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ABSTRACT The human angiotensin-converting enzyme 2 acts as the host cell receptor
for SARS-CoV-2 and the other members of the Coronaviridae family SARS-CoV-1 and
HCoV-NL63. Here, we report the biophysical properties of the SARS-CoV-2 spike variants
D614G, B.1.1.7, B.1.351, and P.1 with affinities to the ACE2 receptor and infectivity
capacity, revealing weaknesses in the developed neutralizing antibody approaches.
Furthermore, we report a preclinical characterization package for a soluble receptor
decoy engineered to be catalytically inactive and immunologically inert, with broad neu-
tralization capacity, that represents an attractive therapeutic alternative in light of the
mutational landscape of COVID-19. This construct efficiently neutralized four SARS-CoV-2
variants of concern. The decoy also displays antibody-like biophysical properties and
manufacturability, strengthening its suitability as a first-line treatment option in prophy-
laxis or therapeutic regimens for COVID-19 and related viral infections.

IMPORTANCE Mutational drift of SARS-CoV-2 risks rendering both therapeutics and vac-
cines less effective. Receptor decoy strategies utilizing soluble human ACE2 may overcome
the risk of viral mutational escape since mutations disrupting viral interaction with the
ACE2 decoy will by necessity decrease virulence, thereby preventing meaningful escape.
The solution described here of a soluble ACE2 receptor decoy is significant for the follow-
ing reasons: while previous ACE2-based therapeutics have been described, ours has novel
features, including (i) mutations within ACE2 to remove catalytical activity and systemic in-
terference with the renin/angiotensin system, (ii) abrogated FcgR engagement, reduced
risk of antibody-dependent enhancement of infection, and reduced risk of hyperinflamma-
tion, and (iii) streamlined antibody-like purification process and scale-up manufacturability
indicating that this receptor decoy could be produced quickly and easily at scale. Finally,
we demonstrate that ACE2-based therapeutics confer a broad-spectrum neutralization po-
tency for ACE2-tropic viruses, including SARS-CoV-2 variants of concern in contrast to ther-
apeutic MAb.

KEYWORDS ACE2-Fc, B.1.1.7, B.1.351, coronavirus, P.1, SARS-CoV-2, receptor decoy,
spike affinity

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
at the end of 2019 (1) has caused a major coronavirus disease (COVID-19) worldwide

pandemic outbreak, totaling over 100 million confirmed cases and over 2 million associ-
ated deaths as of January 2021 (https://covid19.who.int/). The rapid replication of SARS-
CoV-2 has been shown in some patients to trigger an aggressive inflammatory response
in the lung and acute respiratory disease syndrome (ARDS), leading to a cytokine release
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syndrome (CRS) due to the elevated expression of proinflammatory cytokines (2–4).
Similar to SARS-CoV-1 (5), this enveloped virus belongs to the b-coronavirus genus with
a positive-strand RNA genome and utilizes angiotensin-converting enzyme 2 (ACE2) as
the receptor for host cell entry by binding to its spike (S) glycoprotein (1, 6). The S is
arranged as a trimeric complex of heterodimers composed of S1, containing the recep-
tor-binding domain (RBD), and S2, responsible for viral fusion and cell entry, which are
generated from the proteolytical cleavage of the S precursor via furin in the host cell (6,
7).

Currently, more than 1,100 monoclonal antibodies (MAb) against SARS-CoV-2 have
been reported in the literature, with over 20 currently in clinical evaluation (8, 9). The
antibodies LY-CoV555 and LY-CoV016 developed by Eli Lilly and Company and the anti-
body cocktail REGN-COV2 (REGN10933 plus REGN10987) developed by Regeneron were
granted emergency-use authorization (EUA) by the Food and Drug Administration (FDA).
To maximize neutralization capacity, most of the antibodies in development are directed
toward the RBD in order to disrupt interaction between the viral S protein and ACE2
(10). These recombinant antibodies block viral entry by binding various epitopes on the
RBD in a manner that fundamentally differs from the binding of the glycoprotein to
ACE2 and are therefore susceptible to viral mutational escape.

Several variants have emerged carrying mutations in S, including in the RBD. Of
note is the identification of the D614G (clade 20A) that has rapidly become the domi-
nant strain globally (11). Additional variants have also gained partial dominance in dif-
ferent regions of the globe. The variants A222V (clade 20A.EU1) and S477N (clade 20A.
EU2) emerged in the summer of 2020 in Spain and have rapidly shown diffusion within
Europe (12). Recently, two new variants, clade 20B/501Y.V1, B.1.1.7 and clade 20C/
501Y.V2, B.1.351, characterized by multiple mutations in S, have been associated with
a rapid surge in COVID-19 cases in the United Kingdom and South Africa, respectively,
and have shown increased transmissibility and reduction of convalescent-phase serum
neutralization capacity (13–15). Finally, two variants that emerged in Brazil (B.1.1.28
and P.1) contained mutational hallmarks of both the UK and South Africa variants, sug-
gesting convergent evolution in SARS-CoV-2 due to similar selective pressures (16, 17).
These variants have already been shown to affect MAb neutralization potency (18, 19).

Receptor-based decoy strategies have successfully been employed in the clinic
(20–22); similarly, ACE2-based decoy strategies have been proposed for COVID-19. A key
advantage is that mutations in S which disrupt viral interaction with the ACE2 decoy will
by necessity decrease virulence, thereby preventing meaningful escape by mutation.
Previously described ACE2-based decoys include the soluble human catalytically active
ACE2, repurposed from its initial development for treatment of non-COVID-19 ARDS (23).
Additionally, ACE2 mutants with enhanced affinity for the SARS-CoV-2 viral glycoprotein
have also been described (24–26). However, limitations of these approaches include
short circulating half-life, activity over the renin/angiotensin system which may prevent
its use in prophylaxis, and viral mutational escape which may be enabled by engineering
of the S protein-targeting domain of ACE2.

With a view to eliminate the risk of mutational escape, eliminate the physiological
effects on the renin/angiotensin system, and increase circulating half-life, we gener-
ated a catalytically inactive ACE2 receptor decoy fused to a human Fc domain further
engineered to bear minimal immunomodulatory activity. This molecule has shown
complete lack of enzymatic activity and natural substrate sequestration, with no resid-
ual engagement to human FcgRs, adopting a set of Fc mutations reported to preserve
long half-life and FcRn interaction (27). The construct showed broad neutralizing
capacity with proven activity toward ACE2-tropic viruses, including the SARS-CoV-2
variants of concern B.1.1.7 and B.1.351, with improved consistency and resistance to
viral mutational escape compared to those of leading monoclonal antibody therapeu-
tics. Additionally, we report the biophysical characterization and ACE2 affinity meas-
urements for the D614G, B.1.1.7, and B.1.351 SARS-CoV-2 S1 variants, with links to
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infective potency in a pseudotyped vector setting, with direct comparison to approved
COVID-19 monoclonal antibodies.

RESULTS
Biophysical characterization of SARS-CoV-2 spike variants.We first explored the

binding kinetic between SARS-CoV-2 S1 and ACE2. Inhouse purified recombinant S1
domains from Wuhan, D614G, B.1.1.7, B.1.351, and P.1 variants demonstrated similar
properties to commercially sourced S1 wild-type (WT) protein (Fig. 1A). Interestingly,
the Wuhan and D614G variants displayed a similar thermal unfolding profile, with the
first transition event (melting temperature; Tm) at 42.9 and 42.2°C, respectively, while
the P.1, B.1.1.7, and B.1.351 resulted in a 4.1, 6.9, and 11.5°C increase in temperature
compared to that of S1 Wuhan, respectively (Fig. 1B).

The binding affinity of the spike variants for the ACE2 receptor was assessed by sur-
face plasmon resonance (SPR) using the recombinant S1 domains to allow for a monova-
lent binding interaction. The SARS-CoV-2 S1 WT, D614G, and B.1.351 displayed overall
similar kinetic affinities, although the latter showed an off-rate (kd) 1.5-fold lower than
that of WT S1, which was compensated by a slightly lower on-rate (ka). The B.1.1.7 and
P.1 S1 variants, however, showed approximately 3-fold increase in affinity compared to
that of Wuhan, mainly driven by a lower kd (Fig. 1C and Table 1).

To assess the infectivity conferred by the SARS-CoV-2 spike variants, we engineered
replication-deficient lentiviral vectors pseudotyped with the WT glycoprotein or carry-
ing the D614G, B.1.1.7, and B.1.351 mutations, alongside SARS-CoV-1. Although all
pseudotyped vectors showed equivalent physical particle concentrations, as measured
by p24 enzyme-linked immunosorbent assay (ELISA), they exhibited vastly different
infectivity capacity (Fig. 1D). SARS-CoV-1 resulted in the lowest viral titer, with a reduc-
tion of 3.2-fold in infectious units (IU)/ml compared to that of SARS-CoV-2 Wuhan. The
SARS-CoV-2 D614G variant was instead the most efficient, with viral titer 2.6-fold
higher than that of Wuhan. B.1.1.7 and B.1.351 showed viral titers 1.8- and 1.9-fold
higher than that of SARS-CoV-2 Wuhan, respectively (Fig. 1E). All pseudotype titers
were determined on permissive HEK-293T cell line stably transduced to express human
ACE2 and TMPRSS2 enzymes.

Catalytically inactive ACE2-Fc fusion with streamlined purification. The extracel-
lular domain of human ACE2 (aa 18 to 740, UniProt Q9BYF1) was fused to the human
IgG1 Fc via the human IgG1 hinge region to allow for homodimer stabilization (Fig. 2A).
The ACE2 domain used included both the zinc metallopeptidase and the collectrin
domains to allow full receptor representation. The Fc domain was included to improve
circulating half-life and to capitalize on the streamlined antibody purification processes.
In order to generate an inert receptor decoy, the catalytic site of the enzyme was
mutated at residues 374 (H374N) and 378 (H378N), termed HH:NN, to inhibit enzymatic
activity and prevent conversion of the angiotensin-(1–8) (Ang II) substrate to angioten-
sin-(1–7). This mutation is predicted to remove interaction with zinc ions (Zn12) medi-
ated by the two original Histidine (His) residues, with a spatially conservative mutation
(Fig. 2B).

We first set out to confirm inactivation of the ACE2 component. In vitro testing
using a fluorogenic substrate for ACE2, Mca-APK(Dnp), showed complete abrogation
of enzymatic activity for the ACE2-Fc construct carrying the HH:NN mutation, while the
wild-type (WT) active ACE2-Fc molecule was able to efficiently process the peptide
(Fig. 2C). Furthermore, the kinetic interaction of both WT and mutated ACE2 domains
for their natural substrate Ang II was investigated using SPR. Both constructs interacted
with the substrate; however, the mutated ACE2 was characterized by a lower on-rate
(ka 7.80E105 versus 1.38E105, for active and HH:NN ACE2, respectively) and a higher
off-rate (kd 9.11E202 versus 1.80E201, for active and HH:NN ACE2, respectively), culmi-
nating in a final affinity (KD) of 1.3mM for the ACE2 HH:NN versus 117 nM for the WT
active ACE2 (Fig. 2D).

We next explored whether the ACE2 mutations affected SP binding. Both WT and
mutated ACE2 showed comparable binding capacity for recombinant SARS-CoV-2 full
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S trimer and S1 domain by ELISA (Fig. 2E). SPR measurements of kinetic interaction for
the S1 domain of SARS-CoV-2 showed comparable kinetic profiles between active WT
and HH:NN ACE2 (Table 1), further suggesting the preservation of an unaltered spike
binding domain.

Engineered Fc domain with abrogated FccR engagement. To overcome the risk of
activating the host immune system, thus exacerbating the hyperinflammatory response
often associated with severe COVID-19 development (28), the Fc domain was engineered
to remove FcgR interactions. The well-established L234A/L235A (LALA) (29) mutations of
the CH2 domain and the LALA combination with P329G (LALA-PG) (30) were introduced
in the human IgG1 Fc portion of the ACE2-Fc fusion protein. We first investigated the
expression yields of the ACE2(HH:NN) with WT Fc, LALA Fc, and LALA-PG Fc and ACE2
domain activity. All constructs showed comparable expression and purification efficien-
cies using protein A affinity chromatography (data not shown). Mutations on the Fc

TABLE 1 Kinetic affinities
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domain did not affect the binding capacity of ACE2 for SARS-CoV-2 S protein, and
all three versions showed highly comparable dose/response curves to recombinant
SARS-CoV-2 S trimer or S1 domain by ELISA (Fig. 3A). Similarly, all three variants were
able to bind SupT1 cell lines expressing SARS-CoV-2 S trimer as a transmembrane protein
(Fig. 3B), further confirming binding capacity for the glycoprotein in a more physiological
environment.

Next, we investigated the residual interaction of the engineered Fc domains for
human FcgRI, FcgRII, and FcgRIII on K562, U937, and SupT1 human cell lines. K562 are
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FIG 3 Characterization of Fc effector functions. (A) ELISA of SARS-CoV-2 active spike trimer (left) or S1 domain (right) with ACE2(HH:NN) WT Fc (blue),
LALA Fc (green), or LALA-PG Fc (orange), showing comparable binding capacity (mean 6 SD). One-way ANOVA of AUC with Tukey’s multiple
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reported to express RNA for FcgRIIa and IIIa/b, while U937 express FcgRIa/b, IIa/b, and
IIIb (source www.proteinatlas.org, v20.0). A reverse flow cytometry detection assay,
using biotinylated SARS-CoV-2 S1 as secondary reagent, demonstrated that the ACE2
construct with WT Fc efficiently bound both K562 and U937 in a dose-dependent man-
ner (Fig. 3C). No binding was detected with either LALA or LALA-PG Fc mutations.
SupT1 cells are not reported to express FcgR on the membrane and, consequently,
failed to show binding events with the tested molecules. Equally, human M1 polarized
monocyte-derived macrophages (MDM) from healthy donors and showed strong inter-
action with the ACE2 carrying WT Fc, while no detectable engagement was obtained
with the LALA-PG Fc mutation (Fig. 3D).

Binding affinities of WT, LALA, and LALA-PG ACE2(HH:NN)-Fc variants for human
FcgRs were tested via SPR. ACE2(HH:NN)-Fc showed strong interaction with FcgRIa and
IIIa (27.5 nM and 73.2nM, respectively) and reduced binding affinity for FcgRIIa and IIIb
(207nM and 118nM, respectively). The LALA mutation still maintained residual binding
to the FcgRIa and IIIa (657nM and 225nM, respectively) but no detectable binding to the
remainder of the receptors. The LALA-PG mutation, however, showed a complete abro-
gation of FcgR binding, suggesting a more silent immunomodulatory profile (Fig. 3E).

Analysis of ACE2 decoy cross-reactivity and spike binding affinity. As this recep-
tor decoy has the potential to bind S glycoproteins of viruses that utilize ACE2 as host cell re-
ceptor, binding kinetics were generated for the S1 spike domain of SARS-CoV-1, SARS-CoV-2
Wuhan, D614G, B.1.1.7, B.1.351, and P.1 variants, and HCoV-NL63, comparing to the leading
anti-SARS-CoV-2 antibodies LY-CoV555 (31), REGN10933, and REGN10987 (32). The ACE2-Fc
fusion constructs mediated specific interaction toward all spike proteins tested, while the
monoclonal antibodies showed specificity for only the SARS-CoV-2 related S1 (Fig. 4A). The
ACE2(HH:NN)-Fc and ACE2(HH:NN)-Fc LALA-PG showed comparable affinities for the tested
S1 domains, confirming no effect of the Fc mutations on ACE2 binding (Fig. 4A and Table 1).
Similar to the active ACE2-Fc, the inactive ACE2-Fc constructs also displayed an affinity
enhanced 3-fold for the SARS-CoV-2 S1 B.1.1.7 and .2.5-fold for P.1. While the monoclonal
antibody REGN10987 maintained a similar affinity for the SARS-CoV-2 S1 variants tested,
with an almost 2-fold increase for the P.1 S1, the LY-CoV555 and REGN10933 were dramati-
cally affected by the B.1.351 variant with 12- and 23-fold reduction in affinity compared to
that of S1 Wuhan, respectively, and with a reduced impact, also by the P.1 variant (Fig. 4A
and Table 1).

Binding specificity and cross-reactivity of the ACE2(HH:NN)-Fc LALA-PG construct
were assessed using a cell-based protein microarray assay, screening 5,477 full-length
plasma membrane and cell surface-tethered human secreted proteins, 371 human het-
erodimers, and the SARS-CoV-2 S (Table S1). The test construct showed strong specific
binding to the target protein SARS-CoV-2 S, while no other interaction was detected
across the comprehensive panel of human protein (Fig. 4B). An Fc LALA-PG only con-
struct with the ACE2 domain omitted did not display any interaction with SARS-CoV-2
S or any other target tested. The control fusion protein CTLA4-hFc instead showed
strong interaction for its predicted target CD86, and the FcgRIa, due to the presence of
a WT IgG1 Fc domain. A secondary anti-human Fc antibody interaction with human
IgG3 was detected across all conditions tested (Fig. 4B).

In vitro neutralization of SARS-CoV-2 variants of concern. We first assessed the
neutralization capacity of our decoy receptor against the authentic replication competent

FIG 3 Legend (Continued)
comparisons (left F = 0.3121, df = 2, 72; right F = 34.17, df = 2, 72, compared to blue). (B) Binding capacity on SupT1 cell line expressing SARS-CoV-2
full-length spike, by flow cytometry with ACE2(HH:NN) WT Fc (blue), LALA Fc (green), or LALA-PG Fc (orange) (mean 6 SD). One-way ANOVA of AUC
with Tukey’s multiple comparisons (blue versus green, F = 3.986, df = 2, 54). MFI, mean fluorescence intensity. (C) Fc-mediated binding capacity to
U937, K562, and SupT1 of ACE2(HH:NN) WT Fc (blue), LALA Fc (green), or LALA-PG Fc (orange), detected with biotinylated SARS-CoV-2 S1 and
streptavidin conjugated secondary agent. No binding was detected with ACE2-Fc constructs carrying the LALA or LALA-PG mutations (mean 6 SD).
(D) Representative flow cytometry of Fc-mediated binding of ACE2(HH:NN) WT Fc (blue) and LALA-PG Fc (orange) on human monocyte-derived M1
macrophages. No binding detected with Fc carrying the LALA-PG mutation (n= 4). (E) SPR binding kinetic of ACE2(HH:NN) WT Fc, LALA Fc, or LALA-PG
Fc on human FcgRIa, FcgRIIa, FcgRIIb, FcgRIIIa, and FcgRIIIb. LALA-PG mutations mediated a complete abrogation of FcgR interaction. Sensograms fitted
with 1:1 Langmuir binding model.
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FIG 4 SARS-CoV-2 spike binding and neutralization. (A) SPR binding kinetics of ACE2(HH:NN) WT Fc, LALA-PG Fc, LY-CoV555,
REGN10933, and REGN10987 against SARS-CoV-1, SARS-CoV-2 variants (Wuhan, D614G, B1.1.7, B.1.351, and P.1), and HCoV-NL63
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SARS-CoV-2. Both ACE2(HH:NN)-Fc and ACE2(HH:NN)-Fc LALA-PG showed comparable neu-
tralization efficiency for authentic SARS-CoV-2 virus in vitro, with half maximal neutralization
titer (NT50) values of 5.2 and 4.1nM, respectively, providing evidence of potent therapeutic
activity (Fig. 4C).

Next, to investigate the degree of neutralization efficiency against the SARS-CoV-2
variants of interest, the receptor decoy was tested against the engineered replication-
deficient lentiviral vectors pseudotyped with the glycoproteins of SARS-CoV-2 Wuhan,
D614G mutation, B.1.1.7, and B.1.351 variants and SARS-CoV-1. The ACE2(HH:NN)-Fc
LALA-PG was able to efficiently neutralize SARS-CoV-2, with tight dose-response curves
among the SARS-CoV-2 variants, and SARS-CoV-1 (Fig. 4D). Interestingly, the neutraliza-
tion capacity was slightly improved for the B.1.1.7 and B.1.351 variants compared to
that for SARS-CoV-2 Wuhan. The monoclonal antibody LY-CoV555 showed a marked
reduction in neutralization capacity for the D614G and B.1.1.7 variants, 3- and 8-fold,
respectively, significantly affecting the antibody efficacy, with an almost complete
abrogation of neutralization against the B.1.351 variant (Fig. 4C). The 1:1 REGN10933/
REGN10987 antibody cocktail was more resilient in its response to the SARS-CoV-2 var-
iants but was characterized by a 4-fold reduction in neutralization for the B.1.351 vari-
ant. When the two antibodies constituting the cocktail were analyzed individually, the
REGN10933 showed a 3-fold decrease in neutralization capacity for the D614G and
B.1.1.7 variants, with a staggering .1,000-fold reduction for the B.1.351 variant, while
the REGN10987 showed a 4-fold neutralization reduction for the B.1.1.7 variant and a
10-fold shift for the D614G variant (Fig. 4D).

In vivo neutralization of SARS-CoV-2 in a hamster model of disease. It has been
previously reported that hamsters are a relevant small animal model for SARS-CoV-2
infection, reporting symptoms such as reduced body weight and pathological lesions
on the lung (33). The hamster FcgRs show an interaction profile with human IgG1 Fc
molecules different from that of hamster IgG Fc; nonetheless, the LALA-PG mutation of
our construct still showed a complete lack of interaction with hamster FcgRs (Fig. 5A).
However, human Fc-tagged molecules are not expected to experience extended circu-
lating half-life due to lack of hamster FcRn engagement. The pharmacokinetics of ACE2
(HH:NN)-Fc LALA-PG were assessed in healthy golden Syrian hamsters (Mesocricetus
auratus) via intraperitoneal (i.p.) administration. The drug showed a half-life of 64.5 h
and detectable levels up to 17 days postinjection for the 50mg/kg dose (Fig. 5B).

For in vivo SARS-CoV-2 neutralization, Syrian hamsters were challenged intranasally
with 104.5 median tissue culture infectious dose (TCID50) viral inoculum and then dosed
24 h later via i.p. injections of ACE2(HH:NN)-Fc LALA-PG at either 5mg/kg or 50mg/kg.
Phosphate-buffered saline (PBS) injections were used for the placebo control group.
The hamster groups treated with either high or low ACE2(HH:NN)-Fc LALA-PG doses
showed a significant protection against body weight loss, with a maximum average
weight loss of 11% compared to 21% for the placebo group, relative to the day of viral
inoculum (Fig. 5C). All groups showed a drastic reduction in motor activity with a trend
for faster recovery in the two treated groups from day 5 post-viral challenge (Fig. 5D).
Throat swabs revealed a substantial reduction in viral RNA copies between day 4 and

FIG 4 Legend (Continued)
S1 domains. ACE2(HH:NN) Fc and ACE2(HH:NN) Fc LALA-PG were able to efficiently bind all spike protein tested. All sensograms
were fitted with Langmuir 1:1 binding model, except for SARS-CoV-1 S1 kinetics, which were fitted with two-state kinetics. Two-
fold serial dilutions starting from 250 nM (500 nM for HCoV-NL63 S1). (B) Cell microarray screening of human cell-membrane
proteome with ACE2-Fc (LALA-PG), control Fc (LALA-PG), CTLA4-hFc, or PBS. Depicted is a selection of antigens (key legend on
the right panel). ACE2-Fc (LALA-PG) shows strong specific interaction with SARS-CoV-2 spike protein only. See also Table S1. (C)
Neutralization assay of authentic SARS-CoV-2 virus with ACE2(HH:NN) WT Fc (blue) and LALA-PG Fc (orange). Both variants show
comparable neutralization efficiencies (mean 6 SD). Unpaired t test of AUC (t= 1.695, df = 28). (D) Neutralization assay of SARS-
CoV-1, SARS-CoV-2 Wuhan, SARS-CoV-2 D614G, SARS-CoV-2 B1.1.7, and SARS-CoV-2 B1.351 pseudotyped vectors with ACE2(HH:
NN)-Fc (LALA-PG), LY-CoV-55, REGN10933/REGN10987 cocktail, REGN10933, and REGN10987. Marked decrease of neutralization
capacity for SARS-CoV-2 B1.351 detected for LY-CoV555, REGN10933/REGN10987 cocktail, REGN10933, and REGN10987. No loss
of neutralization capacity detected for ACE2(HH:NN)-Fc (LALA-PG) receptor decoy (mean 6 SD). One-way ANOVA of AUC with
Dunnett’s multiple comparisons to blue (F = 369.2, df = 4,88). Bottom right panel, fold change of neutralization capacity based on
NT50 values. *, unmeasurable NT50 value.
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FIG 5 In vivo SARS-CoV-2 neutralization. (A) Fc-mediated binding capacity of ACE2(HH:NN) WT Fc (blue), LALA-PG Fc (orange), or ACE2(HH:NN)
hamster Fc (green) to HEK293T cells expressing hamster FcgRI, FcgRIIa, FcgRIIb, and FcgRIII receptors, detected with biotinylated SARS-CoV-2 S1
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day 6 compared to the viral load in the placebo; several animals showed undetectable
levels of RNA between day 3 and day 6 for the high ACE2(HH:NN)-Fc LALA-PG dose
and an overall viral load significantly lower than that of the placebo control group
(Fig. 5E). Generally, hamsters treated with the ACE2(HH:NN)-Fc (LALA-PG), especially at
high dose, showed fewer clinical symptoms of disease, such as ruffled fur, body weight
loss, and increased breathing, compared to those in the control group (Fig. 5F).
Macroanalysis on lung necropsies (day 7) also showed an overall reduction in lung
damage for the ACE2(HH:NN)-Fc LALA-PG-treated groups, characterized by fewer
lesions and blood clotting (Fig. 5G). Finally, i.p. administered ACE2(HH:NN)-Fc LALA-PG
was still detectable in the hamster sera at day 7, with levels for the high-dose treat-
ment almost 20-fold higher than those for the low-dose treatment (Fig. 5H).

Formulation optimization and streamlined manufacturing of ACE2(HH:NN)-Fc
decoy. To define a suitable formulation considering manufacturing scale-up for clinical
application, the well-established antibody formulation buffer 20mM His (34, 35) was
used to solubilize the ACE2(HH:NN)-Fc at a range of pH conditions from 3.5 to 7. The
ACE2(HH:NN)-Fc in PBS at pH 7.4 showed good thermal stability with a first unfolding
event at 46.1°C, attributed to the unfolding of the ACE2 domain (Fig. 6A). When tested in
20mM His buffer, the first unfolding event occurred at a Tm between 42.3 and 51.6°C,
with the lowest Tm associated with pH 3.5 and the most stable Tm obtained at pH 6.5
(Fig. 6A).

A crucial phase during manufacturing of monoclonal antibodies lies in the viral inacti-
vation step, often carried out at low pH (36), which can affect the stability and aggregation
state of the proteins in solution. To investigate this, the ACE2(HH:NN)-Fc was exposed to
pH 3.5 for 90 min before dialysis in 20mM His pH 6.5. Thermal stability comparison of
ACE2(HH:NN)-Fc at pH 3.5, 6.5, and 3.5 dialyzes to 6.5 showed how the initial instability
due to pH 3.5 could efficiently be restored to that of the ACE2(HH:NN)-Fc following dialysis
at pH 6.5 (Fig. 6B). The distribution of particles within the solution showed a predomi-
nantly monodispersed profile for the ACE2(HH:NN)-Fc in PBS and 20mM His pH 6.5, with
an average diameter of 13.5 and 13.3nm, respectively, in agreement with a molecule with
a predicted molecular weight (MW) of 219kDa. The suspension in a low pH buffer of 3.5
did not significantly enhance aggregation of ACE2(HH:NN)-Fc (Fig. 6C). Furthermore, the
change of buffer from PBS pH 7.4 to 20mM His pH 6.5 and, crucially, the viral inactivation
step at pH 3.5 with subsequent dialysis to pH 6.5 did not affect the capacity of the ACE2
(HH:NN)-Fc to bind the SARS-CoV-2 S1 protein, further validating the proposed process
(Fig. 6D).

The ACE2(HH:NN)-Fc LALA-PG also showed an increased thermal stability when in
20mM His pH 6.5 buffer, with Tm moving from 48.1°C to 52.0°C and CH2 CH3 unfolding
happening at 64.3°C and 81.8°C, respectively (Fig. 6E). The ACE2(HH:NN)-Fc LALA-PG
was also characterized by a monodispersed particle profile with an average diameter
size of 13.6 nm in 20mM His pH 6.5 (Fig. 6F). Finally, the formulation in 20mM His pH

FIG 5 Legend (Continued)
and streptavidin conjugated secondary agent. No binding was detected with ACE2(HH:NN)-Fc constructs carrying the LALA-PG mutations on
the hamster FcgRs, while limited binding was detected with the ACE2(HH:NN) WT Fc. (B) Syrian hamster serum concentration of i.p. injected
ACE2(HH:NN)-Fc LALA-PG at 5 and 50mg/kg doses, over the course of 28days (n=6/group, 3 animals per time point). Cmax, maximum
detected concentration; Tmax, peak concentration time; t1/2, half-life; Vz, volume of distribution; Cl, clearance rate; MRT, mean residence time. (C
to I) Syrian hamster intranasally challenged with authentic SARS-CoV-2. ACE2(HH:NN)-Fc (LALA-PG) administered i.p. at day 1 postchallenge at
5mg/kg, 50mg/kg, or placebo (PBS) (n=6 per group). (C) Body weight change (%) relative to that on the day of viral inoculation. Day of
therapeutic administration marked with arrow. Significant reduction of body weight change relative to that of the placebo, detected for both
treatment regimens (mean 6 SD). Individual day comparison placebo versus 50mg/kg dose two-way ANOVA with Sidak’s multiple
comparisons compared to placebo group. *, P=0.01; **, P=0.004; ***, P=0.0001; ****, P, 0.0001. One-way ANOVA of AUC with Tukey’s
multiple comparisons (F= 9.379, df = 2, 225). (D) Hamster activity monitoring (wheel rotation) showing faster recovery trend at 5 to 6 DPI for
the treated groups. (E) Clinical symptoms scoring per group per day, based on fur appearance, nasal/ocular discharge, posture, breathing,
activity, and body weight. (F) Total E RNA and subgenomic RNA PCR assay from lung extracts at 7 DPI. Limit of detection 3.28 RNA copies.
Samples with undetectable RNA were assigned a value of 1 (mean 6 SD). (G) Subgenomic RNA PCR swab test. Limit of detection 2.88 RNA
copies; samples with undetectable RNA were assigned a value of 1 (mean 6 SD). Two-way ANOVA with Dunnett’s multiple comparisons. (H)
Necropsy pathology lung score (categories 1 to 4) showing reduction in lung damage for ACE2(HH:NN)-Fc LALA-PG treated groups. Bottom,
representative lung damage for grade scores 1, 2, 3, and 4. (D) Human IgG1 Fc concentration in hamster sera at day 25 and day 7 relative to
viral inoculation. Limit of detection 4 ng/ml. Samples with undetectable levels were assigned a value of 1 (mean 6 SD). Two-way ANOVA with
Sidak’s multiple comparisons (F= 39.2, df = 2, 22).
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6.5 of ACE2(HH:NN)-Fc LALA-PG did not alter the SARS-CoV-2 neutralization capacity of
the construct (data not shown).

DISCUSSION

We have described the generation of a catalytically inactive ACE2 receptor decoy
fused to an engineered human Fc domain with abrogated FcgR engagement, showing
optimal biophysical properties and manufacturability. The construct showed strong
neutralization potency against several SARS-CoV-2 variants of concern in vitro and evi-
dence of efficacy as a therapeutic administration in a live viral challenge model in vivo.

Monoclonal antibodies developed for the treatment of COVID-19 have shown efficacy in
the treatment of early phases of the infection, potentially useful in prophylaxis or as an alter-
native for people who cannot be vaccinated (37). However, cumulative S mutants may
render therapeutic MAbs ineffective. For instance, the variants of concern B.1.351 and P.1
have been shown to affect the neutralization capacity of the approved antibody therapeu-
tics. The LY-CoV555 antibody reported an almost complete abrogation of neutralization,
while the antibody cocktail REGN-COV2 showed a severe impairment for one of its compo-
nents, suggesting preservation of limited therapeutic efficacy (18, 19). By analyzing kinetic of
interactions, we determined that the antibodies LY-CoV555, REGN10933, and REGN10987
showed strong binding capacity for the SARS-CoV-2 Wuhan, D614G, and B.1.1.7 S1 domains.
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FIG 6 ACE2-Fc formulation optimization. (A) Thermal stability analysis via nanoDSF of ACE2(HH:NN)-Fc in PBS at pH 7.4 or in 20mM His buffer with pH
range of 3.5 to 7. Highest stability obtained with 20mM His (pH 6.5). (B) Thermal stability of ACE2(HH:NN)-Fc in 20mM His pH 6.5 (orange) and 3.5 (green)
following 2 h of incubation at RT. Full stability could be recovered following buffer exchange of ACE2(HH:NN)-Fc from pH 3.5 to pH 6.5 (blue). (C) Particle
size distribution analysis via MADLS of ACE2(HH:NN)-Fc at 1mg/ml in PBS (pH 7.4), 20mM His *(pH 3.5, 6.5), or buffer exchanged from pH 3.5 to 6.5.
Increase of particle size of sample at pH 3.5 was partially recovered upon buffer exchange in 20mM His (pH 6.5) (mean 6 SD). (D) ACE2(HH:NN)-Fc binding
capacity for SARS-CoV-2 S1 in ELISA in PBS (pH 7.4; blue), 20mM His (pH 6.5; orange), or 20mM His (pH 3.5) followed by buffer exchange in 20mM His (pH
6.5; green) (mean 6 SD). (E) Thermal stability analysis via nanoDSF of ACE2(HH:NN)-Fc (LALA-PG) in PBS at pH 7.4 (blue) or in 20mM His (pH 6.5; orange)
showing a 3.9°C Tm shift. (F) Particle size distribution analysis via MADLS of ACE2(HH:NN)-Fc (LALA-PG) at 1mg/ml in PBS (pH 7.4; blue) and 20mM His (pH
6.5; orange) showing comparable profile (mean 6 SD).
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Strikingly, the LY-CoV555 and REGN10933 MAbs were strongly impaired in their binding to
the B.1.351 variant. Although the final constant domain sequences used in our version of
the aforementioned antibodies may vary compared to the clinical products, the variable
domains and antibody formats were generated according to published information (31, 32).
While not yet present in naturally occurring variants, the single amino acid mutation E406W
has recently been shown to be able to escape both antibodies in the REGN-COV2 cocktail
(38), further highlighting the weakness of the MAb approach.

“Receptor traps” are an established therapeutic approach, e.g., the anti-TNF
Etanercept (20), the VEGF-trap Aflibercept (21), and the CTLA-4-Ig Abatacept (22). Since
ACE2, the receptor for SARS-CoV-2, is a type I transmembrane protein with a discrete
extracellular domain, ACE2-based receptor decoys may be effective against COVID-19.
A theoretical advantage of this approach is resistance to S mutational drift since muta-
tions disrupting interaction with ACE2 would render the virus inactive. ACE2-based
therapeutics have been described: A soluble catalytically active human ACE2 showed
efficacy in the treatment of a severe COVID-19 patient by reducing plasma viremia (39).
Two recent reports have described engineered ACE2 molecules with sub nM affinities
for the S glycoprotein (24, 26). Similarly, ACE2-derived inhibitory peptides with improved
manufacturability and stability also showed enhanced SARS-CoV-2 neutralization efficacy
(25). However, the lack of an Fc domain may affect serum half-life and manufacturing effi-
ciency, and importantly, optimized designs may allow viral mutational escape due to dif-
ferences with the endogenous receptor. Plain ACE2-Fc fusions were developed against
SARS-CoV-1 in 2003 and were also proposed for SARS-CoV-2 (40, 41). Recently, a tetrava-
lent ACE2-Fc was described which showed improved neutralization efficiency compared
to that of standard ACE2-Fc formats, without ACE2 domain engineering (42). These ACE2-
Fc fusions retained catalytic activity of ACE2 and maintained full Fc effector function.

In contrast to previously reported formats, we developed an ACE2-Fc decoy engi-
neered to be catalytically inactive to prevent systemic activity and with a completely
abrogated FcgR interaction to minimize proinflammatory activity. We provided evi-
dence for lack of enzymatic activity on a synthetic substrate while showing that these
mutations still maintain reversible engagement with the natural substrate Ang II,
avoiding the risk of acting as a substrate sink and offering a safer profile over systemic
interference on the renin/angiotensin system. Differently from a previously described
ACE2-Fc construct carrying the LALA Fc mutation (43), our design using the LALA-PG
mutation shows a complete abrogation of human FcgR engagement while maintaining
FcRn interaction to provide extended half-life (30). Although its relevance has not been
conclusively determined for SARS-CoV-2, the engineered Fc should alleviate the risk of
antibody-dependent enhancement (ADE) of infection as reportedly mediated through
FcgRII for SARS-CoV-1 and MERS-CoV (44, 45). A cross-reactivity study against a compre-
hensive panel of close to 6,000 human-soluble and membrane-bound proteins has
highlighted the exquisite specificity of this construct for the target protein. Finally, the
introduced mutations to inactivate the ACE2 enzymatic activity, which sit outside the S
protein-targeting region, maintained affinity and kinetic interactions equivalent to
those of the active receptor for the SARS-CoV-2 S1 variants, minimizing the risk of
mutational escape.

Despite the enhanced affinity of the S1 variants B.1.1.7 and P.1 for the ACE2 recep-
tor and the increased infectivity of the pseudotyped vectors displaying the D614G,
B.1.1.7, and B.1.351 S glycoproteins, the ACE2(HH:NN)-Fc LALA-PG decoy maintained
efficient neutralization capacity toward all SARS-CoV-2 variants tested, showing
enhanced potency driven by mutational drift. Paradoxically, the spike mutations
enhancing affinity for the ACE2 receptor would improve the neutralization potency of
ACE2-based decoys. Additionally, we showed binding capacity to SARS-CoV-1 and
HCoV-NL63, alongside neutralization of SARS-CoV-1 pseudovirus, providing evidence
for broad-spectrum activity over ACE2-tropic viruses.

Conversely, we have observed a substantial drop in neutralization capacity of the LY-
CoV555, the 1:1 REGN10933/REGN10987 antibody cocktail, and the latter’s individual
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antibodies for the SARS-CoV-2 variants, in line with previous reports (18). The LY-CoV555
and REGN10933 were especially impaired by the B.1.351 variant. We also noticed a gen-
erally reduced neutralization capacity for the D614G variant, which is likely due to its
enhanced infectious capacity compared to that of the Wuhan strain. However, as the
lentiviral pseudotyped system adopted in this work has limitations, results could be con-
firmed in future studies using the authentic virus.

Despite the lack of FcRn engagement in hamster, the i.p. injected ACE2(HH:NN)-Fc
LALA-PG showed detectable serum levels for up to 17 days in vivo and was also able to
affect the replication of the authentic SARS-CoV-2 virus in a hamster model, reducing
body weight loss and lung damage in infected animals.

In conclusion, we describe detailed in vitro and in vivo characterization of a soluble
catalytically inactive ACE2-Fc receptor decoy molecule resistant to spike protein muta-
tion. We also demonstrate that our decoy molecule has the potential for rapid upscale
manufacturability. In theory, our decoy should be active against any new ACE2-tropic
virus which might emerge in the future. In this phase of the SARS-CoV-2 pandemic
where viral variants are exerting pressure over the efficacy of vaccines and monoclonal
antibodies, the development of biotherapeutics which are inherently resistant to SARS-
CoV-2 mutations may be prudent.

MATERIALS ANDMETHODS
Cell line generation and maintenance. HEK-293T cells (ATCC, CRL-11268) were cultured in Iscove’s

modified Dulbecco’s medium (IMDM) (Lonza, 12-726F) supplemented with 10% fetal calf serum (FCS;
Biosera, FB 1001/500) and 2mM GlutaMAX (Gibco, 35050061) at 37°C with 5% CO2. Sup-T1 (ATCC, CRL-
1942), U937 (ATCC, CRL-1593.2), and K562 (ATCC, CCL-243) were cultured in RPMI 1640 medium (Gibco
21875034) supplemented with 10% fetal calf serum (FCS; Biosera, FB 1001/500) and 2mM GlutaMAX
(Gibco, 35050061) at 37°C with 5% CO2.

Sup-T1 cells wereg-retrovirally transduced to express the S glycoprotein of SARS-CoV-2 Wuhan Hu-1
strain coexpressed with enhanced blue fluorescent protein (eBFP) as a marker gene. Briefly, 5� 105 cells
were incubated with 1ml of unquantified vector supernatant in the presence of retronectin in non-tis-
sue culture-treated 24-well plate and subjected to spin-inoculation at 1,000 � g for 40 min. Cells were
recovered 24 h later by culturing in serum-supplemented RPMI 1640 for two passage before use in
experiments.

For the generation of MDM, human monocytes were isolated from blood of healthy donors using
Easy Sep human monocyte isolation kit (Stemcell, 19359), according to manufacturer’s recommenda-
tions. Monocyte isolation was determined with the following flow cytometry antibody panel after
10min incubation with anti-human CD32 (StemCell, 18520): allophycocyanin (APC) anti-human CD14
(Biolegend, 301808), PE-Cy7 anti-human CD3 (Biolegend, 344186), AF488 anti-human CD20 (Biolegend,
302316), and live/dead Sytox Blue stain (Invitrogen, S34857). Monocytes were activated by culturing in
Immunocult serum-free macrophage differentiation medium (Stemcell, 10961) supplemented with
50 ng/ml macrophage colony-stimulating factor (M-CSF) (Stemcell, 78057). At day 6, cells were supple-
mented with 50 ng/ml gamma interferon (IFN-g) (Stemcell, 78020) and 10ng/ml lipopolysaccharide (LPS)
(Sigma, L4391) to stimulate M1 polarization. M1 macrophages were harvested by Accutase dissociation
(Stemcell, 07920). The following flow cytometry antibody panel was used to determine monocyte differ-
entiation and M1 polarization after 10min incubation with anti-human CD32: APC anti-human CD14
(BioLegend, 344186), BV421 anti-human CD80 (BioLegend, 305222), phycoerythrin anti-human CCR7
(BioLegend 353204), APC/Fire750 anti-human CD209 (330116), and 7-aminoactinomycin D (7-AAD) via-
bility staining solution at 5ml/1� 106 cells. Samples from both flow staining panels were acquired using
the MacsQuant10 instrument (Miltenyi Biotech).

Protein expression, purification, and characterization. Human ACE2 containing amino acids 18 to
740 (UniProt Q9BYF1) was fused to the human IgG1 hinge and Fc (UniProt P01857). Inactive ACE2 was
generated by introducing H374N and H378N mutations. Silent Fc variants were generated with L234A/
L235A and L234A/L235A/P329G mutations. Chimeric human inactive ACE2 with hamster Fc fusion was
generated using Cricetulus migratorius IgG heavy chain hinge-Fc sequence (GenBank U17166.1). Variable
domain sequences for LY-CoV-555 were obtained from published crystal structure PDB 7L3N (31); REGN10933
and REGN10987 sequences were obtained from published crystal structure PDB 6XDG (32). Heavy variable
domains were fused to human IgG1 constant chain (UniProt P01857); kappa variables were fused to human
kappa constant domain (UniProt P01834); lambda variable was fused to human lambda constant 1 (UniProt
P0CG04). All constructs were cloned in an AbVec vector (46). REGN10933/REGN10987 antibody cocktail was
generated as a 1:1 mix of REGN10933 and REGN10987. Recombinant Fc-tagged proteins were expressed by
transient transfection in ExpiCHO, according to manufacturer’s recommendations (Thermo Fisher, A29133).
Supernatant from transfected CHO cells was purified using 1ml HiTrap MabSelect PrismA (GE Healthcare,
17549851) affinity chromatography with in-line dialysis in PBS via HiTrap 5ml desalting columns (GE
Healthcare, 29048684) using an Akta Pure system (GE Healthcare), following manufacturer’s recommendations.

SARS-CoV-2 S1 domains (amino acids [aa] 1 to 681) from Wuhan (GenBank, QHD43416.1) or includ-
ing the D614G (11), B.1.1.7 (13), B.1.351 (14), and P.1 (17) mutations were cloned in fusion with a dual
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6�His tag using an AbVec vector. Supernatant from Expi293-transfected cells was manually purified
using TALON metal affinity chromatography (TaKaRa bio Inc., 635502), according to manufacturer’s rec-
ommendations. Purified proteins were buffer exchanged in PBS using Zeba spin desalting columns
(Thermo Fisher, 89890).

Purified proteins were analyzed for purity determination via sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) on a 4 to 20% gradient gel (Bio-Rad, 4568094), with or without the pres-
ence of 2-mercaptoethanol as reducing agent.

Differential scanning fluorimetry. Thermal stability was determined by nano differential scanning fluo-
rimetry (nanoDSF) on a Prometheus NT.48 instrument (Nanotemper) using first derivative of 350/330nm ratio
to determine the melting temperature (Tm) value. Samples were loaded on a glass capillary and temperature
scanned from 20 to 95°C at 1°C/min.

Aggregation and particle size measurement. Aggregation propensity and average particle size of
the test proteins were determined using a Zetasizer Ultra device and ZS Xplorer software (Malvern
Panalytical) by MADLS. Samples were loaded into a low-volume quartz cuvette (Malvern Panalytical,
ZEN2112) at a concentration of 1mg/ml. Triplicate measurements were taken for each sample. Particle
size of aldolase (158 kDa) was used as reference.

ACE2 enzymatic activity. Enzymatic activity of active ACE2-Fc (ACRO biosystems, AC2-H5257) and
ACE2(HH:NN)-Fc was measured by using Mca-APK(Dnp) (Enzo Life Science, BML-P163) as the substrate in
96-well black microtiter plates. Samples were diluted in reaction buffer (50mM 4-morpholineethanesul-
fonic acid [pH 6.5], 300mM NaCl, 10mM ZnCl2, and 0.01% Triton X-100) at a concentration of 0.1mg/ml in
the presence of 20mM Ma-APK(Dnp) or control peptide BML-P127 (Enzo Life Sciences) in a final volume of
100ml/well. The reaction was performed in triplicate at room temperature for 1 h. Activity was measured
as fluorescence intensity at 320nm/393nm (Ex/Em) wavelength at 1-min intervals using a Varioskan LUX
instrument (Thermo Scientific).

ELISA on spike protein. Nunc Maxisorp clear 96-well plates were coated with 1mg/ml (in PBS) of
SARS-CoV-2 S trimer (ACRO biosystems, SPN-C52H9), SARS-CoV-2 S1 domain (ACRO biosystems, S1N-
C52H3), or bovine serum albumin (BSA) (Sigma, A7906) overnight at 4°C in 50ml/well. Plates were
blocked with PBS 2% BSA for 1h at room temperature (RT). Test proteins were incubated at 45.6 nM con-
centration with 3-fold serial dilutions for 1 h at RT in PBS 0.5% BSA. Bound Fc-tagged proteins were
detected with anti-human horseradish peroxidase (HRP)-conjugated secondary antibodies (Jackson
ImmunoResearch, 109-035-088) at 1:3,000 dilution in PBS 0.5% BSA. Incubation was allowed for 1 h at
RT. All washes were performed in PBS 0.05% Tween 20. Specific interaction revealed with 1-step TMB
(3,39,5,59-tetramethylbenzidine) Ultra reagent (Thermo Fisher, 34028) at 45ml/well and blocked with
45ml/well of 1 M H2SO4. Plates were acquired on a Varioskan Lux instrument at a wavelength of 450 nm.
Data were analyzed with GraphPad Prism 8 (GraphPad software).

Flow cytometry. For FcgR binding assay on U937, K562, SupT1 cells, and MDM, test constructs were
incubated at specified concentrations for 30 min at 4°C to prevent dissociation/internalization. Protein
labeled cells were stained with biotinylated SARS-CoV-2 S1 (ACRO biosystems, S1N-C82E8) and detected
with streptavidin AF647 (Invitrogen, S21374). Cells were stained with 7-AAD viability staining solution at
5ml/1� 106 cells to determine live cells. Stained samples were acquired using a MacsQuant10 instru-
ment (Miltenyi Biotec) and analyzed on FlowJo software (BD).

Binding capacity of ACE2(HH:NN) Fc, LALA Fc, and LALA-PG Fc to SupT1 expressing wild-type SARS-CoV-2
full-length spike was assessed via incubation of test protein at 45.6nM with 2-fold serial dilutions for 30 min
at RT, followed by secondary incubation with anti-human IgG (H1L) AF647 (Invitrogen, A21445) for 20 min at
RT in the dark. Cells were stained with 7-AAD viability staining solution at 5ml/1� 106 cells to determine live
cells and subsequently acquired using MacsQuant10 instrument. Flow cytometry data were analyzed on
FlowJo software (BD).

Surface plasmon resonance. Recombinant active ACE2-Fc (ACRO biosystems, AC2-H5257) and
ACE2(HH:NN)-Fc constructs were captured on flow cell 2 of a series S protein A sensor chip (GE
Healthcare, 29127555) to a density of 500 response units (RU) using a Biacore 8K instrument (GE
Healthcare). HBS-EP1 buffer was used as running buffer in all experimental conditions. Recombinant
purified Angiotensin II (Sigma, A9525) at 1mM with 2-fold serial dilutions, was used as the ‘analyte’ and
injected over the flow channels with 150 s contact time and 500 s dissociation.

For SARS-CoV-1 S1 (ACRO biosystems, S1N-S52H5), HCoV-NL63 S1 (SIN-V52H3), SARS-CoV-2 S1 WT
(ACRO biosystems, S1N-C52H3), and inhouse expressed SARS-CoV-2 S1 WT, D614G, B.1.1.7, and B.1.351
kinetics, test ACE2-Fc constructs and antibodies were captured to a density of 70 RU or 50 RU, respec-
tively, on a series S protein A sensor chip (GE Healthcare, 29127555) using a Biacore T200 and Biacore 8K
instruments (GE Healthcare). HBS-P1 buffer was used as running buffer in all experimental conditions.
Recombinant purified spike proteins at known concentrations were used as the “analyte” and injected
over the respective flow cells with 150 s contact time and 300 s dissociation.

The binding kinetics to FcgRIa (ACRO biosystems, FCA-H52H1), FcgRIIa (ACRO biosystems, CD1-
H5223), FcgRIIb (ACRO biosystems, CDB-H5228), FcgRIIIa (ACRO biosystems, CDA-H5220), and FcgRIIIb
(ACRO biosystems, CDB-H5222) were captured to a density of 50 RU (or 150 RU for FcgRIIa, FcgRIIb, and
FcgRIIIb) on flow cell 2, 3, or 4 of a series S CM5 chip (GE Healthcare) functionalized with an anti-His cap-
ture kit (GE Healthcare) using a Biacore T200 instrument. HBS-EP1 buffer was used as running buffer in
all experimental conditions. Purified ACE2(HH:NN)-Fc, ACE2(HH:NN)-Fc LALA, and ACE2(HH:NN)-Fc LALA-
PG at a concentration of 500 nM with 2-fold serial dilutions were used as the analyte and injected over
the respective flow cells with 150 s contact time and 300 s dissociation.

All experiments were performed at 25°C with a flow rate of 30ml/ml. Flow cell 1 was unmodified and
used for reference subtraction. A “0 concentration” sensogram of buffer alone was used as a double
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reference subtraction to factor for drift. Data were fit to a 1:1 Langmuir binding model using Biacore
insight evaluation software (GE Healthcare). SARS-CoV-1 S1 sensograms were also fit to a two-state ki-
netic model. Since a capture system was used, a local Rmax parameter was used for the data fitting in
each case.

Viral vector production. Viral vectors were produced by triple transient transfection of HEK-293T
cells in 100-mm plates using GeneJuice (Merck, 70967) with a total of 12.5mg of DNA.g-retroviral vectors
were produced by triple transient transfection of 4.69mg Peq-Pam plasmid (encoding Moloney GagPol),
3.13mg of RDF plasmid (encoding RD114 envelope), and 4.69mg retroviral backbone SFG (47) express-
ing full-length SARS-CoV-2 S glycoprotein coexpressed with eBFP as the marker gene. Similarly, for lenti-
viral vector production, cells were transfected with 5.42mg of pCMV-dR8.74 (encoding lentiviral GagPol),
2.92mg of envelope plasmid expressing codon-optimized SARS-CoV S glycoproteins with their endoplas-
mic reticulum (ER) retention signals deleted (deletion of the last 19 amino acids on the carboxy termi-
nus), and 4.17mg of lentiviral backbone pCCL encoding enhanced green fluorescent protein (eGFP) as
transgene driven by internal viral spleen focus-forming virus (SFFV) promoter.

Culturing medium was changed 24 h posttransfection, and vector supernatants were collected 48 h
after transfection and processed by centrifugation at 1,000 � g for 10 min at 4°C to remove cellular de-
bris followed by microfiltration using Millex-HV 0.45mm syringe filter units (Merck, SLHV033RB). Viral
supernatants were either kept on ice for further use or frozen down at 280°C for storage.

p24 ELISA. Physical particles were determined by measuring p24 levels using the QuickTitre lentivirus
titer, which quantifies lentivirus-associated HIV rather than free p24 proteins (Cell Biolabs, VPK-107-T).
Manufacturer’s protocol was followed, and samples were assayed in triplicates. Briefly, after incubation
with kit’s ViraBind reagents and virus inactivation, samples were incubated in microwell plates precoated
with anti-p24 antibodies followed by a subsequent incubation with secondary fluorescein isothiocyanate
(FITC)-conjugated anti-HIV p24 monoclonal antibody (1:1,000). Subsequently, wells were exposed to HRP-
conjugated anti-FITC monoclonal antibody (1:1,000). Plates were acquired on a Varioskan Lux instrument
at a wavelength of 450 nm. Data were analyzed with Graph Prism 8 (GraphPad software).

SARS-CoV-2 lentiviral pseudotyped viral vector titration. Functional infectious viral titers were
determined by flow cytometry analysis (BD LSRFortessa X-20 cell analyzer) of transgene expression in
transduced HEK-293T cells that were previously engineered to express human ACE2 and TMPRSS2.
Experiments were performed in 24-well plates (50,000 cells/well). Serially diluted viral supernatants were
added onto seeded cells in the presence of 8mg/ml Polybrene. Transduction efficiencies were deter-
mined 72 h later using BD LSRFortessa X-20 cell analyzer. eGFP expression between 0.5% and 20% was
used in the following equation to determine viral titer:

titer
IU
ml

� �
¼

transduction efficiency %
100 � no: of cells at transduction

vector volume
� dilution factor

SARS-CoV-2 lentiviral pseudotyped viral vector neutralization assay. Proteins were serially
diluted in PBS to 7 decreasing concentrations ranging from 100mg/ml to 6.1 ng/ml (4-fold serial dilu-
tion). Each antibody dilution was then mixed 1:1 with lentiviral vectors pseudotyped with SARS-CoV S
glycoproteins normalized to 1.0� 105 physical particles of vectors pseudotyped with Wuhan glycopro-
tein to a final volume of 200 ml and incubated at 37°C for 1 h. Antibody-virus mixtures were then cul-
tured with 3� 104 HEK-293T cells previously genetically engineered to express human ACE2 and
TMPRSS2, in the presence of 8mg/ml of Polybrene, in 48-well plates with a final volume of 0.5ml per
well. Plates were spin-inoculated at 1,000 � g for 10 min and incubated for 72 h. Viral titers were then
quantified by eGFP expression in target cells using BD LSRFortessa X-20 cell analyzer, and infectivity of
all fractions was determined as a percentage of viral titers in the PBS only control.

SARS-CoV-2 virus neutralization assay. Vero cells (ATC-CCL81) cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (Sigma, catalog no. D6546) with 10% FCS, 2mM L-glutamine (Sigma-Aldrich, G7513),
and 1% penicillin/streptomycin (Invitrogen, 15140148) were seeded the day prior to infection at 2� 104 cells
per well in a 96-well flat-bottom plate. Serial dilutions of proteins of interest were incubated with 100 TCID50 of
SARS-CoV-2 (strain England/02/2020) for 1 h at 37°C, 5% CO2. After careful removal of culturing medium from
Vero monolayer, 100 ml of protein-virus mixtures was added to the cells and incubated 1 h at 37°C, 5% CO2.
Subsequently, 100 ml of culturing medium with 4% FBS was added to occupied wells, and plates were incu-
bated at 37°C, 5% CO2 for 48 h. After removal of culturing medium, occupied wells were fixed with 4% parafor-
maldehyde (PFA) in PBS for 1 h at room temperature for viral inactivation, followed by incubation with 0.1%
Triton X-100 for 15min at room temperature for cell permeabilization. Plates were washed with 0.05% vol/vol
PBS-Tween and sequentially incubated with mouse anti-SARS-CoV-2 N protein antibody (The Native Antigen
Company, MAB12183-100) at 1:500 dilution and HRP-conjugated goat anti-mouse IgG antibody (Jackson
ImmunoResearch, 115-035-146) at 1:5,000 dilution in 3% wt/vol milk in 0.05% PBS-Tween. Plates were acquired
on a BMG FLUOstar Omega at a wavelength of 450nm.

Cell microarray test. A total of 5,477 expression vectors, encoding both ZsGreen1 and a full-length
human plasma membrane protein or a cell surface-tethered human secreted protein, and 371 human
heterodimers were coarrayed across a microarray slide in duplicate (Table S1). HEK293 cells were used
for reverse transfection and expression. Test protein was incubated at 20mg/ml upon cell fixation. Hits
were detected by fluorescent secondary antibody using ImageQuant software (GE Healthcare). An
expression vector (pIRES-hEGFR-IRES-ZsGreen1) was spotted in quadruplicate on every slide and used as
the transfection control. Assay was performed by Retrogenix Ltd.

In vivo hamster model. For pharmacokinetics (PK) studies, male LVG golden Syrian hamsters 7 to
9weeks old (100 to 140 g) were single dosed via i.p. injections of ACE2(HH:NN)-Fc LALA-PG at 5 and
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50mg/kg (n= 6 per group). A total of 200ml of blood was collected from orbital vein at specific time
points: 15min6 3min, 30min6 3min, 1 h6 5min, 2 h6 5min, 4 h6 5min, 8 h6 5min, 12 h6 5min,
24 h6 5min, 48 h6 5min, 72 h6 5 min, 120 h6 5min, 168 h6 5min, 240 h6 5min, 336 h6 5min,
408 h6 5min, 504 h6 5min, 672 h6 5min postadministration (n= 3 per time point per group).
Samples were incubated at 2 to 8°C for 1 h and centrifuged at 2,000 � g for 10 min at 2 to 8°C.
Separated serum was stored at 280°C. ACE2(HH:NN)-Fc LALA-PG concentration was measured via ELISA.
Briefly, 96-well plates (Corning Inc., 42592) were coated with anti-human IgG antibody (Sigma-Aldrich,
I6260) at 1mg/ml in 50ml/well overnight at 4°C. Plates were washed 4 times in PBS 0.05% Tween 20 and
blocked with 200ml/well of blocking buffer (GenScript, DD-PK-009) for 1 h at RT on a shaking platform.
Upon wash, plates were incubated with 50ml/well of test sample diluted 100-fold in assay buffer
(GenScript, DD-PK-009) in duplicate for 1 h at RT on a shaking platform. Standard curve was generated
using purified ACE2(HH:NN)-Fc LALA-PG at 80mg/ml with 2-fold serial dilutions in blank hamster serum.
Plates were washed as described above and incubated with anti-human Fc HRP-conjugated detection
antibody (Jackson ImmunoResearch, 109-035-088) at 1:10,000 dilution in assay buffer for 1 h at RT on a
shaking platform. Upon wash, plates were incubated with 100ml/well of TMB solution (GenScript, DD-
PK-009) and blocked with 100ml/well of stop solution (GenScript, DD-PK-009). Plates were read at
450 nm by using a Multiskan FC plate reader (Thermo Fisher Scientific). Pharmacokinetic parameters
were calculated by WinNonlin 8.1 (Certara) with the noncompartmental model (NCA).

Syrian hamsters (Mesocricetus auratus) RjHan:AURA strain, male and females 4 to 10weeks old, were
individually caged in a human biosafety level 3 laboratory. At day 0, animals were challenged by intra-
nasal inoculum of 0.1ml of authentic SARS-CoV-2 with a dose of 104.5 TCID50 under medetomidine and
ketamine sedation. At 1 day post-infection (DPI), animals were treated with i.p. injections of 5mg/kg or
50mg/kg ACE2(HH:NN)-Fc LALA-PG or PBS, at equal volumes, and monitored until 7 DPI (group n= 6).
Nonterminal blood samples were collected at 25 DPI and terminal blood samples were collected at 7
DPI. For human Fc detection, blood samples were inactivated by incubation at 56°C for 2 h before being
stored at 220°C. Detection of residual human Fc in the hamster sera was performed by ELISA, using an
anti-human Fc MAb (Sigma-Aldrich, I6260) as capture. The standard curve was generated using purified
ACE2(HH:NN)-Fc LALA-PG, passed through the same heat-inactivation step as the serum samples and
ranging from 22.8 nM to 22.3 pM via a 2-fold serial dilution. Changes relative to ELISA protocol detailed
above: Nunc MaxiSorp clear 96-well plates were coated with 1mg/ml (in PBS) of anti-human Fc MAb
overnight at 4°C in 50ml/well. Plates were blocked with 200ml/well of PBS 2% BSA for 1 h at RT. Wash
steps were performed 3 times in PBS 0.05% Tween 20. Serum samples were tested at both 1:100 and
1:1,000 dilutions in duplicate. Bound proteins were detected with anti-human HRP-conjugated second-
ary antibody (Jackson ImmunoResearch, 109-035-088) at 1:3,000 dilution in PBS 0.5% BSA. Specific inter-
action revealed with 1-step TMB Ultra reagent (Thermo Fisher, 34028) at 45ml/well and blocked with
45ml/well of 1 M H2SO4. Plates were acquired on a Varioskan Lux instrument at a wavelength of 450 nm.

Body weight measurements were recorded daily throughout the study. Wheel rotations were
counted automatically (4 counts are equal to 1 full rotation) every day between 8:15 and 12:00 a.m.
Clinical symptoms were graded depending on severity. Active animals (alert with normal behavior and
,15% body weight loss) were assigned a score of 0. Animals with ruffled fur, curled bodies, nasal/ocular
discharge, sneezing/coughing, or mild increased respiratory rate or showing reduced activity were
assigned a score of 1. Animals inactive and sluggish, showing abdominal breathing or .20% body
weight loss were assigned a score of 2. Animals with passive/absent behavior or with dyspnea were
assigned a score of 3. The symptoms were summed in a ranked manner, using the calculation
N0� 01N1� 11N2� 21N3� 31N4� 4, where N is the number of animals and the number in sub-
script indicates the number of symptoms per animal. Throat swabs were collected at 2, 3, 4, 6, and 7 DPI
to test for presence of SARS-CoV-2 by qPCR. RNA was isolated using a Direct-zol RNA miniprep kit (Zymo
Research, R2056) and subgenomic RNA detected as described previously (48, 49). Postmortem examina-
tions were performed at 7 DPI. For RNA analysis, lung tissues were homogenized by an Ultra-Turrax ho-
mogenizer before RNA extraction and analysis by total viral RNA and subgenomic RNA as described
above. Macroscopic lung lesions were assessed by a pathologist according to the following scoring
scheme: 0, no macroscopical changes; 1, focal discoloration of lung ,20%; 2, multifocal discoloration of
lung 20 to 50%; 3, multifocal discoloration of lung 50 to 80%; 4, whole lung affected.80%. Animal care-
takers and pathology personnel were blinded for the treatment groups. Experiments were performed by
Wageningen Bioveterinary Research Division Virology of Wageningen University. Animal work was
approved by the Dutch Central Authority for Scientific procedures on Animal (CCD), experimental appli-
cation 2020.D-0007.016 by the Animal Welfare Body of Wageningen University and Research.

Statistical analysis. All statistical analyses were performed using GraphPad Prism 8 (GraphPad
Software). Specific analysis is detailed in figure legends. A P value ,0.05 was considered significant.
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