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Prenatal Maternal Stress from a 
Natural Disaster Alters Urinary 
Metabolomic Profiles in Project Ice 
Storm Participants
Eric J. Paxman1,2, Naveenjyote S. Boora1,2, Douglas Kiss1, David P. Laplante   3, 
Suzanne King3,4, Tony Montina   2 & Gerlinde A. S. Metz   1

Prenatal stress is known to epigenetically program offspring physiology and behaviour, and may 
become a risk factor for adult complex diseases. To gain insight into the underlying environment-
gene interactions, we used proton nuclear magnetic resonance spectroscopy to analyze urinary 
metabolomes of male and female adolescents who were in utero during the 1998 Quebec Ice Storm. 
Metabolomic profiles in adolescent groups were found to be significantly different. Higher prenatal 
stress exposure generated alterations in metabolic pathways involved in energy metabolism and 
protein biosynthesis, such as branched-chain amino acid synthesis, alanine metabolism, and ketone 
body metabolism. Dysregulation of energy and protein metabolism suggests an increased risk of 
metabolic diseases like insulin resistance, diabetes, and obesity. These findings are consistent with 
prior observations of physiological phenotypes from this cohort. Understanding the impact of natural 
disasters on health risks will provide new and improved therapeutic strategies to mitigate stress-
associated adverse health outcomes. Using metabolomic biomarkers may also assist in the prediction 
and prevention of these adverse outcomes.

Stress during pregnancy has a significant long-term impact on offspring physiology and behaviour1–4. Abnormally 
high levels of circulating maternal glucocorticoids and increased placental corticotropin-releasing hormone may 
cross the placenta to reach the fetal brain, leading to dysregulation of hypothalamic-pituitary-adrenal (HPA) 
axis activity and altered neuronal development4,5. Growing evidence suggests that these phenomena are associ-
ated with the pathophysiology of stress-related depression6. HPA axis programming due to fetal glucocorticoid 
overexposure has further potential lifetime consequences as a risk factor for complex adult diseases, including 
cardio-metabolic illnesses7, altered glucose and insulin metabolism, and adiposity8,9.

The association between HPA axis function and risk of metabolic diseases, such as diabetes and obesity, may 
be causally linked to altered genetic and epigenetic regulation. Epigenetics provides an additional layer of varia-
tion, mediating the relationship between internal and external environments and genotype10. Accordingly, pre-
natal maternal stress (PNMS) may alter DNA methylation11,12 and microRNA signatures in tissues of exposed 
offspring13,14. Genetic and epigenetic regulation affect cellular functions that ultimately will reflect an altered 
metabolic output. Hence, the metabolome, i.e., the sum of metabolites in an organism, arguably represents a 
direct measure of environment-gene interactions and associated phenotypes15.

Various biological fluids and tissues can be utilized to measure systemic metabolic changes. Urination is the 
primary method for excreting water-soluble metabolites from the body16. Urine sample accession is simple and 
non-invasive, making it ideal for metabolomic analyses. As the primary liquid by-product of cellular metabolism 
in humans and animals, urine is made up of numerous breakdown products of metabolic processes, such as 
nitrogenous wastes requiring clearance from the bloodstream. As such, urine can be expected to reflect metabolic 
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activity from many organ systems. Since the brain accounts for up to 20% of metabolic activity in humans17,18, its 
waste products are significantly reflected in urine profiles.

Disease states and altered stress responses involve abnormal metabolic states that reflect altered cellular pro-
cesses10. For example, adaptation to chronic stress facilitates visceral fat accumulation19 as adipocytes take up 
and catabolize glucocorticoids as a regulatory effect, justifying body fat gain as a response to stress20. In Project 
Ice Storm, 5½-year-old children of mothers who had experienced high disaster-related stress during pregnancy 
revealed increased risk of obesity21, which persisted into adolescence22. Studying natural disasters, such as expo-
sure to the 1998 Quebec Ice Storm, allows for the isolation of the mother’s objective degree of exposure from 
genetic predispositions, socioeconomic biases, and from her own subjective level of distress11.

The goals of the present study were (a) to detect downstream metabolomic effects in male versus female ado-
lescents resulting from prenatal maternal stress exposure using proton nuclear magnetic resonance (1H NMR) 
spectroscopy; (b) to differentiate between adolescents prenatally exposed to either low or high levels of PNMS 
based on presence and quantity of small-molecule metabolites in urine; and (c) to identify a subset of significantly 
altered metabolites and metabolic pathways that may be used to predict and determine future health status and 
disease risk in the study cohort. Metabolic signatures linked to perinatal programming of disease phenotypes may 
provide novel prognostic and diagnostic biomarkers and targets for therapeutic strategies.

Results
Analyses using objective hardship as the predictor were based on 17 participants (9 males, 8 females) who were 
exposed in utero to high levels of objective hardship and 15 participants (9 males, 6 females) who were exposure 
in utero to low levels of objective hardship. Analyses using subjective distress as the predictor were based on sam-
ples obtained from 16 participants (9 males, 7 females) exposed in utero to high levels of subjective distress and 
16 participants (9 males, 7 females) exposed in utero to low levels of subjective distress.

Exploratory statistical analysis.  Two hundred and fifty-five spectral bins were included in the analyses. 
Mann-Whitney U (MW) and Variable Importance Analysis Based on Random Variable Combination (VIAVC) 
tests were applied to each comparison group to identify which features (bins) led to observed group differences. 
These analyses resulted in the following subset of bins: objective hardship (male) (18 MW, 7 VIAVC, and 4 com-
mon bins); subjective distress (male) (17 MW, 10 VIAVC, and 2 common bins); objective hardship (female) 
(8 MW, 4 VIAVC, and 1 common bin); and subjective distress (female) (33 MW, 2 VIAVC, and 2 common bins). 
Multivariate statistical tests were initially performed using all bins, with no separation of groups observed (data 
not shown). Group separation was observed when only the bins identified as significant by either VIAVC or MW 
tests were used in PCA and PLS-DA analyses.

In males, the unsupervised PCA separation was significant, particularly when split by the level of subjec-
tive distress exposure (Fig. 1A,B). Subsequent supervised PLS-DA separations were significant and supported 
the PCA findings (Fig. 2A,B). For females, significant unsupervised separation was observed when the sample 
was split by in utero levels of both maternal subjective distress and objective hardship (Fig. 1C,D). Significant 
supervised separation for females was also observed (Fig. 2C,D). Double cross-validation and permutation tests 
validated the observed supervised separation results as a function of subjective distress (male p = 0.034, female 
p < 0.001) and objective hardship exposure levels (male p = 0.01, female p = 0.011).

Variable Importance in Projection (VIP) plots (Fig. 3) indicate which variables contribute most to significant 
supervised separation. In males, 1,3-dimethylurate, malonate, and 2-hydroxybutyrate contributed most to the 
separation when subjective distress was included (Fig. 3A), with VIP scores of 1.47, 1.35, and 1.15 (Table 1). 
When objective hardship was included, 3-chlorotyrosine, 3-hydroxymandelate, and isoleucine contributed most 
(Fig. 3B), with VIP scores of 1.39, 1.31, and 1.31, respectively (Table 1). In females, the top three compounds 
that contributed to separation when subjective distress was included were hypoxanthine, 3-methyladipate, and 
tyramine (Fig. 3C), with VIP scores of 1.65, 1.50, and 1.38 (Table 2). The top three compounds contributing to 
group separation when objective hardship was included (Fig. 3D) were malonate, 2-hydroxy-3-methylvalerate, 
and adenine, with VIP scores of 1.71, 1.18, and 1.04, respectively (Table 2). In males, 22/27 (81%) unique, 
significant metabolites were up-regulated in high compared to low PNMS, with the remaining metabo-
lites being down-regulated (Table 1). In contrast, in females 27/35 (77%) unique, significant metabolites were 
down-regulated in high compared to low PNMS, with the remainder being up-regulated (Table 2).

Functional analysis.  Metabolic sets were predicted to be changed in the case of dysfunctional enzymes, 
using a genome-scale network model of human metabolism (Figs 4 and 5). High PNMS exposure in male ado-
lescents significantly affected branched chain amino acid (BCAA; leucine, isoleucine, and valine) biosynthesis 
(p < 0.01) (Fig. 4A). Additionally, numerous energy metabolism systems were altered, including pathways in 
the citric acid cycle (p < 0.001) and gluconeogenesis (p < 0.01) (Fig. 4B). High PNMS exposure in females also 
had the greatest impact on protein biosynthesis (p < 0.01), as well as nucleotide sugar metabolism (p < 0.01) 
and ketone body metabolism (p = 0.016) (Fig. 5A). This is supported by the pathway topology analysis (Fig. 5B), 
showing significant effects on valine, leucine, and isoleucine (BCAA) biosynthesis/degradation (p < 0.01), pro-
panoate metabolism (p < 0.001), and ketone body biosynthesis/degradation (p > 0.01).

Discussion
Stress is one of the most critical determinants of lifetime health. Here we show (i) that adolescents whose mothers 
experienced high or low objective or subjective distress during pregnancy can be clearly identified by profiling 
small-molecule metabolites in urine; and (ii) that urinary metabolites are significantly altered in adolescents born 
to mothers who experienced high objective and/or subjective stress during a natural disaster, compared to those 
who experienced low objective and/or subjective stress. The majority of the metabolites found to be significantly 



www.nature.com/scientificreports/

3SCientifiC REPOrtS |  (2018) 8:12932  | DOI:10.1038/s41598-018-31230-x

altered belong to metabolic pathways involved in energy metabolism and protein biosynthesis, supporting a link 
between early adverse life events and risk of metabolic illness later in life23.

Forty-nine metabolites known to be present in urine15 were identified as significantly related to the level and 
type of PNMS experienced in utero. The class separation may reflect underlying epigenetic changes and associated 
cellular functions that manifest as downstream alterations to the metabolome. Gender-related fetal differences 
in genetics, physiology or metabolism may also lead to differential downstream effects manifesting in the metab-
olome. While our results show opposite effects in protein metabolism among males and females, particularly in 
regulation of branched-chain amino acids (BCAAs) and protein biosynthesis, the present results also suggest 
gender differences in lipid and ketone body metabolism, nucleotide sugar metabolism, and energy metabolism. 
These findings are further supported by exercise physiology studies showing that females oxidize proportionately 
more fat and less carbohydrate than males24,25.

Almost all metabolites that obtained a significant VIP score for both males and females are involved in energy 
metabolism. Abnormal levels of metabolites involved in the Krebs cycle, such as citrate and malonate, can lead to 
energy deficiency, which is an important factor in fatigue, one of the most frequently represented symptoms in 
major depressive disorder26. Interestingly, BCAAs, which are critical to human life and particularly involved in 
stress responses, energy, immunity, and muscle metabolism27, are highly represented in the VIP plots for males, 
and in pathway analyses for both males and females.

Figure 1.  PCA plots showing statistically significant unsupervised separation for male (A,B) and female (C,D) 
adolescents exposed in utero to high or low levels of PNMS. (A,C) Subjective distress measured by the Impact 
of Events Scale – Revised (IES-R) in mothers exposed to stress during pregnancy. (B,D) Objective hardship 
measured by the Storm 32 survey (ST32) in mothers exposed to stress during pregnancy. Each triangle or 
cross represents one individual under study, plotted using a list of urinary metabolites found to be statistically 
significant by either MW or VIAVC testing. X and Y axes show principal components with brackets indicating 
percent variance.
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In both genders, malonate, which is a competitive inhibitor of succinate dehydrogenase in the electron trans-
port chain (ETC)28, was highly significant in contributing to unsupervised and supervised separations. In females, 
the purine derivative and adenosine reaction intermediate hypoxanthine, as well as the purine base adenine, were 
found to significantly contribute to group separation. Both metabolites are involved in purine and energy metab-
olism, supporting gender differences in these systems29. Hypoxanthine has been found to increase significantly 
in blood serum of obese individuals during exercise30. In contrast, 3-hydroxymandelate and 3-chlorotyrosine 
were identified as highly important metabolites in the unsupervised and supervised separation seen in males. 
These appear to be breakdown products or intermediates in major oxidation pathways31,32. Interestingly, 
3-chlorotyrosine has been shown to be markedly elevated in low-density lipoprotein isolated from atherosclerotic 
intima33, suggesting a link to atherogenesis in prenatally stressed male offspring.

MSEA was used to identify patterns of metabolite concentration changes in a biologically meaningful frame-
work34. The most significant and consistent pathway was protein biosynthesis, with 6 metabolite hits in males and 
5 metabolite hits in females. Thus, the formation and breakdown of both proteins and amino acids are involved in 
the response to high PNMS exposure. Significant pathways in the female MSEA, apart from protein biosynthesis, 
included ketone body metabolism, nucleotide sugar metabolism, and nicotinate and nicotinamide metabolism. 
Nicotinate and nicotinamide play essential roles in respiration, glycolysis, and fatty acid synthesis, acting as coen-
zymes and ADP-ribose donors35,36. Disruption in protein biosynthesis and energy metabolism supports the find-
ing that adolescents who were exposed in utero to high degrees of objective hardship during the 1998 Quebec Ice 
Storm are at higher risk for developing obesity, independent of size at birth and maternal characteristics such as 

Figure 2.  PLS-DA plots showing statistically significant supervised separation for male (A,B) and female (C,D) 
adolescents exposed to high or low levels of PNMS. (A,C) Subjective distress during pregnancy. (B,D) Objective 
hardship during pregnancy. Each triangle or cross represents one individual under study, plotted using a list 
of urinary metabolites found to be statistically significant by either MW or VIAVC testing. X and Y axes show 
principal components with brackets indicating the percent variance.
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height or body mass index21,22. Furthermore, diabetes is the most common pathological process known to cause 
ketone body dysregulation in the blood9,37 and the present data support a causal role for PNMS.

Consistent with MSEA results and VIP scores, both the male and female pathway topology analyses reveal 
changes in valine, leucine, and isoleucine synthesis and degradation. In combination with up-regulation of 
BCAAs in males, this draws attention to a possible metabolic dysregulation of BCAAs in male adolescents of 
high PNMS. Circulating levels of BCAAs have been shown to be increased in obese individuals and are associ-
ated with poor metabolic health and future insulin resistance, suggesting the possibility that these amino acids 
contribute to pathogenesis of obesity and diabetes38,39. Previous research has also shown that pathways related to 
energy and lipid metabolism are consistently associated with Bipolar Disorder, Major Depressive Disorder, and 
Schizophrenia40.

The alanine pathway, which involves the breakdown of pyruvate and some dipeptides, was significantly altered 
between high and low stress male adolescents. Alanine is one of the most important amino acids released by mus-
cle tissue, acting as a major energy source and an important regulator in glucose metabolism, lymphocyte pro-
duction, and immunity41,42. Alterations in the alanine cycle that increase levels of serum alanine aminotransferase 
(ALT) have been linked to the development of type II diabetes43. Altogether, the results of this study suggest that 
adolescents whose mothers experienced high stress during pregnancy, particularly males, may be at an increased 
risk for developing obesity and diabetes later in life.

The present findings indicate that metabolomic signatures assessed by 1H NMR spectroscopy serve as clini-
cally accessible predictive and diagnostic biomarkers of disease. Compared to other methods, NMR spectroscopy 
appears to be the method of choice for global, untargeted metabolomic analysis of urine15, as it permits measure-
ment of the largest number of metabolites (209, compared to 179 in gas chromatography - mass spectrometry 
and 127 in liquid chromatography - mass spectrometry), and yields the largest chemical diversity. Furthermore, 
NMR is non-destructive, so samples can be saved and re-used for further analysis. Lastly, urine is an ideal biofluid 
for stress metabolomic studies since it is very easy to obtain, non-invasive, does not easily transmit infectious 
diseases, and it contains many clearly identifiable metabolites (209 compared to 53 in cerebrospinal fluid and 49 
in blood).

On a cautionary note, the biomarker potential of urinary metabolomics analyses may be limited by varying 
metabolite concentration (scaled to creatinine) of the average compound in normal human urine by ± 50%, with 
some varying by as much as 350%15. These ranges are determined by gender, age, genetic background, diet, and 
activity level of the subject44–46. In this study, however, adolescents were separated by gender, were approximately 
the same age, and were from the same geographical region, mitigating much of the normal variance in metabolite 
quantities seen across individuals.

Using an isolated traumatic stressor, the 1998 Quebec Ice Storm, experience-dependent biomarker signatures 
resulting from PNMS were detected as downstream metabolomic changes using 1H NMR spectroscopy. Here, 

Figure 3.  VIP plots of subjective distress and objective hardship, showing the relative contribution of 
metabolites. (A) Male subjective distress. (B) Male objective hardship. (C) Female subjective distress. (D) 
Female objective hardship. High VIP values indicate greater contribution of these metabolites to group 
separation, shown in PLS-DA plots. Green and red boxes indicate relative metabolite concentration. A VIP 
score of 1.0 is considered able to discriminate between two phenotypes.
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we accurately differentiate pathologically high and low prenatal stress groups based on a subset of significantly 
altered metabolites and/or metabolic pathways, which are potentially linked to metabolic illness, such as insulin 
resistance, diabetes, and obesity. The results support long-lasting metabolomic differences in males and females, 
such as ketone body production and energy metabolism. Some similarities between high-stress male and female 
adolescents were also identified, which include alterations in BCAA biosynthetic pathways. Possibilities exist to 
correlate future work, such as body composition analyses and other health outcomes, with the findings of this 
study.

Group Metabolite
NMR Chemical Shift 
Range of bin (ppm)

Mann-Whitney 
U Test VIAVC

VIP 
Score Regulation

Male Subjective 
Distress (IESR)

1,3-Dimethylurate.2‡ 3.317–3.2958 — 2.94E-88 1.47 Down

Malonate‡ 3.120–3.104 — 2.17E-53 1.35 Down

2-Hydroxyisobutyrate.1‡ 1.368–1.354 3.99E-03 1.68E-09 1.15 Up

Valine.1 1.005–0.998 1.85E-02 5.19E-01 1.1 Up

Isoleucine.1† 0.998–0.993 1.88E-02 2.37E-04 1.09 Up

Leucine.1‡ 0.965–0.958 2.76E-03 2.27E-07 1.08 Up

N-Isovaleroylglycine‡ 0.958–0.948 3.99E-03 5.23E-06 1.07 Up

Threonine, Lactate‡ 1.354–1.338 3.99E-03 1.59E-10 1.02 Up

Trimethylamine N-Oxide, Betaine.2‡ 3.254–3.240 4.00E-02 4.99E-17 1.01 Up

2,6-Dihydroxybenzoate 6.495–6.439 1.88E-02 1.78E-03 0.96 Up

Leucine.2† 0.971–0.965 1.42E-02 2.96E-03 0.96 Up

5-Hydroxyindole-3-Acetate 7.047–7.024 — 3.54E-01 0.94 Up

Leucine.3 0.979–0.971 2.43E-02 1.93E-04 0.94 Up

Valine.2† 1.054–1.044 3.15E-02 2.01E-02 0.92 Up

1,3-Dimethylurate.1‡ 3.349–3.317 4.00E-02 4.24E-13 0.89 Down

Alanine 1.476–1.460 — 1.35E-01 0.88 Up

3-Hydroxy-3-Methylglutarate 1.338–1.313 3.15E-02 2.53E-12 0.87 Up

Pantothenate.2‡ 0.912–0.903 1.06E-02 1.26E-03 0.84 Up

Valine.3‡ 1.013–1.005 1.42E-02 1.04E-03 0.8 Up

3-Methyladipate.6 0.919–0.912 2.44E-02 1.35E-02 0.76 Up

2-Hydroxybutyrate.2‡ 1.388–1.368 4.00E-02 1.89E-02 0.75 Up

3-Hydroxyisovalerate.2† 1.285–1.265 — 1.49E-03 0.66 Up

Betaine.1 3.905–3.881 — 8.35E-15 0.64 Up

Male Objective 
Hardship (ST32)

3-Chlorotyrosine 6.964–6.953 3.99E-03 1.40E-05 1.39 Down

3-Hydroxymandelate 6.925–6.913 3.99E-03 1.27E-04 1.31 Up

Isoleucine.1† 0.998–0.993 5.64E-03 2.04E-03 1.31 Up

Arabinose.1 4.528–4.511 1.42E-02 1.52E-03 1.19 Up

2-Hydroxyisobutyrate.1‡ 1.368–1.354 1.42E-02 7.71E-06 1.12 Up

3-Hydroxyisovalerate.2† 1.285–1.265 3.15E-02 3.63E-08 1.08 Up

Valine.2† 1.054–1.044 3.15E-02 1.50E-06 1.08 Up

N-Isovalerylglycine‡ 0.958–0.948 1.88E-02 1.50E-07 1.04 Up

Pantothenate.2‡ 0.912–0.903 5.64E-03 6.54E-04 1.04 Up

Arabinose.2 4.540–4.528 1.42E-02 4.31E-05 1.01 Up

Leucine.1‡ 0.965–0.958 3.15E-02 3.01E-04 0.96 Up

Isoleucine.2‡ 1.038–1.013 2.44E-02 4.87E-07 0.9 Up

Leucine.2† 0.971–0.965 3.99E-03 7.65E-02 0.88 Up

Pyruvate, Succinate, Oxalacetic Acid 2.402–2.366 3.15E-02 3.30E-07 0.84 Up

Valine.3‡ 1.013–1.005 2.44E-02 3.27E-02 0.79 Up

N6-Acetyllysine 1.973–1.955 3.99E-03 1.29E-03 0.65 Up

Tryptophan 7.746–7.711 — 3.10E-03 0.36 Up

Methylsuccinate 1.067–1.054 3.99E-03 1.00E + 00 0.25 Down

Table 1.  P-values of urinary metabolites found to be significant in male subjective distress and objective 
hardship groups (IESR and ST32, respectively) in either a Mann-Whitney U test, the Variable Importance 
Analysis based on random Variable Combination (VIAVC), or both. VIP scores, shown in descending order, 
correspond to Fig. 3A,B. Metabolite regulation is shown as a function of relative concentration in high-PNMS 
individuals. Metabolites for which more than one NMR resonance peak was identified as significant are 
represented as metabolite.1, metabolite.2, … metabolite.n. †Indicates metabolites that were present in both male 
comparisons while ‡indicates metabolites that were present in both sexes and multiple comparisons.
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Methods and Materials
Study design.  Sample development.  During the first week of January 1998, the Southern region of the 
Canadian province of Quebec experienced a severe ice storm that decimated the power grid, leaving more than 
1.5 million households without electricity for up to 45 days. Damage from the storm made it one of the costliest 
disaster in Canadian history and was responsible for 27 deaths.

To identify and recruit women who met criteria for inclusion into the study (pregnant on January 9, 1998 or 
became pregnant during the following 3 months after the storm, at least 18 years of age, and spoke fluent French), 
physicians who delivered babies from four regional hospitals were asked to mail out an initial recruitment ques-
tionnaire to their eligible patients on June 1, 1998. Mothers and their children have subsequently been assessed 
several times: at the ages of 6 months, 2, 4, 5½, 8½, 9½, 11½, 13½, 16½, and 18½ years. The participants in the 
present study included 18 males and 14 females at the age of 16–17 years.

This study was approved by the Research Ethics Boards of the Douglas Hospital Research Center and the 
University of Lethbridge in accordance to the Canadian Best Practices for Health Research Involving Children 

Group Metabolite
NMR Chemical Shift 
range of bin (ppm)

Mann-Whitney 
U Test VIAVC

VIP 
Score Regulation

Female Subjective 
Distress (IESR)

Hypoxanthine 8.200–8.165 2.62E-02 3.73E-83 1.65 Up

3-Methyladipate.1 0.876–0.823 5.83E-04 1.65E-80 1.5 Down

Tyramine 7.206–7.154 1.11E-02 1.44E-17 1.38 Up

Threonine, Lactate‡ 1.354–1.338 4.08E-03 5.10E-59 1.27 Down

1,3-Dimethylurate.1‡ 3.349–3.317 2.62E-02 1.87E-42 1.24 Up

Pantothenate.1 0.902–0.876 2.33E-03 3.30E-62 1.17 Down

Citrate† 2.545–2.520 3.79E-02 5.04E-02 1.1 Down

N-Isovalerylglycine‡ 0.958–0.948 1.11E-02 1.98E-13 1.05 Down

Formate, Quinolinate, NAD+/NADP+ 8.457–8.370 1.75E-02 7.69E-05 1.03 Down

Acetone 2.225–2.209 1.11E-02 2.50E-14 1.03 Up

Leucine.1‡ 0.965–0.958 2.62E-02 5.45E-08 0.99 Down

Valine.3‡ 1.013–1.005 6.99E-03 1.80E-07 0.95 Down

2-Hydroxyisobutyrate.2‡ 1.388–1.368 6.99E-03 4.04E-12 0.91 Down

Pantothenate.2‡ 0.912–0.903 6.99E-03 1.20E-02 0.9 Down

Acetoacetate 2.256–2.225 1.11E-02 1.66E-18 0.89 Down

UDP-Galactose, UDP-Glucose, UDP-
Glucuronate 4.396–4.365 4.08E-03 2.26E-18 0.85 Down

3-Hydroxyisovalerate.1 2.366–2.359 2.62E-02 1.40E-06 0.82 Down

3-Methyladipate.2 2.319–2.310 1.75E-02 1.50E-01 0.79 Down

3-Methyladipate.3 0.928–0.919 6.99E-03 2.35E-03 0.79 Down

2-Hydroxyisobutyrate.1‡ 1.368–1.354 1.11E-02 1.26E-05 0.77 Down

Isoleucine.2‡ 1.038–1.013 1.75E-02 1.19E-01 0.76 Down

Trimethylamine N-Oxide, Betaine.2‡ 3.254–3.240 3.79E-02 2.17E-05 0.74 Up

5-Aminolevulinate† 2.814–2.793 2.62E-02 1.78E + 00 0.74 Down

Unknown Singlet 1.671–1.648 1.11E-02 2.91E-02 0.74 Down

3-Methyladipate.4 1.909–1.835 3.79E-02 9.09E-08 0.71 Down

Arginine 1.817–1.671 6.99E-03 5.80E-29 0.69 Down

3-Methyladipate.5 2.017–2.010 2.62E-02 3.57E-03 0.62 Down

Female Objective 
Hardship (ST32)

Malonate‡ 3.120–3.104 1.27E-02 5.05E-138 1.71 Down

2-Hydroxy-3-Methylvalerate 1.188–1.178 2.93E-02 1.31E-07 1.18 Down

Adenine 8.072–8.044 2.94E-02 3.66E-04 1.04 Up

2′-Deoxyinosine 8.319–8.292 — 1.07E-05 1.03 Up

4-Hydroxybenzoate 7.772–7.746 2.00E-02 1.51E-02 0.97 Down

Xanthine 7.817–7.772 4.26E-02 1.29E + 00 0.88 Down

Imidazole 7.009–6.995 2.93E-02 1.99E-02 0.81 Up

5-Aminolevulinate† 2.814–2.793 4.26E-02 1.52E+00 0.8 Down

Dimethylamine, Sarcosine 2.714–2.637 — 7.86E-08 0.53 Down

Citrate† 2.545–2.520 — 1.73E-02 0.48 Down

Table 2.  P-values of urinary metabolites found to be significant in female subjective distress and objective 
hardship groups (IESR and ST32, respectively) in either a Mann-Whitney U test, the Variable Importance 
Analysis based on random Variable Combination (VIAVC), or both. VIP scores, shown in descending order, 
correspond to Fig. 3C,D. Metabolite regulation is shown as a function of relative concentration in high-PNMS 
individuals. Metabolites for which more than one NMR resonance peak was identified as significant are 
represented as metabolite.1, metabolite.2, … metabolite.n. †Indicates metabolites that were present in both 
female comparisons while ‡indicates metabolites that were present in both sexes.
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and Adolescents. We obtained written informed consent from parents and written informed assent from 
adolescents.

Assessment of objective hardship and subjective distress.  Objective hardship was estimated using the mothers’ 
responses to questions about their ice storm experiences from categories of exposure: Threat, Loss, Scope, and 
Change47. A total objective stress score (STORM32) was calculated by summing scores from all four dimensions 
using McFarlane’s approach48. The mothers’ subjective distress related to the ice storm was assessed using a val-
idated French adaptation49 of the widely used Impact of Event Scale – Revised (IES-R)50. The 22-item instru-
ment provides scores for symptoms in three scales relevant to post-traumatic stress disorder: Intrusive Thoughts, 
Hyperarousal, and Avoidance50. The total score was used. High and Low Objective and Subjective PNMS groups 
were obtained by splitting the distributions at the median.

Metabolomics assessment.  Sample collection and preparation.  Thirty-two male (n = 18) and female 
(n = 14) participants were instructed to obtain a urine sample midstream at their first passage of the day, which 
was subsequently stored at −80 °C until further processing. One female sample was removed after discovering 
elevated levels of glucose in the urine using Chemstrip 9 (Roche Diagnostics, Indianapolis, IN, USA). In total, 
450 µL of urine and 150 µL of phosphate buffer were transferred into 1.5 mL centrifuge tubes. The sample/buffer 
solution was vortexed and then centrifuged at 12,000 g for 5 minutes at 4 °C to precipitate and pellet any particu-
late matter. Following centrifugation, 550 µL of supernatant was transferred to a 5-mm NMR tube to be analyzed 
immediately. Phosphate buffer was prepared as a 4:1 ratio of KH2PO4:K2HPO4 in a 4:1 H2O:D2O solution to 
obtain a final concentration of 0.5 M51. The D2O contained 0.05% v/v trimethylsilylpropanoic acid (TSP) as a 

Figure 4.  (A) MSEA plot in male offspring of stressed mothers. (B) Metabolomic Pathway Analysis showing 
all matched pathways according to p-values from pathway enrichment analysis and pathway impact values 
in males. A higher value on the y-axis indicates a lower p-value. The x-axis gives the Pathway Impact. Only 
metabolic pathways with p < 0.015 are labeled. This figure was created using the lists of metabolites identified as 
significant for either MW or VIAVC testing, for both male comparison groups.
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chemical shift reference for 1H NMR spectroscopy. Sodium azide (NaN3, 0.03% w/v) was added as an antimicro-
bial agent, and total buffer pH was titrated to 7.4 using 3 M HCl.

NMR data acquisition and processing.  Spectra were collected on a 700 MHz Bruker Avance III HD spectrometer 
(Bruker, ON, Canada) as described previously52. All measurements were recorded using a Bruker triple reso-
nance TBO-Z probe with the outer coil tuned to the nuclei of 1H, 31P and 2H and the inner coil tuned to the 13C 
nucleus. The 1-D NOESY gradient water suppression pulse sequence noesygpr1d with 10 ms mixing time was 
used (Bruker). Samples were run for 128 scans, with a total acquisition size (TD) of 128k, a spectral window 
(SW) of 20.5 ppm, a transmitter offset (o1p) of 4.7 ppm, and a recycle delay of 4 seconds. The Bruker automation 
(au) program “pulsecal” was utilized on each sample prior to data acquisition to guarantee that the 90-degree 
pulse was calibrated correctly, which ensures quantitative and comparable data across samples. Spectra were zero 
filled to 256k, automatically phased and baseline corrected, and line-broadened by 0.3 Hz. Processed spectra 
were exported to MATLAB (MathWorks, MA, USA) and binned using Dynamic Adaptive Binning53. The dataset 
was then normalized using the Constant Sum method, where each spectrum is set to have a unit total area and 
each data point (bin) is a fraction of the total spectral integral (with the regions corresponding to water and urea 
removed). The data set was then Pareto-scaled (mean-centered and divided by the square root of each variable’s 
standard deviation) to reduce the influence of intense peaks, while emphasizing weaker ones. All peaks were 
referenced to TSP (0.00δ).

Statistical analyses.  Two hundred and fifty-five spectral bins were first analyzed for all comparison 
groups and deemed significant or non-significant using a decision tree algorithm54 and Mann-Whitney U 
test. All p-values from this algorithm were Bonferroni-Holm corrected for multiple comparisons. Data visu-
alization was conducted using Principal Component Analysis (PCA) and Partial Least Squares Discriminant 
Analysis (PLS-DA) using Metaboanalyst34,55–63. Double cross-validation and permutation testing (minimum 

Figure 5.  (A) MSEA plot in female offspring of stressed mothers. (B) Metabolomic Pathway. Higher value 
on the y-axis gives a lower p-value. The x-axis gives the Pathway Impact, which correlates to the number of 
metabolite hits in a particular pathway. Only metabolic pathways with p < 0.05 are labeled. This figure was 
created using the lists of metabolites identified as significant for either MW or VIAVC testing, for both female 
comparison groups.
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1,000 iterations) were performed to verify and support all statistically significant PLS-DA results64,65. Variable 
Importance in the Projection (VIP) plots were made using the weighted sum of squares of the PLS loadings, based 
on explained Y-variance in each dimension.

Variable Importance Analysis based on random Variable Combination (VIAVC) was used66 as an additional 
feature/bin selection method. VIAVC systematically resamples variables to reveal any synergistic effects that may 
exist between seemingly unimportant variables66, which is unaccounted for in univariate statistical tests. By com-
bining random permutations of variable inclusions with ten-fold double cross validation, and by using the Area 
Under the Curve (AUC) of a Receiver-Operator Characteristic (ROC), VIAVC determines an optimal subset of 
variables that have led to the most substantial group differences. The optimal subset of variables is determined 
using the complete cross validation methods outlined by Westerhuis et al.64. This method sets aside one set of 
samples as the independent test (validation) set and the other samples are included in the calibration set. The 
calibration set is used to form the multivariate model which is tested for predication accuracy against the samples 
held back in the validation set. This procedure is repeated multiple times until all samples have been chosen to be 
a part of the validation set at least once. The reported p-values for the optimal subset are calculated from a t-test 
of distribution scores based on whether a particular metabolite was included in the model.

Biological significance of important metabolites was investigated using the Metabolite Set Enrichment 
Analysis (MSEA) and Pathway Topology Analysis through Metaboanalyst. Metabolic pathway analyses identified 
the most relevant pathways62 based on the Human Pathway Library and the Over Representation Analysis algo-
rithm selected, using a hypergeometric test.

Metabolite identification.  The Human Metabolome Database42,67,68 and the Chenomx 8.2 NMR Suite 
(Chenomx Inc., Edmonton, Alberta, Canada) were used for spectral deconvolution of biofluid samples into indi-
vidual components.
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