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The search for effective drugs to treat new and existing diseases is a laborious one requiring a large
investment of capital, resources, and time. The coronavirus 2019 (COVID-19) pandemic has been a
painful reminder of the lack of development of new antimicrobial agents to treat emerging infectious
diseases. Artificial intelligence (AI) and other in silico techniques can drive a more efficient, cost-
friendly approach to drug discovery by helping move potential candidates with better clinical
tolerance forward in the pipeline. Several research teams have developed successful AI platforms for hit
identification, lead generation, and lead optimization. In this review, we investigate the technologies
at the forefront of spearheading an AI revolution in drug discovery and pharmaceutical sciences.
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Artificial intelligence has been transformative in
several areas of human endeavor
Exponential progress in AI and its applications has occurred dur-
ing the past 15 years.1 AI-based conversational assistants are now
powering consumer devices, such as Amazon’s Alexa; self-driving
cars have been registering hundreds of thousands of miles on
American roads2; AI has beaten world champions in GO, chess,
and other games3–4; AI-based systems are assisting doctors in
medical diagnosis and treatment5–8; AI is helping map the
canopy cover across the continental United States9–11; and a
combination of AI and immersive virtual reality is assisting con-
struction engineers to design energy-efficient buildings12–13. In
Abbreviations: AI, Artificial Intelligence; SARS-CoV-2, Severe Acute Respiratory S
Generative Adversarial Network; DTI, Drug-Target Interaction; DDI, Drug-Drug Inte
Peptide.
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summary, AI is influencing every aspect of human life from
transportation14 to stock trading.15 However, the influence of
AI on drug discovery and development has been minimal thus
far.

AI currently lacks impact on drug discovery
Although it is undeniable that the application of AI in pharma-
ceutical sciences holds tremendous promise, the current limited
impact of AI on drug discovery can be attributed to multiple fac-
tors. A lack of standardized labeled benchmark data sets has been
one of the major hurdles of AI-driven drug discovery. The recent
AI revolution has been fueled by the availability of cheap com-
puting power and large volumes of data that can be easily shared
yndrome-Associated Coronavirus 2; FDA, Food and Drug Administration; GAN,
raction; DUD-E, Database of Useful (Docking) Decoys Enhanced; AVP, Antiviral
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through the internet. For example, progress in computer vision
has been dramatically accelerated by the creation of the bench-
mark ImageNet data set.16 Despite several attempts, including
DrugBank,17 BindingDB,18 KEGG,19 Supertarget,20 and DUD-
E,21 an all-encompassing benchmark labeled data set, such as
ImageNet, has not yet been created in the pharmaceutical
sciences. This lack of a standardized data set means that it is dif-
ficult to follow existing transfer learning strategies, in which one
fine-tunes a model pretrained on a standard data set for a new
task. Hence, it is difficult to transition models trained for discov-
ering drugs for one disease to do the same for another. For AI to
be impactful in drug discovery, one needs to develop general
techniques and patterns that apply to a range of tasks involving
different diseases.

Although deep learning22 has had a central role in the ongo-
ing AI revolution, models developed based on this technique
are notorious for their opacity. Deep neural networks essentially
behave like black boxes23 and do not provide any insight into
their underlying decision-making process. This also makes their
application in drug discovery onerous. When a drug is flagged
by a neural network as being efficacious for a disease, one needs
to understand its mechanism of action, the interaction of the
drug with the host–protein network, whether the interaction is
inhibitory, the pharmacokinetics, the dose–response curve, any
potential cytotoxicity, as well as the epistemic and the aleatoric
uncertainty associated with the decision of the network. An
off-target decision can entail unnecessary costs incurred not only
in failed tests in vitro and in vivo, but also in consequent clinical
trials where the loss of reputation is likely.
The current pandemic is driving use of AI in drug
discovery
Although the above discussion paints a bleak picture of the suit-
ability of AI in drug discovery, there appears to be hope on the
horizon. The current COVID-19 pandemic has become the main
driving force behind the use of AI to accelerate preclinical drug
discovery. At present, a few drugs, such as remdesivir, have been
approved by the US Food and Drug Administration (FDA) for off-
label use in treating severe acute respiratory syndrome-associated
coronavirus 2 (SARS-CoV-2) infections. Most of these proposed
treatments have been discovered through trial-and-error experi-
ences by physicians and researchers around the world. It is well
documented that the average pharmaceutical company’s in-
house preclinical discovery cost for a new drug compound is
US$209 522 157 (adjusted for inflation) over 3 years
(only � 12% of all drugs developed eventually get approved by
FDA, whereas failed attempts significantly increase the average
cost and time requirement of preclinical drug discovery).24–25

These expenses do not include the costs of basic research at the
university level focused on the identification of molecular targets
as well as the development of research methods and technolo-
gies. The efficiency of drug development, as defined by the suc-
cessful approval of new pharmaceuticals within the rate of
acceptable financial investment, has significantly declined.25–26

The existing process of creating drugs is slow, inefficient, and
costly. Hit identification, lead generation, and lead optimization
are key steps at the outset of any drug discovery process.
1100 www.drugdiscoverytoday.com
Compounds showing promising activity identified by high-
throughput screening as initial hits are filtered and modified to
generate lead compounds that satisfy basic drug-likeness proper-
ties.27 These lead compounds are further optimized to enhance
their potency toward the target protein or mechanism as well
as to reduce nonselectivity and toxicity. Conventional hit identi-
fication is expensive and requires time-consuming screening
experiments. Under the circumstances of the current pandemic,
the world cannot afford such an inefficient pipeline. What is
needed is a principled approach to drug discovery and repurpos-
ing that can rapidly address large data sets. This capability will
thereby create an improved method for identifying drugs and/
or drug combinations that are likely to succeed.
Current state of antimicrobial drug discovery
The enormous time and cost incurred in discovering a new com-
pound as well as developing it through the approval process have
been so overwhelming in recent times that the pharmaceutical
industry has repeatedly shown reduced interest in bringing
new drug products to market. The inactivity is most notable in
less profitable market segments, such as infectious diseases.28

Over the past 20 years, the pharmaceutical industry has put
infectious disease and antimicrobial drug discovery and develop-
ment on the backburner. The COVID-19 pandemic has been a
distressing reminder of the lack of infrastructure to develop treat-
ments for emerging infectious diseases. The pandemic has been a
global reckoning, highlighting the importance of antiviral and
antimicrobial drug research for potential future outbreaks. In
recent history, there have been meagre enthusiasm and scarcity
of growth in the field of infectious diseases. Case in point, for
bacterial infections, every new antibiotic brought to market over
the past few decades has been only a slight variation on existing
drugs discovered before 1984.29 Only one of the top 50 pharma-
ceutical companies has antibiotics in clinical development and
nearly 75% of the companies currently developing antimicro-
bials can be regarded as prerevenue, with no approved products
in the market.30–31 Market analysis has shown that drug-
resistant forms of these diseases will grow significantly by
2025, with very few new drug strategies in the near future.32
The rise of new AI techniques and their application to
drug discovery
Recent advances in AI with the development of fundamentally
new techniques, such as graph neural networks,33–34 graph
embeddings,35 geometric deep learning,36 attention networks,37

self-supervised38 and unsupervised39–40 learning, Monte-Carlo
graph search,41 neural networks for protein folding,42 explain-
able AI,43 and generative adversarial networks (GANs),44 have
spurred renewed interest in applyications to accelerate drug dis-
covery. These techniques promise to mitigate the above-
mentioned drawbacks of previous-generation AI. They allow for
the development of an efficient drug discovery pipeline by lever-
aging mathematical representations of all interactions between
proteins in the host cell.

Using such a model, we can accurately predict whether a par-
ticular microbial mechanism will be inhibited by a certain drug.
For example, in discovering antivirals, understanding the effects
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of a drug on viral mechanisms, such as viral entry, RNA transcrip-
tion, and viral exit, can be crucial for predicting the effectiveness
of a therapy involving the drug. Databases, such as HU.MAP,45

HPIDB,46 and STRING,47 provide both human–human and
human–virus protein interactions that can be exploited by the
above-mentioned techniques. These interactions can be used to
provide explanations for why a particular drug compound is effi-
cacious against a disease both in terms of the proteins targeted by
the compound and subsequent protein–protein interaction cas-
cades. For instance, a graph neural network33–34 can take a graph
structure and a feature description for every node as input, to
comprehensively model the interactions of a drug within the
human interactome, that is, the protein–protein interactions of
the human cell. The network learns and operates on the graph
structure of the input and ground truth data. Each protein is rep-
resented as a node in the graph and the neighborhood of each
node is assigned from the set of neighboring nodes in the struc-
ture of the protein. Chemical nodes can correspond to existing
drugs (including 131 nutraceuticals) in Drugbank, which con-
tains data on 13 580 approved and experimental drugs, or
SuperTarget, a large data set of 332 828 drug–target interactions
(DTIs). The edges of the graph represent protein interactions.
Each protein node could also have features computed from its
amino sequence and structure, whereas edges have weights
describing interactions experimentally derived between residues.
Such a network would be a predominantly encompassing math-
ematical representation of all physical contacts between proteins
within a cell (Fig. 1). ProtVec,48 a vector representation of protein
sequences, would constitute the input features of each protein
node. ProtVec is an unsupervised data-driven distributed repre-
sentation of the protein k-mer sequences as an n-dimensional
vector in a context-aware manner, useful for neural network pre-
dictions or analyses. Target mechanisms would be represented
with edges to all proteins associated with them.

The output of such a graph neural network would be node
embeddings for each node in the graph. A node embedding char-
acterizes the context of a node with respect to its interaction with
other nodes in the graph. Fig. 2 visualizes the embeddings of
such a graph in 2D using t-SNE.49 The red clusters in Fig. 2 show
how drugs are clustered, whereas blue clusters show the cluster-
ing of the proteins. Overlap of the blue clusters with the red clus-
ters indicates drug–protein interactions.

The DeepDrug team (see below) developed such node embed-
dings to be inputted into a Siamese network.50 Siamese networks
project embeddings into multidimensional space and calculate
distance between them within that dimensionality. The closer
the prediction is to zero, the higher the interaction between a
pair of embeddings. A Siamese network will take embeddings
of a pair of drug–protein nodes as input. The network would out-
put a distance metric indicating the effect of the drug on target
proteins and viral mechanisms involving them. For example,
for the nutraceutical biotin, the Siamese network predicts Abel-
son kinase 1 (ABL1) as a target protein. It is known from the lit-
erature51 that Abelson kinase inhibitors can have effectiveness
against SARS and Middle East respiratory syndrome-associated
(MERS) coronavirus infections. Similarly, the nutraceutical levo-
menol, a chamomile extract, is predicted to target signal trans-
ducer and activator of transcription 3 (STAT3). The literature52
shows that inhibition of STAT3 can help reduce cytokine storms
(i.e., severe cytokine release) and acute respiratory distress syn-
drome (ARDS) during COVID-19 infection. One could use a Baye-
sian Siamese network53 with weights sampled from a Gaussian
distribution to further provide uncertainty estimates for its pre-
dictions. Geometric deep-learning techniques can also generalize
such graph neural networks and can efficiently extract represen-
tations of chemical features.54

The resulting weights with their uncertainty estimates can be
used to prioritize drugs and filter the top drug candidates by tak-
ing their respective toxicities and synthetic accessibilities24 into
consideration using a multicriterion optimization algorithm.
This multicriteria optimization algorithm can: (i) rank all FDA-
approved drugs according to the weight/uncertainty estimates
as obtained from the Siamese network; and (ii) solve an optimiza-
tion problem that will shortlist drugs with the highest weight/
certainty, lowest toxicity score, and highest synthetic accessibil-
ity score.

Another important advancement in AI that can significantly
impact drug discovery is explainable AI (XAI). Confidence-
aware networks55–57 have helped lift the veil on the opaque
decision-making process of deep neural networks. It is now pos-
sible to understand the epistemic and aleatoric uncertainty asso-
ciated with the decision of a deep neural network. Indeed, when
a confidence-aware neural network predicts that a drug is effica-
cious against a particular disease, it will also provide a measure of
its own confidence in its prediction. High confidence predictions
can proceed for in vitro validation, whereas low confidence pre-
dictions can be filtered out. Recent advances in transfer learn-
ing58–60 also bode well for drug discovery. Domain adaptation61

now allows models trained to predict drugs targeting one disease
to be repurposed for other indications. Transfer learning together
with low-shot techniques62–63 alleviate the need for large, labeled
data sets in model training. Currently, tasks such as predicting
toxicity or drug–drug interactions (DDIs) require large volumes
of labeled training data. Acquiring such data in the pharmaceuti-
cal field is difficult because labeling requires domain knowledge.
This markedly hinders the development of essential tools for
drug discovery. Modern unsupervised39–40 and self-supervised
learning techniques38 can ease the problem by exploiting vast
amounts of available unlabeled data.
Renewed efforts in applying AI to drug discovery
Stunning advances in AI, as described above, have spurred
renewed interest in using AI to accelerate preclinical drug discov-
ery. Several teams have been working with AI platforms to repur-
pose existing drugs and re-engineer new drugs in the pursuit of
finding life-saving medicines. Here, we highlight platforms with
state-of-the-art machine learning and AI technology that are
spearheading new methods for drug discovery. Recently, Bender
and Cortés-Ciriano published a paper discussing whether AI was
having an impact on drug discovery and limitations of this
approach to date.64–65 Here, we address the concerns raised by
these authors and provide a brief introduction to the implemen-
tation, strategy, and successes of each team. Each of these meth-
ods can lead to both theoretical and practical applications in
drug discovery.
www.drugdiscoverytoday.com 1101
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FIGURE 1
Visualization of protein–protein and protein–chemical graphs. The blue dots represent protein nodes, the green dots represent chemical nodes, the gray
dot represents a virus protein, and the lines represent edges in the graph (protein–protein or chemical–protein interactions).

IN
FO

R
M
A
TIC

S
(O

R
A
N
G
E)

INFORMATICS (ORANGE) Drug Discovery Today d Volume 27, Number 4 d April 2022
BenevolentAI
The BenevolentAI team is working on a drug discovery approach
that involves the use of biological knowledge graphs to identify
new treatments.66 Using an AI technique called natural language
processing (NLP),67–68 knowledge graphs are extracted from the
scientific literature to identify previously unknown correla-
tions.69 The resulting graph represents an interlinked network
of concepts that places scientific data in context by linking
semantic metadata. This framework allows the BenevolentAI
team to integrate previously unconnected research to identify
links that could be targets for drug development. This network
was used to identify baricitinib,70 a drug approved for the treat-
ment of rheumatoid arthritis, as a repurposed treatment for
COVID-19 in mitigating the cytokine storm through inhibition
of adaptor-associated protein kinase 1 (AAK1). By making use
of this knowledge base, the team was able to complete this anal-
ysis by February 2020, only weeks after the first COVID-19 case
was reported in the USA. By November of the same year, Benev-
olentAI and Eli Lilly had completed clinical trials and received an
Emergency Use Authorization from the FDA as a treatment for
COVID-19.

BenevolentAI also has a secondary project71 to analyze and
compare 3D binding sites in which both positive and negative
binding pairs of protein-pockets and ligands are used to train a
network for protein-pocket matching. By encoding the 3D
shapes of the binding sites, BenevolentAI’s network is able to
learn which features of a protein-pocket representation predict
binding affinity and can screen many pockets to identify novel
drug targets. This machine learning approach is called ‘field of
distance metric learning’,72 and enables the BenevolentAI team
to predict results of previously unknown DTIs.
1102 www.drugdiscoverytoday.com
Atomwise
Another emerging platform is Atomwise, which uses an AI tech-
nique called convolutional neural networks (CNNs) to analyze
the biological activity to predict the binding affinity of small
molecules.73 CNNs are a class of neural networks mainly used
to understand imagery. Molecular shape analysis of small mole-
cules using CNNs can predict binding affinity measurements of
different molecules to protein structures. This allows Atomwise
to predict the biological activity and pharmacology of small
molecules for drug discovery. The Atomwise networks apply fea-
ture locality and hierarchical composition to model pharmaco-
logical activity and chemical interactions. Their networks
showed promising results for the Database of Useful (Docking)
Decoys Enhanced (DUD-E), achieving an area under the curve
(AUC) greater than 0.9 on 57.8% of the docking targets in
DUD-E.21,73 Atomwise used this technology to screen millions
of molecules against known SARS-CoV-2 proteins to explore
broad-spectrum therapies for the treatment of COVID-19 and
other coronavirus infections.
Insilico Medicine
The Insilico Medicine team proposed a unique generative adver-
sarial network (GAN)-based approach for synthesizing new drugs
for individual diseases.74 GANs function by discovering patterns
in input data from which the model can generate new samples
that could have plausibly been drawn from the original data
set. Insilico Medicine’s GAN network synthesizes new com-
pounds by iteratively generating molecules; while analyzing cer-
tain molecular parameters, such as biological activity and
synthetic feasibility. The system then optimizes across its set
parameters and generates new molecules until it reaches a local
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FIGURE 2
Visualization of node embeddings in two dimensions using t-SNE. The
red clusters show how the drugs are clustered, whereas the blue clusters
show the clustering of the proteins. Overlap of the blue clusters with the red
clusters represent drug–protein interactions.
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FIGURE 3
Bioactive compounds from the Database of Useful (Docking) Decoys
Enhanced (DUD-E) database fragmented with eMolFrag. eMolfrag was
able to generate an average of six fragments per molecule. eSynth uses
beam search techniques to create new drug molecules by combining the
building blocks generated by eMolFrag in a chemically comprehensive way.
By using fragments generated by eMolFrag, eSynth reconstructed 78.3% of
active compounds with a Tanimoto coefficient (TC) of 1.0 and 88.4% with a
TC � 0.8. Adapted from Liu et al.26
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maximum. Such a network can generate molecules with certain
properties or activities against a pharmacological target, making
the network useful for initial discovery. However, only a few
examples of generative drug design have achieved validation in
in vitro or in vivo experiments.

Insilico Medicine originally focused their efforts on generat-
ing chemotypes targeting the SARS-CoV-2 main protease. By 4
February, 2020, Insilico Medicine released their first potential
de novo protease inhibitor. The Insilico Medicine team recently
published ten representative structures of protease inhibitors
for potential development against COVID-19.75 Even so, the
greatest complication of using a GAN lies in the nature of the
network itself. Any output from such a GAN is derived within
a ‘black box’ system, giving researchers little to no explanation
or understanding of the underlying analyses. Given that the pat-
terns and regularities identified in the data are known only by
the AI system, extensive laboratory testing is required to confirm
any findings from this technique.

ComboNet
The ComboNet team at the Broad Institute (Cambridge, MA,
USA) leveraged DTIs to identify synergistic combinations against
SARS-CoV-2.76 The ComboNet system predicts DTIs from the
molecular structures of the compounds analyzed. The Comb-
oNet architecture comprises two major components: a graph
convolutional network (GCN), which is trained to represent
the molecular structure of the compound, and a model for tar-
get–disease association. The advantage of using this methodol-
ogy is the ability to predict from compounds with incomplete
DTI information. The second model learns how biological targets
and molecular structure features interact to present antiviral
activity and synergy. The team used training data from the
National Center for Advancing Translational Sciences (NCATS)
at the National Institutes of Health (NIH) cytopathic effect assay
against SARS-CoV-2 as well as SARS-CoV-2 drug combination
assays with synergy scored using the BLISS model.77

DeepDrug
The DeepDrug team, a semifinalist in the IBM Watson Artificial
Intelligence XPRIZE competition, created an efficient AI-based
platform to design new compounds and repurpose existing drugs
for emerging infectious diseases.24,26,78 The DeepDrug pipeline is
capable of automatically synthesizing targeted drug molecules
using beam search techniques,79 as well as filtering candidates
based on chemical criteria (e.g., Lipinski’s Rule of Five)27 and
potential adverse effects. This allows the team to predict the can-
didates that are most likely to succeed in the patient population.
The pipeline is modular in nature and currently comprises
eMolFrag,26 eSynth,78 eToxPred,24 eDrugRes, eVir, eComb and
several other AI-based filters. Given a collection of molecules,
eMolFrag generates a set of unique fragments and pharma-
cophores that act as ‘building blocks’. Fig. 3 shows the ability
of eMolFrag to identify bioactive building blocks from known
drugs. eSynth78 uses beam search techniques79 to combine these
molecular fragments into novel molecules de novo. It assembles
millions of molecules in minutes, while logging the associated
chemical reactions used to construct each molecule. This trace
of chemical reactions can be used to synthesize any of these
molecules in a wet lab setting. These molecules can be then fur-
ther filtered for toxicity, specificity, and ease of manufacturing.
www.drugdiscoverytoday.com 1103
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Using two of these modules, the DeepDrug team synthesized
an adenosine receptor from components acquired by decompos-
ing four adenosine receptor antagonists.26 Adenosine receptor
antagonists have important roles in inflammation, pain, and
immune responses, making them attractive targets for
pharmacotherapy.

eToxPred,24 the third module in the DeepDrug pipeline, is
used to estimate toxicity and synthetic accessibility of small
molecules. Estimating toxicity is a key component of the overall
DeepDrug pipeline, to rapidly and proactively filter out com-
pounds with undesirable or adverse effects. In contrast to other
approaches that use manually crafted descriptors,80 eToxPred
uses the molecular fingerprints of the chemical compounds to
model toxicity directly, making it more effective against highly
diverse data sets. Fig. 4 shows eToxPred using machine-
learning techniques to filter the candidate drug molecules with
respect to their potential toxicity based on structural properties.
The output eToxPred value is a score between zero and one, with
zero being the least toxic and one indicating a high likelihood for
toxicity. FDA-approved drugs have the lowest median Tox-score
of 0.34, whereas the toxicity of active compounds from the
DUD-E data set is slightly higher, with a median Tox-score of
0.46. Compounds in both natural products and traditional her-
bal medicine data sets show higher toxicity scores with a median
Tox-score of � 0.55. These results are validated by other studies
Drug Discovery Today

FIGURE 4
Composition of nontoxic and toxic compounds. The scatter plot shows
the frequencies of eMolFrag-extracted chemical fragments from US FDA-
approved (nontoxic) and TOXNET (toxic) molecules. The dotted black line is
the line of regression, and the gray area represents the corresponding
confidence intervals. Examples of three commonly found FDA-approved
fragments (piperidine, piperazine, and fluorophenyl) are in green, whereas
fragments of more commonly toxic fragments from the TOXNET data set
(chlorophenyl, n-butyl, and acetic acid) are in red. Adapted from Figure 8 in
Pu et al.24
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that examine the potentially toxic constituents, which include
alkaloids, glycosides, polypeptides, amino acids, phenols,
organic acids, terpenes, and lactones.

eDrugRes was created to identify effective chemicals against
antibiotic-resistant bacteria by exploring drug effects and muta-
tions within microbial protein–protein interaction networks.
This system uses GCNs to predict whether a specific chemical
compound would have therapeutic activity against certain
strains of bacteria.

Several new modules have recently been added to the Deep-
Drug pipeline. The first is eVir, which can determine viral speci-
ficity of drugs with the goal of repurposing existing drugs. It uses
an AI technique to generate a fingerprint for drugs and known
antiviral peptides (AVPs)81 that captures their properties and
context within a mathematical representation of all cellular pro-
tein interactions. By comparing these fingerprints in the context
of the data, the system provides separate predictions for three
mechanisms of viral infection (e.g., entry, fusion, and replica-
tion), which affords a higher degree of specificity in drug selec-
tion. This enables eVir to explain its predictions based on
specific correlated mechanisms and protein interactions. The
DeepDrug team has used eVir to identify multiple drugs and drug
therapies with high likelihood of efficacy against SARS-CoV-2.
These therapies have demonstrated their effectiveness against
SARS-CoV-2 infection, both in in vitro studies (with Vero E682

and Calu-383 cells) as well as in vivo studies using transgenic mice.
Finally, the DeepDrug AI platform can predict the DDIs in drug
combinations as well as the synergy of specific drug combination
therapies with the latest module, eComb. Recently, an oral drug
combination therapy for COVID-19, discovered by the Deep-
Drug AI platform, started clinical trials at the Riverside University
Health System, California.84 In addition, the nutraceuticals bio-
tin and levomenol were identified to have potential effects
against SARS-CoV-2, based on the AI analysis above. The Deep-
Drug team combined these two nutraceuticals with other essen-
tial vitamins and minerals to create a dietary supplement known
as Inhibinol.85
Comparison of technologies
Drug discovery is associated with complex workflows that have
multiple spanning aspects. The innovative teams mentioned
above (Table 1) are each working on specific verticals pertinent
to drug discovery. Depending on their particular use cases, the
teams use diverse techniques, each of which has their own
advantages and disadvantages. For instance, the Insilico Medi-
cine team uses GANs, the underlying analysis of which is difficult
to explain. However, when applied in the context of COVID-19,
the team identified ten proteasomal inhibitors that are currently
being testing in labs by several research groups worldwide.
Unlike Insilico Medicine, Atomwise’s system is only capable of
repurposing known molecules. However, their approach requires
a large volume of experimental and structural data. By contrast,
BenevolentAI leveraged a massive data set and previously devel-
oped knowledge graphs to become the first team to identify a
possible inhibitor for reducing the severity of a cytokine storm:
baricitinib. The disadvantage of BenevolentAI’s system is its lim-
ited capability in discovering known molecules based only on



TABLE 1

Comparison of emerging AI teams and their respective technologies.

AI team Technique In vitro In vivo Clinical trials

BenevolentAI Knowledge graphs and protein pocket analysis U U U

Atomwise Molecular docking prediction; GAN de novo synthesis of chemotypes U

Insilico Medicine, ComboNet GCN in silico analysis of drug combinations U

DeepDrug eMolFrag, eSynth, eToxPred, eDrugRes, eVir, eComb U U U (Approved May 2021)
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natural language processing from a corpus of existing literature.
BenevolentAI also has protein-binding prediction networks still
in early phase testing. ComboNet is designed to predict drug syn-
ergy by modeling compound and biological target structural fea-
tures with a GCN. The advantage of this technique is the ability
to predict DTIs for compounds with incomplete experimental
data. The disadvantage is that the structural training set is hyper-
specific to a few key viral SARS-CoV-2 proteins, whereas the drug
combinations are based on old curated data with previously
tested drugs, such as remdesivir. Without extensive testing on a
disjoint test set, it is unclear whether such a training set would
be able to predict accurately for compounds outside the training
set. Unfortunately, ComboNet has only tested their predicted
combination therapies for SARS-CoV-2 against Vero E6 cells
in vitro. Finally, DeepDrug is capable of both synthesizing new
molecules de novo and repurposing drugs, while predicting their
likelihood of human toxicity, manufacturing difficulty, and tar-
get specificity.

Overall, AI in drug discovery is an extremely powerful but nas-
cent tool. Companies and teams have designed systems that han-
dle only specific types of analyses proficiently. Since each team’s
respective data sets are meticulously aggregated and collated
individually, their frame of reference might only be useful in a
narrow vertical. Additionally, such data are considered propri-
etary and are often siloed within the team. For instance, the rec-
ommendations provided by the existing AI pipelines do not
consider the pre-existing conditions of patients. Such global con-
textual information could be provided in the form of deidenti-
fied patient electronic health records. Access to such data
would allow for more context-sensitive recommendations that
can be valuable in a clinical setting. Overall, these emerging AI
tools can be utilized to move the ball toward an ultimate goal:
rapidly identifying treatments for infectious diseases. Although
certain types of analyses, such as drug combination synergy,
expected dosage, and adverse drug reactions, are also important,
predictive algorithms for these aspects have yet to be extensively
developed. From toxicology to DDIs, to drug–protein specificity,
scientists are trying to perfect these prediction systems in every
aspect of drug discovery. In the long run, these technologies
are a first step toward a comprehensive pipeline capable of
rapidly identifying key drugs to combat any emerging infectious
disease at a fraction of the time and cost.
Concluding remarks and outlook
The current drug development process is slow, inefficient, and
costly. There is a dire need to develop new platforms and
approaches to combat diseases quickly compared with tradi-
tional approaches. AI applications in other sectors are massively
improving platform efficiencies, refining targeted results, and
transforming labor-intensive processes. Such efficiencies are key
in disrupting the current stagnation of the pharmaceutical indus-
try. Big pharma’s insufficient response to emerging pathogens
burdens healthcare systems across the globe and ultimately costs
many lives. Data projection, mining, and analysis at scale will
assist scientists and pharmacologists in identifying the most
effective compounds by cross-checking millions of chemical
combinations. All of the AI platforms described in this paper
are applying cutting-edge techniques to their respective complex
pharmacological challenges. These novel approaches for drug
discovery and development are a transformative first step. We
need to embrace these new technologies and strategies amid
the turmoil of the current COVID-19 pandemic.
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