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To study the spatial interactions among cancer and non-cancer cells', we here
examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by
Visium spatial transcriptomics (ST). This was combined with 48 matched single-
nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX)
samples. To describe tumour structures and habitats, we defined ‘tumour microregions’
as spatially distinct cancer cell clusters separated by stromal components. They
varied in size and density among cancer types, with the largest microregions observed
inmetastatic samples. We further grouped microregions with shared genetic alterations
into ‘spatial subclones’. Thirty five tumour sections exhibited subclonal structures.
Spatial subclones with distinct copy number variations and mutations displayed
differential oncogenic activities. We identified increased metabolic activity at the
centre and increased antigen presentation along the leading edges of microregions.
We also observed variable T cell infiltrations within microregions and macrophages
predominantly residing at tumour boundaries. We reconstructed 3D tumour structures
by co-registering 48 serial ST sections from 16 samples, which provided insights into
the spatial organization and heterogeneity of tumours. Additionally, using an
unsupervised deep-learning algorithm and integrating ST and CODEX data,

we identified both immune hot and cold neighbourhoods and enhanced immune
exhaustion markers surrounding the 3D subclones. These findings contribute to

the understanding of spatial tumour evolution through interactions with the local
microenvironmentin 2D and 3D space, providing valuable insights into tumour biology.

Treatment-resistant subclones often arise in cancer??, and the tumour
microenvironment (TME) can further drive resistance through multi-
ple mechanisms**. Neither bulk® nor single-cell technologies” preserve
the spatial information necessary to understand these dynamics,
but ST® instruments, such as Visium®, can resolve tumour substruc-
tures. ST datahave beenintegrated with other datatypesto examine
fine-scale clonal structure and to identify cell-cell interactions (CCls)
with the microenvironment’®. CODEX multipleximaging® can further
complement ST methods by spatially localizing proteins.

Clonal evolution remains one of the most intractable problems of
cancer®. That is, the spatial and temporal adaptation of a tumour to
environmental and treatment stimuli through mutationaccumulation
and fitness-based selection'>'. Previous studies have concentrated

on inferring evolutionary history through mutations, but newer
technologies, including those mentioned above, have enabled sub-
stantially deeper investigations of spatial clonal dynamics™". The
prospect of applying several such technologies to alarge, well-powered,
cross-cancer cohort to further investigate these phenomena motivates
the current work.

Here we report the comprehensive characterization of 131 tumour
STsections across 6 different cancers: breast cancer (BRCA), colorectal
carcinoma (CRC), pancreatic ductal adenocarcinoma (PDAC), renal cell
carcinoma (RCC), uterine corpus endometrial carcinoma (UCEC) and
cholangiocarcinoma (CHOL). We use an approach that combines ST,
CODEX and bulk sequencing data and single-cell sequencing data of
matching samples to profile spatially distinct tumour regions separated

A list of affiliations appears at the end of the paper.
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Fig.1|Definition of tumour spatial microregions. a, Sample, datatypeand
workflow overview of the spatial subclone cohort of 131 Visium ST sections from
6 different cancertypeswith22and 48 respective matching CODEX and snRNA
datasets. Dataencompass 54 BRCA, 30 CRC, 23 PDAC,12RCC,5UCECand

7 CHOL samples. Bottom, workflow for generating spatial tumour microregions,
inferring spatial tumour subclones and conducting downstream analyses.
Based onthedistribution of tumour regions, we separated samplesinto spatially
distinct and spatially diffuse cohorts. Analyses included tumour subclone
evolution analysis, transcriptional similarity and layer-based TME interactions,
tumour growth pattern construction, and multisection 3D neighbourhood
reconstructions using custom code (Methods). b, Circular cohort overview
plotatthetissue blocklevel. The outcrop height of the outermost ringindicates
thenumber of sections per tissue block. The top rightinsert shows alegend,

by stromal components, which we call ‘tumour microregions’. We dem-
onstrate that there are distinct genetic clones within these microregions
with specific copy number variations (CNVs) and with differential activ-
ity within oncogenic pathways, particularly the MYC pathway. Notably,
we show thatimmune-tumour and stromal-tumour interactions vary
among these tumour regions. Additionally, our study highlights distinct
characteristics between primary and metastatic tumours, including
differences in tumour growth patterns and transcriptional profiles.
To further support our findings showing thatimmune populationsin
the TME surround specific spatial tumour regions, we use CODEX and
amultimodal 3D reconstruction tool trained on adjacent ST sections.
The results confirm the connectivity of subclones and microregions
indifferent sections within 3D space. These reconstructions highlight

T T T T T T
PDAC CRC BRCA UCEC CHOL RCC
Cancer type

withnumbersinbubblesindicating counts of tissue blocks withagiven number
of serial sections. Successiverings indicate the cancer type annotated with
section (tissue block) counts, tumour type, assay type and spatial cohort
designation. ¢, Microregion distributionin the spatially distinct cohortat the
section level coloured by cancer type (left), microregion size group (middle)
and primary versus metastasis (right). Each circle indicates one microregion.
Thesize of eachcirclerepresents the size of the microregion.d, Tumour versus
stromal-immune spot fractions across cancer types for the entire cohortat the
sectionlevel. Each pointrepresents asample, coloured by type: primary (n=98
sections from 60 cases) or metastatic (n =33 sections from16 cases). The box
plot’s centre line represents the median, with the lower and upper hinges
indicating the first and third quartiles. Whiskers extend to the highest and
lowest values within1.5times theinterquartile range (IQR) from the hinges.

tumour-immune interphase niches and interactions. Overall, this
spatial omics approach provides deeper insights into clonal evolution
and the microregional distinctions across six different solid tumour
types, paving the way to continued advances in understanding the
mechanisms of therapeutic resistance in cancer.

Spatial microregions across cancers

We profiled 131 tumour sections with ST data from 98 blocks spanning
6 cancer types as part of the NCI's Human Tumor Atlas Network: 54
BRCA, 30 CRC,23PDAC,12RCC,5UCECand 7 CHOL (Fig. 1a, Extended
DataFig.1and Supplementary Table 1) from 78 cases (22,17,16,12, 5
and 6 cases, respectively). Three RCC samples were from the Clinical

Nature | Vol 634 | 31October 2024 | 1179



Article

Proteomics Tumour Analysis Consortium. Using histological haematox-
ylinand eosin (H&E) staining and transcriptional profiles, we identified
tumour microregions as spatially distinct cancer cell clusters separated
by stromal areas (Methods) and designated Visium spots as malignant
or non-malignant. We used the Morph toolset to subsequently refine
tumour boundaries, determine distances of spots from boundaries and
construct layers of spots, indexing their depths to tumour boundaries
(Methods). We selected 50 sections with multiple tumour regions asthe
‘spatially distinct cohort’ (Extended Data Fig. 2) and 82 samples with
diffuse tumour regions as the ‘spatially diffuse cohort’ (Extended Data
Fig.3). We also produced serial sections of 15 tumour tissue blocks,
which resulted in 48 sections suitable for 3D tumour reconstruction
(Fig.1b and Extended Data Fig. 4a).

Based on the estimated area per tumour microregion (Methods),
we categorized microregion sizes as small (<25 spots or 0.22 mm?),
medium (25-250 spots or 0.22-2.17 mm?) or large (>250 spots or
2.17 mm?) (Fig. 1d). CRC had larger microregions (average of 2.9 layers)
than BRCA (average of 2.11ayers; false discovery rate (FDR) = 0.00035,
Welch’s t-test) and PDAC (average of 2.37 layers; FDR = 0.032, Welch'’s
t-test). Conversely, BRCA and PDAC microregion depths were statisti-
cally indistinguishable (P= 0.18, Welch’s ¢-test). RCC had the highest
tumour fraction, whereas PDAC had the lowest (Fig. 1c), whichis prob-
ably due to the higher stromal content and lower tumour cell density
in PDAC', which in turn leads to smaller microregion sizes. Primary
tumours generally had more small microregions (66.3%) compared
to metastases (40.2%), which had more medium-sized microregions
(43.2%) (Extended Data Fig.4b,c). Larger microregions were predomi-
nantly found in metastases (16.3% compared with 3.2% in primary),
which also had deeper microregions than primary tumours (3.4 com-
pared with 1.9 layers; Welch'’s t-test FDR <107*). This difference held
for BRCA-only sections (FDR <10™), for which we had data for both
metastases (5 sections, 44 microregions, mean depth of 4.2) and pri-
mary tumours (8 sections, 222 microregions, mean depth of 1.7). These
results suggest that there is divergent growth between primary and
metastatic tumours and an organ-specific TME effect on microregion
growth and organization. Examples include samples HT268B1-Th1H3
(BRCA liver metastasis) and HT260C1-Th1K1U1(CRC liver metastasis),
which hadlarge regions occupying 3-4 mm?(400-500 spots), whereas
sample HT270P1-H2U1 (PDAC) had a smaller (mean of 0.2 mm?or 26
spots) but greater number of microregions (n = 24) (Extended Data
Fig. 4d-h). In the spatially distinct cohort, samples with the highest
microregion counts were from BRCA blocks rich in ductal carcinoma
insitu (DCIS) (HT397B1-S1H2, HT339B1-S1H3 and HT206B1-S1; Extended
Data Fig. 4d). This distribution could reflect the tendency of ductal
cancer cells to grow along the secretion duct in both organs, which
may explain our observation of numerous small regions.

Focal clonal evolution in microregions

We discerned genome-wide CNVs using CalicoST and InferCNV (Sup-
plementary Fig.1and Methods), selecting confident events in each
microregion by filtering those in matching whole-exome sequencing
(WES) data (Supplementary Table 2). We then clustered microregions
into spatial subclones based on CNV similarity (Fig. 2a and Methods).
We detected spatial CNVs in 125 out of the 131 sections, out of which
we observed 1-3 subclones per section (about 6.5 x 6.5 mm, 72% with
asingle clone, 20% with 2 subclones and 8% with 3 subclones) (Fig. 2b).
Asingle clone canbe composed of subclones that our workflow cannot
detect, such assubclonesintermixed in the same microregion and sub-
clones differentiated by genetic alterations not covered by the Visium
transcriptome. Within these limitations, we identified multiple spatial
subclones in sections from 4 cancer types: BRCA (17 sections), PDAC
(10 sections), CRC (6 sections) and RCC (2 sections). CNV profiles of
spatial subclones were compared with matching WES dataand showed
high genome-wide similarity (Methods and Extended Data Fig. 5a).

1180 | Nature | Vol 634 | 31 October 2024

We also mapped somatic mutations onto optimal cutting tempera-
ture (OCT)-embedded ST sections, for which each section showed
1-98 mutations mapped specifically in tumour regions (Fig. 2c and
Extended Data Fig. 5b).

Sample HT260C1 (CRC liver metastasis) contained 12 tumour micro-
regions, which mapped to 2 spatial subclones (Fig. 2d). Both clonal
events (chromosome 13 amplification and chromosome 8p deletion),
aswellas several subclonal events (amplificationsin chromosomes 6p,
12pand20qin clone c2, and amplification of chromosome 12qin clone
cl), wereidentified and confirmed with matching single-nucleus RNA
sequencing (snRNA-seq) dataand WES-based CNV inference (Fig. 2e,f).
Although histology indicated afibrotic separation between the two
subclones, multiple shared clonal CNVs suggested a common origin
(Fig.2g). Somatic variants from transcripts provided further supporting
evidence for tumour clonality. In addition, 17 WES-based somatic muta-
tions were mapped to ST (Extended Data Fig. 5¢). Several mutations
showed differential variant allele frequency (VAF) in tumour regions
compared with normal regions (Extended DataFig. 5c, left) and differ-
ential VAFs between the two subclones (Extended Data Fig. 5¢, right).
Both subclones showed LDHB expression, and a VAF for mutation LDHB
¢.921G>A was significantly higher in subclone c2 than in c1 (Fig. 2h,i;
P=6.58 x107%, two-sided proportiontest). Using Xenium data, we ana-
lysed both LDHB wild-type (WT) and ¢.921G>A alleles on a matching
tumour section, the WT alleleinboth subclones and the mutant allele
in subclone c2 (Fig. 2j). Subclone c2 diverged from c1, with a gain of
unique genetic alterations in both CNV and mutations. Similarly, a
BRCA liver metastasis sample, HT268B1, showed two distinct spatial
subclones that were supported by matching snRNA-seq data, with
chromosomal-arm-level CNV differences (Extended Data Fig. 5d-g) and
subclonal mutations (Extended Data Fig. 5h). For example, EEFIAI was
expressed in both spatial clones, whereas mutation EEF1IA11324G>C
was specifically observed in subclone c2 (proportion test FDR < 0.05;
Extended Data Fig. 5i,j).

Primary PDAC samples, despite their smaller microregions, also
contained multiple spatial subclones. Sample HT270P1 showed three
subclones across two sections from two tumour blocks with OCT and
formalin-fixed paraffin-embedded (FFPE) preservation, respectively
(Supplementary Fig. 2a). Most primary BRCA cases showed that all
tumour microregions belonged to a single genetic clone, such as
HT206B1across five serial sections (Supplementary Fig. 1b). In seven
out of nine cases, asingle subclone encompassed both DCIS and inva-
sive ductal carcinoma (IDC) morphology, which indicated that the
transition between them happens without large copy number altera-
tions (Supplementary Fig.2b). However, primary BRCA sample HT397B1
showed three spatial subclones across four sections from two tumour
blocks (Supplementary Fig. 2a). Two of the clones showed both DCIS
and IDC morphologies, whereas clone 3 only showed IDC morphology,
which indicated a parallel transition from DCIS to IDC between the
spatial subclones (Supplementary Fig. 2b).

Single-nucleotide polymorphisms reveal copy-number-neutralloss
of heterozygosity thatismissed by read-depthinference alone. ACRC
liver metastasis sample (HT112C1-Thl) with strong B allele frequency
deviation in copy-number-neutral chromosome 21 indicated a sub-
clonal genetic alteration in clone A (Supplementary Fig. 2a). These
observations collectively suggest that spatial subclones within a
tumour section probably stem from a common ancestor.

Genetic changes drive tumour disparities

To mitigate the influence of infiltrating immune and stromal cells,
we first excluded organ-specific, non-malignant cell-type marker
genes using snRNA-seq data (Methods). Subsequently, we used an
entropy-based method, ROGUE, to analyse transcriptional heteroge-
neity among tumour microregions (Methods). Our analysis revealed
that PDAC had the highest heterogeneity (0.1-0.6), whereas BRCA,
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CRC, RCC and UCEC had moderate levels (0.05-0.45), and CHOL had
thelowest levels (<0.2) (Extended Data Fig. 6a). To further investigate
the effect of genetic alterations and microenvironmental adaptations
ontranscriptional profiles, we assessed transcriptional similarity using
pairwise Pearson correlation among tumour microregions (Methods),
comparing within and between different genetic clones. We observed
greater similarity within subclones (Extended Data Fig. 6b, green)
compared with between different subclones (Extended Data Fig. 6b,
orange) across all samples from BRCA, CRC, PDAC and RCC (Extended
Data Fig. 6b and Methods). This pattern remained consistent in both
primary and metastatic samplesin BRCA and CRC, which underscores
the central role of genetic composition in shaping transcriptional simi-
larities across microregions.

To understand the activation of oncogenic pathways across micro-
regions, we performed gene set enrichment analysis (GSEA) with dif-
ferentially expressed genes (DEGs) between tumour microregions
and stromaregions (Methods). Our analysis identified common path-
ways such as MYC and E2F shared across microregions, but distinct

shared and unique CNV events between the two spatial subclones. The B allele
frequencies (BAFs) in each spatial subclone from the same genomic window are
showninthemiddletracksand corresponding snRNA-inferred and WES-inferred
CNV statuses using GATK4 (GA) and Hatchet2 (Hat) are shownin the bottom
tracks. g, The predicted phylogenetic relationship of cland c2. h, The VAF for
mutation LDHB ¢.921G>A is significantly higherinc2 thancl (P=6.58 107,
two-sided proportion test). i, Subclonal mutation LDHB c.921G>A is uniquely
detectedinclone2inspatial transcriptomics, whereas LDHB expressionisin
bothspatial subclones. j, Xenium in situ allele-specific probe density shows the
WTallele of LDHBinboth subclones and the mutant allele uniquely in the right
subclone (c2).Scale bars, 2 mm. amp, amplification; del, deletion; LOH, loss of
heterozygosity; NA, not applicable; UMAP, uniform manifold approximation
and projection.

pathways, such as the unfolded protein response, that was specific to
some microregions in sample HT268B1 (BRCA metastasis) (Extended
DataFig.7a-f). Here genetic alterations controlled the transcriptional
profile, whereas in other samples, subtle variations arose from the
local microenvironment or undetected genetic events. For example,
sample HT260C1 showed two subclones with distinct copy number
profiles (Fig. 2d), whereas microregions within clone 1 had varying
expression similarities, despite having similar CNVs (Extended Data
Fig. 6¢, indicated by the dotted boxes).

When applying GSEA to identify subclone-specific pathways, we
found varied microregional expression levels within the G2M check-
point pathway in clone 1 (Extended Data Figs. 6d and 7g,h, indicated
by the dotted boxes) in sample HT260C1. This pattern was mirroredin
MYC for both metastasis samples HT260C1and HT268B1, with distinct
sets of MYC downstream genes among tumour subclones (Extended
DataFig.7e,f,i,jand Supplementary Fig. 3). This result underscores the
complexity of this pathway, whichis commonly dysregulated in cancer
and influences many oncogenic processes". Clone 2 of HT260C1 had
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an enrichment of translation initiation complex (elF family) and G1S
progression (CDK4), whereas clone 1had DNA replication genes (MCM
family) (Extended Data Fig. 7i).

Enrichment tests using Enrichr with the drug perturbation data-
set LINCS L1000 (Methods) predicted varying treatment responses
of subclones (Supplementary Fig. 4). For instance, all subclones in
HT397B1-S1H3 and HT112C1-Thlshould respond to the mTOR inhibitor
torin-2, butonly clone 1, not clone 2,in HT268B1-Th1K3 responded. This
variation underscores the importance of profiling spatial subclones.

Cellular pathways at the tumour core and edge

We further investigated whether different transcriptional programs
existintumour microregion centres (cores) compared to their leading
edges (interfaces between the tumour and the TME-stroma). To that
end, we used Morph to measure the distance of each tumour spot to
itsnearest tumour-TMEborder (Methods and Extended Data Fig. 8a).
Therelationship between the total layer depth of amicroregion andits
size (total area measured as the number of spots occupied) describes
the general shape of the region (Extended Data Fig. 8b). The dashed
reference line indicates the depth-size relationship of perfectly cir-
cular regions. For all five cancer types in the spatially distinct cohort
(n=50),smaller regions tended to exhibit near-circular shapes. But as
thelayer depthincreased, regions tended to deviate fromtheir circular
shape, and an expanded interface between tumour and non-tumour
cellsarose.

Spatial gene expression profiles can also be characterized in terms
of layer depth. For each layer-assigned spot, we independently per-
formed a linear regression between gene expression and spot depth
for each gene. Tumour purity estimates using the methods RCTD™ or
ESTIMATE" were included as a covariate to adjust for possible purity
decreases towards section edges (Methods). A positive correlation
with depth indicates increased gene expression towards the tumour
core and vice versa. In the CRC metastasis sample HT260Cl, the top
centre-enriched genes (CKB and VEGFA) and periphery-enriched genes
(HSP90ABI and LDHB) are shown with the regression line and spatial
expression patternin Extended DataFig. 6e,f. Also shown are respective
top centre-enriched (VDRG1,S100A2 and CA9) and periphery-enriched
genes (TUBA1B, NDUFA4 and TOMM40) for HT206Clin Extended Data
Fig.8c-e. Theseresults were supported by snRNA-seq datafrom match-
ing tumour samples, which demonstrates that the top shared genes are
mainly expressed by malignant cells, with small contributions from
immune and stroma cells (Supplementary Fig. 5a-d).

We subsequently identified genes recurrently enriched in tumour
centres and in peripheries across cases (Extended Data Fig. 6g). Top
shared centre-enriched genes were involved in ribosome assembly
(RPL and RPS family genes such as RPS4X, RPL22 and RPL4), along with
genes such as TXN?, CSorf46 (ref. 21) and the long non-coding RNA
SNHG29 (ref.22), which are linked to tumour growth in various cancer
types. By contrast, the tumour periphery was enriched in the following
genes: a different set of ribosomal RPL and RPS genes (RPL35, RPLP1
and RPS27); ENOI, a multifunctional oncoprotein involved in glyco-
lysis, invasion and immunosuppression®; TMSBI0, which promotes
proliferation and invasion in BRCA?*; and ISG1S, which induces the
formation of M2 macrophages®. These differential biological processes
indicate that malignant cellsin the core are actively undergoing protein
translation, whereas those at the edges are involved in tumour migra-
tion and immune modulation, interfacing with immune and stromal
components.

Clonal-specific tumour-TME interactions

To investigate TME composition in tumour boundary regions, we
examined the differential infiltration of non-tumour cells between
tumour spatial subclones, the location of such infiltration and genes
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and CCls enriched in boundary regions (Fig. 3a). We used matching
snRNA-seq data as a reference for spot-level cell-type deconvolution
and performed pairwise differential infiltration analysis between all
spatial subclones of the same sample. Top differential cell typesinterms
ofinfiltrationincluded macrophagesin BRCA, hepatocytesin CRC and
fibroblasts in PDAC (Extended Data Fig. 9a). A primary BRCA sample,
HT397B1, with three spatial subclones showed differential infiltration
inboth T cellsand macrophages, with subclone c3 showing the largest
fraction of both (Fig. 3b). CODEX data validated the increased level
of T cell markers (CD3 and CD8) and the non-T cell immune marker
(HLA-DR) staining in subclone c3.

We used the above-described layer assignments to ascertain whether
infiltration exhibits spatial patterns, and we defined six ordered regions
from the tumour core to the TME: T3+, T2, T1, E1, E2 and E3+. These
showed the expected decreasing trend for tumour cells (Extended
DataFig.9b), but various patterns for non-tumour cells. Macrophages
clustered outside the tumourin Eland E2, whereas T cells showed infil-
trationbothimmediately outside (E1and E2) and inside the tumour (T1
and T2) (Fig. 3c). Bothmacrophage and T cell fractions were decreased
in the distant TME (layer E3+) where fibroblasts dominate, an obser-
vation supported by CODEX data (Extended Data Fig. 9c). With an
inter-layer distance of only 100 pm, our observation indicates that
there is strong spatial recruitment of immune cells by tumours at the
microscopic level.

We also performed differential expression analysis between the
boundary regions T1and El1and with all other spots (Fig. 3d). Top bound-
ary genes shared across samples and cancer types included genes of
extracellular matrix proteins (POSTN and FNI) and interferon-induced
macrophage activation proteins (/FI30) (Extended Data Fig. 9d).
Matching snRNA-seq data showed that the top boundary genes had
significantly higher expression (adjusted P < 0.05, Bonferroni cor-
rection) across the cohort in non-tumour cell types (POSTN, FN1 and
TIMPI infibroblasts and /FI30 in macrophages), which suggested that
there are interactions between tumour and non-tumour cells at the
boundary (Fig. 3d). To quantify spatial CCls, we ran COMMOT on 18
caseswith 39 sections and then discerned differential receiver-sender
signals between spots within and outside tumour boundary regions.
The top shared CCls in boundary regions were extracellular matrix
(ECM) receptors (collagen, laminin, FN1 and THBS), secreted signal-
ling (SEMA3, SEMA4, ncWNT and MK) and cell-cell adhesion (EPHB
and NOTCH) (Fig. 3e). Asan example, the MK pathway was observedin
CRC, PDAC and BRCA samples, for which the signal goes from malignant
cellregions to the TME interface (Extended Data Fig. 9e). The pathway
includedinteractions between the ligand MDK and the receptors NCL
and SDC4 (ref. 26). Malignant cells secrete MDK to create an immuno-
suppressive and angiogenic environment?, which in turn promotes
tumour growth. We also found ECM pathways for which the signal goes
from the TME towards malignant cell regions. One of the top interac-
tions, the THBS pathway, describes ECM components THBSI-THBS4
(which encodes thrombospondin) binding to cell surface receptors
CD36 and CD47, which in turn modulate cell adhesion, proliferation
and angiogenesis®*>°. Enrichment of tumour-associated immune cells,
genes and CCls within 200-pm-wide boundary regionsillustrates com-
munication between malignant cells and their environment that would
beinvisible to spatially agnostic technologies.

3D tumour structure and TME interactions

To investigate tumour growth patterns and TME interactions in 3D,
we serially sectioned tumours from BRCA, CRC, PDAC and CHOL, con-
ducting ST on 11 samples and CODEX on 2 samples. Using PASTE2,
we co-registered 48 sections from the 11 ST specimens to construct
tumour volumes (Fig. 4a and Methods). Our analysis revealed varia-
tions in tumour volume numbers among samples, with BRCA show-
ing the highest volume count (Fig. 4b), particularly in samples with
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Fig.3|Immune and stromalinfiltrationinside spatial tumour microregions.
a, Analysis design focusing on the differential infiltration level between spatial
subclones and the spatial location of such infiltration with respect to the
tumour-TMEborder.b, Left, aprimary BRCA sample HT397B1shows higher
macrophageandT celllevelsin clone c3.Right, T cellmarkers (CD3 and CD8)
and the non-T cellimmune marker (HLA-DR) show higher intensity in the same
regions from CODEX data. Scale bar,1 mm. ¢, Fraction of macrophages, T cells
and fibroblasts averaged across microregionsinthe following layers: T3 and
above (T3+),T2,TL,E1,E2,and E3and above (E3+),in 14 cases. d, Genes differentially
enrichedinthe tumourboundary regions. Colour represents the log,(fold change)

prominent miniature duct-like tumour growth patterns (HT206B1-S1,
1A-1E; HT339B1-S1H3, 3D and 3E; and HT397B1-S1H3, 4B-4D; Extended
Data Fig. 2). By contrast, CHOL, CRC, PDAC and other BRCA sections
exhibited moreinvasive tumours that formed larger, continuous struc-
tures that resulted in fewer but larger volumes.

We then analysed these tumour volumes for structural complexity
using two topological metrics: (1) connectivity (degree), which meas-
ures the number of connections to adjacent microregions, and (2) the
number of loops per volume, which indicates instances in which adja-
cent sections split and merge to form doughnut-shaped structures.
The maximum connectivity score serves as an indicator of tumour
structural complexity. Of the 15 tumour volumes analysed, 8 (6 BRCA,
1CHOL and 1 CRC) had a maximum connectivity score exceeding 5,
which reflected the frequent formation of complex branching struc-
turesinthesetumours (Fig.4c). The highest connectivity score of 11 was
observed in CHOL sample HT226C1-Th1, which resulted from a large
merged volumein Ul that fragmented into smaller microregionsin the
adjacent section U2 (Extended Data Fig. 10a,b). Additionally, 5 out of
81 volumes across 15 tumour pieces contained complex loop struc-
tures, with the highest loop count of 12 found in volume 14 of sample

of gene expression betweenboundary regions and non-boundary regions,
with non-differential comparisons in white (n = 25 spatially distinct cases).
Each columnrepresents atumour block (multisectionaveraged) and tumour
blocks from the same patient were grouped together (no gaps between columns).
snRNA-seq-based cell-type specific expressionis shown on the left, and the
number of tumour blocks with significant enrichmentis shown on the right
(adjusted P<0.05,Bonferronicorrection). e, Boundary-enriched CCls shared
across samples (n =25 spatially distinct cases) based onreceiver (r)-sender (s)
signals.

HT206B1 (Extended Data Fig. 10c). These loops probably result from
the interwoven DCIS-like growth pattern in volume 14, as confirmed
by its histology (Extended Data Fig.10d).

We selected a BRCA liver metastasis sample, HT268B1-Th1H3, for
detailed 3D volume reconstruction and structural analysis. This sample
contained four tumour volumes (volume 1to volume 4) (Fig. 4d,e).
Volumes 1,3 and 4 formed separate subvolumes within clone 2, which
probably connected beyond the approximately 300 pm tissue section
examined. Volume 2, the largest and most complex volume, belonged
solely toclone 1, with amaximum connectivity of 8 and 6 loops, which
indicated substantial branching and merging (Fig. 4d). Histological
images of HT268B1 (Extended Data Fig. 2a-e) confirmed visible split-
ting and merging, thereby demonstrating that even tumours without
clear ductal or lobular structures can exhibit diverse growth patterns,
invasive behaviour and complex branching.

We next used an unsupervised deep-learning approach to identify
3D cellular neighbourhoods in serial-sectioned ST datasets (Meth-
ods). After registration of serial sections, a vision transformer (ViT)
autoencoder was trained on ST, CODEX and H&E sections. Annotated
image patches were then used to construct 3D cellular neighbourhoods,
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Fig.4|3D tumour volumereconstructionreveals diverse tumour growth
patterns. a, Tumour growth pattern diagram with two distinct tumour 3D
volumes from four ST sections. The number of tumour volumes, connectivity,
maximum connectivity and the number of loops are annotated toillustrate
the concept ofthese geometric quantities. b, Number of tumour volumes
(components) for each sample piece. ¢, Distribution of maximum connectivity
of sample pieces. Each dot represents one tumour volume (n =15sections from
14 cases). Thebox plot’s centre line represents the median, with the lower and

which enabled the discovery of these neighbourhoods across multi-
ple sections (Extended Data Fig. 10e and Supplementary Fig. 7b). We
applied this approach to a primary BRCA sample HT397B1 (six H&E,
four CODEX and two Visium ST sections) and a BRCA liver metastasis
sample HT268B1 (four Visium ST sections) (Extended Data Fig.10fand
Supplementary Fig. 7c,d).

In sample HT268B1, neighbourhoods with at least 60% overlap
with previously defined spatial subclones (Fig. 2d) were classified as
tumour-enriched, with the remainder as TME neighbourhoods (Meth-
ods). Two of these neighbourhoods (4 and 6) were in close contact
with the periphery of both subclones (Fig. 5a,b). Notably, when viewed
in 3D space, the neighbourhoods largely contiguously surround the
subclones, except for the upper portion of the block where the neigh-
bourhoods were more broken. We then quantified these two neighbour-
hoodsbased onshared and unique DEGs (Fig. 5c),and we foundimmune
responses (IFI27 and HLA-DRA) and stromal (BST2 and SPARC) genes
in both. Neighbourhood 4 was enriched in HMGA1, which regulates
chromatin structure and has a role in malignant cell progression®,
and TYMP, a factor involved in angiogenesis®?*. Neighbourhood 6
was enriched for genes important forimmunoregulatory (CCL19) and
immunoglobulin receptor binding (/GLC2, IGHGI and IGKC), which
are prognostic in BRCA®?, In three dimensions, we continued to see
clear association of these DEGs, in particular TYMPI and IGLC2, with
clones 1and 2, respectively, throughout the tissue volume (Fig. 5d and
Extended Data Fig.10g).

The primary BRCA sample HT397B1 had two main regions of TME-
tumour morphology: animmune-cold area with both DCIS and IDC
morphologies containing clones 1and 2, and animmune-hot IDCregion
thatharboured clone 3 (Figs. 5e,fand 3b and Supplementary Fig. 2b). We
stratified TME neighbourhoods by their contact fraction with clone 3,
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per tumour volume

upper hinges indicating the first and third quartiles. Whiskers extend to the
highest and lowest values within1.5 times the IQR from the hinges. d, Sankey
plotshowing tumour microregion connections across sections, with 3D tumour
volumes for tissue block HT268B1-Th1H3 (BRCA metastasis). The maximum
connectivity of volume 2 (Vol. 2) is highlighted in red. Numbers next to each
microregionindicateits connectivity. e, Microregion and 3D tumour volume
spatial distributions on the ST sections for HT268B1-Th1H3.

which highlighted the top and bottom quartiles (Fig. Se,g). According
to CODEX-based cell-type annotations, neighbourhoods associated
with clone 3 had ahigher fraction of T cellsand adecreased fraction of
fibroblast cells compared with those near clones 1and 2, aresult that
aligned with previous findings (Figs. 5g and 3b). To further verify the
immune-stromal status of these neighbourhoods, we selected two
regions of interest (ROIs): ROI 1, located in the immune-cold clone 2,
andROI 2, located in theimmune-hot clone 3.ROI 1 had low fractions of
macrophages, T cells and B cells, whereas ROl 2 had much higher levels
of these cell types (Fig. 5f). These trends were also evident in CODEX
sections, for whichimmune markers were more intense in ROl 2. Addi-
tionally, ROl 1showed anincreased fibroblast cell fraction, with smooth
muscleactin (SMA) highly expressed in the myoepithelium surrounding
the tumour regions, ahallmark of DCIS. Our findings indicate that these
cell-type associations and DCIS and IDC-like subclones are consistent
in three dimensions, based on calculated cell-type densities around
the 3D tumour volume and the generation of immune, stromal and
epithelial volumes (Fig. 5Shand Extended Data Fig.10h). These analyses
demonstrate that 3D reconstruction offers increased sensitivity for
investigating heterogeneous tumour microenvironments.

Discussion

This study identified genomically distinct spatial microregions and
spatially distributed subclones in samples across solid tumour types.
We propose that CNV variability is a major driver of the transcriptional
variation seen in these microregions. Spatial subclones identified in
the same tumour block shared acommon ancestry, a finding congru-
ent with previous studies of tumour evolution®~*°, A second major
driver of variability is exposure to the TME, and we observed distinct
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surface meshis coloured by the transcript density of TYMPI and IGLC2 within
a50-pumradiusofagivenlocation. e, For HT397B1, aprimary BRCAsample,
integrated 3D neighbourhood volumes were generated with 6 H&E, 2 Visium ST

transcriptional patterns associated with cancer cell depth from the
microregion edge, as well as specific enriched gene expression in
edge cells adjacent to immune cells of the TME. Finally, 3D tumour
volume reconstruction identified 3D neighbourhoods of regional
TME variation.

We observed genomic and transcriptomic heterogeneities among
tumour microregions in multiple samples. Although some tumours
were relatively consistent in their transcriptomic profiles, others
could be subdivided according to gene expression. This variability
was partially explained by mapping copy number events to ST regions.
Distributions of cancer subclones with genetic variations have been
mapped across tissues***, and mutation-based subclones in spatial
regions withinasingle tumour have been demonstrated®. Inaddition
to spatial mutation mapping from transcriptome and validation with
allele-specific in situ hybridization, we characterized spatial tumour
heterogeneity according to changes in gene expression related to
the proximity ofimmune and stromal cell types compared with more
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areshownasa3D volume.f, Visualization of two ROIs in HT397B1, specifically
the moreimmune-cold ROl 1and immune-hot ROI 2. 2D slices of the 3D volume
with quartile-highlighted neighbourhoods associated with each ROl are shown.
Visium ST slides (Ul1and U8) are shown as RCTD-imputed cell-type fractions.
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subclone 3 are emphasized as dashed boxes. h, 3D epithelial (PanCK, red),
immune (CD45, green) and stromal (SMA, white) surface volumes generated
from CODEX sections. Scale bar, 500 pm.

insulated cancer cells within spatial microregions. A more nuanced
understanding of the way cancer and TME cells shape each other within
tumoursisneededto better exploit theseinteractions therapeutically.

Subclonal evolutionisamajor driver of therapeutic resistance, with
the emergence of resistant subclones often resulting in treatment
failure****. Here we characterized the structure and distribution of
spatially distinct tumour subclones in multiple solid tumours and
showed that they can exhibit varying responses to identical compounds
through perturbation gene set overlap analysis. Future translational
work will probably investigate subclones under the varying selective
pressures of anticancer therapies, which will help to guide the design
of new approaches, such as optimizing the combination of local and
systemic therapies.

Thereareseveral limitations of the study. RNA-inferred spatial CNV
captures large genetic events but not focal copy number changes.
Spatial mutation mappings provide additional support on subclonal
identifications, but with the limitation that only mutations near the
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3’end of each transcriptare preferentially detected. Additionally, our
ST dataset does not achieve single-cell resolution with the current
platform (55-um-diameter spot). Matching snRNA-seq was used to
infer tumour-non-tumour expression and CODEX imaging was used
to validate our findings on TME composition. However, direct spatial
expression from different cell types of origin remains inferred. In clos-
ing, our reconstructed 3D data enabled spatial investigation of tumour
architecture, subclones, cellular neighbourhoods and TME. We antici-
pate that such analysis will rapidly establishitself more broadly within
cancer research*. Coming advancements in technology will facilitate
evendeeper analyses and will further empower future tumour studies.
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Methods

Experimental methods

Specimens and sample processing. All samples were collected with
informed consent at the Washington University School of Medicinein
St Louis. Samples from BRCA, PDAC, CRC, CHOL, RCC and UCEC were
collected during surgical resection and verified by standard patho-
logy (institutional review board protocols 201108117, 201411135 and
202106166). After verification,al.5 x 1.5 x 0.5 cm®portion of the tumour
was removed, photographed, weighed and measured. Each portion
wasthensubdividedinto 6-9 pieces and then further subdivided into
4 transverse-cut pieces. These four pieces were then each respec-
tively placed into formalin, snap-frozeninliquid nitrogen, DMEM and
snap-frozen before embedding in OCT. The purpose of choosing grid
processing over punch sampling was utility-based, as it minimized
remaining tissue. Relevant protocols can be found at protocols.io
(https://doi.org/10.17504/protocols.io.bszynf7w)*.

ST preparation and sequencing. OCT-embedded tissue or FFPE tissue
samples were sectioned and placed on a Visium Spatial Gene Expression
Slide following the Visium Spatial Protocols-Tissue Preparation guide.
Samples used for serial sections were sectioned and collected with
aninterval range from 5to 100 um. When doing serial sectioning, the
first section was named as U1, followed by U2, U3, and so on. Selected
sections were loaded onto Visiumsslides and the distance between each
sectionwasrecorded. For OCT-embedded samples, detailed methods
have been described in a previous publication’. In brief, fresh tissue
samples were coated with room temperature OCT without any bubbles.
After RNA quality check using a Tapestation and amorphology check
using H&E staining for the OCT-embedded tissue samples, blocks were
scoredintoasuitable size that fit the capture areas and then sectioned
into 10-um sections. Sections were then fixed in methanol, stained with
H&E and imaged at x20 magpnification using the bright-field imaging
settingonalLeica DMi8 microscope. Tissue samples were then permea-
bilized for18 minand ST libraries were constructed following the Visium
Spatial Gene Expression Reagent kits user guide CGO00239 Rev A (10x
Genomics). cDNA was reverse transcribed from the poly-adenylated
messenger RNA, whichwas captured using primers on the slides. Next,
the second strand was synthesized and denatured from the first strand.
Free cDNA was then transferred from slides to tubes for further amplifi-
cationand library construction. Libraries were sequenced on a S4 flow
cell of anIllumina NovaSeq-6000 system. For FFPE samples, detailed
methods have been described in a previous publication®. In brief, qual-
ity control was done by evaluating DV200 of RNA extracted from FFPE
tissue sections per the Qiagen RNeasy FFPEKit protocol, then followed
by performingthe Tissue Adhesion Test described inthe 10x Genomics
protocol.Sections (5 um) were placed on a Visium Spatial Gene Expres-
sionSlide according to the Visium Spatial Protocols-Tissue Preparation
guide (10x Genomics, CGO00408 Rev A). After overnight drying, slides
wereincubated at 60 °Cfor 2 h. Deparaffinization was then performed
following the protocol for Visium Spatial for FFPE-Deparaffinization,
H&E staining, Imaging and Decrosslinking (10x Genomics, CGO00409
Rev A). Sections were stained with H&E and imaged at x20 maghnifica-
tionusing the bright-field imaging setting onaLeica DMi8 microscope.
Afterwards, decrosslinking was performed immediately for H&E stained
sections. Next, human whole transcriptome probe panels were added
to the tissue. After these probe pairs hybridized to their target genes
and ligated to one another, the ligation products were released fol-
lowing RNase treatment and permeabilization. The ligated probes
were then hybridized to the spatially barcoded oligonucleotides on
the capture area. ST libraries were generated from the probes and
sequenced on a S4 flow cell of an Illumina NovaSeq 6000 system. Rel-
evant protocols can be found at protocols.io (https://doi.org/10.17504/
protocols.io.x54v9d3opg3e/vland https://doi.org/10.17504/protocols.
i0.kxygx95ezg8j/v1)*s4.

CODEX preparation and imaging. Carrier-free monoclonal or
polyclonal anti-human antibodies were purchased (Supplementary
Table 3) and verified usingimmunofluorescence (IF) staining in multiple
channels. After screening, antibodies were conjugated using an Akoya
Antibody Conjugation kit (Akoya Biosciences, SKU 7000009) with
abarcode (Akoya Biosciences) assigned according to the IF staining
results. Several common markers were directly purchased through
Akoya Biosciences. CODEX staining and imaging were performed
according to the manufacturer’sinstructions (CODEX user manual, Rev
C).Inbrief, 5-um FFPE sections were placed on coverslips coated with
APTES (Sigma, 440140) and baked at 60 °C overnight before deparaffi-
nization. The next day, tissues wereincubated inxylene, rehydratedin
ethanol and washed in ddH,0 before antigen retrieval with TE buffer,
pH 9 (Genemed, 10-0046) in boiling water for 10 min in a rice cooker.
The tissue samples were then blocked using blocking buffer (CODEX
staining kit, SKU 7000008) and stained with the marker antibody
panel to a volume of 200 pl for 3 h at room temperature in a humidi-
fied chamber. The dilution factor for each antibody is provided in the
CODEX cycle information sheet (Supplementary Table 3). Imaging of
the CODEX multicycle experiment was performed using a Keyence
fluorescence microscope (model BZ-X810) equipped witha Nikon CFI
Plan Apo A x20/0.75 objective,a CODEX instrument (Akoya Biosciences)
and a CODEX instrument manager (Akoya Biosciences). The raw images
were then stitched and processed using the CODEX processor (Akoya
Biosciences). After multiplex imaging was completed, H&E staining
was performed on the same tissue. Staining quality for each antibody
in CODEX is shown as a single channel in green with DAPlin blue in
Supplementary Figs.10 and 11.

Single-nucleus suspension preparation. Approximately 20-30 mg
of flash-frozen or cryopulverized or 200 pm of OCT sections of tissue
from eachsample were retrieved and aliquoted for nucleus preparation
for usein aNext GEM Single Cell Multiome ATAC + Gene Expression kit
or aNext GEM Single Cell 3’ Kit v.3.1kit. Samples were resuspended in
lysis buffer (10 mM Tris-HCI (pH 7.4) (Thermo, 15567027),10 mM NaCl
(Thermo, AM9759), 3 mM MgCl, (Thermo, AM9530G), 0.10% NP-40
substitute (% v/v) (Sigma, 74385-1L), 1mM DTT (Sigma, 646563), 1%
stock BSA solution (% v/v) (MACS, 130-091-376), nuclease-free water
(Invitrogen, AM9937), plus 0.1U pl ™ RNase inhibitor), resuspended
and homogenized through douncing, and filtered through a 40-pm
cell strainer (pluriSelect), then diluted with wash buffer (2% BSA, 1x
PBS and RNase inhibitor). The filtrate was collected, then centrifuged
at500g for 6 min at 4 °C. The nuclear pellet was then resuspended in
BSA wash buffer with RNase inhibitor, stained with 7AAD, and nuclei
were purified and sorted by FACS. Relevant protocols can be found at
protocols.io (https://doi.org/10.17504/protocols.io.14egn7w6zv5d/Vvl,
https://doi.org/10.17504/protocols.io.261gednx7v47/v1)>*,

Single-cell suspension preparation. Approximately 15-100 mg of
each tumour was cut into small pieces using a blade. Enzymes and
reagents from a Human Tumour Dissociation kit (Miltenyi Biotec,
130-095-929) were added to the tumour tissue along with 1.75 ml of
DMEM. Theresulting suspension was loaded into a gentleMACS C-tube
(Miltenyi Biotec, 130-093-237) and subjected to the gentleMACS
Octo Dissociator with Heaters (Miltenyi Biotec, 130-096-427). After
30-60 minonthe heated dissociation programme (37h_TDK_1), sam-
ples were removed from the dissociator and filtered through a40-pm
mini strainer (PluriSelect, no. 43-10040-60) or a 40-pum nylon mesh
(Fisher Scientific, 22-363-547) into a 15-ml conical tube onice. The
sample was then spun down at 400g for 5 min at 4 °C. After remov-
ing the supernatant, when ared pellet was visible, the cell pellet was
resuspended using 200 plto 3 ml ACK lysis solution (Thermo Fisher,
A1049201) for 1-5 min. To quench the reaction, 10 ml PBS (Corning;
21-040-CM) with 0.5% BSA (Miltenyi Biotec; 130-091-376) was
added and spun down at 400g for 5 min at 4 °C. After removing the
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supernatant, the cells were resuspended in 1 ml PBS with 0.5% BSA,
and live and dead cells were visualized using trypan blue. Finally, the
sample was spun down at 400g for 5 min at 4 °C and resuspended in
500 plto1 mIPBS with 0.5% BSA to afinal concentration of 700-1,500
cells per pl. The protocol is available at protocols.io (https://doi.
org/10.17504/protocols.io.bsngnddw)*.

Single-nucleus library preparation and sequencing. Nuclei and cells
and barcoded beads wereisolated in oil droplets using a10x Genomics
Chromiuminstrument. Single-nucleus suspensions were counted and
adjusted toarange of 500-1,800 nuclei per pl using ahaemocytometer.
Reverse transcription was subsequently performed to incorporate
celland transcript-specific barcodes. AllsnRNA-seq samples were run
using a Chromium Next GEM Single Cell 3’ Library and Gel Bead kit
v.3.1(10x Genomics). For the multiome kit, Chromium Next GEM Sin-
gle Cell Multiome ATAC + Gene Expression was used (10x Genomics).
Nuclei were then subjected to downstream protocols by 10x (Next GEM
Single CellMultiome ATAC + Gene Expression: https://cdn.10xgenomics.
com/image/upload/v1666737555/support-documents/CG000338_
ChromiumNextGEM_Multiome_ATAC_GEX_User_Guide_RevF.pdf. Next
GEM Single Cell 3’ Kit v3.1: https://support.10xgenomics.com/
single-cell-gene-expression/library-prep/doc/user-guide-chromium-
single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index). Single-
cell suspensions were subject to the Next GEM Single Cell 3’ Kit v.3.1
protocol. Barcoded libraries were then pooled and sequenced on an
Illumina NovaSeq 6000 system with associated flow cells.

Genomic DNA extraction. Tumour tissue samples were obtained
from surgically resected specimens. After a piece was removed for
fresh single-cell preparation, the remaining sample was snap-frozen
inliquid nitrogen and stored at -80 °C. Before bulk DNA extraction,
samples were cryopulverized (Covaris) and aliquoted for bulk extrac-
tion. Genomic DNA was extracted from tissue samples with either a
DNeasy Blood and Tissue kit (Qiagen, 69504) or a QIAamp DNA Mini
kit (Qiagen, 51304). Genomic germline DNA was purified from cryo-
preserved peripheral blood mononuclear cells using a QIAamp DNA
Mini kit (Qiagen, 51304) according to the manufacturer’sinstructions
(Qiagen). The DNA quantity was assessed by fluorometry using a Qubit
dsDNA HS assay (Q32854) according to the manufacturer’s instruc-
tions (Thermo Fisher Scientific). Protocols are available at protocols.
io (https://doi.org/10.17504/protocols.io.bsnhndbé6)>.

WES analysis. About 100-250 ng of genomic DNA was fragmented
on a Covaris LE220 instrument targeting 250-bp inserts. Automated
dual-indexed libraries were constructed using a KAPA Hyper library
prep kit (Roche) onaSciClone NGS platform (Perkin EImer). Up to ten
libraries were pooled at an equimolar ratio by mass before the hybrid
capture targeting a 5-pg library pool. The library pools were hybrid-
ized using xGen Exome Research Panel v.1.0 reagent (IDT Technolo-
gies), which spans a 39-Mb target region (19,396 genes) of the human
genome. The libraries were hybridized for 16-18 h at 65 °C followed by
astringent wash to remove spuriously hybridized library fragments.
Enriched library fragments were eluted and PCR cycle optimization
was performed to prevent overamplification. The enriched libraries
were amplified using KAPA HiFi master mix (Roche) before sequenc-
ing. The concentration of each captured library pool was determined
through qPCR using aKAPA library Quantification kit according to the
manufacturer’s protocol (Roche) to produce cluster counts appropriate
for the Illumina NovaSeq-6000 instrument. Next, 2 x 150 paired-end
reads were generated targeting 12 Gb of sequence to achieve around
100x coverage per library.

Xenium library preparation and imaging. Paraffin blocks (FFPE blocks)
were sectioned at5 pmand placed on Xenium slides following the FFPE
Tissue Preparation guide (10x Genomics, CGO00578, Rev B). Those

slides underwentaseries of xylene and ethanol washes for deparaffiniza-
tionand decrosslinking, using the FFPE tissue enhancer as outlined (10x
Genomics, CGO00580, Rev B). Overnight in situ probe hybridization
was performed using 379 probes from the Xenium Human Multi-Tissue
Panel (10x Genomics,1000626) plus an additional 100 custom probes
(Supplementary Table 6). After hybridization probes wereligated, the
sample underwent rolling circle amplification, and the background
was quenched using an autofluorescence mixture. Nuclei were stained
with DAPItoimprove sample tracking and approximate cell boundaries
(10x Genomics, CGO00582, Rev D). These samples, along with buffers
and decoding consumables, were loaded into a Xenium analyzer (10x
Genomics,1000481). The run was initialized using the guidance pro-
vided (10x Genomics, CG0O00584, Rev C). These fluorescent reporters
hybridized to targeted complementary regions of the barcoded circu-
larized cDNA were imaged. H&E staining was performed on the same
region after the run was complete.

Analytical methods

Quantification and statistical analysis. All data analyses were con-
ducted inRand Python environments. Details of specific functions and
libraries are provided in the relevant methods sections above. Signifi-
cance was determined using the Wilcoxon rank-sum test, proportion
test, hypergeometric test or Pearson correlation test, as appropriate.
Pvalues < 0.05 were considered significant. Details of statistical tests
are providedin the figure legends and the relevant methods sections.

WES data processing. FASTQ files were preprocessed using trimGalore
(v.0.6.7; with parameters: --length 36 and all other parameters set to
default; https://github.com/FelixKrueger/TrimGalore). FASTQ files
were then aligned to the GDC’s GRCh38 human reference genome
(GRCh38.d1.vd1) using BWA-mem (v.0.7.17) with parameter -M and
all others set to default. The output SAM file was converted to a BAM
file using the samtools (https://github.com/samtools/samtools;
v.1.14) view with parameters -Shb, and all others set to default. BAM
files were sorted and duplicates were marked using Picard (v.2.6.26)
SortSam tool with the following parameters: CREATE_INDEX=true,
SORT_ORDER=coordinate, VALIDATION_STRINGENCY=STRICT, and
all others set to default; and MarkDuplicates with parameter REMOVE_
DUPLICATES=true, and all others set to default. The final BAM files were
thenindexed using the samtools (v.1.14) index with all parameters set
to default.

Mutation calling using WES. Somatic mutations were called from
WES data using the Somaticwrapper pipeline (v.2.2; https://github.
com/ding-lab/somaticwrapper), whichincludes four different callers:
Strelka (v.2.9.10)**, MUTECT (v.1.1.7)>, VarScan (v.2.3.8)° and Pindel
(v.0.2.5)%". We kept exonic single nucleotide variants (SNVs) called by
any two callersamong MUTECT (v.1.1.7), VarScan (v.2.3.8) and Strelka
(v.2.9.10) and insertions and deletions (indels) called by any two callers
among VarScan (v.2.3.8), Strelka (v.2.9.10) and Pindel (v.0.2.5). For the
merged SNVs and indels, we applied a 14x and 8x minimal coverage
cut-off for tumour and normal tissue, respectively. We also filtered
SNVs and indels by a minimal VAF of 0.05 in tumours and a maximal
VAF of 0.02 in normal samples. We also filtered any SNV within 10 bp
of anindel found in the same tumour sample. Finally, we rescued the
rare mutations with VAFs within 0.015and 0.05 based on an established
gene consensus list®*, In a downstream step, we used Somaticwrap-
per tocombine adjacent SNVsinto double-nucleotide polymorphisms
using COCOON (https://github.com/ding-lab/COCOONS), as reported
inaprevious study®.

Mutation mapping to snRNA-seq and ST data. We applied anin-house
tool called scVarScan that can identify reads supporting the refer-
ence allele and variant allele covering the variant site in each cell by
tracing cell and molecular barcode information in a snRNA-seq and
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single-cell RNA sequencing (scRNA-seq) or Visium bam file. The tool is
freely available at GitHub (https://github.com/ding-lab/10Xmapping).
For mapping, we used high-confidence somatic mutations from WES
data produced by Somaticwrapper (described above). Visium reads
were prefiltered with the flag ‘xfi:25’ for reads contributing to unique
molecular identifier counts.

Spatial mutation VAF statistical test. For each ST section, we applied
two sets of statistical tests to all WES-based somatic mutations mapped
to ST. First, for each mutation with greater than 30 reads of coverage
on ST across all spots, the VAF was calculated for all tumour region
spots and all non-tumour region spots as the number of variant reads
across all spots divided by the number of total reads across all spots.
A binomial test was then done using VAF of non-tumour spots as the
background: binom.test(alterative="greater”). Then, a proportion test
was done between the VAFs in different spatial subclones with prop.
test(alternative="two.sided”). Finally, multiple testing correction was
done onboth sets of tests with the function p.adjust().

CNV calling using WES. Somatic CNVs were called using GATK
(v.4.1.9.0). Specifically, the hg38 human reference genome (NCIGDC
data portal) was binned into target intervals using the Preprocess-
Intervals function, with the bin length set to 1,000 bp and using the
interval-merging-rule of OVERLAPPING_ONLY. A panel of normals was
thengenerated using each normal sample asinput and the GATK func-
tions CollectReadCounts with the argument --interval-merging-rule
OVERLAPPING_ONLY, followed by CreateReadCountPanelOfNor-
mals with the argument --minimume-interval-median-percentile 5.0.
For tumour samples, reads that overlapped the target interval were
counted using the GATK function CollectReadCounts. Tumour read
counts were then standardized and denoised using the GATK func-
tion DenoiseReadCounts, with the panel of normals specified by
--count-panel-of-normals. Allelic counts for tumours were generated
forvariants presentin the af-only-gnomad.hg38.vcfaccording to GATK
best practices (variants further filtered to 0.2 > af > 0.01 and entries
marked with ‘PASS’) using the GATK function CollectAllelicCounts.
Segments were then modelled using the GATK function ModelSeg-
ments, with the denoised copy ratio and tumour allelic counts used
as inputs. Copy ratios for segments were then called on the segment
regions using the GATK function CallCopyRatioSegments.

Bedtools®? intersection was used to map copy number ratios from
segments to genes and to assign the called amplifications or deletions.
For genes overlapping multiple segments, a custom Python script
was used to call that gene as amplified, neutral or deleted based on
a weighted copy number ratio calculated from the copy ratios of
each overlapped segment, the lengths of the overlaps and the z score
threshold used by the CallCopyRatioSegments function. If the result-
ing z score cut-off value was within the range of the default zscore
thresholds used by CallCopyRatioSegments (v.0.9,1.1), then the bounds
ofthe default z score threshold were used instead (replicating the logic
of the CallCopyRatioSegments function).

ST data processing. For each sample, we obtained the unfiltered
feature-barcode matrix per sample by passing the demultiplexed
FASTQ files and associated H&E image to Space Ranger (v.1.3.0,
v.2.0.0 and v2.1.0 ‘count’ command using default parameters with
reorient-images enabled) and the prebuilt GRCh38 genome reference
2020-A (GRCh38 and Ensembl 98). Seurat was used for all subsequent
analyses. We constructed a Seurat object using the Load10X_Spatial
function for every slide. Each slide was then scaled and normalized
withthe SCTransform functionto correct for batch effects. Any merged
analysis or subsequent subsetting of cells and samples for asample with
several slides underwent the same scaling and normalization method.
Spots were clustered using the original Louvain algorithm, and the top
30 principal component analysis dimensions using the FindNeighbors

and FindClusters functions as described in the ‘Analysis, visualization,
and integration of spatial datasets with Seurat’ vignette from Seurat
(https://satijalab.org/seurat/articles/spatial_vignette.html).

InferCNV and CalicoST for CNV calling on Visium ST data. To detect
large-scale chromosomal CNVs using scRNA-seq, snRNA-seq and
Visium data, InferCNV (v.1.10.1) was used with default parameters
recommended for 10x Genomics data (https://github.com/broad-
institute/inferCNV). InferCNV was run at the sample level and only
with post-quality control filtered data using the raw counts matrix. For
snRNA-seq and scRNA-seq data, all non-malignant cells were used as
areference with the annotation ‘non-tumour’ and all malignant cells
had the same annotation ‘tumour’, with the following parameters:
analysis_mode="subclusters”, --cluster_by_groups=T, --denoise=T, and
--HMM=T. For Visium ST data, 200 spots annotated as ‘non-malignant’
with the lowest ESTIMATE purity score were used as a reference, and
‘malignant’ spots had their microregion ID as annotation, with the
following parameters: window_length=151, analysis_mode=“sample”,
--cluster_by_groups=T, --denoise=T, and --HMM-=T. CalicoST (https://
github.com/raphael-group/CalicoST)®* was run on Visium ST data with
the same input annotation (microregion ID). All spots from the same
microregions were treated as the smallest unit of analysis. CalicoST
was then runwith default parameters with results manually inspected.

Copy number profile similarity score calculation. Todetermine the
similarity between two spatial CNV profiles, we use amodified Jaccard
similarity score. ACNV profile was defined as a set of genomic windows
with annotation copy number neutral (0), amplification (1) or deletion
(-1). Two CNV profiles were then compared, and overlapping genomic
windows were broken down so that both profiles had the same sets of
windows (with the function reduced from the package GenomicRanges
v.1.46.1). Then, the CNV similarity score (Sim) was defined as follows:

Y, size(w;) x (CNV, ;x CNVj ;)
> size(w;)

Sim, 5=

where w; denotes the size of the genomic window i, CNV, ; denotes the
CNVannotation (0, 1or -1) for profile Aingenomicwindow i, and CNV; ;
denotes the CNV annotation for profile B in genomic window i across
all genomic windows where either A or Bis not CNV neutral.

To determine the similarity between a spatial CNV profile and
WES-based CNV (related to Extended Data Fig. 5a), we used a similar-
ity score averaging the sensitivity (fraction of WES-based CNVs also
detectedinspatial CNVs) and specificity (fraction of spatial CNVs agree-
ing with WES-based CNVs). Specifically,

. YaW;x (CNV, X CNV; ) Y, w,x (CNV, X CNV; )
Simy (= - —+ - — /2
' Za Wy ze W,
where w, denotes the size of the genomic window a from spatial CNV,
w, denotes the size of the genomic window e from a WES-based CNV,
CNV, ,denotes the CNV annotation (0, 1or -1) for profile Ain genomic
windowa.

Spatial subclone identification based on CNV profile similarity. In
the OCT workflow (Supplementary Fig. 1a), CalicoST simultaneously
identified CNVsand groups microregions into spatial subclones. In the
FFPE workflow, confident spatial CNV events in each microregion were
first selected by comparing them with matching WES. Then, a pairwise
CNV similarity score was calculated across all tumour microregions.
Finally, microregions were clustered with CNV similarity scores using
the function hclust (d = 1-CNV similarity, method="“ward.D2”), and
dividedintoclusterswith functioncutree (h = 0.8 x max(hclust$height)).
Final subclone assignments were manually reviewed to avoid overclus-
tering and to eliminate small outlier CNV profiles.


https://github.com/ding-lab/10Xmapping
https://satijalab.org/seurat/articles/spatial_vignette.html
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://github.com/raphael-group/CalicoST
https://github.com/raphael-group/CalicoST

Article

Tumour microregion annotation and layer determination. Using
Visium ST, tumour microregions were determined through a multi-
step process using H&E. Each ST spot was assigned as either stroma
or tumour by manually reviewing the morphology on H&E stained
sections. If at least 50% of the pixels within a spot covered malignant
cell morphology, the spot was labelled as tumour. Otherwise, it was
labelled as stroma. Next, we defined distinct tumour microregions
using a set of three rules. The first rule specified that tumour spots
immediately adjacent to one another are initially marked as a sin-
gle tumour microregion. The second rule states that if two distinct
tumour regions together occupied at least 50% of one single spot,
the spot is assigned to the distinct tumour region with the higher
percentage occupied. Finally, the third rule specified that if there
was a clear morphological difference of the tumour spots within one
tumour microregion, the microregion must be separated into distinct
microregions, one per clear morphology.

Afterwards, weranthe Morphtoolset (https://github.com/ding-lab/
morph), which uses mathematical morphology to refine the tumour
microregions. That s, if the total number of spots in a microregion is
less than or equal to three, then we labelled all such spots as stroma.
Last, Morph assigned the layer (for example, T1) of each spot of a
tumour microregion by a sequence of mathematical morphology
operations described in the Spot-depth correlation analysis method,
which denotes the depth of a given spot inside a microregion.

Average spot area and microregion size calculation. To calculate the
areaeachspottakes, we used the spot size (55 pm) and centre-to-centre
distance between each spot (100 um) provided by 10x Genomics
(http://kb.10xgenomics.com/hc/en-us/articles/360035487572-What-
is-the-spatial-resolution-and-configuration-of-the-capture-area-of-
the-Visium-vl-Gene-Expression-Slide-). As illustrated in Supplemen-
tary Fig. 6, the Visium spots form a hexagonal lattice that covers the
sample. The repeating unit of this lattice is a trapezoid shape centred
at each spot’s centre that is composed of eight equilateral triangles.
Eachtriangle has aside of 50 pm (half of the spot the centre-to-centre
distance). Using the areaequation of equilateral triangles and multiply-
ingitby 8, we obtained the areaof each trapezoid as 8,660 um?, which
isthe average area occupied by each spot. To calculate the microregion
size, we multiplied the spot count by 8,660 and divided by 10° to obtain
thesizeinmm?.

Micoregion density estimation. We estimated microregion density per
section by following the formula: density per um? = n microregion per
sectionsize (inspots) then divided by 8,660 um per spot. Then density
per mm? = density per pm? x 10® (n microregion per mm?).

Cell-type annotation. Cell-type assignment was done based on the fol-
lowing known markers: B cell, CD79A, CD79B, CD19, MS4A1,IGHD, CD22
and CD52;cDC1, CADM1,XCR1, CLEC9A, RAB32 and Clorf54; cDC2, CDIC,
FCERIA, CLEC10A and CDIE; mregDC, LAMP3, CCR7, FSCNI1, CD83 and
CCL22; pDC, IL3RA, BCL11A, CLEC4C and NRPI; macrophage, CX3CR1,
CD80, CD86,CD163 and MSR1; mast cell, HPGD, TPSB2, HDC, SLCISA2,
CPA3and SLC8A3; endothelial, EMCN, FLT1, PECAM1, VWF, PTPRB,ACTA2
and ANGPT2; fibroblast, COL1IA1, COL3A1, COL5A1, LUM and MMP2;
pericyte, RGSS5, PLXDC1, FN1 and MCAM; NK cell, FCGR3A, GZMA and
NCAMTI; plasma cell, CD38, SDC1, IGHG1, IGKC and MZBI; T cell, IL7R,
CD4,CD8A,CD8B, CD3G, CD3D and CD3E; and regulatory T cell, IL2RA,
CTLA4, FOXP3, TNFRSF18 and IKZF2. Normal epithelial cells in the
breast were annotated with the following markers: LumSec, GABRP,
ELFS, CL28, KRT15, BARX2 and HS35T4; LumHR, ANKRD30A, ERBB4,
AFF3, TTC6, ESR1, NEK10 and XBPI; and basal, SAMDS, FBX0O32, TP63,
RBBP8and KLHL13.Normal epithelial cells in the liver were annotated
with the following markers: hepatocyte, ALB, CYP3A7, HMGCS1,ACSS2
and AKRICI; cholangiocyte, SOX9, CFTR and PKD2. Normal epithe-
lial cells in the pancreas, including ductal, acinar, islet-«, islet-3 and

islet-y cells, were annotated with singleR (v.1.8.1) using reference data
BaronPancreasData(‘human’).

Spot-depth correlation analysis. We identified a correlation between
gene expression and spot depth in its tumour microregion. First,
each spot was assigned a depth defined as the distance to the closest
TME-facing spotinitstumour microregion. This depth was quantified
inseverallayers through aniterative process whereby all the malignant
spotsimmediately adjacent to non-malignant spots were considered
layer 1, and then all malignant spots immediately adjacent to layer 1
were considered layer 2, and the process was repeated until all spots
were assigned with alayer number. If aspot’s layer was larger than the
smallest distance between the spot and any Visium border (including
the edge of the Visium capture window, edge of the tissue section and
any empty spots inside the section), then we excluded such spots, as
we only knew the upper bound of the depth of this spot. Addition-
ally, tumour microregions with fewer than 3 layers or 50 spots were
excluded from the analysis. The distance between layers was taken as
the centre-to-centre distance of Visium spots (100 pm).

To give the same weight to bigger and smaller regions, the depth of
each spot was further normalized by the maximum depth of the micro-
regionthis spotbelonged. Then, we performed partial correlationtests
independently between gene expression (at least 1 transcript detected
from the gene in more than 50% of all spots) and normalized depth of
each spot, with tumour purity as a covariate as follows:

Expression =rho x (layer fraction) + b x purity

where layer fraction is the layer number divided by the total number
of layers in a tumour to normalize for large and small microregions,
rho is the layer correlation coefficient, and b is the correlation coef-
ficient for covariant purity. Purity was inferred with deconvolution
when there was matching snRNA-seq data (deconvoluted tumour
fraction per spot by RCTD), or with ESTIMATE (that is, tumour purity
estimate score per spot) otherwise. Each gene was checked against a
set of snRNA-seq-derived non-malignant gene lists to ensure that the
changeinfraction did not derive fromashiftin cell type composition.
Finally, we performed multiple-testing adjustments for all tests done
ineach ST section.

Spot-depth GSEA pathway enrichment analysis. To summarize
biological programs enriched in the centre and periphery of tumour
microregions across sections, we first obtained the cohort-level aver-
age layer correlation coefficient. If atest was not significant (P > 0.05),
rho was assigned to be O to indicate no correlation. If a test was not
performed onasection (<50% of the spots have at least one transcript),
rhowas also assigned as 0. When a case had multiple sections, we first
took the average rho across sections to avoid bias towards tumours
with more sections. Then, the average of rho was calculated for each
cohort (all samples or samples from each cancer type).

In the same fashion, rank statistics were calculated for each test as
-log,o(Pvalue) x rho for tests with P < 0.05. For tests with P> 0.05 or
genes not tested, the rank statistic was 0. We then calculated aver-
age rank statistics per case, followed by the average per cancer type.
Finally, with the fulllist of rank statistics calculated for all genes tested,
we used the function GSEA (parameters: pvalueCutoff=0.5; package:
clusterProfiler v.3.18.1) to obtain the normalized enrichment score of
Hallmark pathways (package: msigdbr 7.5.1) from the MSigDB®*. Finally,
only pathways with P< 0.1were kept in the final results.

Tumour intrinsic and non-tumour gene categorization. We use
differential expression and per cent expression filters, comparing
expression among cell typesin the matching snRNA-seq datato further
characterize genes identified in the centre and periphery enriched
analysis. The steps implemented in this workflow generated four
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categories: tumour-specific, stromal-specific, tumour-enriched and
stromal-enriched (Supplementary Fig. 8a,b). Genes that did not pass the
significant cutoffin any differential expression analysis were labelled
separately as not DEG.

To distinguish these four groups, we first performed differential
gene analysis of cell types in the matching snRNA-seq data, filtered by
a conventional significance cut-off (log,(fold change) > 0.5, adjusted
P < 0.05, Bonferroni correction), to obtain DEGs (Supplementary
Fig.8a). Given the heterogeneity in tumours, certain tumour-specific
genes might only exist in a subpopulation of tumours. Therefore, we
first subclustered the tumour populations (using the Subcluster func-
tion in Seurat with a resolution of 0.5) to obtain tumour subclusters.
We then compared each subcluster with all other non-tumour cells. A
gene was considered a tumour DEG if at least one tumour subcluster
showed significant expression compared with the non-tumour cells
and vice versa for non-tumour DEGs (Supplementary Fig. 8a,b).

For candidate tumour or stromal-specific genes, a DEG was desig-
nated as tumour-specificifit met both of the following criteria: (1) itis
aDEGwhen compared with allnon-tumour cell types from at least one
tumour subcluster; and (2) its expression was <15% in all non-tumour
celltypes (Supplementary Fig. 8c).

Thereverse applied to candidate stromal-specific DEGs. IfaDEG did
not meet both of these requirements to be tumour or stromal specific,
itwas designated as either tumour-enriched or stromal-enriched based
on whether the expression level was higher in tumour or stromal cell
types (Supplementary Fig. 8a).

Spatial subclone-specific treatment response analysis. We focused
on ten cases (comprising four BRCA, two CRC and four PDAC sam-
ples) with multiple spatial subclones for this analysis. To obtain
subclone-specific DEGs, we used FindMarkers from the function
in Seurat with the ‘wilcox’ test option DEGs between each subclone
and TME. We then applied the cut-off for adjusted P < 0.01, aver-
age log,(fold change) >1and per cent expression in at least one cell
type > 0.4 to select significant DEGs. To infer treatment response, we
used the perturbation database LINCS L1000 (ref. 65), specifically the
LINCS_L1000_Chem_Pert_down dataset from Enrichr®, to evaluate
the gene set overlap between upregulated DEGs in spatial subclones
and downregulated genes after compound treatment. To make the
plotin Supplementary Fig. 4, we sorted the data by ‘Odd.Ratio” and
selected top compounds from each subclone. The corresponding com-
pound metadata, including mechanism of action, was obtained from
CLUE (clue.io, ‘Expanded CMap LINCS Resource 2020 Release’) to add
annotation on the heatmap.

Organ-specific gene blacklist for non-malignant cell types. To
distinguish transcripts originating from cancerous versus non-
malignant stromal or immune cells, we used merged snRNA-seq data
perorgan (breast, kidney, liver and pancreas) for cell-type marker analy-
sis. This analysis used the FindAlIMarkers function in Seurat with the
‘wilcox’ test option. Subsequently, we refined the gene list by applying
filters such as average log,(fold change) > 2, per cent expression in at
least one cell type > 0.4 and adjusted P values < 0.01 to ensure robust
marker selection for each cell type. The resultant gene list is available
in Supplementary Table 5. This list was instrumental in excluding
non-cancerous cell genes from analyses pertaining to cancer-specific
expression patterns, such as pairwise microregion similarity analysis.
Of note, during the analysis, we observed a notable mapping of vari-
ous epithelial cell types in the snRNA-seq reference dataset for BRCA
when using the RCTD deconvolution method. This observation prob-
ably stems from the diverse BRCA subtypes present in the cohort. To
address this, we opted to combine all epithelial cell types into asingle
category during the identification of cell-type markers and excluded
them from the blacklist. For tumours originating from organs other
thanthe four mentioned above, we aggregated all genes presentinthe

blacklist across organs to form a comprehensive multiorgan blacklist,
which aided in filtering out non-cancerous transcripts.

Microregion transcriptional profile analysis. For overall tumour
heterogeneity, we selected Morph-identified spots then ran ROGUE
(v.1.0)* to measure heterogeneity as 1-ROGUE. We then compared the
transcriptional profiles of microregions by selecting the top 500 most
variable features after excluding stromaregionsin ST samples following
Morph processing. Our initial evaluationinvolved conducting Pearson
correlation tests for each pair of microregions, using arange of the top
250-1,500 most variable genes with increments of 250 (that is, 250,
500, 750, ...,1,500). We observed consistent correlations for nearly
all values beyond using more than 500, which led us to select the top
500 genes for this analysis. This choice reduced the risk of selecting
too few variable genes (for example, <250 most variable genes) while
alsoavoiding the inclusion of numerous genes with minimal effect on
thetranscriptional profile. GSEA analysis was done using the function
GSEA (parameters: pvalueCutoff = 0.5; package: clusterProfiler v.3.18.1)
to obtain the normalized enrichment score of Hallmark pathways (pack-
age: msigdbrv.7.5.1) from the MSigDB®*.

Module score calculation. Module scores ontop of each heatmap in
Extended Data Fig. 6 were calculated with the AddModuleScore func-
tion from Seurat®® using the genes listed in each heatmap. This score
represents the average expression levels of a gene set. The score was
calculated for each spot and a box plot was used to show the distribu-
tion of module scores in each microregion.

ST cell-type decomposition. Cell-type composition per spot was
deconvolved using RCTD*® with default parameters and doublet_mode =
‘multi’. Thereference for each run was the cell types manually annotated
fromthe Seurat object of the matching snRNA-seq or Multiome sample.
To quantify spatial distribution of each cell type, cell type fraction of
6layers (T3 and above, T2, T1, E1, E2, E3 and above) from each tumour
microregionis calculated and averaged in each sample. To compare dif-
ferential TMEinfiltration between spatial subclones, cell type fraction
fromall spots between spatial subclones was compared with pairwise
Wilcoxon rank-sum test and FDR adjustment.

Spatial cell-cell interaction at tumour boundary. We evaluated the
spatial-based cell-cell interaction (CCI) in the ST sample using COM-
MOT® with CellChat database and distance threshold of 1,000 pm,
following the same threshold used in the original publication for
Visium. The median sender and receiver signals for each interaction
family were compared between all tumour boundary spots (including
tumour boundary layer and TME boundary layer) and all non-boundary
spots (Wilcoxon rank-sumtest) onasample. Interaction pathways with
signal difference great than 0.1and FDR less than 0.05 are considered
significantly boundary-enriched. Boundary DEGs were identified with
FindMarkers function on three sets of comparisons: boundary/tumour,
boundary/TME and boundary/all non-boundary. Aboundary DEG has
adjusted Pvalue 0.25 in boundary/non-boundary test, and log,(fold
change) > 0 inthe other two tests.

Serial section alignment and branching factor calculation. We
applied PASTE2 (ref. 70), the updated ST-based alignment tool PASTE”,
to enable partialimage alignment. Serial sections of the same tumour
piece were aligned pairwise with default settings. Each Visium data
pointinevery ST section received new coordinates, denoted asx’andy’,
based onthe alignment results. We then identified the nearest spot on
eachadjacentsection for every spot, connecting themalong the z axis.
This process facilitated the linking of spots across all sections on the
z axis. To assess whether one microregion was connected to anotherin
anadjacent section, we first removed stromal spots and then counted
the connected spots. If any microregion on one section connected to



Article

the next section withmore thanthree shared spots, then we considered
these two microregions, located on different sections, as connected in
3D space and forming the same tumour volume. This connection was
labelled as volume 1, volume 2,and so forthin the figures (Fig. 5d,e and
Extended Data Fig. 9a-d).

We used two geometric metrics to describe tumour volume: con-
nectivity and loop. For connectivity (degree), this metric quantifies
the number of connections from an individual microregion to adja-
cent sections. For example, if microregion 2 in section 2 connects to
3 microregionsinsectionland2insection 3,its connectivity is 5. The
maximum connectivity of atumour volumeis the highest connectivity
among its microregions. For loop, this metric was calculated as the total
number of connections minus the total number of microregions plus
one, identifying intricate loop structures within the tumour volume.

Registration of Visium, CODEX and H&E serial sections. Before
registration, imaging dataunderwent the following transformations.
Multiplex images were converted to greyscale images of DAPI inten-
sity. The image was then downscaled by a factor of 5 before key point
selection. H&E images (also downsampled by a factor of 5) were used
for keypoint selection with Visium data.

Forregistration, we used BigWarp”, which was packaged in the Fiji/
ImageJ software application. Toregister each collection of serialimages,
we used thefirstserial section as the fixed image and the second image
as the moving image. After the second image was warped to the first
image, the second image was used as the fixed image for the transfor-
mation of the third image. Key point registration proceeded in this
fashion for allimages in the serial section experiment. A total of 4-20
key points were selected per image transformation. Once key points
were selected, a moving field was exported from BigWarp for each
image transformation. This dense displacement field was then upscaled
by afactor of 5soit could be used to warp the full-resolution imaging
data. The full-resolution dense displacement field was then used to
register its corresponding multiplex or Visium data. The code used
for registration is available at GitHub (https://github.com/ding-lab/
mushroom/tree/subclone_submission).

Neighbourhood identification input preprocessing. Once imaging
data were registered, they were processed in the following manner
before modelinput.

For Visium ST data, genes were limited to genes expressed in a mini-
mum of 5% of spots across all serial sections and expression counts
were log, transformed. CODEX, Visium ST and H&E data were normal-
ized by subtracting the mean expressionand dividing by the standard
deviation for each gene.

Expression profiles for each patch were generated differently for
image-native data (CODEX and H&E) and point-based data (Visium).
Expressions for CODEX and H&E patches were calculated as the average
pixelintensities for each image channel over all pixels within the patch
bounds. Visium patches were calculated in largely the same manner;
however, the expression profile of each spot within the patch was lin-
early weighted by its distance to the centre of the patch. This differential
weight helped to account for variation expression due to the number
of spots that fall within patch boundaries.

Neighbourhood identification model architecture. The neighbour-
hood annotation model consisted of an autoencoder with a vision
transformer (ViT) backbone (Supplementary Fig. 7). In brief, an auto-
encoder is an unsupervised training method for which an encoder
(embedding component) and a decoder (reconstruction component)
work together tolearn how input data are generated. Specifically, the
network derives an approximation, Q, tothe true posterior generating
function, P, for the output, given the input. The autoencoder used was
asymmetric, meaning that the encoder and decoder were not inverse
copies of one another. The encoder consisted of a ViT with a similar

architecture to previously described architectures™”* (Supplementary
Table4).

ViTs work on image tokens as input. In brief, image tokens are
n-dimensional representations of patches of the input image. Dur-
ing training, image tiles were sampled from a uniform distribution
acrossthe set of input sections (Supplementary Fig. 7a). The sampled
tile was then split into patches, for which the number of patches was
determined by two hyperparameters: patch height (ph) and patch
width (pw). Each patch was then flattened toal x (ph x pw X ¢) vector,
where cis the number of channels in the image (in the case of spatial
transcriptomics data, cis the number of genes). The unrolled patches
were then concatenated into an x (ph x pw x ¢) matrix, where nis the
number of patches in the image tile. Each row in this matrix is a token
that represents a patch in the image tile. The tokens were then pro-
jected by alinear layer to shape n x d, where d is the dimension of the
transformer blocks.

After this, aslide token was concatenated to patch tokens. The slide
token (representing the slide from which the image tile was selected)
was indexed from a trainable embedding of size n_slides x d, where
n_slides is the number of slides in the serial section experiment. The
motivation for the slide token is that as it is passed through the trans-
former blocks, along with the patch tokens, information canbe shared
across all tokens, allowing the slide token to learn to attend to useful
representations of the patches. This feature allowed the model to be
more robust to batch effects between serial sections. Following the
addition of the slide token, positional embeddings were added to all
tokens and passed through the transformer blocks comprisingthe ViT
encoder. Allvariables above and details of the transformer architecture
are available in Supplementary Table 4.

Once passed through the encoder, patches were represented as an
embedding of size n x d. The next step of the architecture was neigh-
bourhood assignment. Neighbourhoods were assigned to patches in
ahierarchical manner, meaning that a patch was classified into several
neighbourhoods that differed in level of specificity. For each level of
the neighbourhood hierarchy, the subsequent levels comprised par-
titions of the previous levels’ neighbourhoods, that is, except for the
first level, each neighbourhood was a subset of a neighbourhood in a
previous level of the hierarchy. For this analysis, the model generated
threelevels of neighbourhoods, each with the capacity to discover up
ton=8(level 1), n=32 (level 2) and n = 64 (level 3) neighbourhoods,
respectively. For this analysis, all neighbourhoods shown are neigh-
bourhoods annotated at hierarchy level 3. The model contained three
codebooks (one for each level) that are of size n NBHDs x d, where
n_NBHDs is the number of possible neighbourhoods that can be
assigned for the given level. The patch embeddings output by the ViT
encoder were projected by three independent blocks of linear layers
(one for each level) that output each patch’s probability of assign-
ment to a given neighbourhood. These probabilities were then used
to retrieve neighbourhood embeddings from the codebook corre-
spondingto the neighbourhood level. Three linear blocks (one for each
level) were then used toindependently reconstruct patch embeddings
at each level to each patch’s original pixel values. The code used for
training the modelis available at GitHub (https://github.com/ding-lab/
mushroom/tree/subclone_submission).

Model loss function. The overall loss function has two main contribu-
tions: mean squared error (MSE) on the reconstruction of the input
patches, and cross-entropy loss on the encoded distribution and the
normal distribution with 0 mean and 1.0 variance.

Duringtraining, the autoencoder was simultaneously trying to opti-
mize two main tasks: the reconstruction of the expression profile of
each image patch embedding and the alignment of neighbourhood
labels between adjacent sections. These two competing objectives
forced the model to learn representative expression patterns while also
keeping neighbourhoods aligned betweeninput sections, which helped
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to combat neighbourhood differences due to batch effects. Differences
in patch expression were quantified by MSE, whereas neighbourhood
adjacency was enforced by minimizing the cross-entropy of patches
adjacent to each otherinthe z direction during training.

The overallloss function is defined below:

l'overall = ANBHDLNBHD + AMSELMSE

Where Aygp (maximum of 0.01) and Ay (set to 1.0) are scalers for the
neighbourhood loss (Lygyp) and reconstruction loss (Lys;), respec-
tively. During training, Ayg,p for was linearly increased from O to its
maximum value.

Model training and inference. Two separate runs of the model were
trained for HT397B1 (six H&E, four CODEX and two Visium ST slides)
and HT268B1 (four Visium ST slides). Training hyperparameters, such
as batch size and number of training steps, are provided in Supple-
mentary Table 4. For HT268B1, only one instance was trained because
only one data type was present. For HT397B1, three model instances
were trained (one for each data type) and were subsequently merged
following the procedure described in the section ‘3D neighbourhood
constructionand integration’.

Following training, the modelinference was performed on overlap-
ping image tiles for each slide using a sliding window of size 8 and a
stride of 2 (that is, 2 overlapping patches between image tiles). The
2 x 2 centre patches of each tile were extracted and retiled to match the
originalsslide orientation. Each reconstructed ‘patchembedding image’
was ataresolution of 50 pixels um™ (that is, each neighbourhood patch
represents anareathatis 50 pmwide) with the exception of Visium ST,
for which the patch resolution was 100 pixels pum™™.

3D neighbourhood construction and integration. After the assign-
ment of neighbourhoods for each section, slides were interpolated to
generate a 3D neighbourhood volume. For this, we used linear inter-
polation of neighbourhood assignment probabilities with the torchio
library™.

Followinginterpolation, we also integrated neighbourhood volumes
for HT397B1, for which multiple data-type-specific volumes were gen-
erated using a graph-based clustering approach. In brief, all overlap-
ping neighbourhood voxel annotations were identified. A graph was
then constructed, whereby nodes represented each neighbourhood
partition combination, and edges are the distance (in the expression
profile) between these partition combinations. This graph was then
clustered with the Leiden graph clustering algorithm to identify inte-
grated neighbourhoods. Hyperparameters for the above clustering
process are provided in Supplementary Table 4. 3D neighbourhoods
were displayed using the open-source visualization tool Napari (https://
github.com/napari/napari).

Analysis and quantification of 3D neighbourhoods. Neighbourhoods
were then assigned to Visium ST spots in the following manner. Each
spot was assigned the neighbourhood label of the neighbourhood
overlappingits spot centroid.

To focus on neighbourhoods most related to the TME biology, we
filtered out neighbourhoods with >50% overlap with copy number
annotated subclones. Additionally, we excluded neighbourhoods that
mapped to fewer than ten total spots across all ST sections for asample.

The subclone boundary region for tumour clones was defined as
the union of the outermost layer of subclone annotated spots and the
spotsonelayer expanded out from them, representing an area roughly
100-150 pm at the tumour-TME interface. Subclone-specific fractions
were calculated as the neighbourhood overlaps with the outermost
layer of each subclone.

InHT397B1, DEGs were calculated for all neighbourhoods, not only
thosefiltered for subclone overlap and spot count. The top 50 DEGs for

neighbourhoods 4 and 6 were grouped into three categories: shared,
unique to neighbourhood 4 and unique to neighbourhood 6. For the
display in Fig. 5, the top 10 for each group were selected for display
based on the following sorting criteria. The mean expression delta
between neighbourhoods 4 and 6 was calculated for each gene by sub-
tracting the mean expression in neighbourhood 6 from neighbour-
hood 4. Shared DEGs were ordered in ascending fashion based on the
absolute expression delta of each gene. Genes unique to neighbour-
hood 4 and neighbourhood 6 were ordered by mean expressiondelta
in descending and ascending fashion, respectively.

Cell-type annotation of CODEX imaging data. Our workflow for cell
annotation consisted of four main steps: (1) image format conversion,
(2) cell segmentation, (3) spatial feature generation and (4) cell-type
classification. First, we converted image output by the CODEX platform
(.gptiff) to the popular open-source OME-TIFF format. During this pro-
cess, we also produced a separate image for each sample, as multiple
sections of tissue are sometimes included on the same imaging run.
We then used the Mesmer pre-trained nuclei + membrane segmenta-
tion model in the DeepCell framework™ to segment nuclei and whole
cells. DAPI was used as the nuclei intensity image, and the channels
pan-cytokeratin, HLA-DR, SMA, CD4, CD45, Hep-Par-1,CD31, E-cadherin,
CD68and CD3ewere, for those presentin a givenimage, mean-averaged
toasingle channel and used as the membrane intensity image.

We thenuse agating procedure toidentify cell types. First, to combat
differences in protein intensity distributions between imaging runs
andtissuetypes, thresholds were manually set for all protein channels
used during cell typing for each image by visual inspection. Above
this intensity threshold, a pixel was considered positive for a given
marker, and below it, a pixel was considered negative. We then used
the cell segmentation boundaries from the previous step to calculate
the fraction of positive pixels for all cell typing markers in each cell.
Theresult of this processis afeature matrix (numcells x num proteins)
representing positive marker fractions for each cell typing proteinin
every cell. Acell was considered positive for amarker if >5% of its pixels
were positive for that marker. Cells were then labelled with a gating
strategy specific to each sample. During gating, each cell was subjected
to aseries of AND gates, whereby if a cell passed all criteria for a given
step, it was annotated as the cell type specified for that step, whereas
if it failed the criteria it was passed on to the next downstream step in
the gating strategy. The gating strategies used for the samples in this
paper are presented in Supplementary Table 4.

Thefollowinglabels were the set of all possible cell type annotations:
epithelial, CD4 T cell, CD8T cell, regulatory T cell, T cell, macrophage,
macrophage-M2, B cell, dendritic, immune, endothelial, fibroblast
and hepatocyte. For some images, not all proteins required to gate
a specific cell type were present. For example, CD4 was not in every
image panel and available to use in the annotation of CD4 T cells. In
these instances, the gating strategy was constructed such that cells
can be labelled as more general cell types if specific proteins are not
present (that is, labelled more broadly as T cell instead of CD4 T cell).
If a cell was negative for all steps in the gating strategy, it was anno-
tated as ‘unlabelled’. The code for image format conversion and cell
segmentation can be found at GitHub (https://github.com/estorrs/
multiplex-imaging-pipeline).

Distance to tumour boundary quantification on CODEX. After regis-
tration, Visium spotslabelled as tumours were mapped to CODEX slides
using the coordinates of the aligned images. The coordinates of the cen-
tre of each spotinthe CODEX-aligned slide were the same asiits Visium
counterpart. Each spot in the CODEX-aligned slide occupied the area
ofacirclewitharadius of 150 pixels. The Euclidean distance transforms
in the CODEX-aligned slide were then calculated for each pixel using
Python’s scipy.ndimage.distance_transform_edt. Both the distances
from the microregions and within the microregions were calculated.
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3D tumour volume reconstruction and location quantification.
The surface mesh visualizations of the tumour volumes for HT397B1
and HT268B1 were generated using the following steps: (1) tumour
neighbourhood selection, (2) mesh construction and (3) mesh colour-
ing. First, integrated neighbourhoods with tumour metrics (des-
cribed below) exceeding a given threshold were considered to be
part of the tumour volume. In HT268B1, the metric used to quantify
epithelial character was the fraction of subclone annotated Visium ST
spots per neighbourhood. Neighbourhoods with >60% subclone spots
were considered tumour. In HT397B1, we instead used the fraction of
CODEX-annotated epithelial cells, as CODEX sections outnumbered
the Visium ST sections for that sample. Neighbourhoods with >60%
fraction of epithelial cells were considered tumour.

A new volume was then constructed whereby neighbourhoods
classified as tumour neighbourhoods using the above criteria
were considered tumour-positive voxels, and all other voxels were
tumour-negative. This 3D tumour mask was then smoothed with a
Gaussian kernel (sigma =1.0). The resulting values were then used
as input for the marching cubes algorithm””’ to generate a surface
mesh for the tumour volume. We used the scikit-image implementation
(skimage.measure.marching_cubes) of the marching cubes algorithm
with default parameters.

To colour the surface mesh, we generated 3D feature volumes
(described below), and then coloured points on the surface mesh based
onthevoxel value at the correspondinglocationinthe feature volume. A
feature volumeis avolume whereby each voxelinthe volume describes
some feature from the serial section dataset (for example, expression of
agivengene, fraction of cells,and so on). Feature volumes used in this
analysis were constructed in the following manner. First, in the serial
sections for which a feature was applicable, the feature was binned at
the same resolution as the 3D neighbourhoods (50 pm in this case).
The binned feature was then interpolated in the z direction to fill in
gaps between sections. The resulting volume was of the same shape
astheintegrated neighbourhood volume, for which the value of each
voxel was the aggregated feature count for the voxel. For HT268B1, the
features used were logged expression of TYMPI and IGLC2.For HT397B1,
we used fibroblast and immune cell fraction. Cells were annotated as
describedin the section ‘Cell-type annotation of CODEX imaging data’.
The surface mesh was visualized using Napari (https://github.com/
napari/napari) and contrast was adjusted on a volume-to-volume basis.
We also visualized the HT397B1tissue volume with the Imaris platform,
for which we generated surfaces from the following CODEX markers:
pan-cytokeratin (epithelial), CD45 (immune) and SMA (stromal).

Xenium probe design. Custom Xenium gene and mutation probes were
designed using Xenium Panel Designer (https://cloud.10xgenomics.
com/xenium-panel-designer) following instructions outlined in the
‘Getting Started with Xenium Panel Design’ instructions (https://
www.10xgenomics.com/support/in-situ-gene-expression/documenta-
tion/steps/panel-design/xenium-panel-getting-started#design-tool).
Inbrief, 21-bp sequences flanking the targeted transcribed variant site
were curated from the Ensembl canonical transcript (Ensembl v.100).
All four possible ligation junctions (two for the WT allele and two for
the variant allele, three in the case of deletions—two for the WT allele
and one for the variant allele) were then evaluated. Variant sites for
which only non-preferredjunctions (CG, GT, GG and GC) were available
were excluded. The two bases of the ligation junction sequence were
thelast base of the RBD5 (RNA binding domain) and the first base of the
RBD3 probe. Preferred junctions were always prioritized over neutral
junctions unless a neutral junction was necessary to avoid hairpins,
homopolymer regions, dimers or an unfavourable annealing tempera-
ture. Probe lengths for RBD5 and RBD3 were then adjusted from the
21-bpstarting length to target atemperature between 50 °Cand 70 °C
per probe (overall target 68 °C and 82 °C). Variant sites with probes pre-
dicted toform dimers or hairpins by IDT’s oligo analyzer were excluded.

Variant sites with homopolymer regions of five consecutive bases or
morein either the RBD5 or RBD3 probes were excluded.

Spatial expression deconvolution. Here we used both deconvolu-
tion results and cell-type-specific expressions in the snRNA-seq data
todeconvolve the Visium ST expression data (Supplementary Fig. 9).
In brief, for a given Genel, we first calculated the average expression
of Genel per cell type in matched snRNA-seq data, subsequently fil-
tering out the expression of such genesin cell types having <5% of the
highest average expression, and then dividing each cell-type average
expression from the sum of all average expressions, thereby creat-
ing the expression contribution per cell type matrix (Q). Then for a
given spot, the contribution per cell type was multiplied by cell type
proportion from the cell type devolution result (for example, RCTD),
then normalized to 1to give a final expression contribution matrix
(WN). For instance, in Supplementary Fig. 9a, Genel has 40%, 30%
and 30% contributions from respective cell types A, B and C based
onthe filtered snRNA-seq expression. For Spotl, as there is only 1 cell
type, B, in the spot, 40% x 1/40% x 1 gives the final 100% contribution
of Genel to cell type Bin Spotl. Spot2 contains 50% A and B cell types,
respectively, the normalized cell type contributioninspot2is therefore
50% x 40%/(50% x 40% + 50% x 30%) = 57.1% for the cell type A, and
50% % 30%/(50% x 40% + 50% x 30%) = 42.9% for the cell type B. The
final deconvolved expression was obtained by multiplying the original
expression per spot (5 and 20 in Spotl and Spot2) with the respective
cell-type-based contribution to obtain the final deconvoluted expres-
sion values of Spotl - cell type B =35, Spot2 - cell type A =10.42, and
Spot2 - cell type B = 8.58.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Visium, scRNA-seq, snRNA-seq, WES, Xenium and CODEX imaging data
are part of H-TAN dbGaP study accession phs002371.v3.p1 (https:/www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.
v3.pl), and the data can be accessed through the HTAN DCC Portal
(https://data.humantumoratlas.org/) under the HTAN WUSTL Atlas.
Individual samples can be identified using Biospecimen ID from the
Sample_ID_Lookup_table.xIsx on the GitHub page (https://github.
com/ding-lab/ST_subclone_publication). GRCh38 references used
for scRNA-seqand snRNA-seq (refdata-gex-GRCh38-2020-A) are freely
available fromthe10x Genomics website (https://support.10xgenomics.
com). Thereference GRCh38 genome (GRCh38.d1.vdl1.fa.tar.gz) used
for WES reads alignment is available from GDC (https://gdc.cancer.gov/
about-data/gdc-data-processing/gdc-reference-files). The MSigDB
hallmark gene sets is available from the GSEA website (https:/www.
gsea-msigdb.org/gsea/msigdb/collections.jsp). The L1000 perturba-
tion database is available through the resource page on the Harmoni-
zome website (https://maayanlab.cloud/Harmonizome/resource/LIN
CS+L1000+Connectivity+Map) and the library page on the Enrichr
website https://maayanlab.cloud/Enrichr/#libraries).

Code availability

All bioinformatics programs used in this study can be accessed from
the GitHub public repository (https://github.com/ding-lab/ST_sub-
clone_publication). The code for 3D neighbourhood identification
and constructionisavailable at GitHub (https://github.com/ding-lab/
mushroom/tree/subclone-resubmission). The code for multiplex
imaging processing is hosted at GitHub (https://github.com/estorrs/
multiplex-imaging-pipeline). The code for Morph is accessible at
GitHub (https://github.com/ding-lab/morph).
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Extended DataFig. 5| GenomicProfiling of Spatial Subclones. a, Spatial
subclone genome-wide CNV profile similarity compared with matching WES-
inferred CNV. b, Distribution of variants mapped to ST transcripts out of all
somatic mutations detected from matching WES. Ref: reference allele; Var:
variantallele. ¢, Somatic mutations mapped to HT260Cl are shared and unique
to two spatial subclones. For each WES-derived mutation, VAFs between tumor
and non-tumor regions (binomial test, left) and VAFs between two spatial
subclones (proportion test, right) were compared. Mutations with FDR<0.05
(Benjamini & Hochberg correction) were annotated with *and ** for VAF and
VAF differences, respectively.d, A breast cancer liver metastasis sample
(HT268B1) showing 2 spatial subclones across 5sections. e, Inthe heatmap
(top), estimated somatic copy number variations (CNV) per spot show both

shared and unique CNV events between the two spatial subclones. The b-allele
frequencies (BAF) in each spatial subclone from the same genomic window are
shownin the middle tracks, while the snRNA-and WES-inferred CNV status of
the same genomic window isshownin the bottom tracks. f, The predicted
phylogeneticrelationship of the 2 tumor spatial subclones. g, UMAP of matching
snRNA showing cell types and two tumor subclones. h, Somatic mutations
mappedtoHT268Blare shared and unique to two spatial subclones. VAF
calculations and their statistical analyses are the same as in panel c. i-j, Subclonal
mutation EEF1A1.1324G>Cisuniquely detected in Clone2inspatial transcriptomics,
while EEF1A1 expressionisin both spatial subclones (p <2.22 x 107", two-sided
proportion test).
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Extended DataFig. 6 | Spatial Expression Pattern of Tumor Microregions
Driven by Genetic Alteration and Tumor Depth. a, Tumor heterogeneity
evaluated by 1-ROGUE scoring. Higher scores indicate higher heterogeneities.
Each pointrepresentsonesectionandis colored by itsrespective cohort
designation and number of subclones (n =131sections from 78 cases). The box
plot’s center line represents the median, with the lower and upper hinges
indicating the first and third quartiles. Whiskers extend to the highest and
lowest values within1.5times theinterquartile range (IQR) from the hinges.

b, (Top panel) Distribution of pairwise Pearson correlations between pairs of
microregions within the same section. Distributionis split by those from the
same tumor subclone (green) and those from different subclones (orange). The
numberin the boxes and the solid lineindicate the mean of each distribution.
(Bottom panel) Number of tumor subclones, microregions, and sections per
tissue block. c. Pairwise Pearson correlation of microregions based on the top

500 most variablegenesinsection U1of HT260C1-Th1H3. The red box highlights
the pairwise Pearson correlations of microregions within Clone 1. d, Pathway
enrichmentscores for Clone1(cl),and Clone 2 (c2), and TME, where bubble size
represents corrected p-value (two-sided Wilcoxon rank-sum test FDR adjusted).
e, Partial correlation coefficient rho (with tumor purity as a covariate) and
-log,o(p-value) between expression level and layer for allgenesin the same
section. Positive correlationindicates higher expressioninthe tumor center
and negative correlationindicates higher expression in the tumor periphery.
Genes are categorized using matching snRNA-seq as follows: purple for tumor-
specific, orange for tumor-enriched, green for stromal-enriched, and light
purplefornot DEG.f, Center-and periphery-enriched genes with their correlation
lines and spatial expression patterns (Pearson correlation). g, Top shared center-
and periphery-enriched genes across cancer types (FDR<0.05and rho>0.1or
rho<-0.1) (partial correlation with Benjamini-Hochberg procedure).
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Extended DataFig. 7| Transcriptional Variability and Pathway Enrichment
in Tumor Subclones. a, Pairwise Pearson correlation of the top 500 most
variable genesinall Ssections of Block HT268B1-Th1H3. Microregions with less
than10spotswere filtered out for this analysis. b, GSEA hallmark pathway
enrichmentanalysis of tumor subclones compared to TME in the first section
(U1) of HT268B1-Th1H3 (Two-sided Wilcoxon rank-sum test FDR adjusted).
Average gene expression of upregulated genesin subclones from GSEA
analysis and example spatial expressionin c,d, Unfolded protein response, and
e, f,MYCtargetvlgenesetinthefirstsection (Ul).g, h, G2M checkpoint, and

i,j,MYCtargetvlgeneset. (i) Genesinvolved in DNAreplication (light blue),
cell cycle progression (light green), and translation initiation (light red) are
highlighted. Average gene expression of upregulated genesin subclones from
GSEA analysis and example spatial expressioninc, e, g, i, (top panels) Module
score, or average expression level of the program, calculated with Seurat
AddModuleScore function (Method) using geneslisted ineach heatmap. The
box plot’scenter line represents the median, with the lower and upper hinges
indicating the first and third quartiles. Whiskers extend to the highest and
lowest values within1.5times theinterquartile range (IQR) from the hinges.
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Extended DataFig. 9 |Spatial Subclone Infiltration and Cell Composition
Across Tumor Layers. a, FDR statistics of comparing infiltration level by cell
type between any two pairs of spatial subclones on the same sample. All
significant FDR (<0.05) of the cell type from each sample was shown here
indicating differential infiltration is observed (n = 16 spatially distinct cases
with available matching deconvolution). b, Cell type composition of 6 regions
defined by the following layers, T3 and above (T3+), T2, T1,E1,E2,and E3 and

above (E3+),in16 cases. ¢, Fraction of macrophage, T cell, fibroblast, and tumor
inCODEX across 6 regions defined by the following layers, T3and above, T2, T1,
E1,E2,and E3 and above. Each data point represents one sample and data points
fromthesame sample are connected. d, Spatial expression of boundary-enriched
genes POSTNand IFI30. e, Example cell-cellinteractions in MK pathway (MDK)
intwo tumor sections, with the arrow direction indicating signal direction and
thearrow lengthindicating signal strength.
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Microregions. a, Analogous Sankey plot and b, tumor volume spatial distributions
onthe ST sections for tissue block HT226C1-Thl. ¢, Analogous Sankey plot and.
d, Histology, spatial tumor microregion, and distribution of tumor volume
Vol.14in HT206BI1-S1. e, Overview of the spatial neighborhood identification
workflow. Briefly, serial sections are registered and then used to train a vision
transformer (ViT) autoencoder that producesimage patchembeddings that

areassigned to neighborhoods and assembled into 3-dimensional volumes.
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numpy v1.21.1, h49503c6_1_cpython

org.Hs.eg.db v3.12.0, R-package
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Visium, sc/snRNA-seq, WES, Xenium, and CODEX imaging data are part of Human Tumor Atlas Network (HTAN) dbGaP Study Accession: phs002371.v3.p1 (https://
www.nchi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v3.p1), and the Data can be accessed through the HTAN DCC Portal (https://
data.humantumoratlas.org/) under the HTAN WUSTL Atlas. Individual samples can be identify using Biospecimen ID from the Sample_ID_Lookup_table.xIsx on the
GitHub page (https://github.com/ding-lab/ST_subclone_publication). GRCh38 references used for sc/snRNA-seq (refdata-gex-GRCh38-2020-A) is freely available
from 10X Genomics website (https://support.10xgenomics.com). The reference GRCh38 genome (GRCh38.d1.vd1.fa.tar.gz) used for WES reads alignment is
available from GDC (https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files). The MSigDB hallmark gene sets is available from GSEA website
(https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). The L1000 perturbation database is available through the resource page on the Harmonizome website
(https://maayanlab.cloud/Harmonizome/resource/LINCS+L1000+Connectivity+Map) and the library page on the Enrichr website (https://maayanlab.cloud/Enrichr/
#libraries).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Patient sex information was collected as part of this study

Reporting on race, ethnicity, or  Patient race or ethnicity information was collected as part of this study
other socially relevant

groupings

Population characteristics Our dataset comprises samples from 6 tumor types, with patients ages 37-82. The distribution of the samples and clinical
information across the cohorts can be found in the Supplementary Table 1, and Extended Data Fig. 1a.

Recruitment Patients who fit the clinical criteria and consented to the study were selected for inclusion in the genetic and molecular

tumor analysis. 75 cases from 6 cancers are part of Human Tumor Atlas Network (HTAN) study, and 3 ccRCC cases are from
Clinical (Clinical Proteomic Tumor Analysis Consortium). There was no self-selection bias or other biases in the recruitment of
patients

Ethics oversight All samples were collected with informed consent at the Washington University School of Medicine in St Louis. Breast cancer
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Ethics oversight (BRCA) samples, pancreatic adenocarcinoma (PDAC) samples, colorectal cancer (CRC) samples, cholangiocarcinoma (CHOL)
samples, renal carcinoma (RCC) samples and uterine corpus endometrial carcinoma (UCEC) samples were collected during
surgical resection and verified by standard pathology (IRB protocol 201108117, 201411135, and 202106166). Tumor samples
were collected during surgical resection and verified by standard pathology.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen based on the availability of samples collected across 6 cancer types. No specific statistical methods were used to
predetermine sample size. This cohort collected a total of 132 sections from 79 cases samples for Visium ST, along with several samples for
paired snRNA-seq, WES, and CODEX. This sample size aligns with or exceeds that of many previously published Visium spatial transcriptomics
data on the date of submission.

Data exclusions  No data were excluded from the analysis

Replication To ensure reproducibility, we used multiple bioinformatics tools for the same analyses and compared results across technologies (including
bulk, single-cell, spatial sequencing, and multiplexed imaging) from the same tumor samples. To confirm subclonal copy number alterations in
tumor spatial regions, we used two independent copy number inference methods, CalicoST (github.com/raphael-group/CalicoST) and
InferCNV (https://github.com/broadinstitute/infercnv) (Supplementary Fig. 5a). We further validated spatial CNV inference with matching
WES-based CNV calling and observed 0.43-0.82 agreement in Jaccard similarity (methods) between the dominant spatial subclone and WES
(Supplementary Fig. 5c). Further, spatial subclonal mutations were validated with matching WES-based mutation calling (with 4%-33% WES
mutations detected in spatial transcriptomics, Supplementary Fig. 5d).

To support our findings in the tumor center and periphery regions, we used matching snRNA-seq from the same tumor samples and
demonstrated expression of most center-enriched and periphery-enriched genes in malignant cells (Supplementary Fig. 8a).

Subclonal tumor microenvironment compositions were confirmed with multiplexed immunostaining with co-detection by indexing (CODEX)
(Fig. 5¢).

Randomization  The study design didn't involve the allocation of patients into treatment groups, therefore the randomization procedure was not relevant.

Blinding The study design didn't involve the allocation of patients into treatment groups, therefore blinding procedure was not relevant.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Antibodies

Antibodies used CD11b (Abcam #ab187537;EP1345Y),CD20 (Abcam #ab236434;SP32),CD31 (Abcam #ab226157;EP3095),CD68 (Abcam
#ab233172;KP1),CK19 (Abcam #ab195872;EP1580Y),GLUT1 (Abcam #ab196357;EPR3915),CD163 (Akoya #4250079;AKYP0114),CD3e
(Akoya #4550125;EP449E),CD4 (Akoya #4550112;EPR6855),CDS8 (Akoya #4250012;C8/144B),FOXP3 (Akoya
#4550071;AKYP0102),HLA-DR (Akoya #4450095;EPR3692),Ki67 (Akoya #4450096;B56),Pan-Cytokeratin (Akoya #4450093;AE-1/
AE-3),Podoplanin (BioLegend #337002;NC-08),Vimentin (BioLegend #677802;091D3),SMA (Invitrogen #MA1-06110;1A4),CD45
(Novus Biologicals #NBP2-34528;2B11+PD7/26),E-cadherin (Thermofisher #33-4000;4A2C7),AQP1 (Abcam
#ab178352;EPR11588(B)),AQP2 (Abcam #ab230170;EPR21080),CALB1 (Abcam #ab233018;EP3478),CK17 (Abcam
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Validation

Plants

#ab239986;EP1623),cKit (Abcam #ab216450;YR145),COX6¢c (Abcam #ab243916;EPR9938),GATA3 (Abcam
#ab214804;EPR16651),Her2 (Abcam #ab194979;EP1045Y),LRP2 (Abcam #ab76969;Polyclonal),MGP (Abcam
#ab273657;0TI18D6),MUC2 (Abcam #ab272706;EPR23479-47),P21 (Abcam #ab212247;CIP1/823),PAl1 (Abcam
#ab237780;EPR21850-82),PLAT/tPA (Abcam #ab240146;EPR7232(2)),PR (Abcam #ab239793;SP2),SOX9 (Abcam
#ab225541;EPR14335-78),UCHL1 (Abcam #ab220823;EPR4118),UMOD (Abcam #ab223540;EPR20071),CK5 (Akoya
#4450090;AKYP0121),ER (Akoya #4250074;AKYP0105),CP (Bethyl Laboratories #A80-124A;Polyclonal),CK14 (BioLegend
#905304;Polyclonal), MLPH (Invitrogen #PA5-118065;Polyclonal),CA9 (Novus Biologicals #NB100-417;Polyclonal),CCL2 (Novus
Biologicals #NBP2-22115;2D8),CK7 (Novus Biologicals #NBP-47940;0V-TL12/30),Hep-Par-1 (Novus Biologicals
#NBP2-45272;HepPar1),CD36 (Cell Signaling Technology #39914;D8L9T), TFF1 (Abcam #ab239908;EPR3972)

Antibodies used in this application have already been used in our laboratory and confirmed by one or more of the following methods.
First: Western blotting produces the correct banding pattern (correct molecular weight, absence in non-transfected cells or protein
extracts from mice deficient for the gene but present in wild-type samples or samples with transfection of an expression construct).
Second, immunostaining shows the correct pattern (correct tissue specificity, intracellular location, absent/low in non-transfected
cells, present/high in transfected cells, colocalization with the tags for fusion proteins expressed in cells). Third, 2 or more
independent antibodies against the same antigen show the same expected pattern.

In addition, we have included detail antibody information in Supplementary Table_04_CODEX_Antibody.xlsx, further validation
images in 2_Response_letter.pdf and 2b_Respons_Ab_IF_testing_0610.pdf

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Describe-any-atithentication-procedures for-each-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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