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Atrial Fibrillation (AF) is themost common type of cardiac arrhythmia. Early diagnosis of AF

helps to improve therapy and prognosis. Machine Learning (ML) has been successfully

applied to improve the effectiveness of Computer-Aided Diagnosis (CADx) systems for

AF detection. Presenting an explanation for the decision made by an ML model is

considerable from the cardiologists’ point of view, which decreases the complexity of

the ML model and can provide tangible information in their diagnosis. In this paper, a

range of explanation techniques is applied to hand-crafted features based ML models

for heart rhythm classification. We validate the impact of the techniques by applying

feature selection and classification to the 2017 CinC/PhysioNet challenge dataset. The

results show the effectiveness and efficiency of SHapley Additive exPlanations (SHAP)

technique along with Random Forest (RF) for the classification of the Electrocardiogram

(ECG) signals for AF detection with a mean F-score of 0.746 compared to 0.706

for a technique based on the same features based on a cascaded SVM approach.

The study also highlights how this interpretable hand-crafted feature-based model can

provide cardiologists with a more compact set of features and tangible information in

their diagnosis.

Keywords: atrial fibrillation, feature importance, interpretability, feature selection, classification, computer-aided

diagnosis

1. INTRODUCTION

Atrial Fibrillation (AF) is the most common cardiac arrhythmia with an increased prevalence
with aging (Chugh et al., 2014). AF is defined by an irregular Heart Rate (HR), caused by a
chaotic electrical activity in the atria. It can lead to the formation of clots, heart failure, and other
heart-related abnormalities (Wolf et al., 1991), and is associated with a five-fold increased risk of
stroke (Wolf et al., 1978). The approximated direct costs spent for AF is about 1% of the total
healthcare expenditure in the UK and about 6-26 billion US dollars in the US in 2008 (Stewart
et al., 2004).

The Electrocardiogram (ECG) has been extensively investigated for the diagnosis of many
cardiac diseases. In a Computer-Aided Diagnosis (CADx) system for heart rhythm classification,
features are extracted from an ECG signal and are a (compact) representation of the corresponding
signal, which are fed into a Machine Learning (ML) model. ML models automatically learn useful
patterns from training data (including the extracted features from the ECG signals) for which the
diagnosis is already known and aim at extracting knowledge into their structures and parameters.
The development of automated AF detection has attracted an increased level of attention, since
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the combination of wearable devices and ML has been seen as
a potential solution for an early management of AF in order to
prevent adverse events such as stroke.

During the last decade, there has been an explosion of
AF detection algorithms. Interested readers are referred to
Sörnmo (2018). The availability of open-source ECG databases
on the PhysioNet website and through recent CinC/PhysioNet
challenges has allowed for the development of novel ML
techniques, among which most recently deep learning (DL)
approaches. Automated AF detection can be divided into
three categories (i) classical ML classifiers using specifically
hand-crafted features extracted from the ECG signals (ii)
fully automated DL approaches based on Convolutional
Neural Network (CNN), Recurrent Neural Networks (RNN) or
Transformers, or (iii) hybrid approaches using a combination of
hand-crafted features and DL techniques. Hand-crafted features
are designed in order to extract rhythm-based information (and
the irregularity of RR intervals) (Sarkar et al., 2008; Bashar et al.,
2020; Lown et al., 2020), or morphological features (detection of
the absence of P-wave and presence of f-waves) or both rhythm
and morphology features (Behar et al., 2017; Datta et al., 2017;
Zabihi et al., 2017; Sörnmo, 2018). Many DL approaches have
been suggested either by applying 1d-CNN to single lead ECG
directly (Pyakillya et al., 2017), or by transforming the ECG
signals into an image through a time-frequency transform such
as wavelet transform (He et al., 2018), or by adding an RNN
layer after the CNN (Warrick and Homsi, 2018). Finally, hybrid
approaches have also been suggested with the combination of
automatically extracted features with CNN and hand-crafted
features (Liaqat et al., 2020). Teijeiro et al. (2018) suggested
the use of hand-crafted features and RNN for temporal analysis
of ECG signals, and obtained excellent results on the 2017
CinC/PhysioNet challenge.

ML models can often be so-called black boxes, whose internal
logic and inner functionality are hidden, preventing them from
easily verifying, interpreting, and understanding the reasoning of
the system and how particular decisions were taken. For clinical
applications and to gain the trust of end-users (clinicians), it
is crucial to be able to explain model predictions and provide
cardiologists with tangible information explaining why a given
prediction was made.

As a prevailing solution to the explanation issue, feature
importance techniques indicate the contribution of each feature
to the output. A first approach consists in using so-called
interpretablemodels such as decision trees (Breiman et al., 1984),
additive models (Caruana et al., 2015), attention-based networks
(Xu et al., 2015), or sparse linear models (Ustun and Rudin,
2016). In these approaches, one uses models in which there is
the possibility of meaningfully investigating model components
directly, e.g., considering a path in a decision tree, or the weight
of a specific feature in a linear model. As long as the model is
accurate for the task, and uses a reasonably restricted number
of internal components (i.e., paths, rules, or features), such
approaches provide extremely useful insights.

The situation is much more complex when we have to extract
explanations from a black-box model. To tackle this setting,

several strategies can be developed. One can either use a two-
step procedure, based on distillation approaches (Hinton et al.,
2015), learning at first an interpretable model on the predictions
of the black box model and thereafter computing the feature
importance for the white box model (Craven and Shavlik, 1996;
Baehrens et al., 2010). In this paper, we shall focus on one-
step-procedures, based on sensitivity analysis and its extensions
(Christopher Frey and Patil, 2002; Iooss and Lemaître, 2015),
where the feature importance is directly computed from the
black-box model perturbing inputs and seeing how the black
box model reacts (Strumbelj and Kononenko, 2010; Krause et al.,
2016) or both (Ribeiro et al., 2016).

Generally, feature importance techniques are divided into
either global or local explanation approaches. Global explanation
focuses on feature-level importance scores for how much a given
input feature contributes to a model output (Bhatt et al., 2020).
Local explanation focuses on the contribution of features for a
specific observation (i.e., for a specific ECG record) (Murtaza
et al., 2020).

In this paper, we present a range of interpretability techniques
applied to hand-crafted features based machine learning models
for heart rhythm classification. The objective is two-fold: (i)
applying feature importance techniques in order to reduce
the complexity of the ML classifier and providing a global
explanation of the decision making process to the cardiologists
(end-user), and (ii) providing local explanations of the decision
making process to the end-user. It should be mentioned that
the aim of this paper is not presenting the best model for AF
classification but to highlight the benefits of interpretability for
building a more compact set of features to provide cardiologists
with tangible information in the classification. Accordingly, we
introduce an interpretable hand-crafted feature-based model for
AF classification.

The rest of the paper is organized as follows. In section 2, one
first presents the data of interest and the machine learning task
what we are performing on these data. Thereafter, in section 3
one reviews the main global and local explanation techniques for
hand-crafted feature-based models. In section 4, results of the
feature importance techniques and evaluation of the performance
and the strength of each technique by feature selection and
classification on CinC/PhysioNet 2017 dataset are presented.
Also, an interpretable model for the classification is introduced.
In section 5, the significance and limitations of the proposed
methods are discussed in details. Finally, conclusion is given
in section 6.

2. THE RHYTHM CLASSIFICATION TASK

In this section, one first describes the CinC/Physionet dataset
as well as a succinct list of features extracted and the rhythm
classification task. Thereafter, one introduces the different
classifiers tested and the quality assessment technique.

2.1. Dataset and Feature Extraction
This study focused on the analysis of the dataset from the 2017
PhysioNet/Computing in Cardiology (CinC) challenge (Clifford
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et al., 2017), collected using a mobile health device (the AliveCor
device), as it constitutes one of the largest dataset of single lead
ECG with heart rhythm annotations. The dataset includes 8528
single lead ECG signals between 9 and 60 s in length, which were
sampled at 300 Hz and filtered by a band pass filter. The signals
were labeled into four classes: atrial fibrillation (A) (735 samples),
normal sinus rhythm (N) (5,050 samples), other rhythms (O)
(2,456 samples), and noisy recordings (∼) (284 samples).

A set of 56 features are extracted from each individual signal
in the dataset based on Behar et al. (2017). These hand-crafted
features were designed for different purposes: (i) assessing the
quality of the recording (ii) analyzing themorphology of the ECG
(either measuring the QRS width, detecting P waves or assessing
the presence of f-waves) and (iii) analyzing the regularity of the
RR intervals [either standard HR variability (HRV) measures or
specific measures suggested for the detection of AF (Coefficient
of sample entropy and Poincare plot)]. The extracted features are
listed in Table 1.

2.2. Supervised ML Approaches for
Rhythm Classification
We try with different supervised classifiers such as Support
Vector Machine (SVM) (Cortes and Vapnik, 1995), Logistic
Regression (LR) (Hosmer et al., 2013), Random Forest (RF)
(Breiman, 2001) and Gradient Boosting (GB) (Friedman, 2001).
Each classifier is trained on the training set and tested on the
test set, including the extracted features from ECG signals and
their corresponding labels. We also apply a cascaded form of the
mentioned classifiers. It could be a way to handle the imbalanced
dataset CinC/PhysioNet in which the class N samples are almost
two-third of all the recordings (Behar et al., 2017). Hence, we try
with the cascaded form of the classifiers which are Cascaded SVM
(CSVM), Cascaded LR (CLR), Cascaded RF (CRF), and Cascaded
GB (CGB). More specifically, in the cascaded classification,
regarding the applied dataset, including four classes, three binary
classifiers are created. The first one classifies samples into two
classes, i.e., the class N and the rest. The second one classifies
samples into two classes A and the rest. The third one classifies
samples into the two classes O and∼.

2.3. Quality Assessment
The effectiveness of a classifier can be assessed by computing
the number of correctly recognized class samples, i.e., True
Positives (TP), the number of correctly recognized samples
that do not belong to the class, i.e., True Negatives (TN),
and samples that either were incorrectly assigned to the class,
i.e., False Positives (FP), or that were not recognized as class
samples, i.e., False Negatives (FN) (Sokolova and Lapalme, 2009).
For multi-class problems with l categories, the validation is
defined, for each individual class Ci, by TPi, FNi, TNi, and
FPi. The quality of the classification can be assessed in two
ways: the sum of counts to obtain cumulative TP, FN, TN,
FP and then calculating a measure (micro-averaging shown
with the µ index), or the average of the same measures
calculated for C1, . . . , Cl (macro-averaging shown with the M

index). Macro-averaging treats all classes equally, while micro-
averaging favors bigger classes. Accordingly, precision (P),

TABLE 1 | List of features extracted from ECG signals.

Index Feature

name

Description

1 bSQI Signal quality of the overall recording (Behar et al., 2013)

2 meanSQI Mean Signal Quality Index (SQI) value over selected

segment

3 medSQI Median SQI value over selected segment

4 quarSQI First quartile of SQI values over selected segment

5 len_seg Length of selected segment

6 distQRS Mean distance between the two QRS detcetors

7 CosEn Coefficient of sample entropy (Lake and Moorman, 2011)

8 AFE AFEvidence (Sarkar et al., 2008)

9 OrC Number of points in the bin containing the Origin (Sarkar

et al., 2008)

10 IrE Irregularity Evidence (Sarkar et al., 2008)

11 PACe Premature Atrial Contractions (PAC) Evidence (Sarkar

et al., 2008)

12 al_rr Ratio of RR intervals with alternating length

13 lv_rr Ratio of RR intervals with large variations

14 bi_rr Bimodal RR interval distribution

15 min_rr Minimum RR interval

16 max_rr Maximum RR interval

17 med_rr Median RR interval

18 nb_out RR-interval outliers. An outlier was defined as a sample

exceeding 20% of a window average of size 12 beats

19 HR Type of heart rate irregularity, tachycardia or bradycardia

20 medQS Median QRS width

21 stdQS Standard deviation of the QRS width

22 medR Median R-peak amplitude (mV)

23 stdR Standard deviation of the R-peak amplitude (mV)

24 Ratio Ratio of the power spectral frequency in the band 5-9 Hz

normalized by the total power frequency computed on

the PQRST canceled signal

25 max_freq Peak frequency in the band 4-45 Hz from the power

spectrum computed on the PQRST canceled signal

26 medQT Median distance from Qon to Toff

27 medQT_b Median QT interval corrected using Bazett’s formula

28 medQT_fre Median QT interval corrected using Frederica’s formula

29 medQT_fra Median QT interval corrected using Framingham’s formula

30 medQT_hod Median QT interval corrected using Hodges’ formula

31 medP Median P-wave length defined as the distance from Pon

to Poff

32 medPR Median PR interval defined as the distance from Pon to

Qon

33 stdPR Standard deviation of the PR interval

34 medT Median T-wave length defined as the distance from Ton to

Toff

35 medTamp Median T amplitude computed as the amplitude in mV

between the Toff to the peak of the T-wave

36 stdTamp Standard deviation of the T-wave amplitude

37 Ttype Type of T-wave morphology (normal, inverted, and …)

38 stdP Standard deviation of the P-wave length

39 stdT Standard deviation of the T-wave length

40 PIP Percentage of inflection points (%) (Costa et al., 2017;

Rosenberg, 2017)

(Continued)
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TABLE 1 | Continued

Index Feature

name

Description

41 IALS Inverse average length of segments (Costa et al., 2017;

Rosenberg, 2017)

42 PSS Percentage of NN intervals that are in short segments

(Costa et al., 2017; Rosenberg, 2017)

43 AVNN Average NN interval duration (ms) (Rosenberg, 2017)

44 SDNN Standard deviation of NN interval duration (ms)

(Rosenberg, 2017)

45 RMSSD Root-mean-squared difference between adjacent NN

intervals (ms) (Rosenberg, 2017)

46 pNN50 Percent of NN interval differences greater than 50 ms (%)

(Rosenberg, 2017)

47 SEM Standard error of the mean NN interval (ms) (Costa et al.,

2017; Rosenberg, 2017)

48 PAS Percentage of NN intervals that are in alternation

segments of at least 4 intervals(%) (Costa et al., 2017;

Rosenberg, 2017)

49 nbpwaves Number of P-waves detected by cardiac cycles

50 medPamp Median P-wave amplitude defined as the amplitude of the

P-wave computed from Poff to the peak of the P-wave

51 stdPamp standard deviation P-wave amplitude defined as the

amplitude of the P-wave computed from Poff to the peak

of the P-wave

52 med_tb Binary test for tachycardia or bradycardia

53 medSTvar1 Amplitude of the ST segment measured at J-Point

54 medSTvar2 Amplitude of the ST segment measured at J-Point + 60

ms

55 medST Median segment length defined as the distance between

QRSoff and Ton

56 medPRseg Median PR segment defined as the distance from Poff to

Qon

recall (R), and F-score (F) are defined as follows (Rijsbergen,
1979):

Pµ =

∑l
i=1 TPi

∑l
i=1(TPi + FPi)

(1)

Rµ =

∑l
i=1 TPi

∑l
i=1(TPi + FNi)

(2)

Fµ =
2 PµRµ

Pµ +Rµ

(3)

PM =

∑l
n=1

TPi
TPi+FPi

l
(4)

RM =

∑l
n=1

TPi
TPi+FNi

l
(5)

FM =
2 PMRM

PM +RM

(6)

It should be noted that the values of Pµ, Rµ and Fµ are
equal (Sokolova and Lapalme, 2009). Hence, in the results,
we only report Fµ. To assess the classification generalization,
we use repeated 10-fold cross validation. In 10-fold cross
validation, the dataset is divided into 10- and 9-folds are
considered for training and one-fold is considered for the
test (Stone, 1974). Then, the average of values of each
measure for the test folds is considered for the evaluation of
the classifier. Besides, we apply the non-parametric statistical
Wilcoxon test (Cuzick, 1985) to assess the statistically significant
difference between methods. We also use Receiver Operating
Characteristic (ROC) (Fawcett, 2006) and Area Under the
ROC curve (AUC) for the evaluation of classification. ROC is
plotted in a two-dimensional space in which the x-axis and
y-axis represent the True Positive Rate (TPR) or R and the
False Positive Rate (FPR), respectively (Sokolova and Lapalme,
2009).

3. FEATURE IMPORTANCE

3.1. Global Explanation and Feature
Selection
Global explanation aims to provide an understanding on ML
models and highlight the most important parameters or learned
representations along with an explanation of these features in
an intuitive manner to end-users. Global explanation techniques
are trained on the overall training set and provide therefore an
overall perspective for a model. These techniques aim to answer
to how does the trained model make predictions? The next sections
will give a description of the global explanation techniques used
in this paper while the last subsection will introduce how these
techniques can be validated as a feature selection approach.

3.1.1. Logistic Regression (LR)
LR is an extension of the linear regression which models the
relationship between a categorical response variable y and a set
of x ∈ R

k of k explanatory variables, by fitting a linear equation
(Tolles and Meurer, 2016). Given a training set (xi, yi), i =

1, . . . , n, the goal is to find the LR function p(x) so the responses
p(xi) as closely as possible the actual response yi for each
observation xi, where i = 1, 2, . . . , n. In a binary LR, probabilities
are modeled with two possible outcomes, meaning that p(xi)
should be equal to either 0 or 1. A linear function f (x) = b0 +
b1x1 + ... + bkxk, is applied, where the variables b0, b1, . . . , bk
are the estimators of the regression coefficients, so-called the
predicted weights or coefficients. The model coefficients can be
interpreted as indicators of feature importance. These coefficients
can provide the basis for a crude feature importance score,
assuming that the input features have the same scale or have
been scaled prior to fitting a model. The LR function p(x) is the
sigmoid function of f (x) calculated by

p(x) =
1

1+ exp(−f (x))
(7)

LR estimates the coefficients b0, b1, ..., bk such that the function
p(x) best approximates all actual responses yi ∈ {0, 1}, i = 1, ..., n.
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During the training step, the Log-Likelihood Function (LLF)
(Minka, 2001) for all samples, defined as

LLF =

n
∑

i=1

(yi log(p(xi))+ (1− yi) log(1− p(xi))), (8)

is maximized.
LR is easily implemented, and results in a good accuracy for

many simple datasets and performs ideally when the dataset
is linearly separable, but is not flexible enough to fit complex
datasets and it can overfit in high-dimensional datasets.

3.1.2. Random Forest (RF)
Random Forest (RF) is an ensemble model including decision
trees as base learners, each learning a different aspect of data
and class prediction. The class with the most votes becomes the
RF’s prediction. RF considers a random subset of features for
making the trees. Considering a node τ within the binary tree
T in the RF, the optimal split is obtained by the Gini impurity
measure (Breiman, 2001) denoted by G(τ ). Gini impurity
is a computationally efficient approximation of the entropy
measuring how well a potential node splits the samples of the two
classes. With pk =

nk
n being the fraction of the nk samples from

the category k ∈ {0, 1} out of the total of n samples at node τ , the
Gini impurity G(τ ) is calculated as follows:

G(τ ) = 1− p21 − p20 (9)

The decrease of G(τ ), specified by1G, resulting from a split and
the division of the samples into two sub-nodes τl and τr with
related sample fractions pl =

nl
n and pr = nr

n , according to a
threshold tθ on feature θ , is defined as follows:

1G(τ ) = G(τ )− plG(τl)− prG(τr) (10)

In an exhaustive search over all features θ available at the node
τ , a property of the RF is to restrict this search to a random
subset of the available features (Breiman, 2001), and over all
possible thresholds tθ , the pair {θ , tθ } leading to a maximal
1G is determined. For any feature θ , the decrease in Gini
impurity resulting from this optimal split, 1Gθ (τ ,T), is stored
and accumulated for all nodes τ in all trees T in the forest, in the
Gini importance

IG(θ) =
∑

T

∑

τ

1Gθ (τ ,T) (11)

The Gini importance IG indicates how often a particular feature
θ is selected for a split, and how discriminating it is for the
classification. The Gini importance values can be used as values of
feature importance (Guyon and Elisseeff, 2003). The advantage of
RF is that, unlike LR, it requires no prior knowledge on the linear
separability of the classes. The learning is agnostic and it is much
more general and applicable to even large datasets.

3.1.3. Permutation Testing (PT)
Permutation Testing (PT) estimates the importance of a
particular feature based on the overall results of an underlying
machine learningmodel (Breiman, 2001). It applies permutations
to features and re-calculate the prediction accuracy. The feature
importance is defined as the mean decrease in the accuracy of
the trained model when each feature is permuted. Especially,
Breiman (2001) proposed measuring the importance of the
jth feature by permuting its values in the training data and
examining the corresponding drop in predictive accuracy on a
model built with the original training data. Given a training set
consisting of a data matrix

X =







x⊤1
...

x⊤n






=







x11 · · · x1k
...

. . .
...

xn1 · · · xnk






(12)

and corresponding response vector y = [y1, y2, ..., yn]
⊤, let Xπ ,j

be a matrix obtained by randomly permuting the entries in the
jth column of X containing the values of the jth feature for all the
samples xi, i = 1, ..., n. Using L(yi, f (xi)) as the loss for predicting
f (xi) instead of yi (Breiman, 2001) determined the importance of
the jth feature as

PIπj =

n
∑

i=1

L(yi, f (x
π ,j
i ))− L(yi, f (xi)) (13)

the increase in loss which is due to replacing xij with a value
randomly chosen from the (marginal) distribution of feature j.
The authors of Breiman (2001) designed the method specifically
with the RF as the underlying model and considered OOB loss,
based only on trees that were not trained using (xi, yi). For more
general learners, either training or test loss can be used. The main
advantage of such a PT approach is that it is scalable for any
model. Most studies using the related permutation-based feature
importance of RFs (Díaz-Uriarte and De Andres, 2006; Shen
et al., 2007) together with RFs in a recursive feature elimination
scheme, also showed an increase in prediction performance. Only
Li et al. (2005) report a constant performance, but with a greatly
reduced amount of features. Permutation importance also allows
us to make “apples-to-apples” comparisons of the importance
of different models trained on the same data. Disadvantages
of PT include its complexity and its inability to handle feature
interactions. Permutation importance scores require generating
predictions on the test set twice for each feature, which may
be computationally intractable for large feature spaces. The
permutation scores also do not consider those predictors may
naturally vary together. This can causemisleading interpretations
for certain models (Strobl et al., 2008).

3.1.4. SHapley Additive exPlanations (SHAP)
SHAP works based on the concept of Shapley value (Shapley,
1953) developed in cooperative game theory to estimate how
much each player contributes in a coalition and receives a
payout based on the contribution (Shapley, 1953). The aim of
Shapley values is to find which player is the most important
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one in the cooperative game environment. Taking the idea into
machine learning and interpretability context, the goal is to figure
out which feature plays the most important role in a specific
prediction. Correspondingly, here, the prediction task becomes
a game, feature values are players and feature contributions are
payouts. By applying game theory concepts, SHAP guarantees
that there is a unique solution to a new class that helps to measure
the unified SHAP values, approximated by various methods.
SHAP represents an additive feature attribution method, which
enables the connectivity of various explanationmodels, including
LIME, within the SHAP framework. Additive feature attribution
methods have an explanation model that is a linear function of
binary variables:

ψ(z′) = φ0 +

M
∑

i=1

φiz
′
i (14)

where ψ is an interpretable model, z′ ∈ {0, 1}M is a simplified
feature vector where 0 denotes the absence of feature value and
1 denotes the presence. M is the number of simplified input
features and φi ∈ R is the feature attribution for feature i,
i.e., the Shapley values. SHAP proposed a way to transform the
underlying interpretable models into

f (x) = ψ(x′) = φ0 +

M
∑

i=1

φix
′
i (15)

and then unifies explanation method who satisfies three desirable
properties of Shapley values (Molnar, 2019). The first desirable
property is local accuracy, and it measures how well an
explanation method estimates the output of function f (x) for a
simplified input x0, where x0 corresponds to an original sample
x that is being explained and f (x) is a black-box model which
predicts an output for x. In order to see if an explanation model
ψ(x′) matches the original model f (x), a function x = hx(x

′)
first transforms the simplified input x0 to original sample x. The
second desirable property is missingness. It indicates that when
x′j = 0, then the feature should not have attribution impact,

i.e., x′j = 0 H⇒ φj = 0. The third property is consistency.

It states that if some changes in a model increase the input’s
contribution, it should not decrease the input’s attribution. Let
fx(z

′) = f (hx(z
′)) and z′ \ j denote z′ with its jth entry set to 0. For

any two models f and f ′, if f ′x(z
′) − f ′x(z

′ \ j) ≥ fx(z
′) − fx(z

′ \ j)
for all inputs z′ ∈ {0, 1}M if follows that φj(f

′, x) ≥ φj(f , x). In
the context of a Shapley value, it means that if model changes
increase the marginal contribution of a feature value, or even
the marginal contribution remains the same (regardless of the
other features), then the Shapley value of the feature should not
decrease, it should also increase or stays the same.

In our implementation, we use TreeExplainer (Lundberg
et al., 2020) which is particularly relevant for explaining tree-
based machine learning models like RF . TreeExplainer presents
fast explanations of the model with guaranteed consistency.
It provides the exact computation of Shapley values in low-
order polynomial time by leveraging the internal structure
of tree-based models. Shapley values need a summation of

terms across all possible feature subsets. TreeExplainer falls
this summation into a set of calculations specific to each leaf
in a tree. This is an incremental improvement in terms of
complexity over previous exact Shapley methods. Explanations
based on TreeExplainer provide a global understanding of the
model structure. The average Shapley value per feature across
all instances can be considered as feature importance values. In
this case, the importance value represents the extent to which the
feature influences the outcome and not the model performance
or model construction.

3.1.5. Feature Selection
We validate the impact of the global feature importance
techniques by feature selection and classification. As explained
before, the output of each feature importance technique is a
ranking list of features, specifying their importance in the heart
rhythm classification. We use these rankings to select the most
important features, to the extent they generate almost the same
results once all the features are selected. For SHAP technique
which provides separate importance values for each class, to get
a general importance value, we average the resulted importance
values for a given feature for all the classes.

3.2. Local Explanation
Contrary to global explanation techniques, local explanation
tries to explain predictions on a single data-point and mainly
addresses the question of why did the model make a specific
prediction? This study focused on two local explanation
techniques Local Interpretable Model-agnostic Explanations
(LIME) and SHAP are explained as follows. In the following, two
local explanation techniques are described.

3.2.1. Local Interpretable Model-Agnostic

Explanations (LIME)
Local Interpretable Model-agnostic Explanations (LIME) is an
explanation technique that provides local explanations, in the
sense that it yields explanations for each individual prediction
(Ribeiro et al., 2016). Each part of the name reflects something
that is desirable in explanations. “Local” refers to local fidelity,
i.e., we want the explanation to really reflect the behavior
of the classifier “around” the instance being predicted. Some
classifiers use representations that are not intuitive to users at
all (e.g., word embeddings). LIME explains those classifiers in
terms of “interpretable” representations, even if that is not the
representation actually used by the classifier. Further, LIME takes
human limitations into account, i.e., the explanations are not
too long. In order to be “model-agnostic,” LIME cannot peak
into the model. To figure out what parts of the interpretable
input are contributing to the prediction, the input around its
neighborhood is perturbed to see how the model’s predictions
behave. Then, these perturbed data points are weighted by their
proximity to the original example. The training set containing
permuted samples and their related predictions by the model is
applied to train and evaluate a local interpretable model (a linear
model) and approximate the model in the vicinity of the sample
being explained.
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Let ψ ∈ 9 be an explanation model where 9 is a class
of interpretable models such as linear models or decision trees
in RF. As explanation should be simple enough to understand,

so the domain of ψ is {0, 1}d
′
, which shows the absence or

presence of the d′ components in its interpretable representation.
The original representation of a sample being explained is
x ∈ R

d, but to make an explanation interpretable, a binary

vector representation x′ ∈ {0, 1}d
′
is used as an interpretable

representation. Besides,�(ψ) is used as a measure to control the
complexity of an explanation model ψ . For example, in the case
of linear models, the complexity can be the number of non-zero
weights, while it can be the depth of the tree for decision trees.
Let f :Rd → R depicts a model being explained and f (x) is a
probability function that determines that sample x belongs to a
certain class. To explain the prediction locally, πx(z) is used as a
proximity measure between a sample z and x to define locality
around x. In the original work of (Ribeiro et al., 2016), πx(z)
is set to an exponential kernel exp(−D(x, z)2/σ 2) defined on
some distance measure D with width σ . The explanation can be
obtained using

ξ (x) = argmin
ψ∈9

L(f ,ψ ,πx)+�(ψ) (16)

where L(f ,ψ ,πx) is a measure of how unfaithful ψ is in
approximating f in the locality defined by πx. The goal is to
minimize the L(f ,ψ ,πx) while keeping �(ψ) small enough to
produce an understandable explanation. LIME only implements
a class of linear models 9 as interpretable models ψ(z′) = w⊤

ψz
′

and develops a linear model using sampled datasetZ . The dataset

Z contains samples z′ ∈ {0, 1}d
′
drawn uniformly at random

from non-zero elements of x′, weighted by πx. The labels for

the sampled instances z′ ∈ {0, 1}d
′
are generated by using the

main probability function f (z). The function requires an original
representation z ∈ R

d of a sample, which can be recovered from
interpretable representation z′ ∈ {0, 1}d

′
. So, L(f ,ψ ,πx) in (16)

is defined as

L(f ,ψ ,πx) =
∑

z,z′∈Z

πx(z)(f (z)− ψ(z
′))2 (17)

Finally, by using the dataset Z and the optimization in (16),
the local explanation ξ (x) for the sample x is provided. As we
deal with the extracted features from ECG signals and their
corresponding labels, we apply the implementation of LIME
for tabular data, through which new samples are created by
perturbing each feature individually, drawing from a normal
distribution with mean and standard deviation taken from
the feature.

3.2.2. SHapley Additive exPlanations (SHAP)
The baseline of the SHAP technique was presented in
section 3.1.4.

Both local explanation techniques will be presented in the
results section by depicting examples of output that could
be provided along with the heart rhythm prediction to the
cardiologists. They will therefore be providedwith an explanation

TABLE 2 | Results of different classifiers applied to 56 extracted features based

on 10-fold cross validation.

Classifier Fµ PM RM FM

SVM 0.812∗ 0.780 0.697∗ 0.726∗

CSVM 0.723∗ 0.745∗ 0.698 0.701∗

LR 0.813∗ 0.770∗ 0.699 0.726∗

CLR 0.738∗ 0.701∗ 0.702 0.726∗

RF 0.833 0.779 0.713 0.741

CRF 0.776∗ 0.764∗ 0.727∗ 0.736∗

GB 0.828∗ 0.776 0.706∗ 0.735∗

CGB 0.740∗ 0.677∗ 0.682∗ 0.669∗

(∗) shows the non-parametric statistical difference between RF classifier and the

corresponding classifier in terms of a specific measure Fµ, PM, RM, or FM.

as to why the classifier decided to make its decision for a given
ECG signal.

4. RESULTS

The first subsection presents the results of the different classifiers.
The second subsection shows how the global explanation is used
in feature selection and impacts the results of the classification.
Finally, several examples of results of both tested local feature
importance techniques will be presented.

4.1. Classification
Different classifiers (i.e., SVM, LR, RF, GB and their cascaded
form CSVM, CLR, CRF, and CGB) were applied and tested by
inputting all 56 features implemented. The classification was
evaluated using different measures defined in (1–6). The results
presented in Table 2 show that the RF classifier achieved the
best performance (the best value of each measure is highlighted
in Bold). Hence, in the remaining of the document and for the
following experiments, we applied an RF classifier.

4.2. Global Explanation and Feature
Selection
Figures 1–4 show the feature importance for LR, PT, RF,
and SHAP, respectively. The higher the values on the y-axis,
representing importance values corresponding to different
features on the x-axis, the more important the features are.
From the figures, it can be observed that the results of different
techniques vary depending on their underlying methodology. In
particular, the contrast between the most important features and
the others is much less pronounced with LR, whereas for the
other techniques a couple of features seem to be clearly more
important. PT, RF, and SHAP generate a similar ranking for the
features with features like (lv_rr and PSS) being amongst themost
important features for all three techniques.

Figure 5 represents the results of the ranking of 56 features
by different feature importance techniques shown in Figures 1–
4 altogether. From Figure 5, the similarity between PT, RF and
SHAP ranking for the extracted features can be clearly seen.

Frontiers in Physiology | www.frontiersin.org 7 May 2021 | Volume 12 | Article 657304

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Rouhi et al. Interpretable Model for Atrial Fibrillation Detection

FIGURE 1 | Feature importance based on LR.

FIGURE 2 | Feature importance based on PT.

FIGURE 3 | Feature importance based on RF.
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FIGURE 4 | Feature importance based on SHAP.

FIGURE 5 | Comparison of feature importance values obtained from different techniques.

Figures 6, 7 show the evolution of Fµ and FM when
incrementally adding features according to their importance rank
for the four different global explanation techniques. According
to the figures, PT and SHAP generate better results than the
others (LR and RF) even when the number of features is
low, with faster performance increase compared to the other
two techniques. As can be expected, once all 56 features are
selected, all techniques obtain almost identical Fµ and FM

values. However, the subtle difference is due to the order of
the presentation of features in the tree’s construction in the
RF classifier, which is randomly selected. It is interesting that
by selecting only 28 features ranked by SHAP, the best RM

and FM are achieved in the classification. This proves that
the applied SHAP technique generates more reliable feature
importance making the classification less complex and more
computationally efficient.

Figure 8 shows the results of RF classification based on the
28 ranked features obtained from SHAP as the best method
proposed in this paper, in terms of AUC for each class,
separately. Among the AUC values, the 0.98% AUC proves
the effectiveness regarding AF detection. Table 3 provides the
average confusion matrix obtained by the SHAP_RF during a
10-fold cross-validation procedure. Also, in Table 4, the results
of heart rhythm classification by using ranked features and
RF as the underlying classifier are presented and compared
with the results of the works of Behar et al. (2017) and
Pyakillya et al. (2017). The results show the effectiveness and
efficiency of SHAP technique along with RF for the classification
with a mean F-score of 0.746 and they also highlight how
SHAP_RF method can provide cardiologists with a more
compact set of features and tangible information in their
diagnosis.
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FIGURE 6 | Results of heart rhythm classification in terms of Fµ, by RF classifier applied to only the most important features. SHAP generates the best classification

results based on only 28 features.

FIGURE 7 | Results of heart rhythm classification in terms of FM, by RF classifier applied to only the most important features. SHAP generates the best classification

results based on only 28 features.

Moreover, Table 5 presents a comparison between the best
results generated by the techniques applied in this paper and
some of the existing methods proposed by Behar et al. (2017)
and Pyakillya et al. (2017), for the classification of ECG signals
on CinC/PhysioNet dataset. The column #features depicts the
number of the most important feature generated by the feature
importance techniques which cause the best results in the
classification. The best value of each column is highlighted in
bold. To make the table readable, we use the abbreviations as
LR_RF, PT_RF, RF_RF, SHAP_RF, where the name before “_”
shows the name of the feature importance and model agnostic
technique and the name after stands for the RF classifier. In the
method proposed by Behar et al. (2017), a set of 35 features are

selected based on the SVM classifiers and a CSVM classification is
performed. In themethod proposed by Pyakillya et al. (2017), a 1-
Dimensional Convolutional Neural Network (1D-CNN), whose
input is the raw ECG signal of length 10100, is applied for the
feature selection and classification. The comparison with the
state-of-the-art techniques shows that RF classification based on
the ranked features obtained from SHAP achieves the best results
for AF detection.

In order the overall performance of the proposed compact
approaches with the state-of-the-art. Measures Fn, Fa, Fo, Fp,
corresponding to F1-measure for the classes N, A, O, and∼, and
Fmean as proposed in (Clifford et al., 2017) were evaluated during
10-fold cross-validation for the proposedmethods and compared
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FIGURE 8 | ROC curves for different classes obtained from feature importance by SHAP and RF classification and 10-fold cross-validation.

TABLE 3 | Average confusion matrix obtained from feature importance by SHAP

and RF classification based on 10-fold cross-validation.

n a o ∼

N 4,724 16 293 17

A 37 519 167 15

O 613 97 1,715 31

∼ 74 15 50 145

TABLE 4 | Results of heart rhythm classification by using ranked features and RF

as the underlying classifier.

Method #features Fµ PM RM FM

LR_RF 52 0.834 0.786 0.714 0.744

PT_RF 56 0.834 0.786 0.714 0.744

RF_RF 41 0.836∗ 0.785 0.716 0.745

SHAP_RF 28 0.835 0.783 0.720 0.746

Behar et al. (2017) 35 0.730∗ 0.738 0.705∗ 0.706∗

Pyakillya et al. (2017) 10100 0.831∗ 0.779∗ 0.713∗ 0.742

(∗) shows the non-parametric statistical difference between SHAP_RF method and the

corresponding method in terms of a specific measure Fµ, PM, RM, or FM.

with the scores self-reported during cross-fold validation by the
three best entries of the 2017 CinC/PhysioNet challenge (Datta
et al., 2017; Zabihi et al., 2017; Teijeiro et al., 2018).

4.3. Local Explanation
Figure 9 shows the explanation for the 10 most important
features for four examples from the test set (one for each class).

TABLE 5 | Comparison with state-of-the-art methods on CinC/PhysioNet dataset

based on cross-validation.

Method #features Fn Fa Fo Fp Fmean

LR_RF 52 0.896 0.742 0.719 0.534 0.722

PT_RF 56 0.899 0.740 0.730 0.596 0.741

RF_RF 41 0.898 0.751 0.728 0.580 0.739

SHAP_RF 28 0.900 0.768 0.733 0.579 0.745

Zabihi et al. (2017) 150 0.904 0.794 0.756 0.611 0.818

Datta et al. (2017) 188 0.909 0.797 0.771 - 0.826

Teijeiro et al. (2018) – 0.960 0.842 0.864 0.724 0.889

In Figure 9, blue indicates the features explaining the positive
class prediction, while the features in red indicate the reasons
why the specific sample is not classified as one belonging to
the negative classes. For example, in Figure 9A, the explanation
is provided for one sample from the AF class showing that
the features PSS and lv_rr are the most important ones which
influence the classification of the sample. Specifically, the values
of the feature PSS higher than−0.17 and the values of the feature
lv_rr higher than −0.15 reason that the sample belongs to class
A, while the features nb_out lower than or equal to −0.20 and
CosEn higher than −0.06 explain why the classifier believes the
sample cannot belong to another class than AF. Finally, the low
value of nb_out also explains why the classifier cannot be part of
another class especially the class Other, as this feature is high in
presence of multiple Premature Ventricular Contractions (PVCs)
or Premature Atrial Contractions (PACs). The end-user can then
understand that the AF classification was made because of the
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FIGURE 9 | LIME feature importance for different samples, selected randomly from test set, corresponding to class atrial fibrillation (A), class normal sinus rhythm (B),

class other rhythms (C), and class noisy recordings (D), respectively.

irregularity of RR intervals, high heart rate, and low prevalence
of PVCs and PACs.

Figure 10 represents the so-called force plots (Lundberg et al.,
2018) for the same four examples used to illustrate the LIME
technique in Figure 9. The arrows below the line of each plot

indicate all the feature values that are moving the probability of
prediction from/to the base value, which is the average model
output over the training dataset. The output value, which is in
bold, is the sum of the base value and the effects of the features.
Features that decrease the probability of positive class are in blue
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FIGURE 10 | Force plot for different samples, selected randomly from test set, corresponding to class atrial fibrillation (A), class normal sinus rhythm (B), class other

rhythms (C), and class noisy recordings (D), respectively.

and the ones that increase this probability are in red. Feature
values in red move the prediction to larger values from the base
value and blue arrows to smaller ones. For example, for the
explanation in Figure 10A, we see that the features PSS and lv_rr
move the prediction from the base value to a larger value, while
the features medPR and max_rr move to smaller, resulting in the
prediction probability of 0.95 for the AF class (the positive class
with target value 1 in the binary classification).

By comparing Figures 9, 10, it can be seen that there is
agreement on the most important features, e.g, the feature
PSS and lv_rr for the same samples from atrial fibrillation
and normal classes, Figures 9A,B and 10A,B, respectively. Also,
Feature nb_out is the most important feature for the explanation
of the sample provided in Figures 9C, 10C. There is also a
discrepancy between the two techniques, e.g., feature lv_rr is
the most important feature in Figure 10D, but is only estimated
to be the third most important feature in Figure 9D. This can
be explained by the different characteristics and assumptions of
the techniques.

5. DISCUSSION

The 2017 CinC/PhysioNet challenge has shown that despite
advances in deep learning techniques, hand-crafted features
based machine learning techniques can still achieve highly
performing rhythm classification tasks. However in order to train
these models, it is necessary to implement and input a large
number of features (typically in the hundreds for top-performing

teams). This means that given the complexity of the models,
combined with non-linear classifiers (SVM, GB, and so on),
interpreting the decision process is difficult. To gain the end-
users (cardiologists) trust, it is essential to be able to provide an
explanation of the model, and to understand how an automated
decision is taken.

First, global explanation provides an interpretation of the
training process and ranks the features by importance. Although
global explanation is relatively complex, especially in the case
of multi-class classification (since the techniques like SHAP
generate importance values for different classes), end-users can
understand what the model (and which features) is primarily
looking at. Figure 5 shows that the model seems to be primarily
interested by features based on the RR variability, lv_rr which
looks at the ratio of RR intervals with large variations, HRV based
features, or features based on the irregularity of the RR (e.g., IrE,
AFE, CosEn, and so on). Moreover, these global explanations
can be used as a feature selection technique and provide a more
compact set of features and therefore less complex ML model.
Among the applied techniques, SHAP seems to be working best
for the explanation of RF classifier at least and provides an
efficient model on the most compact set of features. The use of
this most compact set of features could therefore be used and
implemented on resource-constrained settings such as for mobile
applications. In this study, we have focused on the initial set of
features suggested by Behar et al. (2017), which contains features
based on similar physiological phenomenon and can therefore
be correlated. SHAP being based on collaborative game theory
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is well-adapted to deal with these correlated features and is able
to select a compact set of features providing with good outputs. It
would be interesting to analyse how SHAP values would perform
on an even larger set of features.

Local explanation techniques are also interesting and
complementary to global approaches, as they provide additional
feedback to the cardiologists, which are specific to a given
sample. We evaluated the effectiveness of the global explanation
techniques by feature selection and classification, while validation
of local approaches is more difficult as additional feedback is
provided for each sample but does not impact the classification
results. Reviewing the local explanation techniques may help
the cardiologists to gain trust in the automated diagnosis, as
it can confirm or infirm that the automated model is looking
at a characteristic of the signal that makes clinical sense. For
example, if a model focuses on high RR variability for highly
artifact signals, cardiologists can discard the decision. Similarly,
end-users can have more trust in a model that locally focuses on
the QRS width for the detection of PVCs. Unlike, LIME which
perturbs data around an individual prediction to build a model,
SHAP computes all permutations globally to get local accuracy.
So, LIME is faster than SHAP and it can be considered as a
subset of SHAP. SHAP values can be calculated for any tree-
based model. SHAP explains the prediction of the underlying
model, meaning that it does not train a surrogate model, so
there is no risk in having the explainer, which predicts and
explains a different result. Given the review, between the LIME
and SHAP techniques for a local explanation, SHAP seems to
generate reliable results.

6. CONCLUSION

Machine learning has been successfully applied to improve the
effectiveness of Computer-Aided Diagnosis (CADx) systems for

Atrial Fibrillation (AF) detection. Providing an explanation for
the decision made by CADx is considerable from cardiologists’
point of view. In this paper, a range of interpretability
techniques has been applied to hand-crafted features based
ML models for heart rhythm classification particularly AF
detection. We tested different global and local explanation
feature importance techniques. We validated the impact of
the techniques by applying feature selection according to the
obtained feature importance and classification to the public short
electrocardiography (ECG) dataset of CinC/PhysioNet. It has
been shown that each feature importance technique results in
different feature rankings, depending on their characteristics and
assumptions. The results prove the effectiveness and efficiency
of SHapley Additive exPlanations (SHAP) technique along with
Random Forest (RF) for the classification of the ECG signals
particularly for AF detection, as an interpretable hand-crafted
feature-based model.
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