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Abstract

Human papillomaviruses (HPV) are the causative agents of cervical cancers. The infectious HPV life cycle is closely linked to
the differentiation state of the host epithelia, with viral genome amplification, late gene expression and virion production
restricted to suprabasal cells. The E6 and E7 proteins provide an environment conducive to DNA synthesis upon
differentiation, but little is known concerning the mechanisms that regulate productive viral genome amplification. Using
keratinocytes that stably maintain HPV-31 episomes, and chemical inhibitors, we demonstrate that viral proteins activate
the ATM DNA damage response in differentiating cells, as indicated by phosphorylation of CHK2, BRCA1 and NBS1. This
activation is necessary for viral genome amplification, as well as for formation of viral replication foci. In contrast, inhibition
of ATM kinase activity in undifferentiated keratinocytes had no effect on the stable maintenance of viral genomes. Previous
studies have shown that HPVs induce low levels of caspase 3/7 activation upon differentiation and that this is important for
cleavage of the E1 replication protein and genome amplification. Our studies demonstrate that caspase cleavage is induced
upon differentiation of HPV positive cells through the action of the DNA damage protein kinase CHK2, which may be
activated as a result of E7 binding to the ATM kinase. These findings identify a major regulatory mechanism responsible for
productive HPV replication in differentiating cells. Our results have potential implications for the development of anti-viral
therapies to treat HPV infections.
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Introduction

Human papillomaviruses (HPV) are the etiological agents of

most anogenital cancers and their productive life cycle is

dependent upon epithelial differentiation [1,2]. HPVs infect cells

in the basal layer of stratified epithelia, but restrict the productive

phase of the life cycle to highly differentiated suprabasal cells [3].

Viral genome amplification, late gene expression and virion

production are induced in suprabasal cells that have re-entered S-

phase. In undifferentiated basal cells, viral genomes are main-

tained as episomes at approximately 100 copies per cell and

replicate in synchrony with cellular replication. In contrast, upon

differentiation HPV genomes are replicated to thousands of copies

per cell in a process referred to as amplification [4]. While normal

epithelial cells exit the cell cycle upon differentiation, HPV-

infected cells are able to over-ride normal checkpoint controls and

remain active in the cell cycle, allowing for the synthesis of cellular

proteins that are necessary for viral replication [5,6]. HPV

proteins activate low levels of caspases belonging to the intrinsic

pathway in differentiating cells, and this is necessary for viral

replication [7]. The mechanisms regulating productive replication

of HPVs upon differentiation, however, remain largely unknown.

The fidelity of cellular replication is controlled by signaling

pathways that block the propagation of damaged DNA [8,9].

Central to these repair pathways are the ATM (ataxia-telangiectasia

mutated), and ATR (ATM and Rad3-related) kinases, which belong

to a structurally related family of serine-threonine kinases that share

a PI-3 kinase-like domain, but only phosphorylate proteins [9].

ATM is a prime mediator of the cellular response to double strand

breaks [10], while ATR controls the response to UV damage, as

well as stalled DNA replication forks [11]. Both kinases act in part

by controlling cell cycle checkpoints at G1, S and G2. Several

viruses have been shown to interact with and/or affect components

of the ATM DNA damage pathway [12]. Herpes simplex virus

(HSV) induces an ATM-damage response as soon as pre-replication

centers are formed, and this activation is essential for productive

replication [13,14]. In contrast, adenovirus must mislocalize and

degrade DNA repair proteins to ensure viral replication [15]. Using

recombinant adenoviruses, high-level expression of HPV-16 E7 in

fibroblasts was shown to activate the ATM pathway [16], but it is

unclear whether these effects are physiologically significant, or if

they play any role in the viral life cycle.

ATM activates a number of downstream targets that are

involved in cell cycle control, apoptotic responses and DNA repair

[17]. These proteins can be divided into three pathways that lead

to activation of cell cycle checkpoints: a p53/mdm2 pathway, a

CHK2 branch, and a NBS1/BRCA1/SMC1 pathway. ATM

directly activates p53 by phosphorylation at serine 15, as well as by

phosphorylating Mdm2, the ubiquitin ligase that regulates p53

stability [18,19,20]. In the second pathway, ATM phosphorylates
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CHK2 leading to arrest in S- and G2-phases by inhibiting the

action of Cdc25 phosphatases [21,22]. Another branch of S-phase

checkpoint control involves ATM targeting of NBS1, a member of

the MRN double strand break repair complex [23]; BRCA1, the

breast cancer susceptibility protein [24]; and SMC1, a cohesin

binding protein [25,26]. An additional downstream activity of

ATM, as well as ATR, that is important for S-phase checkpoint

control is phosphorylation of the tail of a histone variant H2AX (c-

H2AX), which leads to recruitment of DNA damage regulatory

factors to distinct nuclear foci [27,28]. Phosphorylation of these, as

well as other targets allows for DNA damage to be assessed and for

repair to take place.

Given the importance of this pathway in controlling replication,

we investigated if ATM signaling was necessary for stable HPV

replication in undifferentiated cells, as well as productive

replication in differentiated cells. Our studies indicate that HPV

proteins induce an ATM response in both undifferentiated and

differentiated cells. Importantly, we found that ATM kinase

activity is necessary for viral genome amplification in differenti-

ating cells, but not for stable maintenance in undifferentiated cells.

These studies implicate HPV activation of DNA damage signaling

in controlling productive viral replication upon differentiation.

Results

HPV induces a DNA damage response
To determine if HPV induces a DNA damage response in

infected cells we first examined the expression level, as well as

activation status, of ATM by Western blot analysis (Figure 1C). For

these studies, we examined undifferentiated, as well as differentiated

human keratinocyte cell lines that maintain HPV-31 episomes at

approximately 50 copies per cell, and compared effects to a

matched set of normal human keratinocytes isolated from foreskin

circumcisions (HFKs). We have shown previously that calcium-

induced differentiation is sufficient to activate the productive phase

of the HPV life cycle by 48 hours [7]. Upon differentiation,

approximately 25% of HPV positive cells re-enter S phase and

undergo viral genome amplification, resulting in high levels of

episomal DNA [29] (Figure 1A). The induction of differentiation is

indicated by the expression of cellular proteins, such as keratin 10

(K10) and involucrin (Figure 1B). As shown in Figure 1C, the total

levels of ATM were similar between HPV-31 positive HFKs (HFK-

31) and matched normal HFKs in undifferentiated cultures, as well

as after 48 and 96 hours of differentiation in high calcium medium.

In response to double-strand breaks or changes in chromatin, ATM

is activated through the autophosphorylation of inactive, dimeric

ATM on serine 1981, followed by dissociation into active monomers

[30]. The phosphorylated form of ATM (Ser1981) was detected in

undifferentiated HPV-31 positive cells and maintained at a similar

level through 48 hours of differentiation, with a decrease occurring

at 96 hours (Figure 1C). In contrast, only a low level of pATM

Ser1981 was observed in normal HFKs. This pattern of ATM

phosphorylation was observed in multiple independently derived

polyclonal populations of HFK-31 cells, and matched normal

HFKs, as well as in CIN612 cells, which is a clonal cell line derived

from a HPV-31 positive biopsy (Bedell MA, 1991) (data not shown).

To determine if phosphorylation of ATM correlated with

activation of downstream targets, we examined the phosphorylation

status of three of its substrates: CHK2, NBS1 and BRCA1. CHK2 is

an important transducer of the ATM signaling pathway, and its

activation is initiated by ATM phosphorylation on threonine 68

(pCHK2) [21,22]. While pCHK2 was detected in both undifferen-

tiated and differentiated HPV-31 positive cells, only low levels were

detected in normal HFKs (Figure 1C), which correlates with the low

level of pATM detected in these cells. Activation of the ATM

pathway can also result in the phosphorylation of NBS1 and BRCA1,

both of which play important roles in DNA repair and the regulation

of S and G2 checkpoints [24,31,32,33]. In HFK-31 cells, BRCA1 was

phosphorylated at all states of differentiation (Figure 1C). While we

also observed pBRCA1 in undifferentiated normal HFKs, the levels

rapidly declined along with total BRCA1 upon differentiation.

Phosphorylation of BRCA1 in normal HFKs may be due to either

low level activation of ATM, or through the action of ATR, which

can also phosphorylate BRCA1 [24]. Importantly, phosphorylation

of NBS1 at Ser343 was induced only upon differentiation of HPV

positive cells, with low levels observed in undifferentiated cells

(Figure 1C). In contrast, little phosphorylation of NBS1 was observed

in either undifferentiated or differentiated normal HFKs (Figure 1C).

These results indicate that phosphorylation of NBS1 in HPV positive

cells is differentiation-specific, and correlates with the induction of

productive viral replication (Figure 1A). Interestingly, we observed

phosphorylation of the ATR substrate CHK1 on Ser317 in

undifferentiated HPV positive cells (Figure 1C), suggesting that

ATR is also active. However, the levels of phosphorylated CHK1, as

well as total CHK1, decreased by 48 hours post-differentiation.

Similar effects were observed in multiple independently derived

HFK-31 cell lines, as well as in CIN612 cells (data not shown).

Overall, these results indicate that HPV proteins induce a DNA

damage response that is maintained throughout the viral life cycle

and characterized by the activation of the ATM substrates CHK2,

NBS1 and BRCA1.

We next wanted to confirm that ATM activity was responsible

for CHK2 phosphorylation in HPV positive cells, as CHK2 can

also be phosphorylated and activated by the ATR kinase [22,34].

HFK-31 cells were treated with a small molecule inhibitor of

ATM, KU-55933, that inhibits kinase activity without affecting

the total levels of ATM [35] (Figure 1D). Treatment of HFK-31

cells with 5 or 10 uM of the ATM inhibitor resulted in significantly

reduced phosphorylation of CHK2, as well as ATM itself in

differentiated cells (Figure 1D). Treatment of HPV-31 cells with

this inhibitor also resulted in decreased phosphorylation of NBS1

and BRCA1 (data not shown), while phosphorylation of CHK1

Author Summary

Over 100 types of human papillomavirus (HPV) have been
identified, and approximately one-third of these infect
epithelial cells of the genital mucosa. A subset of these
HPV types are the causative agents of cervical and other
anogenital cancers. The infectious life cycle of HPV is
dependent on differentiation of the host epithelial cell,
with viral genome amplification and virion production
restricted to differentiated suprabasal cells. While normal
keratinocytes exit the cell cycle upon differentiation, HPV
positive suprabasal cells are able to re-enter S-phase to
mediate productive replication. The mechanisms regulat-
ing the activation of differentiation-dependent viral
replication are largely unknown. In this study, we
demonstrate that HPV induces an ATM-dependent DNA
damage response that is essential for viral genome
amplification in differentiating cells. In addition, we have
found that ATM signaling to its downstream target CHK2 is
critical for providing an environment that is conducive to
HPV productive replication. Our findings identify an
important regulatory mechanism by which HPV controls
replication during the productive phase of the life cycle
and may identify new targets for the development of
therapeutics to treat HPV-induced infections.
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Figure 1. HPV induces a cellular DNA damage response in infected cells. (A) DNA was harvested from undifferentiated (T0) HPV positive
cells, as well as after 48 and 96 hours of differentiation in high calcium. Southern blot analysis was performed to examine amplification of viral
genomes, represented by supercoiled (episomal) viral DNA. Standards of copies of HPV genomes per cell are indicated to the left of the gel.
(B) Lysates harvested from undifferentiated (T0) HPV-31 positive HFKs (HFK-31) and from normal HFKs, as well as cells differentiated in high calcium
medium for 48 and 96 hours, were analyzed by Western blot analysis for levels of the differentiation markers keratin 10 (K10) and involucrin.
(C) Lysates were harvested from undifferentiated HFK-31 and from normal HFKs, as well as cells differentiated in high calcium medium for 48 and
96 hours. Western blot analysis was performed using the indicated phospho-specific antibodies, as well as antibodies to detect total protein levels.
(D) HFK-31 cells were treated with DMSO as a vehicle control, or the indicated amounts of the ATM inhibitor KU-55933 for 48 and 96 in high calcium
medium. Lysates were harvested at the indicated times and analyzed by Western blot analysis for the activation of CHK2 (Thr68), CHK1 (Ser317), and
ATM (Ser1981), as well as antibodies to detect total protein levels. GAPDH served as a loading control. Ca = calcium.
doi:10.1371/journal.ppat.1000605.g001
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Ser317 was only minimally affected with 10 uM of the inhibitor

(Figure 1D). Treatment of undifferentiated HPV-31 positive cells

also resulted in inhibition of CHK2 phosphorylation without

affecting CHK1 phosphorylation (data not shown). These results

indicate that ATM activity is necessary for CHK2 phosphoryla-

tion in cells maintaining HPV genomes. In addition, our findings

indicate that the low level of CHK1 phosphorylation observed in

differentiating HPV positive cells is ATM-independent, and may

suggest a role for ATR in the non-productive phase of the life

cycle.

HPV does not induce degradation of MRN components
In response to DNA damage, ATM is recruited to distinct

nuclear foci by the MRN complex, which consists of NBS1,

MRE11 and RAD50 [36,37]. Recruitment to double strand

breaks allows for ATM-dependent phosphorylation of at least a

subset of downstream targets [10,38]. Adenoviruses abrogate the

ATM response by relocalizing and degrading components of the

MRN complex, which would normally promote the detrimental

concatemerization of viral genomes [15,39]. For HPV, the

amounts of MRE11 and RAD50 were found to be similar in

both undifferentiated and differentiated cells, as well as in HFKs,

while the levels of NBS1 were consistently higher in HPV-31 cells

compared to normal HFKs (Figure 2). In addition, components of

the MRN complex were localized to nuclear foci in HPV positive

cells (Figure S1). Overall, these results indicate that HPV does not

induce degradation of these repair proteins in order to facilitate

the viral life cycle, but instead maintains them at high levels

throughout differentiation.

HPV induces the accumulation of activated ATM, CHK2
and c-H2AX in nuclear foci

The detection of phosphorylated CHK2, NBS1 and BRCA1 in

HPV positive cells suggested that ATM may be localized to

nuclear foci, as is observed in cells undergoing a DNA damage

response [8]. To investigate this possibility, we examined the

localization of the phosphorylated form of ATM (Ser1981) in

HPV-31 positive cells by confocal fluorescence microscopy. As

shown in Figure 3A, pATM Ser1981 was found in distinct nuclear

foci in undifferentiated HPV-31 positive cells. pATM Ser1981

colocalized with c-H2AX, a modified histone associated with

double-stranded breaks [40], and these foci were retained upon

differentiation in a similar number of HPV-31 positive cells

(39.766.6%). In contrast, normal HFKs exhibited diffuse staining

of pATM, with only a few foci being detected in both

undifferentiated and differentiated cells (3.2%6.8 and 3.16.6%,

respectively). Inhibition of ATM activity by treatment with KU-

55933 abrogated formation of pATM-Ser1981 foci in HPV-31

positive cells (Figure 3A), and correlates with the decrease in

pATM levels observed in the presence of the inhibitor by Western

blot analysis (Figure 1D). Interestingly, the number of HPV-31

positive cells that exhibited c-H2AX foci upon 48 hours of

differentiation was reduced but not completely inhibited in the

presence of KU-55933 (40.7% to 10.8%), indicating that other

kinases, such as ATR [27], may contribute to this activity in HPV

positive cells. Similar results were observed in multiple HFK-31

lines, as well as CIN612 cells. These results suggest that HPV

induces the activation and accumulation of ATM and c-H2AX at

distinct sites in the nucleus.

We next examined the localization of phosphorylated CHK2

Thr68 in undifferentiated and differentiated cells. In undifferen-

tiated HPV-31 positive cells, a number of foci containing both

pCHK2 Thr68 and c-H2AX were detected, although every cell

did not stain positive for these foci (Figure 3B). Upon

differentiation in high calcium medium for 48 hours, the number

of foci containing both pCHK2 and c-H2AX was retained

(21.561.1%). In contrast, only smaller, less intense foci containing

pCHK2 and c-H2AX were detected in undifferentiated HFKs

(3.360.5%), and the number did not increase upon differentiation.

When HPV-31 positive cells were treated with the ATM inhibitor,

the formation of the pCHK2 foci was substantially diminished

(21.5% to 3.4%), further supporting a dependence on ATM

activity for CHK2 activation (Figure 3B). Calcium-induced

differentiation of HPV-31 positive cells and normal HFKs was

confirmed by staining for K10 (Figure 3C).

It was next important to confirm that pCHK2 Thr68

localization to nuclear foci was not specific to calcium-induced

differentiation. For these studies, HPV-31 positive keratinocytes,

as well as normal keratinocytes, were induced to differentiate by

growth in organotypic raft cultures, and immunohistochemistry

was performed on cross sections of the rafts. As shown in

Figure 3D, pCHK2 Thr68 was detected in the basal layer of HPV-

31 positive rafts, as well as in a large number of suprabasal cells

(67%), while only a few cells in the basal layer of normal HFK rafts

had a comparable signal (5%). These results correlate with the

CHK2 activation and nuclear localization observed upon calcium-

induced differentiation. In addition to CHK2, we also observed

similar staining patterns for pATM Ser1981, c-H2AX and

MRE11 in rafts of HPV-31 positive cells (Figure S2). Differenti-

ation of HFK-31 cells, as well as normal HFKs, using the raft

system was confirmed by staining for K10 (Figure S2). Overall,

these results indicate that an ATM DNA damage response is

activated in HPV-positive cells.

ATM and CHK2 kinase activity is required for viral
genome amplification in differentiating cells

We next investigated if activation of the ATM pathway is

necessary for stable replication of HPV genomes in undifferenti-

ated cells, or viral genome amplification in differentiated cells.

Figure 2. HPV does not affect the levels of the components of
the MRN complex. Lysates were harvested from undifferentiated
HFK-31 cells and normal HFKs, as well as from cells induced to
differentiate in high calcium for 48 and 96 hours. Western blot analysis
was performed using antibodies to NBS1, MRE11 and RAD50. Western
blots were stripped and re-probed with an antibody to GAPDH as a
loading control. Ca = calcium.
doi:10.1371/journal.ppat.1000605.g002
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Figure 3. HPV induces ATM activation and the accumulation of DNA repair proteins in nuclear foci. HFK-31 cells, as well as normal HFKs
were harvested, fixed and permeabilized at either time 0 (undifferentiated cells), or after 48 hours of differentiation in high calcium medium
containing DMSO, or 10 uM of the ATM inhibitor KU-55933. Samples were stained with (A) anti-pATM Ser1981 (red), anti-H2AX Ser139 (c-H2AX)
(green) antibodies; (B) anti-pCHK2 Thr68 (green), anti-c-H2AX (red) antibodies; or (C) an anti-K10 antibody as a marker of differentiation. Samples
were subsequently analyzed by confocal laser scanning microscopy using either a 606objective lens (panels A and B), or a 406objective lens (panel
C). Cellular DNA was counterstained with DAPI. (D) Sections from organotypic raft cultures generated from HFK-31 cells, or normal HFKs were stained
with an antibody to detect pCHK2-Thr68 (green). Cellular DNA was counterstained with DAPI. Images were visualized using confocal laser scanning
microscopy. Ca = calcium.
doi:10.1371/journal.ppat.1000605.g003
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Since our studies identified activated CHK2 and BRCA1 in

undifferentiated HPV-positive cells, we first examined the effect of

inhibiting ATM kinase activity on episomal maintenance

(Figure 4A). HPV-31 positive cells were grown in monolayer

cultures and treated every two days with either DMSO as a vehicle

control, or 5 uM KU-55933 to inhibit ATM kinase activity. The

cells were passaged every five days and DNA was harvested at

every other passage. Southern blot analysis was then performed to

examine the status of the episomal viral DNA. As shown in

Figure 4A, cells treated with DMSO maintained a similar number

of episomes over time. We also found that cells treated with the

ATM inhibitor exhibited only modest fluctuations in copy number

as a function of extended passage. This experiment was performed

multiple times with similar results. Since viral episomes were not

rapidly lost upon passaging, these results indicate that ATM

activity is not essential for the stable maintenance of episomes in

undifferentiated cells.

To determine if ATM kinase activity is necessary for differen-

tiation-dependent viral genome amplification, HPV-31 positive

CIN612 cells were induced to differentiate in high calcium medium

in the presence of DMSO or KU-55933. DNA was harvested from

monolayer cells (0 hour), as well as 48 and 96 hours post-

differentiation. As shown in Figure 4B, Southern blot analysis for

HPV DNA demonstrated that cells treated with the ATM inhibitor

Figure 4. ATM activity is required for differentiation-dependent viral genome amplification, but not episomal maintenance. (A) DNA
was isolated at the indicated passages from undifferentiated HPV-31 positive CIN612 cells grown in the presence of DMSO, or the ATM inhibitor
KU-55933 and analyzed by Southern blot analysis for the presence of episomal (supercoiled) HPV DNA. (B, C) DNA was harvested from
undifferentiated (0 hour) CIN612 cells, as well as cells differentiated in high calcium (48 and 96 hr) in the presence of DMSO, (B) 5 or 10 uM KU-55933,
or (C) 5 uM CHK2 inhibitor (CHK2i) and analyzed for amplification of viral genomes by Southern blot analysis. (D) Lysates were harvested from
undifferentiated (0 hour) CIN612 cells, as well as from CIN612 cells induced to differentiate in high calcium in the presence or absence of 5 or 10 uM
KU-55933. Western blot analysis was performed using an antibody to keratin 10 (K10) and involucrin. (E) Lysates were harvested from undifferentiated
(T0) HPV-31 positive cells, as well as from cells induced to differentiate in high calcium for 48 and 96 hours in the presence or absence of DMSO.
Western blot analysis was performed using an antibody to K10. Blots were stripped and probed for GAPDH as a loading control. Ca = calcium.
doi:10.1371/journal.ppat.1000605.g004
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exhibited significantly impaired viral genome amplification as

compared to cells treated with DMSO alone. This experiment

was repeated five times with identical results, demonstrating that

ATM activity is necessary for productive viral replication. Since

CHK2 is a major transducer of ATM signaling, we next wanted to

determine if CHK2 activity is necessary for viral replication in

differentiating cells. For this study, we used a specific inhibitor of

CHK2 activity that effectively blocks phosphorylation of down-

stream targets, without affecting its own phosphorylation (Figure

S4). Similarly to the ATM inhibitor, treatment of HPV-31 positive

cells with the CHK2 inhibitor resulted in greatly diminished viral

genome amplification upon differentiation (Figure 4C), indicating

that ATM signaling to CHK2 is essential for this activity. Similar

effects were also seen upon treatment of HFK-31 cell lines with the

ATM and CHK2 inhibitors (data not shown), as well as when viral

DNA was linearized by restriction digestion (Figure S3). Since

epithelial differentiation is necessary for activation of viral genome

amplification [41], we wanted to ensure that KU-55933 treatment

did not act indirectly by blocking epithelial differentiation. For this

analysis, we examined the expression levels of the differentiation-

specific markers K10 and involucrin by Western blot analysis

(Figure 4D). The subpopulation of differentiating cells that are

amplifying HPV DNA are in S or G2 phase and do not express

K10, while adjoining cells in G0/G1 synthesize high levels of K10

[29]. This is consistent with studies showing that upon keratinocyte

differentiation, K10 is expressed in post-mitotic cells that are still

metabolically active [42]. Treatment of HPV-31 positive cells with

concentrations of KU-55933 up to 10 uM minimally affected K10

and involucrin expression, indicating that ATM inhibition does not

alter differentiation (Figure 4D). To ensure that DMSO does not

affect epithelial differentiation, we compared K10 expression

between HPV-31 positive cells induced to differentiate in high

calcium in the presence or absence of DMSO, and found no

differences (Figure 4E).

Since we observed the formation of nuclear foci containing

pATM Ser1981 in HPV-31 positive cells and found that ATM

kinase activity is necessary for viral genome amplification, we

investigated whether ATM activity is required for the formation of

HPV replication foci in differentiating cells. For these studies,

tyramide-enhanced fluorescence in situ hybridization (FISH) was

used to detect viral genomes in cells that were treated with

DMSO, or 10 uM of the ATM inhibitor. In monolayer cells, only

single foci of viral genomes were detected in a small number of

cells (9.662.3%) (Figure 5), which is consistent with previous

observations [29]. In contrast, after differentiation for 48 hours in

high calcium medium, the number of cells containing viral

genome foci, as well as number and size of the foci, greatly

increased (4861.9%). Treatment with the ATM inhibitor

prevented the formation of multiple foci per cell, resulting in a

staining pattern similar to that of undifferentiated cells, providing

further evidence that ATM activity is necessary for viral

replication in differentiating cells.

HPV activates CHK2 to induce caspase cleavage upon
differentiation

We previously showed that HPVs induce low-levels of caspase 3/

7 activation upon differentiation and that this is important for

cleavage of the E1 replication protein and genome amplification [7].

The studies described above indicate that HPV requires CHK2

activity for productive replication (Figure 4C). In addition to its

activity in DNA repair and cell cycle checkpoint function, CHK2

also plays a role in damage-induced apoptosis [16,43,44,45], and

thus could potentially contribute to the caspase activation observed

in differentiating HPV-31 positive cells. To investigate this

possibility, HPV-31 CIN612 cells were induced to differentiate in

high calcium in the presence of DMSO or 5 uM of the CHK2

inhibitor. Cells extracts were harvested as a function of time and

examined by Western blot analysis for cleavage of caspase-7. As

shown in Figure 6, inhibition of CHK2 significantly impaired

caspase-7 cleavage as compared to cells treated with DMSO alone,

without affecting total levels of caspase-7. Similar results were found

upon treatment of HFK-31 cells with the CHK2 inhibitor (data not

shown). This finding, coupled with the observation that CHK2 is

Figure 5. Formation of replication foci is impaired in the absence
of ATM activity. FISH analysis was performed using undifferentiated
(T0), as well as differentiated (48 hr high calcium) HPV-31 positive HFKs
using a HPV-31 nick translated probe (green). FISH analysis was also
performed on HPV positive cells grown in high calcium for 48 hr in the
presence of 10 uM KU-55933. Cellular DNA was counterstained with DAPI,
and images were visualized using confocal laser scanning microscopy.
Ca = calcium.
doi:10.1371/journal.ppat.1000605.g005

Figure 6. HPV-mediated caspase activation requires CHK2
kinase activity. Lysates were harvested from undifferentiated (0 hour)
HPV-31 positive CIN612 cells, as well as from HPV-31 cells induced to
differentiate in high calcium in the presence of DMSO or 5 uM of the
CHK2 inhibitor (CHK2i) for the indicated times. Western blot analysis
was performed using antibodies to detect the cleaved (active) form of
caspase-7, as well as an antibody to detect pro-caspase-7. GAPDH
served as a loading control. Ca = calcium.
doi:10.1371/journal.ppat.1000605.g006
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required for productive replication, indicates that HPVs utilize

ATM signaling to promote caspase activation through CHK2,

allowing for enhanced viral replication in differentiating cells.

High-risk E7 induces CHK2 phosphorylation and interacts
with ATM

To determine which viral proteins could be responsible for

ATM activation, we first examined a possible role of E7 in this

process, since it has been shown to de-regulate cell cycle control

upon differentiation [46]. Our studies indicate that keratinocytes

stably expressing HPV-31 E7 from the pLXSN retroviral vector

exhibit phosphorylation of CHK2 on Thr68 in undifferentiated

and differentiated keratinocytes, with little activation observed in

cells expressing the pLXSN vector alone (Figure 7A). Since E7

mediates the majority of its functions through protein-protein

interactions [46], we next investigated if E7 interacts with ATM.

For these studies, we utilized the osteosarcoma cell line U2OS,

which contains both wild-type p53 and Rb. U2OS cells were

Figure 7. E7 induces CHK2 phosphorylation upon differentiation and interacts with the phosphorylated form of ATM. (A) Lysates
were harvested from HFKs transduced with the retroviral vector pLXSN alone, or pLXSN-HPV-31 E7 at 0 hr (undifferentiated cells), as well as after
differentiation in high calcium for 48 and 96 hours. Western blot analysis was performed using a phospho-specific antibody to pCHK2 Thr68, as well
as an antibody to total CHK2. GAPDH served as a loading control. Ca = calcium. (B) Lysates were prepared from U2OS cells transiently transfected with
vectors expressing HA, wild-type HA-31E7, HA-31E7 DLHCYE or HA-31E7 L67R. Immunoprecipitations were performed using an antibody to
endogenous ATM, followed by Western blot analysis using an antibody to HA. (C) Immunoprecipitations were performed on lysates harvested from
U2OS cells transfected with HA alone, HA-E7, HA-E7 DLHCYE or HA-E7 L67R using an antibody to HA followed by Western blot analysis to detect
precipitated pATM Ser1981. (D) Lysates were prepared from transfected U20S cells treated with DMSO or 10 uM KU-55933 for 12 hours.
Immunoprecipitatations were performed using an antibody to ATM, followed by Western blot analysis using an antibody to HA.
IP = Immunoprecipitation, IB = Immunoblot. No Ab = No antibody (control).
doi:10.1371/journal.ppat.1000605.g007
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transfected with expression vectors for HA-tagged HPV-31 E7,

HA-E7 lacking the LXCXE Rb binding motif (DLHCYE), or with

an HA-E7 HDAC binding mutant (L67R). Following transfection,

proteins associated with endogenous ATM were isolated by

immunoprecipitation using an antibody to ATM, followed by

Western blot analysis using an antibody to HA to detect

precipitated E7 proteins. As shown in Figure 7B, wild-type E7

and the HDAC binding mutant were both able to co-

immunoprecipitate with ATM, although the HDAC binding

mutant was less efficient in doing so. In contrast, the interaction

between E7 and ATM was abrogated in cells transfected with the

LXCXE Rb-binding mutant, which is also defective for productive

HPV replication [47]. Several proteins in addition to Rb have

been shown to interact with E7 at this site [46], and it is unclear

whether the binding of E7 to ATM is direct or is mediated through

another protein or complex of proteins. We also performed

immunoprecipitations using an antibody to the HA tag, followed

by Western blot analysis for pATM Ser1981, and found that E7 is

able to bind the phosphorylated form of ATM (Figure 7C). Again,

the HDAC binding mutant was still able to interact with pATM,

but to a lesser degree than wild-type E7. We consistently observed

that the L67R mutant was expressed at lower levels than wild-type

HA-E7, as well as the Rb-binding mutant, and likely accounts for

the decreased binding of this mutant to ATM. To determine if

ATM phosphorylation is necessary for E7 to interact with ATM,

U20S cells transfected with wild-type HA tagged E7 were treated

with 10 uM of the ATM inhibitor KU-55933, which inhibits the

phosphorylation of ATM (Figure 1D). Endogenous ATM was

precipitated, followed by Western blot analysis using an antibody

to HA to examine the presence of E7 in the precipitated

complexes. As shown in Figure 7D, E7 co-precipitated with

ATM in cells treated with DMSO alone, but not in cells treated

with the ATM inhibitor. Since total levels of ATM were not

affected by treatment with the ATM inhibitor (Figure 7D), these

results suggest that E7 interacts primarily with the phosphorylated

form of ATM. Overall, these results indicate that E7 activates

CHK2, possibly through its association with ATM, which may in

turn be important for the productive phase of the viral life cycle.

Discussion

In this study, we show that human papillomaviruses activate the

ATM DNA damage response and that this is necessary for

productive viral replication upon differentiation. These findings

identify a primary regulatory mechanism responsible for HPV

genome amplification. Our studies indicate that papillomaviruses

induce phosphorylation of ATM, as well as its substrates CHK2

and BRCA1, in undifferentiated cells, but this activation has

minimal effect on the long-term maintenance of HPV episomes. In

differentiating cells, the phosphorylation of NBS1, well as CHK2

and BRCA1, was observed and inhibition of the ATM pathway

completely blocked amplification of viral genomes. In addition, we

found CHK2 activity to be required for HPV-mediated caspase

activation, as well as viral genome amplification. It is possible that

activation of the ATM response in differentiating cells induces an

S or G2/M arrest that provides an environment conducive to

productive viral replication. HPV genomes replicate bi-direction-

ally via theta structures in basal cells, but may switch to replication

by a rolling circle mechanism during amplification [48]. This

switch in replication modes may also require activation of the

ATM pathway specifically in differentiating cells.

HSV-1 and SV40 have been shown to recruit members of the

ATM DNA damage pathway to specific sites of replication in the

nucleus [49,50,51]. In differentiating cells undergoing productive

replication of HPV genomes, we observed the formation of

nuclear foci containing pATM, pCHK2 and c-H2AX, as well as

the MRN components, MRE11 and RAD50. The addition of

ATM inhibitors prevented formation of these foci and blocked

viral genome amplification, further implicating these DNA repair

proteins as important regulators of HPV productive replication.

We did not observe a complete loss in the formation of c-H2AX

foci upon treatment with the ATM inhibitor, however this may be

due to the actions of other checkpoint kinases, such as ATR and

DNA-PK [27]. Consistent with this idea, we observed ATM-

independent phosphorylation of the ATR target CHK1 on Ser317

in undifferentiated cells, as well as in differentiated cells, although

at decreased levels.

Our studies further demonstrate that the addition of a specific

inhibitor to CHK2 blocks viral genome amplification. Upon

activation, CHK2 phosphorylates the Cdc25a and Cdc25c

phosphatases to initiate cell cycle arrest in G1/S or G2/M

through their degradation or cytoplasmic sequestration, respec-

tively [52]. Cdc25c is necessary for the activation of Cdc2/Cdk1,

as well as entry into mitosis, and its inactivation plays a central role

in inducing G2/M arrest [53]. Preliminary results indicate that

phosphorylation of Cdc25c on Ser216 increases in HPV positive

differentiating cells (Figure S4), as does inhibitory phosphorylation

of Cdc2/Cdk1 on Tyr15 (Moody and Laimins, unpublished data),

and this occurs in a CHK2-dependent manner. These results are

consistent with ATM-dependent activation of CHK2 leading to a

G2/M arrest and viral genome amplification. Recent studies

suggest that HPV infected cells undergoing productive replication

are arrested at G2/M rather than in S-phase and is consistent with

our findings [54].

The MRN complex appears to be important for HPV

amplification, as the phosphorylated forms of CHK2, NBS1 and

BRCA1 were detected in differentiated HPV positive cells. For

some viruses, the DNA damage response represents an obstacle

that must be overcome for efficient replication. For example, the

adenovirus E1b55K/E4orf6 proteins induce degradation of the

MRN complex, blocking NBS1 phosphorylation and preventing

concatemerization of viral genomes [15,39]. In contrast, differen-

tiating HPV positive cells exhibited high levels of NBS1, MRE11

and RAD50, which were maintained throughout differentiation.

In addition, we observed that NBS1 phosphorylation occurs

concomitantly with viral genome amplification, implicating NBS1

as a potential regulator of replication. The Rb associated

transcription factors E2F1 and E2F2 have been shown to interact

with MRE11 and NBS1 at both viral and cellular origins of

replication [55]. Upon differentiation, E7 induces increased

expression of E2F2, as well as its re-localization to nuclear foci,

which is necessary for viral genome amplification [56]. Recent

studies indicate that E2F2 binds to the region around the HPV-31

replication origin and increased binding was observed upon

differentiation [57]. It is possible that E2F2 directs MRN

components to HPV origins to ensure integrity of replication

forks and promote replication in differentiating cells.

Caspase activation has been shown to be an important and

novel means by which HPV proteins regulate amplification [7].

Low level caspase activation by E6 and E7 upon differentiation

induces cleavage of the E1 protein, which is required for efficient

viral genome amplification. Cleavage of E1 results in enhanced

binding of E1 to the origin and the ability to replicate in an E2-

independent manner (Moody, Archambault et al. unpublished

data). In the present study, we have found that CHK2 kinase

activity is necessary for caspase activation, as well as viral genome

amplification in differentiating cells. These results provide a

possible link between caspase cleavage and the activation of
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CHK2 through the binding of ATM to E7. In preliminary studies,

we have found that E6 can also activate CHK2 (Moody and

Laimins, unpublished data), although it is unclear whether E6

utilizes the DNA damage response to induce caspase activation in

differentiating cells. Several recent studies have demonstrated a

role for CHK2 in DNA damage-induced apoptosis [16,43,44,45].

In response to DNA damage, CHK2 phosphorylates E2F1,

resulting in its stabilization, transcriptional activation, and

induction of p53-dependent or -independent apoptosis [16,43].

E2F1 is expressed at high levels in differentiating HPV positive

cells [56], and it is possible that CHK2 mediates caspase activation

through E2F1. Interestingly, our studies indicate that HPV

induces caspase activation only in differentiating cells, while

activation of CHK2 is observed in both undifferentiated and

differentiated cells. This suggests that while CHK2 activation is

necessary for caspase activation, it alone is not sufficient and may

require differentiation-specific factors as well as other members of

the ATM pathway for this function. Several viruses have been

shown to utilize DNA damage response for productive replication,

and it is possible that these viruses also utilize low-level caspase

activation as part of their life cycle.

Our studies indicate that in stable cell lines E7 activates CHK2,

and that it forms a complex with the phosphorylated form of

ATM. Deletion of the LXCXE Rb binding domain in E7

abrogated ATM binding, however binding could occur directly or

indirectly through another protein. Preliminary results using Rb-

deficient Saos-2 cells indicate that E7 binding to ATM does not

require Rb (Moody and Laimins, unpublished data). Previous

studies have shown that deletion of the LXCXE binding domain

in E7 blocks HPV genome amplification [47], and in our studies

this motif is important for ATM binding. This is consistent with

the idea that E7’s interaction with ATM may be necessary for

productive replication.

In addition to E7, the HPV replication protein E1 may also

contribute to the ATM response. Upon differentiation, the

expression of E1 increases, contributing to enhanced viral

replication [58]. Kadaja et al demonstrated that heterologous

high-level expression of E1 initiates replication from integrated

HPV origins multiple times in a single S-phase [59]. This suggests

that E1 may disrupt normal licensing control in differentiating

cells, allowing for re-replication of HPV DNA and activation of an

ATM response. It is possible that multiple HPV proteins act

cooperatively to activate the full ATM response.

In summary, our studies demonstrate that HPV proteins activate

the ATM DNA damage response and that this is necessary for

amplification of viral genomes upon differentiation. The formation

of HPV replication foci in differentiating cells is dependent upon

ATM activity and suggests that DNA repair proteins may

participate directly in viral replication. Importantly, we have

established a link between caspase activation and the DNA damage

response. Caspase 3/7 consensus cleavage motifs are found at

conserved locations in E1 proteins of almost all papillomavirus

types, and we suspect caspase activation may be necessary for their

productive replication. We believe that activation of the ATM

pathway will prove to be a common mechanism utilized by HPVs to

promote viral replication in differentiating cells. These observations

suggest that the ATM pathway may be an effective therapeutic

target to block the spread of HPV infections.

Materials and Methods

Cell culture
Human foreskin keratinocytes (HFKs) were derived from

neonatal human foreskin epithelia and maintained in E medium

containing mouse epidermal growth factor (EGF) and mitomycin-

treated J2 fibroblasts as previously described [60]. Human

osteosarcoma cells (U2OS) were maintained in Dulbecco’s modified

Eagle’s medium (DMEM) containing 10% bovine serum. CIN612 is

a clonal cell line that stably maintains HPV-31 episomes. CIN612

cells were maintained in E medium with EGF and J2 fibroblast

feeders. Before harvesting DNA or protein, fibroblast feeders were

removed by treatment with phosphate-buffered saline (PBS)

containing 0.1% of .5 M EDTA for two minutes, followed by two

washes in PBS. Creation of HFK cell lines containing retroviral

constructs has been previously described [47].

Plasmids and chemicals
The pBR322min-HPV31 plasmid has been described [61]. The

HA-tagged E7 proteins were previously described [47] and are as

follows: HA-E7 DLHCYE contains an in-frame deletion of the Rb

binding domain and HA-E7 L67R contains a point mutation in the

HDAC binding site, converting a leucine to an arginine. KU-55933

and the CHK2 inhibitor II were obtained from Calbiochem.

Stable transfection of HFKs
Transfection of HFKs and selection for cells stably maintaining

HPV-31 genomes were performed as described previously [62].

Briefly, HPV-31 genomes were released from the pBR322 plasmid

by digestion with HindIII. Viral genomes were then unimolecu-

larly ligated with T4 DNA ligase (New England Biolabs) and

precipitated with isopropyl alcohol. HFKs were co-transfected

with 1 ug of religated genomes and 1 ug pSV2-Neo using

FuGene6 according to the manufacturer’s protocol (Roche).

Selection was carried out for eight days in the presence of G418

(Sigma). After selection was complete, pooled populations were

expanded for further analysis.

Calcium induced differentiation
Differentiation in high calcium was performed as described

previously [7]. Briefly, upon reaching 90% confluency, HPV-

positive cells and normal HFKs were cultured in keratinocyte

basal medium (KBM) with supplements (Invitrogen) for 24 hours.

Cells were then switched to KBM (without supplements)

containing 1.5 mM calcium chloride, and where indicated were

cultured with either DMSO, 5 or 10 uM KU-55933, or 5 uM of

the CHK2 inhibitor. At 48 and 96 hours, DNA was harvested

from one half of the cells, and protein was harvested from the

other half. Viral genome amplification was then measured by

Southern blot analysis to examine the episomal (supercoiled) form

of DNA to ensure that the productive phase of the viral life cycle

was activated. Western blot analysis was performed to analyze the

expression of differentiation-specific proteins.

Western blot and Southern blot analyses
Whole cell extracts were harvested in RIPA lysis buffer and

quantified using the Bio-Rad protein assay. Western blot analysis

was performed as described [47]. Equal amounts of protein were

electrophoresed on SDS-polyacrylamide gels and subsequently

transferred to polyvinylidene difluoride membrane (Immobilon-P;

Millipore). Primary antibodies were as follows: phospho-ATM

Ser1981 was purchased from R&D Systems. Phospho-CHK2

Thr68, CHK2, BRCA1, K10 and Involucrin were purchased from

Santa Cruz. ATM was purchased from Calbiochem. Phospho-

CHK1 Ser317, CHK1, phospho-CHK2 Thr68, phospho-BRCA1

Ser1524, Cleaved Caspase-7, and Caspase-7 were purchased from

Cell Signaling. Phospho-NBS1 Ser343, MRE11 and RAD50 were

purchased from Genetex. NBS1 was purchased from Novus
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Biologicals. Secondary antibodies included horseradish peroxidase-

linked anti-rabbit (Cell Signaling Technologies) and horseradish

peroxidase-linked anti-mouse (Santa Cruz). DNA isolation and

Southern blot analysis were performed as described [63].

HA-E7 protein expression and immunoprecipitation
U20S cells were transfected at 30% confluency with one

microgram of wild-type or mutant HA-tagged HPV-31 E7

proteins using FuGene6, according to the manufacturer’s

instructions (Roche). After 48 hours, lysates were harvested as

previously described [47]. Immunoprecipitations were performed

using one milligram of protein lysate. The samples were pre-

cleared for 1 hour with 40 ml of protein G agarose (Roche) at 4uC,

then incubated overnight with either a mouse anti-HA antibody

(Santa Cruz) or rabbit anti-ATM antibody (Calbiochem). Protein

complexes were then precipitated using 50 ml of protein G agarose

for 4 hours at 4uC. Immunoprecipitated complexes were then

washed three times with lysis buffer, and subsequently analyzed by

Western blot analysis using either mouse anti-HA, mouse anti-

pATM Ser1981 (Rockland), or rabbit anti-ATM antibodies.

Immunofluorescence and immunohistochemistry
HPV positive cells and normal HFKs were grown on coverslips

and induced to differentiate in high calcium in the presence of

DMSO or 10 uM KU-55933. At time 0 (undifferentiated) and

48 hr post-calcium induced differentiation, the cells were washed

three times in cold phosphate buffered saline (PBS), fixed in 4%

paraformaldehyde in PBS for 15 minutes, then permeabilized in

1%Triton X-100-PBS for 10 minutes. Cells were blocked with PBS

containing 10% bovine serum albumin (BSA) for one hour at room

temperature. Primary antibodies were diluted in PBS containing

10% BSA and incubated on coverslips overnight at 4uC. The

samples were then washed in PBS and stained with fluoroscein

isothiocyanate (FITC)-conjugated anti-rabbit antibody (1:50 dilu-

tion) (Zymed) or AlexaFluor 568 anti-mouse antibody (Invitrogen)

(1:400 dilution) for one hour at room temperature. Primary

antibody dilutions for mouse anti-phospho-ATM Ser1981 (Rock-

land), anti phospho-H2AX Ser139 (c-H2AX) (Upstate) were 1:400

and 1:500, respectively. Rabbit anti-phospho-CHK2 Thr68 (Cell

Signaling) and anti-phospho-H2AX Ser139 (c-H2AX) (Cell

Signaling) were diluted 1:50. Mouse anti-MRE11 and mouse anti-

Rad50 were diluted 1:200. Mouse anti-keratin 10 (K10) (Santa

Cruz) was diluted 1:100. Sections from normal keratinocyte raft

cultures or HPV-31 transfected keratinocyte raft cultures were

examined by immunofluorescence as described previously [63].

Cross sections of rafts were stained using a 1:50 dilution of anti-

phospho-CHK2 Thr68 (Cell Signaling), 1:200 of anti-pATM

Ser1981, or MRE11, 1:500 of c-H2AX Ser139 (Millipore), and

1:100 of anti-K10 (Santa Cruz). Cellular DNA was counterstained

with DAPI, and the coverslips or slides were mounted in Vectashield

(Vector Laboratories). Confocal images were acquired by a UV

LSM 510 confocal laser-scanning microscope (Zeiss). To quantify

number of cells containing DNA repair foci, at least 100 cells were

counted for three independent experiments. The average number of

cells containing foci is indicated, along with the standard deviation.

Fluorescent in situ hybridization (FISH)
HPV-31 genomic DNA probes for FISH were prepared by nick

translation of plasmid genomic DNAs using the BioNick labeling

system according to the manufacturer’s instructions (Invitrogen).

Viral DNA was detected by tyramide fluorescent in situ

hybridization as previously described [64]. Briefly, 16106

undifferentiated HFK-31 cells, or HFK-31 cells differentiated in

high calcium for 48 hr were spread on Superfrost Plus slides

(Fisher) and allowed to air-dry. Cells were fixed with 4%

paraformaldehyde at room temperature followed by permeabiliza-

tion in 16 PBS, 0.5% Triton X-100 for 10 min. The slides were

treated with 100 ug/ml RNase A in 26SSC for 1 hour at 37uC.

Subsequently, the slides were washed three times with 26 SSC,

then dehydrated for 2 min each in 70% EtOH, 85% EtOH and

100% EtOH at room temperature. Slides were then denatured in

70% formamide-26 SSC at 74uC for 2 minutes, followed by

dehydration for 2 min each in 70% EtOH (220uC), 85% EtOH

and 100% EtOH at room temperature. The probe was denatured

at 74uC for 10 minutes, and then 10 ul of probe was hybridized

overnight to the denatured slide at 37uC. After overnight

incubation, the slides were washed multiple times, and tyramide-

enhanced fluorescence was carried out according to the manu-

facturer’s instructions (Perkinelmer). The cellular DNA was

counterstained with DAPI, and the slides were mounted in

Vectashield. Images were collected using a UV LSM 510 confocal

laser-scanning microscope (Zeiss).

Supporting Information

Figure S1 MRN components are localized to nuclear foci in

HPV positive cells. HFK-31 cells, as well as normal HFKs were

harvested, fixed and permeabilized at either time 0 (undifferen-

tiated cells) or after 48 hr of calcium-induced differentiation.

Samples were stained with antibodies to either MRE11 or RAD50

and analyzed by confocal fluorescence microscopy. Cellular DNA

was counterstained with DAPI and is shown as merged with the

indicated antibodies.

Found at: doi:10.1371/journal.ppat.1000605.s001 (5.56 MB PDF)

Figure S2 DNA repair proteins exhibit a nuclear staining

pattern in raft cultures of HPV positive cells. Immunohistochem-

istry was performed on cross sections of organotypic raft cultures

generated from HFK-31 cells, as well as normal HFKs using

antibodies to (A) pATM Ser1981, (B) c-H2AX, (C) MRE11, or (D)

K10. Cellular DNA was counterstained with DAPI. Images were

captured using confocal fluorescence microscopy. pATM is found

in the basal and suprabasal cells in HFK-31 cells but only

background staining is observed in HFKs. MRE11 is distributed

throughout all epithelial layers for rafts generated from HFK-31

cells, as well as normal HFKs. c-H2AX is found at high levels in

all layers of HFK-31 rafts, and at reduced levels in normal HFK

rafts.

Found at: doi:10.1371/journal.ppat.1000605.s002 (2.77 MB PDF)

Figure S3 Southern analysis of HPV-31 cells treated with

inhibitors of ATM and CHK2. DNA was harvested from

undifferentiated CIN612 cells, as well as from cells induced to

differentiate for 48 and 96 hr in high calcium in the presence of

DMSO, 10 uM KU-55933 or 5 uM of the CHK2 inhibitor

(CHK2i). Total DNA was digested with either Xho1, which does

not cut the HPV genome (uncut), or with HindIII, which linearizes

the genome (cut). Southern blot analysis was performed to analyze

viral genome amplification. The four forms of HVP-31 DNA

found in this analysis are labeled. Standards of HPV genome

copies per cell are indicated to the left of the gel. Ca = calcium.

Found at: doi:10.1371/journal.ppat.1000605.s003 (0.80 MB PDF)

Figure S4 Analysis of the efficacy and specificity of the CHK2

inhibitor. Lysates were harvested from undifferentiated CIN612

cells, as well as after differentiation in high calcium for 48 and

96 hr in the presence of DMSO or 5 uM CHK2i. Western blot

analysis was performed using an antibody to the CHK2 substrate

pCdc25c Ser216, or to pCHK2 Thr68 or total CHK2. GAPDH

served as a loading control. Ca = calcium.
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Found at: doi:10.1371/journal.ppat.1000605.s004 (3.75 MB PDF)
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