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Photonic quantum systems are among the most promising architectures for quantum computers. It is well
known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit
gates can be achieved via the measurement process and by introducing ancillary photons. While in principle
this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are
still very challenging and thus other optical encodings are being actively investigated. One of the alternatives
is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we
prove that even for such systems universal optical quantum computing using only passive optical elements
such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching
cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used.
Our result provides useful guidance for the design of optical quantum computers.

O
ptical implementations of qubits have played an important role in quantum information science1,2.
Photons exhibit an intrinsic lack of decoherence and are simple to control by standard off-the-shelf
components. Furthermore, photonic qubits for quantum computation are particularly attractive because

they can be used to interface to various quantum communication applications3. Due to the extremely small
photon-photon coupling available in existing materials, it was at one point believed that optical qubits could not
be used for scalable quantum computation. However, it is now understood that the process of photon detection
itself can lead to effective photon-photon nonlinearities. In particular Knill, Laflamme, and Milburn (KLM)4

launched the field of linear optics quantum computing (LOQC) by showing that deterministic single-photon
sources and high-efficiency single-photon detectors allow the realization of scalable, probabilistic quantum
computation purely with linear optical elements. This holds in spite of the fact that using linear optics alone,
the success probability of the nonlinear sign shift gate used in the KLM scheme cannot be improved above 1/45,6.
Since the original KLM proposal, a number of authors have suggested various simplifications, modifications, and
optimizations7–10. Although these results formally show that scalable quantum computing is possible, the real-
ization is very demanding in practice due to the large resource overhead arising from the required non-
deterministic photon detection events. This becomes particularly apparent when considering beamsplitter-based
two-photon gates, which are probabilistic in nature. In fact all optical two-qubit gates11, including the promising
nondestructive CNOT gate12,13, fail in the case where more than one photon is emitted into the same optical
output mode, due to photon bunching. One proposal to actively suppress such gate failure events in the polar-
ization encoding uses the quantum Zeno effect, by coupling to the output light fields to atomic transitions14,15.

While the previous discussion concerned mostly dual-rail qubits, less is known about single-rail photonic
qubits. Here we address the natural question of whether linear optical elements alone can be used to establish
quantum interference such that the photon-bunching effect, and thus the probability of gate failure, can be
eliminated for the case of single-rail encoding. We show that this cannot be achieved in the sense that one cannot
simultaneously and deterministically implement a linear optical two-photon entangling gate and decouple the
double-occupancy states (in this work we are not concerned with single-photon nonlocality16). We thus prove a
no-go theorem for photon bunching suppression via all-unitary linear optics. Our result is complementary to the
recent proof that the single-photon fraction in any of the single-mode states resulting from purely linear optical
processing (even including conditioning on results of detections) cannot be made to exceed the efficiency of the
best available photon source17. We stress that our proof applies in the setting of deterministic LOQC; we do not
address the possibility of simultaneously optimizing the suppression of photon bunching and the success
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probability of LOQC gates in the single-rail setting. Nor do we
address here what may be gained by adding measurements or other
non-unitary operations18.

Results
Problem formulation. In the standard circuit model of quantum
computing any unitary transformation on n qubits can be
decomposed as a product of gates, each of which acts nontrivially
on at most two qubits, and is the identity on the other qubits19.
Likewise, in the linear optics model, any unitary transformation on
M modes can be decomposed into a product of ‘‘linear optical
elements,’’ each of which acts nontrivially on at most two modes,
and is the identity on the other M – 2 modes20,21. As linear optical
operations we consider just passive elements, in particular phase
shifters and beam splitters, as they generate all linear optical
elements [i.e., all 2 3 2 unitaries, the group U(2)] when acting on
the same pair of modes. Moreover, when they are allowed to act on
overlapping pairs of modes, the linear optical elements generate all
M 3 M unitaries [i.e., the group U(M)]20.

Single photon optical qubits come primarily in two varieties:
single-rail22,23, where a qubit is represented by the absence or pres-
ence of a single photon of fixed polarization in one optical mode, and
dual-rail19, where each qubit is encoded into the presence of a single
photon in one or the other of two spatial optical modes. Polariza-
tion qubits24—where each qubit is represented by two orthogonal
polarization modes—are formally equivalent to dual-rail qubits11,
so we will use both interchangeably (see Figure 1). Most LOQC
proposals, including the original KLM scheme, use dual-rail qubits,
but there is considerable interest in the single-rail encoding scheme
as well, as evidenced by the numerous experiments devoted to pre-
paration of arbitrary states of single-rail qubits25–29. In the dual-rail
encoding single-qubit operations are straightforward while non-
trivial two-qubits are challenging and are implemented probabilisti-
cally4. The reverse is true for single-rail encoding: it is easy to generate
two-qubit entanglement deterministically, while single-qubit gates
can be implemented probabilistically30. In both the single and
dual-rail encodings two-qubit gate failure due to photon bunching
is a major challenge standing in the way of scalability. Let us next
explain this in more detail.

The subspace of interest in the single-rail encoding is spanned by
the 6-dimensional Fock state basis A|B where

A: 1, a{1, a{2, a{1a{2
n o

0j i, ð1aÞ

B: a{2
1 , a{2

2

n o
0j i
. ffiffiffi

2
p

: ð1bÞ

Here j0æ is the global vacuum, a{i , ai, and ni are the creation,
annihilation, and number operator for mode i, respectively, satisfy-
ing the standard bosonic commutation relations. The subspace A is
spanned by the computational basis of single-photon states in each of
the two modes, while B is the subspace of ‘‘bunched’’ two photon
states in either one of the two modes (double-occupation states). The
latter are the problematic states causing computational errors in the
single-rail encoding.

To define a basis for the polarization (i.e., dual rail) encoding
consider the creation operators a{ip, where i g {1, 2} is the spatial
mode index, p g {H, V} is the polarization mode index, and all a{ip
commute for all values of i and p. The ith qubit basis states are then
0j ii~a{iH 0j i and 1j ii~a{iV 0j i, so that the computational and double-

occupation (error) subspaces are, respectively,

A0: a{1H a{2H , a{1Ha{2V , a{1V a{2H , a{1V a{2V

n o
0j i, ð2aÞ

B0: a{2
iH

. ffiffiffi
2
p

, a{2
iV

. ffiffiffi
2
p

, a{
iHa{iV

n o
0j i, i[ 1, 2f g ð2bÞ

It is well known that linear optics is insufficient for generating
non-trivial (entangling) two-qubit gates in the dual-rail encoding.
Indeed, this, together with the inherent weakness of nonlinear photo-
nic interactions such as the Kerr effect, is the raison d’être of the KLM
scheme. The reason is a straightforward group-theoretic counting
argument. Consider m 5 2K optical modes. If dual-rail linear optics
could generate an entangling gate between one pair of qubits, which
could then be swapped to all other pairs of qubits using beam split-
ters, the set of linear optical elements would generate the group
U(2K). However, this contradicts the fact that the set of linear optical
elements can only generate U(2K)20,31. This means that it is imposs-
ible to generate an entangling gate in the subspaceA0, irrespective of
what happens in B0. Another perspective on this is offered by results
showing the unfeasibility of a linear optics Bell state analyzer, which
rule out the implementation of a deterministic CNOT gate using
dual-rail qubits32,33. However, these arguments cannot be applied
in the single-rail case where a beam splitter suffices to generate
two-qubit entanglement in the subspace A. Since we are concerned
in this work with deterministic gates we shall not consider the pos-
sibility of photon-bunching suppression and concurrent enhance-
ment of the success probability of two-qubit gates in the dual-rail
case. Instead, we devote the remainder of this work to the no-go
theorem for deterministic gates in the single-rail case.

No-go theorem for two modes. We now proceed to prove the
following no-go theorem: it is not possible to implement a
deterministic entangling gate between two single-rail qubits while
at the same time removing the ‘‘bunched’’ two-photon states using
only linear optics. In this section we assume that only two photons in
two modes are used; in the following section we allow for an arbitrary
number of photons and modes.

The Hermitian beam-splitter generator is

X:
1
2

a{2a1za{1a2

� �
, ð3Þ

and the Hermitian phase shifter generators are, for each mode,

n1~a{1a1, n2~a{2a2: ð4Þ

Let us also define

Y:
i
2

a{2a1{a{1a2

� �
, Z:

1
2

n1{n2ð Þ: ð5Þ

Figure 1 | Encoding of optical qubits. (a) Single-rail encoded qubits are

represented by the absence or presence of a single photon of fixed

polarization in one optical mode. This encoding allows for the

deterministic generation of entangled states, but with the caveat that

single-qubit gates can only be achieved probabilistically. (b) Dual-rail

encoded qubits are represented by the presence of a single photon in one or

the other of two spatial optical modes. Formally, polarization-encoded

qubits are equivalent to the dual-rail encoding due to the basis comprising

two orthogonal polarization modes, e.g., by defining | 1æ | 0æ 5 | H æ and

| 0æ | 1æ 5 | V æ where | H æ and | V æ corresponds to a horizontally and

vertically polarized photon state, respectively.
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Then it is easily checked using the identities in the Methods section
that the set of Hermitian operators {X, Y, Z} is closed under com-
mutation and moreover satisfies su(2) commutation relations.
Therefore the beam-splitter generator X and the phase shifter gen-
erators (combined as Z) generate U(2). The most general unitary
evolution operator we can then construct according to the Euler
decomposition is the following composite gate:

U a,b,c,d,ð Þ~ei an1zbn2ð Þei Xei cn1zdn2ð Þ, ð6Þ

where we have allowed a more general linear combination of the two
phase shifter generators than Z, since they can be independently
tuned.

We are interested in the (reducible) representation of the unitary
operator (6) in the 6-dimensional Fock state basis A|B. We shall
now show that if one demands that U does not coupleA and B, then
without further assumptions it is not possible to implement an
entangling gate between the two single-rail qubits. In theA|B basis
we have

U a,b,c,d,ð Þ~diag 1,eia,eib,ei azbð Þ,e2ia,e2ib
� � 1

A1

B1

2
664

3
775|

diag 1,eic,eid,ei czdð Þ,e2ic,e2id
� �

~

1

A2

B2

2
664

3
775,

ð7Þ

where diag denotes a diagonal matrix and where

A1~
cos i sin

i sin cos

" #
,

A2~
ei azcð Þ cos iei azdð Þ sin

iei bzcð Þ sin ei bzdð Þ cos

" #
,

B1~

cos 2
1

i
ffiffiffi
2
p sin 2

1

i
ffiffiffi
2
p sin 2

1

i
ffiffiffi
2
p sin 2 cos2 { sin2

1

i
ffiffiffi
2
p sin 2 { sin2 cos2

2
66666664

3
77777775

,

B2~

ei azbzczdð Þ cos 2 ei azbz2cð Þ sin 2

i
ffiffiffi
2
p ei azbz2dð Þ sin 2

i
ffiffiffi
2
p

ei 2azczdð Þ sin 2

i
ffiffiffi
2
p e2i azcð Þ cos2 {e2i azdð Þ sin2

ei 2bzczdð Þ sin 2

i
ffiffiffi
2
p {e2i bzcð Þsin2 e2i bzdð Þ cos2

2
66666664

3
77777775
:

ð8Þ

Note that U a,b,c,d,ð Þ consists of three blocks (1, A2, and B2) of
dimensions 1 (vacuum), 2 (one photon), and 3 (two photons),
respectively. Therefore repeated applications of the composite gate
U with different values for the angles a, b, c, d, will still have the
same triple block structure. Hence our construction is general in the
sense that we need only consider a single composite gate U.

Now, the problem is that the two-photon block includes B. We
would like to decouple these two states from the other four.
Clearly, this can be done by setting the matrix elements U4,5,
U4,6, U5,4 and U6,4 [i.e., the (1, 2), (1, 3), (2, 1), (3, 1) elements
of B2] to zero. As is clear from Eq. (8), a necessary and sufficient
condition for this is

sin 2 ~ 0: ð9Þ

This is achieved whenever is an integer multiple of p/2. If we
pick an even multiple 2n of p/2 we have

U a,b,c,d,npð Þ~diag 1, {1ð Þnei azcð Þ, {1ð Þnei bzdð Þ
�

,

ei azbzczdð Þ, e2i azcð Þ, e2i bzdð Þ
� ð10Þ

If we pick an odd multiple 2n 1 1 of p/2 we have

U a,b,c,d, 2nz1ð Þ p
2

� �
~

1

A3

B3

2
64

3
75, ð11Þ

where

A3~
0 {1ð Þniei azdð Þ

{1ð Þniei bzcð Þ 0

" #
ð12aÞ

B3~

{ei azbzczdð Þ 0 0

0 0 {e2i azdð Þ

0 {e2i bzcð Þ 0

2
64

3
75 ð12bÞ

In both cases U has a block-diagonal structure where the two-
photons per mode states are decoupled from the other four states.
Considering just the 4-dimensional block acting on span Að Þ, we
have for the even case

diag 1, {1ð Þnei azcð Þ, {1ð Þnei bzdð Þ,ei azbzczdð Þ
� �

~ diag 1, {1ð Þnei bzdð Þ
� �

6diag 1, {1ð Þnei azcð Þ
� � ð13Þ

i.e., a tensor product of two single-qubit phase gates. Similarly, for the
odd case we have

1 0 0 0

0 0 {1ð Þniei azdð Þ 0

0 {1ð Þniei bzcð Þ 0 0

0 0 0 {ei azbzczdð Þ

2
666664

3
777775

~SWAP diag 1, {1ð Þniei azdð Þ
� �

6diag 1, {1ð Þniei bzcð Þ
� �

,

ð14Þ

where SWAP~

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2
664

3
775, a non-entangling gate. Unfortun-

ately this means that, having decoupled span Bð Þ, the action of U on
the A subspace is equivalent to a tensor product of two single-qubit
phase gates, and therefore is no longer entangling.

The reason for this no-go result is straightforward: we are forced to
set equal to a multiple of p/2 in order to prevent coupling to the
span Bð Þ subspace. Once we do this we are left with only four inde-
pendent parameters (a, b, c, d), which are the parameters of the two
phase shifters [see Eq. (6)]. The latter can only generate phase gates.
To circumvent this result would require the use of some type of
nonlinear optical element (see Figure 2).

No-go theorem for M . 2 modes. One might wonder whether the
inclusion of additional modes and photons allows to circumvent the
no-go theorem. In this section we show that this is not the case.

Consider a linear optical system with M modes containing an
arbitrary number of photons, of which only two modes–supporting
two qubits–are the target of linear optical quantum computation.
We therefore refer to these two modes as the ‘‘computational
modes.’’ Clearly the choice of which two modes are identified as

www.nature.com/scientificreports
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the computational modes is immaterial, so that without loss of gen-
erality we use the first two modes to this end. The computational
basis still comprises only those states having either zero or one
photons per mode in the first two modes, except that now an arbit-
rary number of photons is allowed in the ancillary modes 3, …, M.

Let CM: PM
j~1

1ffiffiffiffiffi
nj!

p a{
j

� �nj

0j i
( )

, where the occupation numbers

nj

� �M
j~1 are arbitrary. Then the computational basis states are the set

AM~ CM n1,j n2[ 0,1f gf g. The basis set for the problematic subspace
of bunched states is now BM~ CM n1,j n2§2f g. We assume that the
photonic system is initialized in span AMð Þ. Furthermore, we assume
that the initial state is a product state between the computational and
ancilla modes, i.e., there is no initial entanglement between these two
set of modes. Our proof does not apply otherwise, so that initializa-
tion errors are outside of the scope of this work and will have to be
dealt with by other means.

Now let V be some arbitrary passive linear unitary optical trans-
formation on all, or some subset, of the M modes. For example, V
could be a product of phase shifters and beam splitters coupling any
pair of modes. Its most general form is

V~exp i
PM

i,j~1
hija

{
i aj

 !
, hij~hji[R, ð15Þ

an arbitrary element of U(M)20. The operator V replaces U [Eq. (6)]
from our earlier two-mode discussion, and we shall show that even it
cannot be used to decouple the computational basis states AM from
the bunched states BM while simultaneously implementing an arbit-
rary unitary transformation on the computational modes. V has the
following unitary representation in terms of the M|M matrix v 5

{vij}, in the basis of bosonic creation operators (see Methods):

Va{i V{~
XM

j~1

vija
{
j , i[ 1, . . . ,Mf g, ð16Þ

Note that V commutes with the number operator, i.e., its only non-
vanishing matrix elements are between Fock states with equal occu-
pation numbers. Note also that if we write V 5 exp(iV) where
V~

PM
i,j~1hija

{
i aj, then Vj0æ 5 0 due to the annihilation operator

aj, so that Vj0æ 5 j0æ, and hence Æ0jVj0æ 5 1.
At first sight it might appear that the inclusion of ancilla modes

could be useful. For example, one might hope that the bunched state
j200æ (for M 5 3) can be transformed into the computational state
j002æ, where the two photons have been transferred to the ancilla
mode. However, this approach fails for passive all-unitary linear
optics. The reason is that we must rule out the reverse process, i.e.,
we must impose the following necessary ‘‘don’t cause errors’’ condition:

V cannot transfer any photons from the ancillary modes into the
computational modes in a manner which transforms a valid compu-
tational basis state into a bunched state.

For example, V is not allowed to take the computational basis state

a{3
� �2

0j i [ AM to a{1
� �2

0j i [ BM (ignoring normalization). Thus,
we impose the necessary conditions for all i g {3, …, M}

0h ja2
1V a{i
� �2

0j i~0, ð17aÞ

0h ja2
2V a{i
� �2

0j i~0 ð17bÞ

Then,

0~ 0h ja2
1V a{i
� �2

0j i~ 0h ja2
1Va{i V{Va{i V{V 0j i ð18aÞ

~
XM

k,l~1

vikvil 0h ja2
1a{ka{l V 0j i ð18bÞ

~v2
i1 0h ja2

1a{1a{1 0j iz
XM

k,l~2

vikvil 0h ja{ka{l a2
1 0j i

z2
XM

k~2

vikvil 0h ja{ka2
1a{1 0j i

ð18cÞ

~v2
i1 0h ja2

1a{1a{1 0j i ð18dÞ

where to arrive at (18b) we used Eq. (16), and to arrive at (18c) we
used Vj0æ 5 j0æ along with the standard bosonic commutation rela-
tions, and to arrive at (18d) we used the fact that both sums in (18c)
vanish due to 0h ja{k~0. We can thus conclude that vi1 must vanish
for all i g {3, …, M}. After we impose the additional necessary

condition 0h ja2
2V a{i
� �2

0j i~0, we find that vi2 must vanish for all

i g {3, …, M}. In addition, it follows from unitarity of v that then also
v1i and v2i must vanish for all i g {3, …, M} (see Methods). That is,
we have proved that the ‘‘don’t cause errors’’ condition implies that v
has a block-diagonal structure:

v~vc+va, ð19Þ

where vc is a 2 3 2 block (over the computational modes i, j g {1, 2})
and va is an (M – 2) 3 (M – 2) block (over the ancilla modes i, j g {3,
…, M}). This, in turn, can be interpreted as ‘‘don’t couple’’. It states
that, subject to the ‘‘don’t cause errors’’ condition, V cannot couple
the computational and ancilla modes, and in particular cannot cause
photons to leak from the ancilla modes into the computational, or
vice versa. For example, V cannot couple the two computational basis
states j001æ and j100æ (M 5 3). It is conceptually clear that this
implies that nothing is gained by the introduction of the ancilla
modes. However, let us provide a formal proof as well.

Figure 2 | Two-qubit operations for single-rail encoded qubits. (a) Only the restricted set of trivial two-qubit gates prohibits photon-bunching.

(b) When using non-trivial two-qubit gates, such as the control-NOT or control-Phase gate, photon-bunching cannot be avoided and thus leads to gate

errors or probabilistic success rates.

www.nature.com/scientificreports
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Assume, as before, that the system is initially in a factorized state

between the computational and ancilla modes: G a{3, . . . ,a{M
� �

|

F a{1,a{
2

� �
0j i, where F and G are arbitrary polynomials in the creation

operators, e.g., F a{1,a{2
� �

~
P

m1,m2~0 cm1,m2 a{1
� �m1

a{2
� �m2

, where

cm1,m2 are arbitrary coefficients. Note that because of the block-
diagonal structure of v it follows that

V F a{1,a
{
2

� �
V{~

X
m1,m2~0

cm1,m2 Va{1V{
� �m1

Va{2V{
� �m2

~
X

m1,m2~0

cm1,m2

X2

j~1

v1ja
{
j

 !m1 X2

j’~1

v2j’a
{
j’

 !m2

~F’ a{1,a{2
� �

,

ð20Þ

where F9 is a new polynomial. Here the key point is that the ancilla
modes do not appear in F9. A similar calculation reveals that

V G a{3, . . . ,a{M
� �

V{~G Va{3V{ , . . . ,Va{MV{
� �

~G0 a{3, . . . ,a{M
� �

,

where G9 is a new polynomial. Therefore the action of V on an
arbitrary factorized initial state is

V G a{3, . . . ,a{M
� �

F a{1,a{2
� �

0j i ð21aÞ

~ V G a{3, . . . ,a{M
� �

V{
h i

V F a{1,a{2
� �

V{
h i

V 0j i ð21bÞ

~G0 a{3, . . . ,a{M
� �

F0 a{1,a{2
� �

0j i: ð21cÞ

For the computational modes this is equivalent to V F a{1,a{2
� �

|

0j i~ a{1,a{2
� �

0j i, where the no-go theorem for M 5 2 holds.

Discussion
We have shown that using linear optics alone it is not possible to
cancel the photon bunching effect while at the same time implement-
ing a deterministic universal set of logic gates using single-rail photo-
nic qubits. In spirit our result agrees with previous theoretical work
concerning the dual-rail encoding case4,32,33, showing that passive
linear optics does not involve particle interactions other than those
imposed by statistics, and can be understood in terms of classical
wave mechanics. One approach is to then consider additional non-
linear operations such as photon-detection or absorption14, the Kerr
effect, or light squeezing, in order to enable universal linear optical
quantum computing. However, our work leaves open the possibility
that a more general analysis than we have considered here, in par-
ticular one which accounts for the possibility of a probabilistic
enhancement (or even optimization) of both photon-bunching sup-
pression and linear optical gate fidelity, might circumvent our no-go
theorem. Nor did we consider measurements of the ancilla modes or
other non-unitary transformations. For example, one might consider
a non-unitary transformation with maps the bunched state j200æ (on
a total of three modes) to the computational basis state j002æ, without
at the same time mapping j002æ back into the computational sub-
space. In this sense the results presented here are thus a starting point
for a study of the use of additional resources in linear optics quantum
computing using single-rail qubits.

Methods
Unitary representation of V in the creation operator basis. To prove that the
representation of V in Eq. (16) is unitary one can use the standard bosonic
commutation relations along with the Baker-Hausdorff formula

eaABe{aA~Bz
X?
m~1

am

m!
mA,B½ �, ð22Þ

where [mA, B] :5 [A, [m21A, B]] and [1A, B] ; [A, B], for arbitrary operators A and B,
and a [ C, to establish that v 5 e2ih, where h 5 {hij} is the orthogonal matrix of angles

appearing in Eq. (15). Indeed, setting a 5 i, A~
P

kjhkja
{
kaj , B~a{

i , and using the

identity a{kaj,a
{
i

h i
~dija

{
k , we have:

A,B½ �~
X

j

h½ �jia
{
j ð23aÞ

2A,B½ �~
X
jkm

hjkhmi a{j ak,a{m

h i
~
X

jm

hjmhmia
{
j

~
X

j

h2� �
jia

{
j ,

ð23bÞ

etc., so that mA,B½ �~
PM

j~1 hm½ �jia
{
j . Thus

Va{i V{~
X?
m~0

im

m!

XM

j~1

hm½ �jia
{
j ~

XM

j~1

eih
� �

ji a{k, ð24Þ

so that vij 5 [eih]ji, whence v 5 e2ih as claimed.

Proof that ‘‘don’t cause errors’’ implies ‘‘don’t couple’’. Consider a unitary matrix v
with the block structure

v~
x y

0 z

	 

, ð25Þ

where x and z are square and y can be rectangular. The unitarity condition v{v 5 I
yields

x{ 0

y{ z{

 !
x y

0 z

	 

~

x{x x{y

y{x y{yzz{z

 !
~

I 0

0 I

	 

, ð26Þ

so that x{x 5 I and x{y 5 0. By unitarity of v the matrix X cannot be zero, so x21 5 x{

and hence also xx{ 5 I. Thus xx{y 5 y 5 0. In the context of our proof in the last
section, we showed that the ‘‘don’t cause errors’’ condition implies that both vi1 5 vi2 5

0 for all i g {3, …, M}. This is the 0 block in Eq. (25). The vanishing of the y block then
implies that also v1i 5 v2i 5 0 for all i g {3, …, M}, which is the ‘‘don’t couple’’ result.
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