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Abstract

Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null
models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic
variants within and between populations. For candidate models we numerically compute the expected spectrum using a
diffusion approximation to the one-locus, two-allele Wright-Fisher process, involving up to three simultaneous populations.
Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the
expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for
parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites,
predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including
expansions, contractions, migrations, and admixture. We model human expansion out of Africa and the settlement of the
New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by
the Environmental Genome Project. We infer divergence between West African and Eurasian populations 140 thousand
years ago (95% confidence interval: 40–270 kya). This is earlier than other genetic studies, in part because we incorporate
migration. We estimate the European (CEU) and East Asian (CHB) divergence time to be 23 kya (95% c.i.: 17–43 kya), long
after archeological evidence places modern humans in Europe. Finally, we estimate divergence between East Asians (CHB)
and Mexican-Americans (MXL) of 22 kya (95% c.i.: 16.3–26.9 kya), and our analysis yields no evidence for subsequent
migration. Furthermore, combining our demographic model with a previously estimated distribution of selective effects
among newly arising amino acid mutations accurately predicts the frequency spectrum of nonsynonymous variants across
three continental populations (YRI, CHB, CEU).
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Introduction

Demographic models inferred from genetic data play several

important roles in population genetics. First, they complement

archeological evidence in understanding prehistorical events (such

as the number and timing of major continental migrations) which

have left no written record [1,2]. Second, they facilitate the search

for genetic regions that have been targets of non-neutral forces,

such as recent natural selection, by guiding our expectations as to

how much sequence and haplotype variation one expects to see in

a given genomic region (and, more importantly, the variance

around these expectations) [3]. Finally, existing demographic

models can guide sampling design for subsequent population or

medical genetic studies.

Given their many uses, it is not surprising that many studies

have inferred demographic models for populations of humans and

other species [4–15].

The process of inferring a demographic model consistent with a

particular data set typically involves exploring a large parameter

space by simulating the model many times, often using coalescent-

theory based Monte Carlo approaches. For computational

reasons, many of the demographic inference procedures developed

thus far have focused on single population models or models with

multiple populations but no subsequent migration after subpop-

ulations split (i.e., [4–6,16,17], but also see [10,18]). Methods that

do consider multiple populations with migration often assume

independent non-recombining regions [7,19] and do not often

scale to genomic size data sets. Approaches for jointly considering

recombination and migration often use a restricted set of summary

statistics [9] of the data, which limits their statistical power. Finally,

complex demographic inferences that make use of many summary

statistics are often very computationally intensive [8,10,18], which

precludes thorough investigation of their statistical properties.

Here, we develop and apply a computationally efficient

diffusion-based approach to the problem of demographic

inference, based on the multi-population allele frequency spectrum

(AFS) (i.e., the joint distribution of allele frequencies across diallelic

variants) [10,17,18,20,21]. Given a genetic region sequenced in

multiple individuals from each of P populations, the resulting AFS

is a P-dimensional matrix. Each entry of this matrix records the
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number of diallelic genetic polymorphisms in which the derived

allele was found in the corresponding number of samples from

each population. For example, if diploid individuals from two

populations were sequenced, with 10 individuals from population

1 and 5 from population 2, the AFS would be a 21-by-11 matrix

(indexed from 0). The [2,0] entry would record the number of

polymorphisms for which the derived allele was seen twice in

population 1 but never seen in population 2, while the [20,5] entry

would record polymorphisms for which the derived allele was

homozygous in all individuals from population 1 and seen 5 times

in population 2. If all polymorphic sites possess only two alleles

and can be considered independent, the AFS is a complete

summary of the data. Many of the statistics commonly used for

population genetic inference, such as FST and Tajima’s D, are

summaries of the AFS (see [18,22]).

Efficient techniques exist for simulating the AFS of a single

population [4,5,23]. The joint AFS between two populations has

been used by several recent studies [10,11,18,24], but these have all

relied upon very computationally intensive coalescent simulations.

Here we approximate the joint multi-population AFS by numerical

solution of a diffusion equation, and our implementation supports

up to three simultaneous populations. Because the diffusion

approach neglects linkage, our comparison with the data is through

a composite likelihood function. Such likelihoods are consistent

estimators under a wide range of population genetic scenarios for

selectively-neutral data, but do not correctly capture variances [25].

(Lower recombination induces higher linkage and higher variance

in the entries of the AFS.) As we demonstrate below, the efficiency of

our diffusion approach enables both conventional and parametric

bootstrap resampling of the data, allowing us to accurately estimate

confidence intervals for parameter values and critical values for

hypothesis tests [26], accounting for any degree of linkage found in

the data. This bootstrap procedure overcomes the traditional

concerns with composite likelihood as a philosophy for inference in

population genetics.

To demonstrate the utility of our approach, we apply our

method to two epochs in human history, using single nucleotide

polymorphism (SNP) data from the Environmental Genome

Project (EGP) [27], the largest public database of human

resequencing data. We first study the expansion of humans out

of Africa, jointly modeling the history of African, European, and

East Asian populations. We then study the settlement of the New

World, jointly modeling European, East Asian, and admixed

Mexican populations. In both cases, we quantify the uncertainty of

our parameter inferences and test hypotheses about migration

(bootstrapping to account for linkage). In particular, we infer an

earlier divergence between African and Eurasian populations than

previous studies, because our inferences account for the substantial

migration between these populations. Our methods also find no

evidence for multiple migrations between East Asia and the New

World. While similarly complex models for human continental

populations have been studied [8], to our knowledge, our analysis

is the first in which the full joint AFS is used for inference and in

which uncertainty and goodness-of-fit have been quantified.

An important advantage of the diffusion approach is the ease

with which selection can be incorporated. As an illustrative

application, we also predict the distribution of protein-coding

variation between populations. In agreement with the data, we

find that less nonsynonymous variation is shared between

populations than might be expected based only on patterns of

shared noncoding variation.

While no model can capture the full complexity of any species’

genetic history, the models presented refine our understanding of

the expansion of humanity across the globe. None of the

methodology is specific to humans, and we expect our method will

find wide application to demographic inference of other species.

Methods

Diffusion approximation
To efficiently simulate the AFS, we adopt a diffusion approach.

Such approaches have a long and distinguished history in

population genetics, dating back to R. A. Fischer [28–30]. The

diffusion approach is a continuous approximation to the

population genetics of a discrete number of individuals evolving

in discrete generations. An important underlying assumption is

that per-generation changes in allele frequency are small.

Consequently, the diffusion approximation applies when the

effective population size N is large and migration rates and

selection coefficients are of order 1=N.

If we have samples from P populations, the numbers of sampled

sequences from each population are n1,n2, . . . ,nP. (For diploids, n1

is typically twice the number of individuals sampled from

population 1.) Entry d1,d2, . . . ,dP of the AFS records the number

of diallelic polymorphic sites at which the derived allele was found

in d1 samples from population 1, d2 from population 2, and so

forth. (If ancestral alleles cannot be determined, then the ‘‘folded’’

AFS can be considered, in which entries correspond to the

frequency of the minor allele.)

We model the evolution of w(x1,x2, . . . ,xP,t), the density of

derived mutations at relative frequencies x1,x2, . . . ,xP in popula-

tions 1,2, . . . ,P at time t. (All x run from 0 to 1.) Given an infinitely-

many-sites mutational model [31] and Wright-Fisher reproduction

in each generation, the dynamics of w for an arbitrary finite number

of populations P are governed by a linear diffusion equation:

L
Lt

w~
1

2

X
i~1,2,...,P

L2

L2xi

xi(1{xi)

ni

w

{
X

i~1,2,...,P

L
Lxi

cixi(1{xi)z
X

j~1,2,...,P

Mi/j(xj{xi)

 !
w:

ð1Þ

Author Summary

The demographic history of our species is reflected in
patterns of genetic variation within and among popula-
tions. We developed an efficient method for calculating
the expected distribution of genetic variation, given a
demographic model including such events as population
size changes, population splits and joins, and migration.
We applied our approach to publicly available human
sequencing data, searching for models that best reproduce
the observed patterns. Our joint analysis of data from
African, European, and Asian populations yielded new
dates for when these populations diverged. In particular,
we found that African and Eurasian populations diverged
around 100,000 years ago. This is earlier than other genetic
studies suggest, because our model includes the effects of
migration, which we found to be important for reproduc-
ing observed patterns of variation in the data. We also
analyzed data from European, Asian, and Mexican popu-
lations to model the peopling of the Americas. Here, we
find no evidence for recurrent migration after East Asian
and Native American populations diverged. Our methods
are not limited to studying humans, and we hope that
future sequencing projects will offer more insights into the
history of both our own species and others.

Demography from Multidimensional SNP Data

PLoS Genetics | www.plosgenetics.org 2 October 2009 | Volume 5 | Issue 10 | e1000695



The first term models genetic drift, and the second term models

selection and migration. Figure 1A illustrates the effects of different

evolutionary forces on components of w. Time is in units of

t~t=(2Nref ), where t is the time in generations and Nref is a

reference effective population size. The relative effective size of

population i is ni~Ni=Nref . The scaled migration rate is

Mi/j~2Nref mi/j , where mi/j is the proportion of chromosomes

per generation in population i that are new migrants from

population j. (Thus migration is assumed to be conservative [32]).

Finally, the scaled selection coefficient is ci~2Nref si, where si is the

relative selective advantage or disadvantage of variants in

population i. Boundary conditions are no-flux except at two corners

of the domain, where all population frequencies are 0 or 1; these are

absorbing points corresponding to allele loss or fixation. Because the

diffusion equation is linear, we can solve simultaneously for the

evolution of all polymorphism by continually injecting w density at

low frequency in each population (at a rate proportional to the total

mutation flux h), corresponding to novel mutations.

Changes in population size and migration alter the parameters

in Equation 1, while population splits and mergers alter the

dimensionality of w. For example, if new population 3 is admixed

with a proportion f from population 1 and 1{f from population

2 then

w(x1,x2,x3,t)~w(x1,x2,t)d(x3{½fx1z(1{f )x2�), ð2Þ

where d denotes the Dirac delta function. To remove population

2, w is integrated over x2: w(x1,x3,t)~

ð1

0

w(x1,x2,x3,t)dx2.

Given w, the expected value of each entry of the AFS,

M½d1,d2, . . . ,dP�, is found via a P-dimensional integral over all

possible population allele frequencies of the probability of

sampling d1,d2 . . . ,dP derived alleles times the density w of sites

with those population allele frequencies. For SNP data obtained by

resequencing, these probabilities are binomial, so

M½d1,d2, . . . ,dP�~
ð1

0

� � �
ð1

0

P
i~1,2,...,P

ni

di

 !
xdi

i (1{xi)
ni{di

w(x1,x2, . . . ,xP)dxi:

ð3Þ

In some cases of ascertained data [33], the resulting bias can be

corrected by modifying the above equation [11,34].

Likelihood-based inference
Let H correspond to the parameters of a demographic model

we wish to estimate from the observed multi-population allele

frequency spectrum, which we denote S½d1,d2, . . . ,dP�. Assuming

no linkage between polymorphisms, each entry in the AFS is an

independent Poisson variable [20], with mean M½d1,d2, . . . ,dP�
(which depends on H). We can, therefore, construct a likelihood

function L(HjS) using standard statistical theory:

L(HjS)~ P
i~1...P

P
di~0...ni

e{M½d1,d2,...,dP�M ½d1,d2, . . . ,dP�S½d1,d2,...,dP �

S½d1,d2, . . . ,dP�!
:ð4Þ

So L is the product of (n1z1)(n2z2) . . . (nPz1) Poisson

likelihoods, one for each entry in the AFS.

In words, our approach consists of calculating the expected

allele frequency spectrum M using a particular demographic

model (and set of parameter values for that demographic model)

using our diffusion approach. We then maximize the similarity

between M and the observed AFS S over the parameter values

that H can take on. Competing demographic models can be

chosen from using standard statistical theory such as the nested

likelihood ratio test or information criteria such as the Akaike or

Bayesian Information Criteria.

For linked polymorphisms, L is a composite likelihood. Such

likelihoods are consistent estimators under a wide range of neutral

population genetic scenarios [25], but simulations incorporating

linkage are necessary to estimate variances and define critical

Figure 1. Frequency spectrum gallery. (A) Qualitative effects of modeled neutral genetic forces on w(x1,x2,t), the density of alleles at relative
frequencies x1 and x2 in populations 1 and 2. (B) For the spectra shown, an equilibrium population of effective size NA diverges into two populations
2NAt generations ago. Populations 1 and 2 have effective sizes n1NA and n2NA , respectively. Migration is symmetric at m~M=(2NA) per generation,
and h~1000. (C) The AFS at t~0. Each entry is colored by the logarithm of the number of sites in it, according to the scale shown. (D) The AFS at
various times for various demographic parameters, on the same scale as (B). (E) Comparison between coalescent- and diffusion-based estimates of
the likelihood L of data generated under the model (A). Coalescent-based estimates of the likelihood, each of which took approximately 7.0 seconds,
are represented in the histogram. The result from our diffusion approach, which took 2.0 seconds, is represented by the red line. For accuracy
comparison, the yellow line indicates the likelihood inferred from 108 coalescent simulations.
doi:10.1371/journal.pgen.1000695.g001

Demography from Multidimensional SNP Data
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values for hypothesis testing and model selection. In our

applications, we estimate variances using simulations from the

coalescent simulator ms [35].

Numerics
Solving the multi-population diffusion equation is substantially

more demanding than the single-population case [23]. This is

primarily because the boundary conditions are more complex, and

the numerical grid of population frequencies x must be much

coarser to be computationally tractable, because it is of P

dimensions. For example, a previous single-population study

[23] used a uniform x grid of order 104 values between 0 and 1.

Extending this grid to a three-population simulation would require

an infeasible array of size 1012. Instead, we use a nonuniform grid

and extrapolation to enable accurate computation using of order

100 values along each dimension, for a final array size of order

106.

We solve the diffusion equation on a regular nonuniform grid,

using a finite difference scheme [36] inspired by the method of

Chang and Cooper [37] (Text S1). Mutations in population i arise

at frequency 1=(2Ni)~1=(2Nref ni). The diffusion approximation

applies when Nref ??, but the minimum frequency in our

numerical simulation is that of the first grid point, denoted D. To

overcome this, we extrapolate our results to an infinitely fine grid.

We use a quadratic extrapolation on the logarithm of the AFS

entry, modeling the bias introduced by the finite initial grid point

D as

log Mcalc(D)~ log M?zaDzbD2: ð5Þ

Here Mcalc(D) is an AFS element calculated at grid size D and

M? is the extrapolated value. Given three evaluations at different

grid sizes D, we solve for M? and use this value when calculating

likelihoods. This vastly increases both the speed and accuracy of

our calculation (Supplementary Figure 3 in Text S1). While

higher-order extrapolations may improve accuracy in some cases,

they may also be more sensitive to numerical noise. Our empirical

experience is that a quadratic approximation provides a good

compromise between accuracy, efficiency, and robustness.

The computational cost for a single likelihood evaluation scales

as GPz1 where G is the number of grid points used. In our

experience, for stability and accuracy G should somewhat larger

than the largest population sample size. Although our theoretical

framework extends to an arbitrary number of populations, the

exponential scaling of computation with P limits our current

applications to three simultaneous populations. Importantly, our

likelihood calculation is deterministic and numerically smooth, so

numerical derivatives can be used in optimization. We use the the

quasi-Newton BFGS method [36], which converges in order N2
H

steps, where NH is the number of free parameters.

Our implementation of these methods, L a L i, is written in

cross-platform Python and C, making use of the NumPy [38],

Scipy [39], and Matplotlib libraries [40]. It is distributed under the

open-source BSD license. All calculations herein were performed

with L a L i version 1.1.0.

We estimated parameter uncertainties by both conventional

bootstrap (fitting data sets resampled over loci) and parametric

bootstrap (fitting simulated data sets). To generate simulated data

we used the coalescent program ms [35], a region-specific

recombination rate, and the detailed EGP sequencing strategy

(Text S1).

The confidence intervals reported in Table 1 and Table 2 derive

from a normal approximation to the bootstrap results. For the

conventional bootstrap, confidence intervals were calculated as

h�+1:96s(h�). For the parametric bootstrap, biased-corrected

intervals were calculated as ĥh{(h�{ĥh)+1:96s(h�). The maxi-

mum-likelihood value is denoted ĥh, while h� and s(h�) denote the

mean and standard deviation of the bootstrap results. Aside from

the growth rates r, all our model parameters are positive by

definition, so in those cases we used their logarithms when

calculating confidence intervals.

Pearson’s x2 goodness-of-fit test was performed using all

21322 = 9259 bins in the AFS. Results are similar if we restrict

Table 1. Out of Africa inferred parameters.

parametera Maximum likelihood
conventional bootstrap 95% confidence
interval

parametric bootstrap bias-corrected 95%
confidence interval

NA 7,300 4,400–10,100 6,300–9,200

NAF 12,300 11,500–13,900 11,100–13,100

NB 2,100 1,400–2,900 1,700–2,600

NEU0 1,000 500–1,900 500–1,500

rEU (%) 0.40 0.15–0.66 0.26–0.57

NAS0 510 310–910 320–750

rAS (%) 0.55 0.23–0.88 0.32–0.79

mAF{B (|10{5) 25 15–34 19–36

mAF{EU (|10{5) 3.0 2.0–6.0 1.6–7.6

mAF{AS (|10{5) 1.9 0.3–10.4 0.7–6.9b

mEU{AS (|10{5) 9.6 2.3–17.4b 5.7–20.2

TAF (kya) 220 100–510 90–410

TB (kya) 140 40–270 60–310

TEU{AS (kya) 21.2 17.2–26.5 17.6–23.9

aSee Figure 2B for model schematic. Growth rates r and migration rates m are per generation.
bOne low-migration outlier was removed for each of these estimations.
doi:10.1371/journal.pgen.1000695.t001

Demography from Multidimensional SNP Data

PLoS Genetics | www.plosgenetics.org 4 October 2009 | Volume 5 | Issue 10 | e1000695



our analysis to entries in which the expected value is greater than 1

or greater than 5.

Data
We used the National Institute of Environmental Health

Science’s Environmental Genome Project SNPs database [41],

which results from direct Sanger resequencing of environmental

response genes in several populations. We considered all diallelic

SNPs in 5.01 Mb of sequence from noncoding regions of 219

autosomal genes (Supplementary Table 8 in Text S1). These data

have been the subject of many publications, including

[17,23,27,42]. As an assessment of quality, additional high-

coverage short-read sequencing has recently been performed

across 8 samples in this data set. Over 26,000 sites, the SNP

concordance between this next-generation sequencing and the

original Sanger sequencing averages 99.5% (D. Nickerson,

personal communication). Given the high quality of this data set,

we do not incorporate sequencing error into our modeling. We

believe such correction will be essential in future applications to

less accurate short-read sequencing data, as inference based on the

frequency spectrum is sensitive to rare alleles.

To estimate the ancestral allele, we aligned to the panTro2

build of the chimp genome [43]. Like other methods based on the

unfolded AFS, our analysis is sensitive to errors in identifying the

ancestral allele. We statistically corrected the AFS for ancestral

misidentification [17], using a context-dependent substitution

model [44]. This procedure has been shown to perform better

than aligning to multiple species [17]. To account for missing data

and ease qualitative comparisons between populations, we

projected all spectra down to 20 samples per population [5] (Text

S1).

The human-chimp divergence in the data is 1.13%. We

assumed a divergence time of 6 My [45] and a generation time

of 25 years. This yielded an estimated neutral mutation rate of

m~2:35|10{8 per site per generation, which is comparable to

direct estimates [46]. There is some controversy as to the

appropriate generation time to assume in human population

genetic studies [47,48]. In particular, the human generation time

may differ between cultures and may have changed during our

biological and cultural evolution. The bootstrap uncertainties

reported in Table 1 and Table 2 do not include systematic

uncertainties in the human-chimp divergence or generation times.

The generation time, however, formally cancels when converting

between genetic and chronological times.

Nonsynonymous polymorphism
In our prediction of the distribution of nonsynonymous

polymorphism, the distribution of selective effects assumed was a

negative-gamma distribution with shape parameter a~0:184 and

scale b~8200 [49]. The AFS was calculated by trapezoid-rule

integration over this distribution, using 201 evaluations logarith-

mically spaced over c~½{300,{10{6�. All demographic param-

eters, including the scaled mutation rate h, were set to the

maximum-likelihood values from our Out of Africa analysis.

Results

First, we explored how various demographic forces affect the

AFS, building intuition for our subsequent applications to real

data. We then compared the performance of diffusion versus

coalescent methods for evaluating the AFS, finding that the

diffusion approach is substantially faster. We then applied our

diffusion approach to infer parameters for plausible demographic

models for the history of continental human populations. We first

considered the expansion of humans out of Africa and then the

settlement of the New World. In these applications, we inferred the

maximum composite-likelihood parameters of our models using

diffusion fits to the real data. To account for linkage in estimating

variances and critical values for hypothesis tests, we then

repeatedly fit both conventional and parametric bootstrap data

sets. Finally, in an application incorporating selection, we

predicted the distribution of nonsynonymous variation between

populations in our Out of Africa model, finding good agreement

with the available data.

Demographic effects on the AFS
In Figure 1, we provide examples of the AFS under different

demographic scenarios. Figure 1B illustrates the isolation-with-

migration model for which the spectra are calculated. The

expected spectrum at zero divergence time is shown in

Figure 1C. Figure 1D shows the expected spectrum at various

divergence times under various demographic scenarios. Qualita-

tively, correlation between population allele frequencies declines

with increasing divergence time, depopulating the diagonal of the

Table 2. Settlement of New World inferred parameters.

parametera maximum likelihood
conventional bootstrap 95%
confidence interval

parametric bootstrap bias-corrected 95%
confidence interval

NEU0 1,500 700–2,100 900–2,200

rEU (%) 0.23 0.08–0.45 0.16–0.34

NAS0 590 320–800 410–790

rAS (%) 0.37 0.16–0.60 0.24–0.51

NMX0 800 160–1,800 140–1,600

rMX (%) 0.50 0.14–1.17 0.41–0.98

mEU{AS (|10{5) 13.5 7.5–32.2 9.9–20.8

TEU{AS (kya) 26.4 18.1–43.1 21.7–30.7

TMx (kya) 21.6 16.3–26.9 18.6–24.7

fMX (%) 48 42–60 41–55

aSee Figure 3B for model schematic. Growth rates r and migration rates m are per generation. fMX is the average European admixture proportion of the Mexican-

Americans sampled.
doi:10.1371/journal.pgen.1000695.t002

Demography from Multidimensional SNP Data

PLoS Genetics | www.plosgenetics.org 5 October 2009 | Volume 5 | Issue 10 | e1000695



AFS. On the other hand, migration prolongs and sustains

correlation. Less obviously, AFS entries corresponding to shared

low-frequency alleles distinguish between increased migration and

reduced divergence time (Supplementary Figure 1 in Text S1).

Additionally, differences in genetic drift between populations with

different effective sizes result in asymmetries in the AFS. These

qualitative features of the AFS are also evident in human data.

Detailed modeling allows us to quantify our inference regarding

the type, timing, and strength of demographic events that are

consistent with the data.

Computational performance
The computer program implementing our method is named

L a L i (Diffusion Approximations for Demographic Inference). It

is open-source and freely available at http://dadi.googlecode.com.

Figure 1E compares L a L i with a coalescent approach to

evaluating the likelihood of frequency spectrum data. The

coalescent simulator ms [35] was used to generate a simulated

data set from the model in Figure 1B, with parameters n1~0:9,

n2~0:1, M~2, t~2, h~1000, scaled total recombination rate

r~1000, and 20 samples per population. Coalescent-based

estimates of the expected AFS were generated by averaging 105

ms simulations, each run with h~1 and r~0. These estimates

were scaled to h~1000 for comparison with the simulated data

set. (This procedure is substantially faster than simulating with

larger h and r.) Each estimate took approximately 7.2 seconds of

computation. The histogram in Figure 1E shows the resulting

distribution of estimated likelihoods of the data. Shown by the red

line in Figure 1E is the result from our diffusion approach (with

grid sizes G~f40,50,60g), which took approximately 2.0 seconds

of computation. The yellow line is the likelihood from 108

coalescent simulations, illustrating the high accuracy of our

diffusion approach. (Note that the coalescent approach we

consider here is not necessarily optimal. We are, however,

unaware of any such approach that is competitive in computa-

tional speed with the diffusion method.)

The computational advantage of the diffusion method is even

larger when placed in the context of parameter optimization.

Unlike the coalescent approach, there is no simulation variance, so

efficient derivative-based optimization methods can be used. As

examples, consider our applications to human data, which involve

20 samples per population. On a modern workstation, fitting a

single-population three-parameter model took roughly a minute,

while fitting a two-population six-parameter model took roughly

10 minutes. The fits of three-population models with roughly a

dozen parameters typically took a few hours to converge from a

reasonable initial parameter set. This speed allows us to use

extensive bootstrapping to estimate variances, overcoming the

limitations of composite likelihood.

Expansion out of Africa
Our analysis of human expansion out of Africa used data from

three HapMap populations: 12 Yoruba individuals from Ibadan,

Nigeria (YRI); 22 CEPH Utah residents with ancestry from

northern and western Europe (CEU); and 12 Han Chinese

individuals sampled in Beijing, China (CHB). Because approaches

based on the frequency spectrum are sensitive to miscalling of the

ancestral state, we statistically corrected for ancestral misidentifi-

cation using an approach that accounts for a myriad of mutation

and context-dependent biases (such as CpG effects) [17]. To ease

qualitative comparison among populations and account for

missing data, we projected the data down to 20 sampled

chromosomes per population [5]. Because this data set is of very

high quality (.99% concordance of sequenced SNPs with next-

generation sequencing of the same individuals to high coverage;

see Methods), we do not explicitly correct for sequencing errors

here. We were left with 17,446 segregating diallelic SNPs from

effectively 4.04 Mb of sequence. Figure 2A shows the resulting

AFS. For ease of visualization, the top row of Figure 2C shows the

two-population marginal spectra.

There are many possible three-population demographic models

one could consider for these populations. To develop a

parsimonious yet realistic model, we first considered the marginal

AFS for each population and each pair of populations. Previous

analyses found that the YRI spectrum is well-fit by a two-epoch

model with ancient population growth [5,17], and we found this as

well (Supplementary Figure 6 in Text S1). Previous analyses of the

CEU and CHB populations found that both populations went

through bottlenecks [5,11] concurrent with divergence [11]. Such

models qualitatively fit our marginal CEU-CHB spectrum

(Supplementary Figure 7 in Text S1).

Combining these demographic features yields the model

illustrated in Figure 2B. The maximum likelihood values for the

14 free parameters are reported in Table 1. Qualitatively, the

resulting model reproduces the observed spectra well, as seen in

the second and third rows of Figure 2C. (The correlation between

adjacent residuals is due in part to our projection of the data down

from a larger sample size (Supplementary Figure 8 in Text S1).)

Allowing for asymmetric gene flow yielded very little improvement

in fit, as did allowing for growth in the Eurasian ancestral

population or allowing the CEU and CHB bottleneck and

divergence times to differ (data not shown).

Our composite likelihood function assumes that polymorphic

sites are independent. Because it thus overestimates the number of

effective independent data points, confidence intervals calculated

directly from the composite likelihood function will be too small. To

control for linkage, we performed both conventional and parametric

bootstraps. Because our sequenced genes are typically well

separated, they can be treated as independent, and our conventional

bootstrap resampled from the 219 sequenced loci. For the

parametric bootstrap, simulated data sets that incorporate linkage

and the EGP’s sequencing strategy were generated with ms [35].

Table 1 reports parameter 95% confidence intervals from both

the conventional and bias-corrected parametric bootstraps. The

parametric bootstraps yield slightly smaller confidence intervals

than the conventional bootstrap, suggesting that some variability

in the data has not been accounted for by our simulations. This

variability may involve small varied selective forces on the

sequenced regions or slight relatedness between sampled individ-

uals. The parametric bootstrap results additionally show that our

method possesses very little bias in parameter inference (Supple-

mentary Figure 9 in Text S1).

As seen in Table 1, the times for growth in the African ancestral

population and divergence of the Eurasian ancestral population

(TAF and TB) have particularly wide confidence intervals, likely a

consequence of the high inferred migration rate mAF{B between

the African and Eurasian ancestral populations. TAF shows high

correlation with the ancestral population size NA, while TB shows

no strong linear correlation with any other single parameter

(Supplementary Figure 11 in Text S1). We found that 92 out of

our 100 conventional bootstrap fits yield NAS0vNEU0, supporting

the contention that the CHB population suffered a more severe

bottleneck than the CEU population [11] (Supplementary Figure

11 in Text S1).

We used several metrics to assess our model’s goodness-of-fit, in

additional to visual inspection of the residuals seen in Figure 2C.

Figure 2D compares the decay of linkage disequilibrium (LD) in

the data and in the parametric bootstrap simulations. The

Demography from Multidimensional SNP Data
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agreement seen is notable because our demographic inference

used no LD information in building and fitting the model. This

LD comparison thus serves as independent validation of both our

model and bootstrap simulations. We also asked whether the

likelihood L found in the real data fit is atypical of fits to simulated

data. Out of fits to 100 simulated data sets, 2 produced a smaller

likelihood (worse fit) than the real data fit (Figure 2E), yielding a p-

value of <0.02. One can craft examples in which a likelihood-

based goodness-of-fit test fails to exclude very poor models [50].

Thus we also applied Pearson’s x2 goodness-of-fit test, a more

robust and standard method for data that is in Poisson-distributed

bins, such as the AFS [36]. In our case, we must use our

parametric bootstraps to assess the significance of the sum-of-

squared-residuals test statistic X 2, because many entries in the

AFS are small and because they are not strictly independent.

Figure 2E shows the bootstrap-derived empirical distribution of

X 2. Two of the bootstraps yielded a larger X 2 (worse fit) than the

real data fit, giving a p-value of <0.02, identical to that from the

likelihood-based test. (The two simulations that yield a higher X 2

than the real fit are not the same two that yield a lower L,

suggesting that these tests are somewhat independent.) In some

cases specific frequency classes of SNPs, such as rare alleles, may

be of particular interest. In Supplementary Table 5 in Text S1, we

provide comparisons of the joint distribution of rare alleles seen in

the data with that from our simulations. These comparisons

indicate that our model also reproduces well this interesting region

of the frequency spectrum. Finally, in Figure 4 we compare the

model and data using larger bins of SNPs specific to particular

populations or segregating at high or low frequency. In all cases

the model agrees within the uncertainty of the bootstrapped data.

Taken together, these tests suggest that our model provides a

reasonable, though not complete, explanation of the data, lending

credence to our demographic estimates.

The inferred contemporary migration parameters (mAF{EU ,

mAF{AS and mEU{AS ) are small, raising the question as to

whether they are statistically distinguishable from zero. Figure 2F

shows that the improvement in fit to the real data upon adding

contemporary migration to the model is much larger than would

be expected if there were no such migration, implying that the

contemporary migration we infer is highly statistically significant.

Omitting ancient migration (mAF{B) reduced fit quality even

more, indicating that the data also demand substantial ancient

migration (data not shown).

Settling the New World
To study the settlement of the Americas, we used the previously

considered 22 CEU and 12 CHB individuals, plus an additional

22 individuals of Mexican descent sampled in Los Angeles (MXL).

Data were processed as in our Out of Africa analysis, yielding

13,290 segregating SNPs from effectively 4.22 Mb of sequence.

Figure 3A shows the resulting AFS, while Figure 3C shows the

marginal spectra.

A model in which the CEU and CHB diverge from an

equilibrium population did not reproduce the AFS well (Supple-

mentary Figure 13 in Text S1). Interestingly, a model allowing a

prior size change in the ancestral population better fit the AFS but

very poorly fit the observed LD decay (Supplementary Figure 13

in Text S1). Thus, reproducing the AFS does not guarantee

reproduction of LD, at least given a historically unrealistic model.

To develop a more realistic model, we endeavored to include the

effects of Eurasian divergence from and migration with the African

population. Computational limits precluded us from considering

Figure 2. Out of Africa analysis. (A) AFS for the YRI, CEU, and CHB populations. The color scale is as in (C). (B) Illustration of the model we fit, with
the 14 free parameters labeled. (C) Marginal spectra for each pair of populations. The top row is the data, and the second is the maximum-likelihood
model. The third row shows the Anscombe residuals [61] between model and data. Red or blue residuals indicate that the model predicts too many
or too few alleles in a given cell, respectively. (D) The observed decay of linkage disequilibrium (black lines) is qualitatively well-matched by our
simulated data sets (colored lines). (E) Goodness-of-fit tests based on the likelihood L and Pearson’s X 2 statistic both indicate that our model is a
reasonable, though incomplete description of the data. In both plots, the red line results from fitting the real data and the histogram from fits to
simulated data. Poorer fits lie to the right (lower L and higher X 2). (F) The improvement in likelihood from including contemporary migration in the
real data fit (red line) is much greater than expected from fits to simulated data generated without contemporary migration (histogram). This
indicates that the data contain a strong signal of contemporary migration.
doi:10.1371/journal.pgen.1000695.g002
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all 4 populations simultaneously, so we dropped the African

population from the simulation upon MXL divergence (Figure 3B).

Table 2 records the maximum-likelihood parameter values

inferred for this model. Because this fit did not include African

data, we could not reliably infer demographic parameters

involving the African population. Thus, for this point estimate

we fixed the Africa-related parameters NA, NAF , NB, mAF{B,

mAF{EU , mAF{AS , TAF and TB to their maximum-likelihood

values from Table 1. Figure 3C compares the model and data

spectra. The residuals show little correlation, with the possible

exception that the model may underestimate the number of high-

frequency segregating alleles.

Parameter confidence intervals are reported in Table 2. To

account for our uncertainty in those parameters derived from the

Out of Africa fit, for each conventional bootstrap fit we used a set

of Africa-related parameters randomly chosen from the sets

yielded by our Out of Africa conventional bootstrap. For the

parametric bootstrap, we used the maximum-likelihood point

estimates. Again, we see that the conventional bootstrap

confidence intervals are comparable to, although slightly wider

than, the parametric bootstrap intervals. Several parameters in this

analysis have direct correspondence with our Out of Africa

analysis. Of particular note, the confidence intervals for the CEU-

CHB divergence time TEU{AS overlap.

In assessing goodness of fit, Figure 3D shows that this model

does indeed reproduce the observed pattern of LD decay. Unlike

in our Out of Africa analysis, however, here the LD decay was

used to choose the form of the model (although not its parameter

values), so this is not a completely independent assessment of fit.

Of our 100 parametric bootstrap fits, 13 yielded a worse likelihood

than the real fit (Figure 3E), for a p-value of <0.13. Applying

Pearson’s x2 test, we find that 23 of 100 bootstrap fits yield a

higher (worse) X 2 than the fit to the real data, for a p-value of

<0.23, similar to that of the likelihood analysis. Comparing

distributions of rare alleles, our model typically reproduces the

observed distribution well, although it may be somewhat

overestimating the proportion of alleles that are rare or absent

in the CHB population (Supplementary Table 7 in Text S1). In

sum, our model appears to be a reasonable explanation of this

data, somewhat better than in our Out of Africa analysis.

An essential feature of the Mexican-American individuals

considered here is that they are typically admixed from Native

American and European ancestors. The <50% average European

admixture proportion we inferred for the MXL population is

consistent with previous estimates for Los Angeles Latinos [51].

We have no direct data from the Native American populations

ancestral to MXL, but our model does account for their

divergence from East Asia. A model neglecting this divergence

(by setting TMX to zero) fit the data substantially worse and yields

an unrealistically high average European admixture proportion

into MXL of 68%.

Not only are Mexican-American individuals admixed, their

admixture proportions also vary, and this subtlety is not directly

accounted for in our analysis. To assess its effect on our results, we

first roughly estimated the ancestry proportion of each individual,

using essentially a maximum-likelihood version [18] of the

algorithm used in structure [52] (Text S1). (Methods based on

‘‘admixture LD’’, which identify breakpoints between regions of

Native American and European ancestry, may be more powerful

[53]. However, the strategy used by the EGP of sequencing widely

spaced genes will resolve few of these breakpoints, limiting the

applicability of these methods.) We then performed additional

parametric bootstrap analyses, using simulations with a distribu-

tion of individual ancestry chosen to mimic that seen in the data

and, to further test the method, with an extremely wide

distribution. These simulations showed that variation in individual

ancestry does not bias our parameter inferences (Supplementary

Figure 19 in Text S1). Remarkably, it does not even change our

statistical power. This is evidenced by the fact that these bootstrap

simulations yielded confidence intervals identical to our original

Figure 3. Settlement of the New World analysis. As in Figure 2, (A) is the data, (B) is a schematic of the model we fit, (C) compares the data and
model AFS, and (D) compares LD. (E) The fit of our model to the real data is not atypical of fits to simulated data. (F) The improvement in real data fit
upon including CHB-MXL migration (red line) is very typical of the improvement in fits to simulated data without CHB-MXL migration. Thus we have
no evidence for CHB-MXL migration after divergence.
doi:10.1371/journal.pgen.1000695.g003
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simulations without variation in ancestry proportion (Supplemen-

tary Figure 19 in Text S1). Nevertheless, future studies may profit

by incorporating individual ancestry information [18], perhaps

inferred from admixture LD.

Finally, our model allowed us to assess the role recurrent

migration from Asia played in the settlement of the New World

[2]. When we added CHB-MXL migration to our model, we

found that the maximum likelihood migration rate was 1:7|10{5

per generation. As shown in Figure 3F, the resulting improvement

in likelihood is typical (p-value<0.45) of fits including CHB-MXL

migration to data simulated without it. Our data and analysis thus

yielded no evidence of recurrent migration in the settlement of the

New World. Note, however, that this simple test does not

necessarily rule out more complex scenarios, in which migration

may vary over time.

Nonsynomymous polymorphism
Polymorphisms that change protein amino acid sequence are of

medical interest because they are particularly likely to affect gene

function [54]. Correspondingly, they are often subject to natural

selection. Diffusion approaches are particularly useful for studying

such nonsynonymous polymorphism, because they easily incorpo-

rate selection. Although the diffusion approximation assumes that

sites are unlinked, nonsynonymous segregating sites are rare

enough that this is often a reasonable approximation [49].

As an illustration, we used our Out of Africa demographic

model to predict the distribution of such variation between

continental populations. To do so, we must specify a distribution

for the selective effects of nonsynonymous mutations that enter the

population. For this we adopted a negative gamma distribution

whose parameters were recently inferred [49]. The resulting

distribution of segregating variation is shown in Figure 4A. (To

ease comparison, we have assumed the same scaled mutation rate

as in the neutral case of Figure 2C.) As expected, selection sharply

reduces the amount of segregating polymorphism. Figure 4B

shows the proportion of variants within various classes. Also as

expected, selection shifts nonsynonymous variation toward lower

frequencies, raising the proportion of singletons and lowering the

proportion at frequency greater than 10%. Less obviously, it also

reduces the proportion of variation that is shared between

populations. In the neutral case, 43% of polymorphism is

predicted to be present in more than one population, while in

the selected case only 35% is. Thus genetic inferences from coding

polymorphism may be less transferable between populations than

might be expected from neutral patterns of allele sharing.

In the data considered here, there are about 400 nonsynom-

ymous polymorphisms segregating in the three populations

considered. This is too few for a detailed goodness-of-fit test of

our predicted distribution. (Although see Supplementary Figure 20

in Text S1 for a direct AFS comparison.) Nevertheless, we observe

that our predictions shown in Figure 4B all lie within the bootstrap

95% confidence intervals from the data.

Discussion

Our diffusion approximation to the joint allele frequency

spectrum is a powerful tool for population genetic inference.

Although the diffusion approximation neglects linkage between

sites, our method’s computational efficiency allows us to use

extensive bootstrap simulations to account for the effects of

linkage. (Let us reiterate that linkage does not affect the expected

allele frequency spectrum of neutral sites, so our diffusion-based

approach is estimating the same AFS that coalescent simulations

are estimating, but in a small fraction of the time). We applied our

method to human expansion out of Africa and settlement of the

New World, using public resequencing data from the Environment

Genome Project. The flexibility of the diffusion approach also

allowed us to consider the distribution of non-neutral variation,

which is difficult to address with other approaches. Although no

model can capture in detail the complete history of any

population, the models presented here help refine our under-

standing of human expansion across the globe.

Our demographic results are in most respects broadly consistent

with previous analyses of human populations. In particular, single-

population analyses have also inferred African population growth

and European and Asian bottlenecks [4–6]. Also, the migration

rates we infer are similar to those inferred by Schaffner et al. [8]

but somewhat smaller than those of Cox et al. [15]. On the other

hand, Keinan et al. [11] inferred no significant migration between

CEU and CHB. Finally, our estimate of a New World founding

effective population size in the hundreds is compatible other

inferences [14].

Perhaps our most interesting demographic results are the

inferred divergence times. Other studies [11,12] have estimated

divergence times between Europeans and East Asians similar to

the <23 kya we infer. Interestingly, archeological evidence places

humans in Europe much earlier (<40 kya) [1]. Our inferred

divergence time of <22 kya between East Asians and Mexican-

Americans is somewhat older than the oldest well-accepted New

World archeological evidence [2]. The divergence we infer may

reflect the settlement of Beringia, rather than the expansion into

the New World proper [14]. Finally, the divergence time of

<140 kya we infer between African and Eurasian populations is

consistent with archeological evidence for modern humans in the

Figure 4. Distribution of nonsynonymous polymorphism. We simulated our maximum-likelihood Out of Africa demographic model with a
distribution of selective effects previously inferred for nonsynonymous polymorphism [49]. (A) To enable direct comparison with the neutral AFS
(Figure 2C), the scaled mutation rate h was set identically, as is the color scale. As expected, selection dramatically reduces the amount of segregating
polymorphism. (B) Shown are the proportions of variation found in various frequency classes. As expected, nonsynonymous variants typically have
lower frequency. They also less likely to be shared between populations. Data error bars indicate 95% bootstrap confidence intervals.
doi:10.1371/journal.pgen.1000695.g004
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Middle East <100 kya [1], but it is much older than other

inferences of <50 kya divergence from mitochondrial DNA [1].

This discrepancy may be explained by our inclusion of migration

in the model. Migration preserves correlation between population

allele frequencies, so an observed correlation across the genome

can be explained by either recent divergence without migration or

ancient divergence with migration. In fact, the African-Eurasian

migration rate we infer of <2561025 per generation is

comparable to the <10061025 inferred from census records

between modern continental Europe and Britain [55].

One difficulty in interpreting our divergence times is that the

sampled populations may not best represent those in which

historically important divergences occurred. For example, the

Yoruba are a West African population, so the divergence time we

infer between Yoruba and Eurasian ancestral populations may

correspond to divergence within Africa itself. Future studies of

more populations [56–58] will help alleviate this difficulty.

Another difficulty is that the genic loci we study here may not be

ideal for demographic inference. Although we consider only

noncoding sequence in fitting our historical model, selection on

regulatory or linked coding sites may skew the AFS [59]. In fact,

the EGP data have been shown to differ in some ways (e.g.

Tajima’s D) from intergenic regions [58]. Nevertheless, we use the

EGP data because it is currently the largest public resource of

noncoding human genetic variation, and we fit a neutral model

because disentangling the small expected effects of selection on

these sites from demographic effects will require additional data.

The rapidly declining cost of sequencing will give future studies

access to many more loci that are likely to be less influenced by

selection. Importantly, the computational burden of our method is

independent of the amount of sequence used to construct the AFS.

Additional loci will also increase power to discriminate between

models and incorporate more detail.

The AFS encodes substantial demographic information. It is has

been shown, however, that an isolated population’s AFS does not

uniquely and unambiguously identify its demographic history [60];

we expect a similar result to hold for multiple interacting

populations. Moreover, the AFS does not capture all the

information in the data. As illustrated by the alternative New

World models we considered, patterns of linkage disequilibrium

encode additional information. Future studies may profit from

coupling our efficient AFS simulation with methods that address

other aspects of the data.

We have developed a powerful diffusion-based method for

demographic inference from the joint allele frequency spectrum.

We applied our method to human expansion out of African and

the settlement of the New World, developing models of human

history that refine our knowledge and raise intriguing questions.

We also applied our method to predict the distribution of

nonsynonymous variation across populations, and this prediction

is consistent with the available data. Our methods and the models

inferred from it offer a foundation for studying the history and

evolution of both our own species and others.

Supporting Information

Text S1 Complete supplementary data.

Found at: doi:10.1371/journal.pgen.1000695.s001 (1.80 MB PDF)
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