig 1. Power comparison of four tests as a function of heritability for four continuous traits with the magnitude of correlation at 0.2, 0.5

and 0.8, respectively. All four traits are associated with the gene for the left panel and only the first three traits are associated with the gene for

the right panel. Sample size is 1,000 and 20% of rare variants are causal. All causal variants are risk variants. The powers are evaluated at a

significance level of 0.05.

https://doi.org/10.1371/journal.pone.0220914.g001
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2

Fig 2. Power comparison of four tests as a function of heritability for four continuous traits with the magnitude of correlation at 0.2, 0.5

and 0.8, respectively. All four traits are associated with the gene for the left panel and only the first three traits are associated with the gene for

the right panel. Sample size is 1,000 and 20% of rare variants are causal variants among which 90% of causal variants are risk variants and 10% of

causal variants are protective variants. The powers are evaluated at a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0220914.g002
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An interesting scenario is one in which only the first trait is associated with the variants set

and all the others are null traits (L = 1). Stephens [24] and Wu et al. [25] have reported that

joint testing by incorporating a correlated null trait could improve the power for testing associ-

ation of a common variant. When only the first trait is associated with the variants set, minP is

either the most powerful test or has similar power to the most powerful test especially in the

case of both causal variants under weak traits correlation (|ρ| = 0.2). The TOW-CM and MAN-

OVA statistic could benefit from increased traits correlations, and offer vastly improved power

3

Fig 3. Power comparison of four tests as a function of heritability for four continuous traits with the magnitude

of correlation at 0.2, 0.5 and 0.8, respectively. All four traits are associated with the gene for the left panel and only

the first three traits are associated with the gene for the right panel. Sample size is 1,000 and 20% of rare variants are

causal among which 80% of causal variants are risk variants and 20% of causal variants are protective variants. The

powers are evaluated at a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0220914.g003
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Fig 4. Power comparison of four tests as a function of heritability for four continuous traits with the magnitude of correlation at 0.2, 0.5

and 0.8, respectively. Only the first two traits are associated with the gene for left panel and only the first traits are associated with the gene for

right panel. Sample size is 1,000 and 20% of rare variants are causal variants. All causal are risk variants. The powers are evaluated at a

significance level of 0.05.

https://doi.org/10.1371/journal.pone.0220914.g004
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Fig 5. Power comparison of four tests as a function of heritability for four continuous traits with the magnitude of correlation at 0.2, 0.5

and 0.8, respectively. Only the first two traits are associated with the gene for left panel and only the first traits are associated with the gene for

right panel. Sample size is 1,000 and 20% of rare variants are causal. 90% of causal are risk variants and 10% of causal are protective variants. The

powers are evaluated at a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0220914.g005
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Fig 6. Power comparison of four tests as a function of heritability for four continuous traits with the magnitude of correlation at 0.2, 0.5

and 0.8, respectively. Only the first two traits are associated with the gene for left panel and only the first traits are associated with the gene for

right panel. Sample size is 1,000 and 20% of rare variants are causal among which 80% of causal variants are risk variants and 20% of causal

variants are protective variants. The powers are evaluated at a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0220914.g006
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by incorporating strongly correlated null traits. Thus, our results verify the conclusion of [24]

and [25].

Overall, we can see that the proposed TOW-CM is an attractive approach that provides

good power in most of the scenarios.

Application to the COPDGene

Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases

characterized by long term poor airflow and is a major public health problem [26]. The

COPDGene Study is a multi-center genetic and epidemiologic investigation dedicated to

studying COPD [27]. Participants in the COPDGene Study gave consent for the use of data

collected during the study in downstream analyses. This study is sufficiently large and appro-

priately designed for analysis of COPD. In this study, we consider more than 5000 non-His-

panic Whites (NHW) participants where the participants have completed a detailed protocol,

including questionnaires, pre- and post-bronchodilator spirometry, high-resolution CT scan-

ning of the chest, exercise capacity (assessed by six-minute walk distance), and blood samples

for genotyping. The participants were genotyped using the Illumina OmniExpress platform.

The genotype data have gone through standard quality-control procedures for genome-wide

association analysis detailed at http://www.copdgene.org/sites/default/files/GWAS_QC_

Methodology_20121115.pdf.

Based on the literature studies of COPD [28, 29], we selected 7 key quantitative COPD-

related phenotypes, including FEV1 (% predicted FEV1), Emphysema (Emph), Emphysema

Distribution (EmphDist), Gas Trapping (GasTrap), Airway Wall Area (Pi10), Exacerbation

frequency (ExacerFreq), Six-minute walk distance (6MWD), and 4 covariates, including BMI,

Age, Pack-Years (PackYear) and Sex. EmphDist is the ratio of emphysema at -950 HU in the

upper 1/3 of lung fields compared to the lower 1/3 of lung fields where we did a log transfor-

mation on EmphDist in the following analysis, referred to [28]. In the analysis, participants

with missing data in any of these phenotypes were excluded.

To evaluate the performance of our proposed method on a real data set, we applied all of

the 4 methods (TOW-CM, MANOVA, MSKAT and minP) to the COPD associated genes or

genes containing significant single-nucleotide polymorphisms (SNPs) in NHW population

with COPD-related phenotypes [30]. In the analysis, we first removed the missing data in any

genotypic variants and then adjusted each of the 7 phenotypes for the 4 covariates using linear

models. In the analysis, participants with missing data in any of the 11 variables were excluded.

Therefore, a complete set of 5,430 individuals across 50 genes were used in the following analy-

ses. In order to compare these methods, we adopted the commonly used 107 permutations for

TOW-CM and minP methods. For this verification study, we use 0.05 as the significance level

for MANOVA, MSKAT and TOW-CM methods and use Bonferroni corrected significance

level 0.05/7 = 7.14 × 10−3 for minP methods since this method perform association tests across

each trait, respectively. The results are summarized in Table 2. From Table 2, we can see that

TOW-CM identified 14 genes, minP identified 14 genes, MANOVA identified 12 genes and

MSKAT identified 4 genes. Among these four methods, TOW-CM identified the most signifi-

cant genes where all of these 14 genes had previously been reported to be in association with

COPD by eligible studies [7, 30], among which 5 genes (LOC105377462,CHRNA3, CHRNA5,

HYKK,IREB2) are statistically significant if we use a more stringent cut-off 1.00 × 10−3 for a

multiple testing issue with 50 genes in total. Because the MAFs of most variants are not in the

range of (0.01,0.035) which is a range favoring MSKAT, MSKAT performs worse than the

other three comparable methods (Yang et al. 2017). TOW-CM and minP perform better than

MANOVA, which is perhaps because only a proportion of phenotypes are associated with
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Table 2. The p-values of significant genes in the genetic association analysis for COPD using these four different methods.

Chr Genes Range of MAF minP

(0.05 / 7)

MANOVA

(0.05)

MSKAT

(0.05)

TOW-CM

(0.05)

1 EPHX1 (0.0214, 0.4620) 0.0197 0.6055 0.5890 0.6257

1 IL6R (0.1680, 0.4398) 0.2646 0.5214 0.5163 0.5148

1 MFAP2 (0.1789, 0.4842) 0.0753 0.6986 0.9926 0.6869

1 TGFB2 (0.0139, 0.4858) 7.23 × 10− 4 0.2282 0.1831 3.47 × 10− 2

2 HDAC4 (0.0147, 0.4906) 0.0468 0.3393 0.2197 0.5026

2 SERPINE2 (0.0143, 0.4642) 0.4671 0.9797 0.7706 0.9010

2 SFTPB (0.0784, 0.4766) 0.0738 0.1017 0.1669 0.3921

2 TNS1 (0.0128, 0.4936) 0.00727 4.63 × 10− 2 0.2095 2.65 × 10− 2

3 MECOM (0.0099, 0.4957) 0.0359 0.9878 0.7211 0.9735

3 RARB (0.0278, 0.4942) 0.0491 0.1988 0.7469 0.3973

4 LOC105377462 (0.0190, 0.4933) 0.00 6.28 × 10− 3 0.8310 0.00

4 FAM13A (0.0279, 0.4968) 1.08 × 10− 5 0.2169 0.0939 0.3925

4 GC (0.0511, 0.4397) 0.1743 0.1875 0.6499 0.5257

4 GSTCD (0.0343, 0.3872) 3.6 × 10− 6 5.63 × 10− 5 0.1376 3.30 × 10− 2

4 HHIP (0.0368, 0.4984) 0.0150 3.64 × 10− 2 0.4131 1.95 × 10− 3

5 HTR4 (0.0396, 0.4889) 0.0487 0.6622 0.6512 0.8906

5 SPATA9 (0.1059, 0.4077) 0.1145 0.3118 0.5198 0.1964

6 TNF (0.0259, 0.0809) 0.0320 0.1627 0.1542 0.3077

6 ZKSCAN3 (0.0137, 0.3036) 0.4990 0.8575 0.9083 0.8793

6 AGER (0.0442, 0.1830) 3.25 × 10− 4 2.27 × 10− 3 9.31 × 10− 4 9.57 × 10− 3

6 ARMC2 (0.0187, 0.4695) 0.1618 0.2481 0.1474 0.6233

6 NCR3 (0.0133, 0.0899) 0.0735 0.4641 0.4145 0.5892

6 SOX5 (0.0193, 0.4972) 0.0764 0.8376 0.6845 0.6386

10 LRMDA (0.0094, 0.4956) 0.0394 0.4102 0.7190 0.3260

10 CDC123 (0.0240, 0.4561) 0.0138 0.6846 0.4097 0.8836

10 GSTO2 (0.0538, 0.4547) 4.0 × 10− 7 1.36 × 10− 6 0.1387 0.8731

10 SFTPD (0.0186, 0.4367) 0.3699 0.9997 0.9767 0.9751

11 GSTP1 (0.3351, 0.3452) 6.60 × 10− 3 0.7053 0.1211 0.5043

11 MMP1 (0.0519, 0.3916) 0.1665 0.8614 0.6557 0.9449

11 MMP12 (0.0541, 0.1439) 0.4073 0.9512 0.7372 0.8941

12 LRP1 (0.0271, 0.4071) 0.0144 0.4530 0.5326 0.1812

12 BICD1 (0.0224, 0.4984) 0.3045 0.3856 0.2186 0.4076

12 CCDC38 (0.0783, 0.4669) 0.3525 0.1151 0.5888 0.2316

14 SERPINA1 (0.0212, 0.4171) 0.0254 0.6161 0.0816 0.3506

14 SERPINA3 (0.1076, 0.4907) 0.4336 0.8567 0.6572 0.7375

15 CHRNA3 (0.0515, 0.4234) 4.0 × 10− 7 1.36 × 10− 6 0.1387 0.00

15 CHRNA5 (0.2170, 0.4178) 1.6 × 10− 6 3.27 × 10− 7 5.77 × 10− 6 0.00

15 HYKK (0.1070, 0.4139) 0.00 1.42 × 10− 7 0.0152 0.00

15 IREB2 (0.1577, 0.4287) 3.6 × 10− 6 5.63 × 10− 5 0.1376 1.10 × 10− 4

15 THSD4 (0.0115, 0.4944) 0.00725 0.0798 0.8496 0.0669

16 CFDP1 (0.0424, 0.4139) 0.0991 0.9474 0.7127 0.9772

17 TIMP2 (0.0403, 0.4950) 1.03 × 10− 3 0.1828 0.3702 0.6836

19 CYP2A6 (0.2386, 0.2505) 3.10 × 10− 3 1.15 × 10− 2 3.47 × 10− 2 2.85 × 10− 2

19 EGLN2 (0.0465, 0.3712) 0.00870 0.3913 0.3705 4.36 × 10− 2

19 MIA (0.0459, 0.0691) 0.1152 0.0647 0.4979 3.78 × 10− 2

19 RAB4B (0.1374, 0.4273) 4.00 × 10− 4 4.60 × 10− 2 0.7020 2.42 × 10− 3

(Continued)
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COPD. The method minP missed some genes in comparision to our method TOW-CM, it

may because the method minP ignores the correlation between these seven phenotypes.

Discussion

GWAS have identified many variants with each variant affecting multiple phenotypes, which

suggests that pleiotropic effects on human complex phenotypes may be widespread. Also,

recent studies have shown that complex diseases are caused by both common and rare variants

[14, 16, 19]. Therefore, statistical methods that can jointly analyze multiple phenotypes for

common or/and rare variants have advantages over analyzing each phenotype individually or

only considering for common variants (GWAS). In this article, we propose TOW-CM method

to perform multivariate analysis for multiple phenotypes in association studies based on the

following reasons: (1) complex diseases are usually measured by multiple correlated pheno-

types in genetic association studies; (2) there is increasing evidence showing that studying mul-

tiple correlated phenotypes jointly may increase power for detecting disease associated genetic

variants, and (3) there is a shortage of gene-based approaches for multiple traits. Simulation

results show that TOW-CM has correct type I error rates and is consistently more powerful

in comparision to the other three tests. The real data analysis results show that TOW-CM has

excellent performance in identifying genes associated with complex disease with multiple cor-

related phenotypes such as COPD.

One disadvantage of TOW-CM is that the test statistic does not have an asymptotic distri-

bution and a permutation procedure is needed to estimate its P-value, which is time consum-

ing compared to the methods whose test statistics have asymptotic distributions. To save time

when applying TOW-CM to genetic association studies, we can use the “step-up” procedure

[31] to determine the number of permutations, which can show evidence of association based

on a small number of permutations first (e.g. 1,000) and then a large number of permutations

are used to test the selected potentially significant genes. Specifically, for the analysis of real

data, the computation time of p-value estimation of TOW-CM for all genes was about three

days using our R program on 50 Dell PowerEdge C6320 servers. Each server has two 2.4GHz

Intel Xeon E5-2680 v4 fourteen-core processors and 600 MB average memory. We also

uploaded the R program on GitHub, https://github.com/Jianjun-CN/TOW-CM/blob/master/

R%20Code Furthermore, TOW-CM method can not only be used for gene-based association

studies, but also can be extended to transcriptome-wide association study (TWAS), which

needs further investigations.
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