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Abstract

Understanding what is said in demanding listening situations is assisted greatly by looking at the 

face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this 

visual information when a talker's voice is presented in background noise. These benefits have also 

been observed in quiet listening conditions in cochlear-implant users, whose device does not 

convey the informative temporal fine structure cues in speech, and when normal-hearing 

individuals listen to speech processed to remove these informative temporal fine structure cues. 

The current study (1) characterised the benefits of visual information when listening in 

background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when 

speech is presented with or without informative temporal fine structure. The accuracy with which 

normal-hearing individuals reported words in spoken sentences was assessed across three 

experiments. The availability of visual information and informative temporal fine structure cues 

was varied within and across the experiments. The results showed that visual benefit was observed 

using open- and closed-set tests of speech perception. The size of the benefit increased when 

informative temporal fine structure cues were removed. This finding suggests that visual 

information may play an important role in the ability of cochlear-implant users to understand 

speech in many everyday situations. Models of audio-visual integration were able to account for 

the additional benefit of visual information when speech was degraded and suggested that auditory 

and visual information was being integrated in a similar way in all conditions. The modelling 

results were consistent with the notion that audio-visual benefit is derived from the optimal 

combination of auditory and visual sensory cues.
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1 Introduction

Speech perception in normal-hearing listeners is very resilient to distortions in the auditory 

signal and the presence of background noise. In contrast, understanding speech in 

background noise is difficult for adults with hearing impairment (Davis, 1989; Kramer et al., 

1998) and is particularly problematic for users of cochlear implants (CI) whose device 

degrades the spectral and temporal information in speech (Schafer and Thibodeau, 2004; 

Wolfe et al., 2009; Fu et al., 1998; Skinner et al., 1994). Shannon et al. (1995) showed that 

when signals were presented in quiet, listeners with normal hearing were able to tolerate a 

dramatic reduction in the amount of spectral and temporal information present in the speech 

signal before there was any appreciable effect on performance. The ‘noise-vocoding’ 

technique used by Shannon et al. (1995) involved: (1) dividing the speech signal into a 

limited number of frequency bands; (2) extracting the slow amplitude modulations or 

‘temporal envelope’ within each frequency band; and (3) using these envelopes to modulate 

a wide-band random-noise carrier signal which was then filtered by the same filters used in 

stage (1). The use of a random-noise carrier has the effect of replacing the informative high-

rate fluctuations in frequency near the centre-frequency of each band with non-informative 

fine structure. As the first two stages of this process mimic the processing stages 

implemented by a speech processor of a cochlear implant, vocoders have been widely used 

to investigate the difficulties experienced by users of cochlear implants.

The inability of cochlear implants to convey informative temporal fine structure cues has 

severe consequences for the ability of cochlear-implant users to perceive speech in the 

presence of background noise (e.g. Schafer and Thibodeau, 2004), and this difficulty has 

been replicated using noise-vocoding in normally-hearing individuals (Qin and Oxenham, 

2003; Ihlefeld et al., 2010; Rosen et al., 2013). Qin and Oxenham (2003) investigated speech 

perception in noise with 4-, 8-, and 24-channel vocoders. Normal-hearing listeners were 

presented with IEEE sentences, and the signal-to-noise ratio (SNR) at which performance 

was 50% correct (known as the Speech Reception Threshold, SRT50) was estimated by 

varying the relative levels of speech and noise. When speech was unprocessed and presented 

in single-talker background noise, participants could achieve 50% correct performance at an 

SNR of −10.3 dB. When speech was then processed by an 8-channel vocoder, listeners 

required the level of the speech to be 6.4-dB higher than the noise to reach the same 

performance level. The addition of more spectral channels improved performance with the 

vocoder but a positive SNR (+0.7 dB) was still required to report 50% of keywords correctly 

even in the 24 channel condition. Qin and Oxenham (2003) concluded that the reduction of 

pitch cues found in the temporal fine structure and low frequency harmonics of speech may 

be responsible for this performance detriment. Somewhat lower levels of susceptibility to the 

presence of noise have been reported for speech processed using a ‘sine-wave vocoder’ in 

which the informative temporal fine structure is replaced with sine waves rather than noise 

(Whitmal et al., 2007). There is some evidence that sine-wave vocoders match the percept of 

cochlear-implant users more closely than noise-band vocoders (e.g. Dorman et al., 1997) and 

are better at preserving the envelope fluctuations present in speech (e.g. Whitmal et al., 

2007; Dau et al., 1999).

Stacey et al. Page 2

Hear Res. Author manuscript; available in PMC 2017 November 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Although the impact of removing informative temporal fine structure cues has been studied 

extensively for audio-only situations, its impact on the audio-visual perception of speech in 

noisy conditions has received little attention, despite this being the more ecologically 

relevant problem. Sumby and Pollack's (1954) seminal work with normal-hearing adults 

showed that word recognition improved considerably under audio-visual conditions 

compared to listening to the audio alone. In fact, the addition of visual speech information 

was found to be equivalent to increasing the signal-to-noise ratio by +15 dB compared with 

audio-only presentation. It is perhaps not surprising therefore that people with impaired 

hearing and users of cochlear implants gain considerable benefit from being able to see the 

faces of talkers (Erber, 1975; Kaiser et al., 2003; Tyler et al., 1997).

Kaiser et al. (2003) tested audio-only, visual-only, and audio-visual recognition of 

monosyllabic English words in both normal-hearing listeners and cochlear-implant users. 

Normal-hearing listeners were presented with words at −5 dB SNR, and cochlear-implant 

users were presented with words in quiet. The results showed that both groups of listeners 

performed best in the audio-visual condition in which word recognition scores were similar 

in both groups. There was some evidence that cochlear-implant users made better use of 

visual information when listening conditions were more difficult, such as when they were 

required to identify lexically difficult words (low frequency words with many phonetic 

neighbours, Luce and Pisoni, 1998). More recent studies have added support to the idea that 

people with cochlear implants may be better at integrating auditory and visual information 

than normal-hearing listeners (Rouger et al., 2007; Desai et al., 2008).

A number of previous studies have found that benefits from visual speech information 

depend on the nature of the auditory signal. Grant et al. (1985, 1991, 1994) investigated the 

way in which different sorts of degraded speech signals combined with visual speech cues. 

More recently, McGettigan et al. (2012) demonstrated greater benefits from visual speech 

information for speech lacking in auditory clarity, such that visual speech information 

boosted performance more for 2- and 4-channel noise-vocoded speech than it did for 6-

channel vocoded speech.

These studies lead logically to the idea that the value of any sensory input is not fixed, but 

can depend of the value or nature of another sensory input; i.e. the visual signal is of greater 

value when the auditory input is degraded. This is consistent with the ‘Principle of Inverse 

Effectiveness’ (Lakatos et al., 2007; Tye-Murray et al., 2010) which asserts that the value of 

one modality will increase as the value of another declines. A number of models have been 

proposed to try to explain the nature of multisensory integration (Massaro, 1987; Blamey et 

al., 1989; Braida, 1991; Grant et al., 1998; Kong and Carlyon, 2007; Rouger et al., 2007; 

Micheyl and Oxenham, 2012). Models can be broadly categorised as to whether information 

is integrated in some raw sensory form before any decision is made (‘pre-labelling’) or after 

decision processes are applied separately to each modality (‘post-labelling’; Braida, 1991; 

Peelle and Sommers, 2015).

Recently, Micheyl and Oxenham (2012) proposed a pre-labelling model based on Signal 

Detection Theory (SDT) to explain the capacity of normal-hearing listeners to integrate 

vocoded information in one ear with low-frequency acoustic information in the other ear. 
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Their model and those applied in other similar studies suggested that the benefits of 

integrating electric and acoustic information can be explained as an additive interaction 

(Seldran et al., 2011; Micheyl and Oxenham, 2012; Rader et al., 2015) of the raw sensory 

information prior to any decision. Rouger et al. (2007) applied a post-labelling model to 

examine the properties of audio-visual integration, which assumes that decisions are made 

about individual cues prior to integrating these to make an overall decision. Their model is 

an extension of the ‘probability summation model’ (Treisman, 1998), which states that the 

probability of answering correctly is equal to the probability that either one or both of the 

modalities presented individually would result in the correct answer. Interestingly, Rouger et 

al.’s implementation of this model on their data suggested that integration across modalities 

operated differently in cochlear implantees and normal hearing subjects listening to noise-

vocoded speech.

The current project systematically investigates the perception of sine-wave vocoded speech 

(labelled as ENV speech) at a range of SNRs, and compares this with performance in ‘clear’ 

speech conditions where informative temporal fine structure cues remain (labelled as TFS 

speech). The primary question of interest is whether the size of the benefit received from 

visual speech information depends on the presence of informative temporal fine structure 

information. This question was addressed using both open-set and closed-set tests of speech 

perception as we might expect to find differences between different types of speech tests 

(see Lunner et al., 2012). Not only were we interested in whether any numeric improvement 

in performance with the addition of visual information depended on the presence of TFS, but 

also whether any observed differences implied a difference in the underlying integration 

process. Three experiments are presented below; in the first participants completed an open-

set sentence test using a between participants design, the second reports an open-set 

sentence test using a mixed participants design, and the third reports a closed-set sentence 

test using a mixed participants design. Background noise consisted of multi-talker babble. In 

each experiment we expected to find that visual speech information contributed more to 

understanding vocoded speech in background noise than to understanding clear speech in 

background noise. These results were interpreted within the framework of a SDT model.

2 General methods

2.1 Apparatus

The presentation of stimuli and collection of responses was achieved using the EPrime 

software (Version 2.0, Psychology Software Tools Inc., Sharpsburg, US). Acoustic stimuli 

were presented over HD280pro headphones (Sennheiser, Wedemark, Germany) via a custom 

built digital-to-analogue converter. The presentation level of the acoustic stimuli was 

calibrated to achieve an average presentation level between 70 and 73 dB sound pressure 

level (SPL). Calibration was performed by coupling the headphones to an artificial ear 

(Brüel & Kjær Type 4153) using a flatplate adaptor. Calibration measurements were made 

using a 0.5-inch pressure field microphone (Type 4192) connected to a sound level meter 

(Type 2260). Visual stimuli were presented on a computer-controlled visual display unit 

measuring 25.4 cm high by 44.5 cm wide positioned approximately 0.5 m away from the 

participants and at head height.
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2.2 Signal processing

Audio-visual sentence materials (IEEE sentences, IEEE, 1969) were processed using the 

Matlab programming environment (Mathworks, Nantick MA). The desired signal-to-noise 

ratio (SNR) was achieved by attenuating the stimulus (for negative SNRs) or a multi-talker 

babble (for positive SNRs) and summing before normalising the RMS of the composite 

signal. The composite signal was then band-pass filtered into 8 adjacent frequency bands 

spaced equally on an equivalent rectangular bandwidth frequency scale between 100 Hz and 

8 kHz (Glasberg and Moore, 1990) using Finite Impulse Response filters. In experimental 

conditions that included informative temporal fine structure (TFS), the auditory stimuli were 

constructed by summing the output of the eight band-pass filters. In all other conditions 

(referred to as ENV), the temporal envelope of each filter output was extracted using the 

Hilbert transform and used to modulate a sine wave at the centre frequency of the filter and 

with alternating phase. The eight sine waves were then summed to form an auditory stimulus 

with uninformative TFS. This processing method ensured that the temporal envelopes were 

similar regardless of whether the fine structure was informative (TFS conditions) or 

uninformative (ENV conditions) (Eaves et al., 2011).

2.3 Procedure

Participants sat in a quiet room in front of the computer-controlled visual display unit. On 

each trial, a stimulus was selected randomly from the corpus of audio-visual sentence 

materials and the acoustic stimulus was presented over headphones while the visual display 

unit remained blank. In audio-visual conditions, a video showing the animated face of the 

talker uttering the same sentence was displayed simultaneously with the acoustic stimulus.

Four experimental conditions were defined by whether or not the processing preserved 

informative TFS (processing manipulation) and whether visual information was presented or 

not (modality manipulation). Stimuli were presented at a range of SNRs in each condition. 

The specific range of SNRs in any particular condition was chosen according to the stimulus 

materials used and the type of signal processing applied based on pilot testing in order to 

span the widest possible range of performance levels. The order of trials within each 

condition was randomised so that the SNR varied unpredictably from trial to trial.

A summary performance level was calculated for each SNR within each condition. The 

method of calculating the summary performance level varied across the experiments 

according to the materials used. A three- or four-parameter logistic function was fit to each 

participant's data using Matlab to describe the relationship between SNR and accuracy:

Where amax and amin are the asymptotic values of the function, x0 is the mid-point of the 

function, and b is the slope of the function. For Experiments 1 and 2, amin was always set to 

0 to reflect the open-set nature of the speech perception task that was used. As we show in 

Section 6.2, performance in visual-only conditions is non-zero but very poor. The relatively 
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small total number of key-words for each participant at each SNR (experiment 1: 50; 

experiment 2: 25) mean that small percentage differences cannot be resolved. In addition 

allowing the amin parameter to vary to fit the data results in poorer fits. The fitted function 

was used to determine the SNR at which the participant achieved an accuracy of 50% correct 

(the Speech Reception Threshold, SRT50), as follows:

3 Experiment 1

This experiment used an open-set test of speech understanding to test the hypothesis that the 

benefit from visual speech when listening in noise is larger when informative temporal fine 

structure is not available, such as in those who hear using a cochlear implant alone, 

compared to when informative TFS is available.

3.1 Methods

3.1.1 Participants—Twenty-eight students (9 male, age range 18–29 years) from the 

Nottingham Trent University took part. All reported having normal hearing, normal or 

corrected-to-normal vision, and spoke English as their first language. Ethical approval was 

granted by the Nottingham Trent University.

3.1.2 Stimulus materials—The audio-visual materials were 80 IEEE sentences spoken 

by a single male talker with a British accent. Each sentence contained 5 key words. An 

example sentence with the key words underlined is “The slang name for all alcohol is 

booze.” The auditory stimulus had a sample rate of 44 100 Hz with 16-bits of quantization. 

The corresponding video stimulus was recorded at 25 frames per second and measured 19 

cm high by 24 cm wide on the visual display unit. Each sentence was approximately 3 s 

long.

3.1.3 Procedure—Each participant completed one of the four experimental conditions 

defined by the factorial combination of processing and modality manipulations, resulting in 

seven participants per condition. Pilot testing had indicated that the full range of 

performance levels could be spanned in most conditions by presenting the sentences at 

SNRs between −20 dB and +8 dB in 4-dB intervals. In the condition with auditory-only 

presentation and ENV speech, the range was adjusted as pilot testing indicated that 

participants required more favourable SNRs to achieve highly-accurate performance levels. 

In that condition, auditory stimuli were presented between −12 dB and +16 dB, with the first 

three participants being presented with stimuli between −16 and + 12 dB. On each trial, 

participants were instructed to listen carefully to the sentence and repeat any words they 

could hear out loud. The experimenter recorded which words were correctly identified and 

participants initiated the next trial. A total of 10 sentences were presented at each SNR with 

each containing 5 key words. Performance at each SNR was summarised as the percentage 

of the 50 key words that were identified correctly.
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3.2 Results and discussion

Fig. 1 (Panel A) shows the percentage of key words identified correctly as a function of SNR 

in the four conditions of the main experiment, with three-parameter logistic functions fit to 

the average data. The pattern of the data confirmed that the experiment had been successful 

in spanning the full range of performance levels and also that the data were well-described 

by a sigmoidal function. As expected, the location of the function varied as a function of the 

availability of TFS and visual information. Fig. 2 (Panel A) shows the SRT50s for all 

conditions. Participants were able to report 50% of key words correct (the SRT50) at highly-

adverse SNRs when both visual speech and TFS information were available (mean −8.8 dB, 

s.d. 1.8) but required more favourable SNRs to achieve the same performance level when 

neither type of information was available (mean 3.4 dB, s.d. 3.2).

The average SRT50s were subjected to an analysis of variance with between-subject factors 

of processing (TFS vs. ENV) and modality (auditory only vs. audio-visual). The analysis 

confirmed that the SNR required to reach an accuracy of 50% correct was influenced by the 

presence of both visual information (F(1,24) = 48.19, p < 0.001, ) and informative 

TFS (F(1,24) = 66.16, p < 0.001, ). The presence of visual speech information 

improved performance by a similar magnitude as the presence of TFS information, with an 

overall difference of 5.6 dB between audio-visual and audio-only conditions, and an overall 

difference of 6.6 dB between TFS and ENV conditions (Table 1).

The benefit gained from the addition of visual speech in each condition is shown in Fig. 3. 

The data did not support the hypothesis that visual information is more valuable when 

informative TFS is not available as no significant interaction was observed (F(1,24) = 3.07, p 

= 0.092, ). An analysis of the gradients of the fitted sigmoidal functions revealed no 

significant main effect of processing and no interaction, but slopes were marginally steeper 

in the audio-only conditions (mean slope at the 50%-correct point 19.6%/dB, s.d. 22.0) than 

in the audio-visual conditions (mean slope at the 50%-correct point 8.3%/dB, s.d. 2.8) (F(1, 

24) = 3.99, p = 0.057, ).

The results are compatible with the idea that seeing the face of the talker provides additional 

cues that can aid speech understanding when acoustic information is degraded, whether by 

the presence of a background noise or by the unavailability of informative TFS. However, 

the lack of a significant interaction meant that the results did not support the hypothesis that 

visual benefit when listening in noise is larger for those listeners who do not have access to 

informative TFS information such as cochlear-implant users.

Post-hoc power analyses indicated that the experiment had sufficient power to detect the 

main effects of processing and modality (power > 0.99) but may have been underpowered to 

detect the interaction effect (power = 0.27). An additional experiment was therefore 

conducted which was powered prospectively to detect the interaction effect using a mixed 

experimental design in which the effect of modality was assessed within rather than between 

participants.

Stacey et al. Page 7

Hear Res. Author manuscript; available in PMC 2017 November 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4 Experiment 2

This experiment sought to replicate the main effects of manipulating the availability of 

informative TFS and visual information observed Experiment 1 but was prospectively 

designed and powered to detect an interaction between the two manipulations. The 

experiment therefore tested the hypothesis that visual information is more beneficial in the 

absence of informative TFS than when it is present.

4.1 Methods

4.1.1 Power calculation—An analysis of the results of Experiment 1 suggested that the 

size of the interaction effect, expressed in terms of number of standard deviations, was 0.38. 

Presuming a within-subjects correlation between auditory-only and audio-visual 

performance of 0.5, detecting an interaction effect of this size in a mixed experimental 

design with a power of 0.80 and α = 0.05 would require 16 participants (Faul et al., 2007).

4.1.2 Participants—Sixteen students from the Nottingham Trent University, who had 

not participated in Experiment 1 (3 male, age range 18–23 years) took part. All reported 

having normal hearing, normal or corrected-to-normal vision, and spoke English as their 

first language.

4.1.3 Procedure—The procedure was similar to that of Experiment 1. The SNR of the 

sentences was varied between −20 and + 8 dB in 4-dB intervals except in the condition 

without either informative TFS or visual information, in which the SNR was varied between 

−12 dB and +16 dB in 4-dB intervals for all participants. Participants were presented with 5 

sentences at each SNR rather than 10 as used in Experiment 1. The factorial combination of 

processing (TFS vs ENV) and modality (auditory-only vs audio-visual) defined four 

conditions. The modality of the stimuli was varied within participants while the type of 

processing applied was varied across two groups of eight participants. The scoring of 

responses and analysis of performance was identical to that used in Experiment 1.

4.2 Results and discussion

The overall pattern of results was found to be very similar to that of Experiment 1 (Fig. 1, 

panel B). The manner in which average performance varied as a function of SNR was well-

described by a sigmoidal function, whose place was similarly affected by both the type of 

processing applied to the auditory stimulus and the availability of visual information. An 

analysis of variance on SRT50s (Fig. 2) confirmed a significant effect of both modality 

(F(1,14) = 100.21, p < 0.001, ) and processing (F(1,14) = 105.30, p < 0.001, 

). As in Experiment 1, visual speech information and TFS cues impacted on SRT50s 

to a similar degree (Table 1).

Unlike in Experiment 1, the interaction term was found to be significant (F(1,14) = 5.30, p = 

0.038, ; Fig. 2). Inspection of the data confirmed that the effect of providing visual 

information was larger when informative TFS was not available (Fig. 3). SRT50 decreased 

from −5.6 dB to −9.2 dB with the provision of visual information in the TFS condition 
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(mean change 3.5 dB, s.d. 1.7), and from 1.3 dB to −4.4 dB with the provision of visual 

information in the ENV condition (mean change 5.7 dB, s.d. 2.0). An analysis of the 

gradients of the logistic functions revealed no significant main effects or interactions.

The results of Experiment 2 supported the hypothesis that the benefits of visual information 

are larger when speech is lacking in informative TFS. This finding is compatible with the 

idea that visual information may be more beneficial for those who listen exclusively through 

a cochlear implant. When listening in noise, the absence of informative TFS can hinder the 

ability to identify the target talker based on vocal characteristics and also to segregate speech 

from background noise based on cues such as periodicity (Moore, 2008). Listeners who 

cannot access TFS cues experience severe difficulties with understanding speech in noise are 

therefore more likely to benefit from exploiting the additional information and redundancy 

provided through visual cues.

5 Experiment 3

Using an open-set test of speech perception, Experiments 1 and 2 demonstrated that the 

visual information provided by a talker's face can aid speech perception both when speech is 

degraded by background noise and when it is processed to remove informative TFS cues. It 

is possible that the contribution of TFS and visual speech cues may vary between open and 

closed-set tests due to differences in the predictability of the target stimuli. For example, 

Lunner et al. (2012) found larger benefits from TFS information for their young normal-

hearing participants when they were presented with open-set tests of speech perception than 

when they completed a closed-set test. Therefore, the current experiment sought to establish 

whether the effects observed in Experiments 1 and 2 generalise to a closed-set test of speech 

perception using stimuli recorded by a different talker.

5.1 Method

5.1.1 Power calculation—No data were available with which to conduct a power 

calculation to determine how many participants would be required to detect the interaction 

between modality and processing on a closed-set test. The previous power calculation for 

experiment 2 indicated that 16 participants would be required for an open-set test where the 

effect size for the interaction was estimated to be 0.38. As it was unclear whether this effect 

size would be larger or smaller for a closed-set test, twenty participants were recruited which 

was sufficient to detect an effect as small as 0.34 with a power of 0.80 and α = 0.05.

5.1.2 Participants—Twenty students (2 male, age range 18–25 years) from the 

Nottingham Trent University took part. All reported having normal hearing, normal or 

corrected-to-normal vision, and spoke English as their first language.

5.1.3 Stimulus materials—The closed-set materials were 160 sentences from the 

GRID corpus produced by the University of Sheffield (Cooke et al., 2006). Each sentence 

took the form “Put Colour at Letter Number now.” An example sentence is “Put Blue at G 9 

now”. A single female talker with a northern British accent was selected from the set of 

available talkers; this talker was of average intelligibility according to the audio-only 

intelligibility tests carried out by Cooke et al. (2006). The auditory stimulus was recorded at 
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a sample rate of 25,000 Hz with 16-bits of quantization. The corresponding video stimulus 

was recorded at 25 frames per second. Each sentence was approximately 3 s long. The 160 

sentences selected incorporated the 10 most difficult letter words to identify based on pilot 

testing.

5.1.4 Procedure—The procedure was similar to that of Experiments 1 and 2. The SNR 

of the sentences was varied between −24 and + 4 dB in 4-dB intervals except when neither 

visual information nor informative TFS was available. In that condition, the SNR was varied 

between −16 and + 12 dB to avoid floor effects at multiple SNRs. Ten sentences were 

presented at each of the 8 SNRs providing 80 trials in both the auditory-only and audio-

visual conditions. After a set of 10 practice trials, participants were presented with the 160 

sentences in a random order. The type of processing (TFS or ENV) was varied between two 

groups of 10 participants.

On each trial, participants were instructed to listen carefully to the sentence and to use a 

computer mouse to select the correct letter word from a matrix of possible options. The 

matrix was shown on the visual display unit after the stimulus had ended. They were also 

asked to identify the number word from 5 alternatives. Pilot testing had indicated that 

performance on this secondary task approached ceiling and it was included to ensure that 

participants were attending and listening to the sentences throughout. The experiment took 

approximately 20 min to complete. Performance was summarised as the percentage of 

sentences on which the correct letter word was identified at each SNR.

5.2 Results and discussion

In general terms, the results of Experiment 3 were similar to those of Experiments 1 and 2. 

Fig. 1(Panel C) shows the average performance at each SNR for the auditory-only and 

audio-visual materials in the TFS and ENV groups. An analysis of variance on SRT50s 

confirmed the main effects of modality (F(1,18) = 16.61, p < 0.001, ) and 

processing (F(1,18) = 34.80, p < 0.001, ) but the interaction failed to reach 

significance p (F(1,18) = 3.63, p = 0.073, ). Table 1 shows that the overall difference 

between audio-visual and audio-only conditions was numerically smaller (2.5 dB) than the 

difference between TFS and ENV conditions (4.36 dB). While performance in all conditions 

was well-described by a logistic function, as in Experiments 1 and 2, the slope of the 

function was less steep in conditions where visual information was provided (mean audio-

visual slope 6.3%/dB, s.d. 5.6; mean auditory-only slope 16.7%/dB, s.d. 20.6) (F(1,18) = 

7.59, p < 0.05, ). Further analyses of the function gradients revealed no other main 

effects or interactions.

The contribution of TFS and visual speech information was calculated individually for each 

of the 10 letter words participants were presented with. Data were collapsed across −16 to 

+4 dB SNRs (as these were used in all conditions) in order to give the overall proportion of 

letter words correct. The top panel of Fig. 4 shows that TFS information benefitted the 

recognition of all the letter words, with particularly large benefits for ‘D’, ‘G’, ‘L’, and ‘Z’. 

A 10 (letter word) x 2 (processing) mixed ANOVA on overall performance in the Auditory-
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Only condition revealed a significant main effect of letter word (F(9,162) = 15.13, p < 0.001, 

) confirming that some words were easier to identify than others, a main effect of 

processing (F(1,18) = 86.98, p < 0.001, ) such that overall performance was better 

with informative TFS, and a marginally significant interaction (F(9,162) = 1.93, p = 0.051, 

). Post-hoc t-tests with a False Discovery Rate (FDR) correction for multiple 

comparisons revealed that performance was better in the TFS condition for all letter words 

except ‘I’, ‘N’, and ‘Q’.

The bottom panel of Fig. 4 shows the visual benefit for each letter word in TFS and ENV 

conditions. For the TFS condition, there was significant visual benefit for ‘J’ and ‘N’, while 

for the ENV condition there was significant visual benefit for ‘D’, ‘I’, ‘J’, ‘S’, and ‘U’. A 10 

(letter word) x 2 (processing) mixed ANOVA on visual speech benefit revealed a significant 

main effect of letter word (F(9,162) = 4.40, p < 0.001, ) confirming that some words 

benefitted more from visual speech than others, a main effect of processing (F(1,18) = 4.42, 

p < 0.05, ) such that there was overall more benefit from visual speech for the ENV 

condition, and a marginally significant interaction (F(9,162) = 1.90, p = 0.055, ). 

Post-hoc t-tests with FDR correction revealed that the only significant difference in visual 

speech benefit between TFS and ENV was for the letter word “L”, where performance was 

poorer with visual speech information in the TFS condition.

The results of Experiment 3 were broadly similar to the previous experiments in confirming 

the beneficial nature of visual information and informative temporal fine structure when 

reporting words embedded in sentences spoken in the presence of background noise. The 

benefit from visual information was also found to be numerically greater in ENV than in 

TFS conditions. To examine the consistency of this interaction effect and to better estimate 

the true size of the additional benefit of visual information without informative TFS, the 

results from the three experiments were subject to a random-effects meta-analysis. The 

analysis indicated that heterogeneity, expressed in terms of the ratio between the total 

heterogeneity and total variance, was low (I2 = 0%) and not significant (Cochran's Q(2) = 

0.16, p > 0.05), indicating that the size and variability of the effect was similar across the 

three experiments. The pooled estimate of the size of the additional benefit that visual 

information provides in the ENV compared to TFS condition was 2.3 dB and was found to 

be significantly greater than zero (95% confidence interval 1. to 3.6 dB; Fig. 5). This meta-

analysis suggests that visual information contributes significantly more to speech 

understanding in noise when informative TFS information is not available, akin to the input 

to cochlear-implant users, compared to when informative TFS cues are available as in 

normal-hearing listeners.

6 Modelling the audio-visual interaction

The meta-analysis of Experiments 1 to 3 suggests that there is a modest but consistent 

increase in benefit from visual information when acoustic signals are degraded: introducing 

visual information lowers (improves) SRT50s to a greater degree when informative TFS 

information is not available compared to when it is available. One possible explanation for 
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the increased utility of visual information when auditory information is degraded is that 

listeners integrate information more efficiently in some way under these adverse conditions. 

An alternative explanation is that performance differences arise naturally from the way that 

the two sources of information are combined. The plausibility of these differing explanations 

was explored by re-analysing the data from Experiments 1 to 3 using two different types of 

decision models based on signal detection theory, and a model based on probability-

summation.

6.1 Methods

Signal detection theory (SDT) considers that a sensory decision must be made on the basis 

of one or more noisy sensory variables (Green and Swets, 1966). In SDT, the 

discriminability of two different signals depends on the both the mean difference between 

sensory variables for the two stimuli and the trial-to-trial variability (or ‘noise’). The 

proportion of correct trials that an observer will achieve when presented with stimuli in a 

single modality can be expressed as a function of the overall discriminability, d’, of the m 
different stimulus categories that are presented:

(1)

where ϕ(.) is the standard normal probability density function and Φ(.) is the cumulative 

standard normal function. This approach can be extended to multiple sources of information 

such as auditory and visual speech used in the present experiments. There are many ways 

information could be combined. Here we adopt a previously described model for combining 

such information (see Micheyl and Oxenham, 2012).

In SDT, the variability of the sensory representation is in part considered to be due to 

‘internal’ noise. In the case of multiple sources of information, noise can arise both before 

(‘independent noise’) and after (‘late noise’) integration (but still prior to any decision; i.e. 

pre-labelling). These different sources of noise affect the integration process in different 

ways. The equation below assumes that raw sensory information is combined prior to 

arriving a decision (Braida, 1991), and that noise arises in the observer's internal 

representation of both the auditory and visual stimuli independently before the sources of 

information are integrated (Micheyl and Oxenham, 2012)1:

(2)

where d’A and d’V represent the overall discriminability of the auditory and visual stimuli 

respectively. An alternative assumption is that noise arises in the observer's internal 

1We chose this model because it is often superior to the alternative late-integration (‘post-labelling’) models, whereby a decision of 
sorts is arrived at for each modality independently, and then subsequently combined for a final decision. We will also only consider the 
case where sensory variables from the two modalities are only combined additively. In other words, a decision will be made on the 
basis of a linear (potentially weighted) sum of the noisy sensory variables from both modalities.
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representation of the audio-visual stimulus after the information in the two modalities has 

been combined (the so-called ‘late noise’ model). This ‘late noise’ model can be expressed 

through a further revision of Equation (2), as follows:

(3)

Following Micheyl and Oxenham (2012), Equations (2) and (3) represent the extreme cases 

where one source of internal noise dominates; i.e. all noise is assumed to arise before 

(Equation (2)) or after (Equation (3)) integration. Following previous studies that have 

suggested that open set speech perception is best modelled as dependent on vocabulary size 

(Musch and Buus, 2001), the value of m in Experiments 1 and 2 was set to 8000. For 

Experiment 3, m was set to 10 to reflect the number of possible response options on the 

closed-set test of speech discrimination.

To examine the capacity of the SDT noise models to explain the pattern of performance 

observed across the three experiments, Equations (2) and (3) were used to generate 

predictions for performance in the AV conditions. Predictions with and without informative 

TFS information were generated at each SNR and independently for each experiment. As 

equations (2) and (3) require data on Visual-only (VO) performance, an additional 10 

participants (age range 21–71 years, 7 male) from the MRC Institute of Hearing Research 

were recruited in a supplemental experiment. They completed both the open-set sentence 

test (from Experiments 1 and 2) and the closed-set test (from Experiment 3) in an order 

counterbalanced across participants. For the open-set test, participants were asked to attend 

carefully to each sentence and report any words they could perceive. Participants were 

presented with 80 IEEE sentences, leading to a total of 400 key-words per participant. For 

the closed-set test, participants were presented with 80 GRID sentences, which incorporated 

8 of each of the 10 consonant sounds that were used.

The value of the parameters d’A and d’V in Equations (2) and (3) were therefore computed 

directly from the AO and VO conditions using Equation (1), with the performance level P at 

a particular SNR set to the observed mean performance level in the data. The ability of one 

model to generate accurate predictions of AV performance within a single experiment could 

be interpreted as evidence that a particular model of audio-visual integration better reflects 

the underlying decision processes adopted by listeners. Performance intermediate to the two 

models would suggest a mix of unisensory and crossmodal noise sources. Performance 

outside of the extremes of the two models would imply either a supra-additive, or sub-

additive combination of sensory information.

The results were also modelled using Rouger et al.’s (2007) extension of the ‘probability 

summation model’ (Treisman, 1998). The probability summation model states that the 

probability of answering correctly is equal to the probability that either one or both of the 

modalities presented individually would result in the correct answer. Formally this can be 

written:

Stacey et al. Page 13

Hear Res. Author manuscript; available in PMC 2017 November 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(4)

where PAO and PVO are the probability of answering correctly in the AO and VO conditions. 

Rouger et al. generalised this model to one in which there were an arbitrary number of 

independent unisensory ‘cues’ and that overall probability of answering correctly was equal 

to the probability that T or more of those cues would be correctly identified. The case where 

T=1 corresponds to equation (4), and provides the lower bound for this kind of model. They 

term this the ‘minimal integration’ model since it assumes that auditory and visual 

information are evaluated as independent single sources of information. This family of 

models fall into the post-labelling category since integration is modelled as the combination 

of the probability of correct decisions. Note that this model cannot work with a closed set. 

For eqn. (4), in Experiment 3 chance performance is 10% and it predicts 19.9%.

The goodness of fit of each model to each experiment was assessed using a X2 test between 

the data and each of the models (Table 2). To indicate whether the data was significantly 

different from a resulting model, we performed bootstrap simulations of a simple version of 

the fitted model (Langeheine et al., 1996). In a single simulation, for each AV condition 

(SNR, TFS vs. ENV), numbers were drawn from a binomial distribution with a probability 

corresponding to the fitted model value and sample size corresponding to that point in the 

data. From the number of correct and incorrect trials in each condition we computed X2 of 

these simulated values against the mean model output. This gave the goodness of fit for a 

single simulated run of the model against mean model values. Repeating this simulation of 

the model many (5000) times yielded a distribution of X2 values, and the likelihood (i.e. p-

value) of observing a given goodness of fit under the assumption that the model was correct. 

From this were able to compute the likelihood of observing the data if the model were 

correct.

6.2 Results and discussion

The average visual-only performance for the open-set IEEE test was 2.85% key-words 

correct (s.d. 3.20), and was 10.8% (s.d. 3.5) letter-words correct in the closed-set GRID test.

The two variants of SDT models were evaluated by their ability to predict the AV condition, 

given the performance in the AO and VO conditions. The results of applying the models 

revealed that the observed AV performance for ENV and TFS conditions in Experiments 1 

and 2 lay between the ‘independent’ and ‘late’ noise SDT models (Fig. 6, Panels A and B, 

see Table 2 for mean signed errors and X2). The Rouger model, applied directly to the data 

with no fitting of the parameters (T = 6, as in Rouger et al., 2007), provided a reasonable 

qualitative fit to all the conditions in Experiments 1 and 2.

Both models under predicted AV performance in Experiment 3 for both the ENV and TFS 

conditions by ~8% (Fig. 6, Panel C and Table 2). This result stemmed from the fact that 

performance in the VO condition of Experiment 3 did not exceed chance levels. Therefore, 

no further evaluation of modelling Experiment 3 was conducted (see discussion).
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Fig. 2 shows the fits of the models to the data in terms of SRT50s. Table 2 provides X2 

goodness of fit and estimates of the likelihood of the model being correct. Both SDT models 

are significantly different from the data, implying an intermediate model would be required 

to explain both TFS and ENV data. Thus, the data in both TFS and ENV conditions appear 

to be consistent with the optimal combination of auditory and visual information, and may 

result from a mixture of independent and late noise sources. The visual benefit varied from 

−0.6 dB to −3.1 dB (see Table 2) and the size of the observed visual benefit did not exceed 

that predicted by the purely-additive SDT models of integration. The data are also 

reasonably consistent with the post-labelling model proposed by Rouger et al., even using 

the exact same model parameters as they did, although this model is nevertheless not a 

perfect fit to the data (p < 0.05, Table 2). Thus, overall no models can account completely 

for the data. However, qualitatively they suggest that the way in which acoustic and visual 

information is combined is similar for acoustic input with and without informative TFS, 

whether assessed in the light of pre-labelling or post-labelling models.

7 General discussion

The current series of experiments investigated the benefits obtained from visual speech 

information when listening to degraded speech in background noise. The results show that 

the availability of visual speech information improves the understanding of speech with and 

without informative TFS; i.e. listeners were able to tolerate more noise in the signal when 

visual speech information is present. In addition, the present results suggest that the size of 

the benefit from visual speech information is greater, by roughly double the amount, when 

informative TFS is not available. This pattern of results was found to be consistent across 

different experimental designs (between or mixed groups), speech tasks (open vs closed set), 

and stimuli.

7.1 Effects of visual speech and TFS information

In the open-set experiments reported in Experiments 1 and 2, the size of the benefit received 

from TFS and visual speech information are similar in magnitude. In Experiment 1, when 

combined across AV and AO modalities, the SRT50 was 6.6 dB lower for TFS than for EVV 

speech. This compares with a difference of 5.6 dB between audio-visual and audio-only 

conditions when combined across TFS and ENV speech types. For Experiment 2 the speech 

processing difference was 5.8 dB compared with 4.6 dB for the modality difference. These 

figures reinforce the importance of visual speech information when processing speech in 

background noise. The difficulties faced by cochlear-implant users are well documented, and 

many studies have demonstrated the poor performance of normal-hearing participants when 

TFS information is removed in vocoder simulations, especially when listening in 

background noise (Qin and Oxenham, 2003; Ihlefeld et al., 2010; Rosen et al., 2013). 

However, the importance of visual speech information when listening to degraded speech in 

background noise has received little investigation. Therefore, in order to truly reflect the 

performance of listeners in demanding situations, the role of visual speech information 

needs to be taken into account.
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A strength of the current series of experiments is that we have demonstrated similar effects 

of visual speech and TFS information across open- and closed-set tests of speech perception. 

This is important as some research (e.g. Lunner et al., 2012) has shown that the importance 

of TFS information may vary according to the type of speech test used. Consistent with the 

predictions from Lunner et al. (2012) we did find numerically smaller benefits of visual 

speech information and TFS cues in Experiment 3, where the choices presented to 

participants reduced uncertainty, and perhaps also reduced the usefulness of TFS cues and 

visual speech information.

The closed-set test also allowed us to look more closely at which stimuli in particular 

benefitted from visual speech and TFS information, with some letter words being more 

affected than others. Specific letter words that benefitted from TFS information included 

‘D’, ‘G’, ‘L’, and ‘Z’, and the letter words ‘J’ and ‘N’ benefitted most from visual speech 

information. However, due to limitations in the nature of the stimuli (being letter words and 

not consonant sounds), a full phonetic analysis was not possible. Future research with 

consonant sounds would allow an information transfer analysis (Miller and Nicely, 1995) to 

be performed, which would enable an analysis of the extent to which different speech sounds 

(e.g. place, manner, and voicing) were transmitted to the listener. This would reveal further 

insights into the way in which visual speech and TFS cues interact for different features 

under noisy speech conditions that were not possible to perform using data from the current 

study.

7.2 Visual-only performance

Visual-only (VO) performance was also tested for the open-set IEEE sentences used in 

Experiments 1 and 2, and for the closed-set GRID test used in Experiment 3. The average 

VO performance was 2.85% keywords correct for the IEEE sentences and was 10.8% 

consonants correct for the GRID sentences. The average performance levels for the IEEE 

sentences demonstrates the fact listeners were on average able speechread some information 

from the sentences, although to a limited extent. Altieri et al. (2011) found much higher 

levels of performance for a group of young normal-hearing participants when given the 

CUNY sentence test (Boothroyd et al., 1988); participants reported an average of 12.4% of 

words correct (standard deviation 6.67%). Higher levels of performance are however to be 

expected for CUNY sentences as they are semantically and syntactically more predictable 

than IEEE sentences. The average VO performance of 10.8% on the closed-set GRID 

sentences reflects the fact that participants were not able to lipread the target letters at a level 

above chance (given that there were ten response options). Part of the difficulty with these 

tasks is that visual speech reading performance is challenging and participants may well 

have struggled to maintain motivation. In all experiments VO conditions were performed as 

a separate block. For the open-set task, verbal responses were recorded by an experimenter 

present in the sound booth, and we can be sure that the participants were engaged 

appropriately in the task. For the closed-set task, responses were made via a computer in 

isolation in a sound booth, making it difficult to monitor task engagement. Motivation was 

less likely to be a problem in AO or AV conditions, since the overall performance was 

higher. Consistent with this interpretation, asymptotic performance at the lowest SNRs in the 

AV conditions was considerably higher than chance, whilst AO conditions were not.
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7.3 The nature of multisensory integration

Although there is a significant numerical advantage of visual speech information for ENV 

speech, this advantage is consistent with models which assume that visual information is 

integrated in a consistent way and regardless of whether TFS is available or not.

The results from the SDT models are consistent with previous research that has modelled the 

advantages that arise from receiving combined electrical and residual acoustic stimulation 

(Seldran et al., 2011; Micheyl and Oxenham, 2012; Rader et al., 2015). In fact, the diversity 

in the balance between independent and late noise is also seen across other experiments 

(Micheyl and Oxenham, 2012). In addition, using Braida's (1991) pre-labelling model of 

integration, Grant et al. (2007) showed that normal-hearing and hearing-impaired listeners 

exhibited a similar degree of integration efficiency of auditory and visual information. These 

findings therefore imply that the larger body of data on audio-visual integration in conditions 

of normal, undegraded speech (e.g. Tye-Murray et al., 2010; Sumby and Pollack, 1954), and 

studies of audio-visual integration in hearing impaired listeners (e.g. Grant et al., 1998; 

Grant et al., 2007) may well apply to degraded speech conditions and perhaps to users of 

cochlear implants.

Our data for both ENV and TFS speech were also well explained by the model used by 

Rouger et al. (2007). The finding that Rouger et al.’s model fit our data for the vocoded 

speech condition is inconsistent with their data which suggested that compared with 

cochlear-implant users, normal-hearing participants integrated sub-optimally when listening 

to noise-vocoded speech. However, given that Rouger's model fits our data well, it is clear 

that the differences in conclusions reflect differences between their data and ours; while the 

normal-hearing participants who listened to vocoded speech integrated sub-optimally in 

Rouger's study, our normal-hearing participants displayed optimal integration of auditory 

and visual information.

The models failed to predict the data for Experiment 3. However, performance in the VO 

condition here was very close to chance. Since d’~0, we would not expect any model of 

integration to predict the AV performance, which was improved over AO conditions, albeit 

only slightly overall. This could indicate some fundamental limitation of such models. 

However we think it more likely that it reflected poor motivation for the AO conditions in 

Experiment 3, as discussed above.

Finally, we note that although our data are consistent with a mixed noise source additive-

SDT model, we do not know of an analytical equation similar to Equations (2) and (3) that 

can parameterise such a mix of noise sources, which would allow a quantitative fit to the 

data to be assessed. The lack of a more precise fit of the SDT models cannot be taken as 

evidence in favour of post-labelling models such as proposed by Rouger et al. We refer the 

reader to Micheyl and Oxenham (2012) for a discussion of the theoretical merits of different 

models.

7.4 Limitations & future research

The current work provides a starting point for investigations of the benefits obtained through 

visual speech information when listening to degraded speech in noise, and there are several 
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avenues through which the work can be extended upon. One such avenue is to consider the 

type of background noise which is used. We have used multi-talker babble here, but it is 

possible that maximum visual speech benefit will occur with only a few competing talkers 

(e.g. 2, 4), when informational masking causes difficulties for speech perception (Freyman 

et al., 2004; Brungart et al., 2009). These are situations when additional listening strategies 

such as ‘dip-listening’ are possible and TFS cues might be particularly important (Lorenzi et 

al., 2006; Moore, 2014; see also Bernstein and Grant, 2009). Thus, it is difficult to predict 

whether estimates from the current experiment will generalize to situations with small 

numbers of background talkers. However, it should be noted that Rosen et al. (2013) found 

very small effects of the number of masking talkers when the speech and noise were both 

noise vocoded. It should also be acknowledged that only a single talker recorded the speech 

materials in Experiments 1 and 2, and a different talker was used in Experiment 3. Extending 

this work to different talkers is important as the utility of visual speech cues may differ 

according to the individual characteristics of different talkers (see Yakel et al., 2000).

One question arising is to what extent degrading the speech stimuli generally led to a greater 

reliance on the visual signal, rather than the removal of information in the stimulus TFS per 
se. Two audio manipulations were used in these experiments: variation in SNR and removal 

of cues from the stimulus TFS. All the variants of models presented here are relatively 

successful in accounting for both of these manipulations. They assume that the interaction 

with the visual stimulus is exactly the same whether TFS or SNR are manipulated. Thus the 

modelling suggests that, at least for these two manipulations, it is intelligibility that matters 

and not the nature of the degradation. This could be logically tested further with, for 

example, manipulations of the spectral resolution, or stimuli that preserve TFS cues at the 

expense of ENV cues.

Limitations of vocoding as a simulation of the performance of cochlear-implant users also 

need to be acknowledged. The acoustic simulation used here simulates only the 

consequences of removing TFS from the speech signal and filtering the speech into a 

discrete number of frequency bands. Many other factors, such as the spread of electrical 

current along and across the cochlea (Cohen et al., 2003), are not simulated, and the primary 

sources of stochasticity (normal hearing: inner haircell/auditory nerve synapse, Sumner et 

al., 2002; cochlear implant: spiral ganglion cell excitability, Horne et al., 2016) are very 

different. Thus, the encoding of speech on the auditory nerve is expected to be very different 

between electrical and tone-vocoded inputs. One potential difference in the nature of 

encoding has been highlighted recently by Shamma and Lorenzi (2013), who applied a 

model of early auditory processing explain the auditory nerve responses to Amplitude 

Modulated (AM) and Frequency Modulated (FM) vocoded speech. The AM conditions were 

the same as the ENV condition described here; the FM component was replaced by a tone 

with frequency equal to the central frequency of the analysis band. Shamma and Lorenzi's 

(2013) modelling suggested that regardless of vocoder manipulations, both ENV and TFS 

cues are expressed in the auditory nerve for vocoded speech, and both of these cues 

contribute to speech intelligibly. Thus, they argue that processing the speech to filter out TFS 

or ENV cues is not reflected in auditory nerve responses to these speech stimuli. They argue 

further that this is contrary to the auditory nerve responses for users of cochlear implants. It 

is therefore important to make the distinction between ENV and TFS cues present in the 
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stimulus, which are similar for tone vocoding and cochlear implants, and the nature of the 

encoding on the auditory nerve which for the numerous reasons outlined is likely to be very 

different.

Another concern is that vocoder simulations in normal-hearing listeners cannot account for 

any adaptation to electrical stimulation over extended periods of time. Therefore, one must 

exercise caution in generalising the current findings related to the effects of informative TFS 

in normally-hearing listeners to users of cochlear implants. Future work with users of 

cochlear implants will establish whether the same pattern of results is observed. In addition, 

testing users of cochlear implants with the ENV conditions will allow us to test whether this 

manipulation introduces distortions that are additional to those attributable to their implants.

7.5 Conclusion

Visual information appears to be integrated in a similar way whether or not TFS cues are 

present in speech. However in practice this results in slightly better SNR advantages in the 

absence of TFS cues. Regardless, it suggests that visual information is at least as valuable 

when the auditory signal is degraded and this corresponds to a very valuable gain (4–7 dB 

advantage in SNR). The results from the current studies suggest that the role of visual 

speech information needs to be given greater emphasis when evaluating people's ability to 

understand speech in noise, especially when faced with degraded speech input.
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Fig. 1. 
Speech perception performance (in % correct) as function of Signal-to-Noise ratio. The plots 

on the left show data for ENV speech, while the plots on the right show performance for 

TFS speech. The filled triangles show data from the Audio-visual conditions, and the open 

triangles show Audio-only performance. Error bars indicate sample 95% confidence 

intervals. Sigmoidal curves have been fit to the averaged data. The red dashed line shows 

50% correct performance. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Speech Reception Thresholds: The Signal-to-Noise ratio at which performance was 50% 

correct. Calculated from 3-parameter sigmoidal functions fit for each participant. Error bars 

indicate sample 95% confidence intervals. The dashed and dotted lines show the three 

models' (SDT Independent Noise, SDT Late Noise, and Rouger et al.’s model) predictions 

of the audio-visual (AV) data.
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Fig. 3. 
Visual speech benefit. The benefit (in dB) gained from the addition of visual speech 

information. For Experiment 1, this is calculated from the overall difference in SRT50s 

between the Audio-visual and Audio-only conditions for Vocoded and Clear Speech, and 

therefore represent the between-groups effect. For Experiments 2 and 3, the benefit was 

derived by averaging the difference between Audio-visual and Audio-only SRTs for each 

participant, and therefore represent the within-groups effect. Error bars indicate 95% 

confidence intervals; the confidence for Experiment 1 are expected to be wider than the 

confidence intervals for Experiments 2 and 3 as they include both within and between-

subject variance.
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Fig. 4. 
Proportion of letter words correct. The top panel shows auditory-only accuracy for TFS and 

ENV conditions, and the bottom panel shows Visual Benefit. Error bars indicate 95% 

confidence intervals.
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Fig. 5. 
Meta-analysis of size of the additional visual benefit observed when information TFS was 

not available compared to when it was available across Experiments 1, 2, and 3. Filled 

circles plot the effect size (in dB) in each individual experiment and error bars plot the 95% 

confidence intervals for the effects. The filled diamond represents the pooled effect size 

across the three experiments from a random-effects meta-analysis.
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Fig. 6. 
The results of fitting the independent late noise models, along with Rouger et al.’s model to 

the three experiments. The points show the observed data, and the dotted and dashed lines 

show the predictions from models. Shaded regions show the standard errors for the data.
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Table 1

Average SRT50s for each of the experiments, including the overall differences in SRT50s according to modality 

and processing; for modality the Audio-visual and Audio-only SRT50s have been averaged across both types 

of processing (TFS and ENV) and for processing the TFS and ENV SRT50s have been averaged over both 

modalities (Audio-visual and Audio-only). All values show dBs, and standard deviations are shown in 

brackets.

Experiment 1 Experiment 2 Experiment 3

Audio-visual −6.3 (3.2) −6.8 (3.0) −9.1 (2.9)

Audio-only −0.6 (4.8) −2.2 (3.6) −6.6 (3.9)

Modality Difference 5.7 4.6 2.5

TFS −6.7 (2.6) −7.4 (2.4) −10.0 (1.6)

ENV −0.1 (4.4) −1.6 (3.2) −5.7 (3.2)

Processing Difference 6.6 5.8 4.3
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Table 2

For each experiment the results of fitting the different models. The goodness of fit is expressed as the X2 

statistic between the AV data conditions and model, p represents that probability that these are 

indistinguishable, and the mean signed error (in % correct) between the data and model indicates where the 

real performance is greater than or less than the models. The bottom row gives the SRT advantage of adding 

visual information for the ENV condition over the TFS condition.

Experiment 1 Experiment 2 Experiment 3

Ind. Noise Late noise Rouger model Ind. Noise Late noise Rouger model Ind. Noise Late noise

α 0 1 – 0 1 – 0.29 1

g.o.f (X2) 1042 1072 339 385 1626 137   220     141

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001       <0.001

M.S.E. (%) 11.86 −5.34 2.66 7.44 −9.48 −1.87 0.82         7.7

AV SRT advantage 
ENV–TFS

−0.7 dB −3.1 dB −1.9 dB −0.6 dB −1.4 dB −1.1 dB
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