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Tumour evolution and microenvironment 
interactions in 2D and 3D space
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To study the spatial interactions among cancer and non-cancer cells1, we here 
examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by 
Visium spatial transcriptomics (ST). This was combined with 48 matched single- 
nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX) 
samples. To describe tumour structures and habitats, we defined ‘tumour microregions’ 
as spatially distinct cancer cell clusters separated by stromal components. They 
varied in size and density among cancer types, with the largest microregions observed 
in metastatic samples. We further grouped microregions with shared genetic alterations 
into ‘spatial subclones’. Thirty five tumour sections exhibited subclonal structures. 
Spatial subclones with distinct copy number variations and mutations displayed 
differential oncogenic activities. We identified increased metabolic activity at the 
centre and increased antigen presentation along the leading edges of microregions. 
We also observed variable T cell infiltrations within microregions and macrophages 
predominantly residing at tumour boundaries. We reconstructed 3D tumour structures 
by co-registering 48 serial ST sections from 16 samples, which provided insights into 
the spatial organization and heterogeneity of tumours. Additionally, using an 
unsupervised deep-learning algorithm and integrating ST and CODEX data,  
we identified both immune hot and cold neighbourhoods and enhanced immune 
exhaustion markers surrounding the 3D subclones. These findings contribute to  
the understanding of spatial tumour evolution through interactions with the local 
microenvironment in 2D and 3D space, providing valuable insights into tumour biology.

Treatment-resistant subclones often arise in cancer2,3, and the tumour 
microenvironment (TME) can further drive resistance through multi-
ple mechanisms4,5. Neither bulk6 nor single-cell technologies7 preserve 
the spatial information necessary to understand these dynamics, 
but ST8 instruments, such as Visium9, can resolve tumour substruc-
tures. ST data have been integrated with other data types to examine 
fine-scale clonal structure and to identify cell–cell interactions (CCIs) 
with the microenvironment10. CODEX multiplex imaging11 can further 
complement ST methods by spatially localizing proteins.

Clonal evolution remains one of the most intractable problems of 
cancer12. That is, the spatial and temporal adaptation of a tumour to 
environmental and treatment stimuli through mutation accumulation 
and fitness-based selection12,13. Previous studies have concentrated 

on inferring evolutionary history through mutations, but newer 
technologies, including those mentioned above, have enabled sub-
stantially deeper investigations of spatial clonal dynamics14,15. The 
prospect of applying several such technologies to a large, well-powered, 
cross-cancer cohort to further investigate these phenomena motivates 
the current work.

Here we report the comprehensive characterization of 131 tumour 
ST sections across 6 different cancers: breast cancer (BRCA), colorectal 
carcinoma (CRC), pancreatic ductal adenocarcinoma (PDAC), renal cell 
carcinoma (RCC), uterine corpus endometrial carcinoma (UCEC) and 
cholangiocarcinoma (CHOL). We use an approach that combines ST, 
CODEX and bulk sequencing data and single-cell sequencing data of 
matching samples to profile spatially distinct tumour regions separated 
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by stromal components, which we call ‘tumour microregions’. We dem-
onstrate that there are distinct genetic clones within these microregions 
with specific copy number variations (CNVs) and with differential activ-
ity within oncogenic pathways, particularly the MYC pathway. Notably, 
we show that immune–tumour and stromal–tumour interactions vary 
among these tumour regions. Additionally, our study highlights distinct 
characteristics between primary and metastatic tumours, including 
differences in tumour growth patterns and transcriptional profiles. 
To further support our findings showing that immune populations in 
the TME surround specific spatial tumour regions, we use CODEX and 
a multimodal 3D reconstruction tool trained on adjacent ST sections. 
The results confirm the connectivity of subclones and microregions 
in different sections within 3D space. These reconstructions highlight 

tumour–immune interphase niches and interactions. Overall, this 
spatial omics approach provides deeper insights into clonal evolution 
and the microregional distinctions across six different solid tumour 
types, paving the way to continued advances in understanding the 
mechanisms of therapeutic resistance in cancer.

Spatial microregions across cancers
We profiled 131 tumour sections with ST data from 98 blocks spanning 
6 cancer types as part of the NCI’s Human Tumor Atlas Network: 54 
BRCA, 30 CRC, 23 PDAC, 12 RCC, 5 UCEC and 7 CHOL (Fig. 1a, Extended 
Data Fig. 1 and Supplementary Table 1) from 78 cases (22, 17, 16, 12, 5 
and 6 cases, respectively). Three RCC samples were from the Clinical 
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Fig. 1 | Definition of tumour spatial microregions. a, Sample, data type and 
workflow overview of the spatial subclone cohort of 131 Visium ST sections from 
6 different cancer types with 22 and 48 respective matching CODEX and snRNA 
datasets. Data encompass 54 BRCA, 30 CRC, 23 PDAC, 12 RCC, 5 UCEC and  
7 CHOL samples. Bottom, workflow for generating spatial tumour microregions, 
inferring spatial tumour subclones and conducting downstream analyses. 
Based on the distribution of tumour regions, we separated samples into spatially 
distinct and spatially diffuse cohorts. Analyses included tumour subclone 
evolution analysis, transcriptional similarity and layer-based TME interactions, 
tumour growth pattern construction, and multisection 3D neighbourhood 
reconstructions using custom code (Methods). b, Circular cohort overview 
plot at the tissue block level. The outcrop height of the outermost ring indicates 
the number of sections per tissue block. The top right insert shows a legend, 

with numbers in bubbles indicating counts of tissue blocks with a given number 
of serial sections. Successive rings indicate the cancer type annotated with 
section (tissue block) counts, tumour type, assay type and spatial cohort 
designation. c, Microregion distribution in the spatially distinct cohort at the 
section level coloured by cancer type (left), microregion size group (middle) 
and primary versus metastasis (right). Each circle indicates one microregion. 
The size of each circle represents the size of the microregion. d, Tumour versus 
stromal–immune spot fractions across cancer types for the entire cohort at the 
section level. Each point represents a sample, coloured by type: primary (n = 98 
sections from 60 cases) or metastatic (n = 33 sections from 16 cases). The box 
plot’s centre line represents the median, with the lower and upper hinges 
indicating the first and third quartiles. Whiskers extend to the highest and 
lowest values within 1.5 times the interquartile range (IQR) from the hinges.
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Proteomics Tumour Analysis Consortium. Using histological haematox-
ylin and eosin (H&E) staining and transcriptional profiles, we identified 
tumour microregions as spatially distinct cancer cell clusters separated 
by stromal areas (Methods) and designated Visium spots as malignant 
or non-malignant. We used the Morph toolset to subsequently refine 
tumour boundaries, determine distances of spots from boundaries and 
construct layers of spots, indexing their depths to tumour boundaries 
(Methods). We selected 50 sections with multiple tumour regions as the 
‘spatially distinct cohort’ (Extended Data Fig. 2) and 82 samples with 
diffuse tumour regions as the ‘spatially diffuse cohort’ (Extended Data 
Fig. 3). We also produced serial sections of 15 tumour tissue blocks, 
which resulted in 48 sections suitable for 3D tumour reconstruction 
(Fig. 1b and Extended Data Fig. 4a).

Based on the estimated area per tumour microregion (Methods), 
we categorized microregion sizes as small (<25 spots or 0.22 mm2), 
medium (25–250 spots or 0.22–2.17 mm2) or large (>250 spots or 
2.17 mm2) (Fig. 1d). CRC had larger microregions (average of 2.9 layers) 
than BRCA (average of 2.1 layers; false discovery rate (FDR) = 0.00035, 
Welch’s t-test) and PDAC (average of 2.37 layers; FDR = 0.032, Welch’s 
t-test). Conversely, BRCA and PDAC microregion depths were statisti-
cally indistinguishable (P = 0.18, Welch’s t-test). RCC had the highest 
tumour fraction, whereas PDAC had the lowest (Fig. 1c), which is prob-
ably due to the higher stromal content and lower tumour cell density 
in PDAC16, which in turn leads to smaller microregion sizes. Primary 
tumours generally had more small microregions (66.3%) compared 
to metastases (40.2%), which had more medium-sized microregions 
(43.2%) (Extended Data Fig. 4b,c). Larger microregions were predomi-
nantly found in metastases (16.3% compared with 3.2% in primary), 
which also had deeper microregions than primary tumours (3.4 com-
pared with 1.9 layers; Welch’s t-test FDR < 10−14). This difference held 
for BRCA-only sections (FDR < 10−14), for which we had data for both 
metastases (5 sections, 44 microregions, mean depth of 4.2) and pri-
mary tumours (8 sections, 222 microregions, mean depth of 1.7). These 
results suggest that there is divergent growth between primary and 
metastatic tumours and an organ-specific TME effect on microregion 
growth and organization. Examples include samples HT268B1-Th1H3 
(BRCA liver metastasis) and HT260C1-Th1K1U1 (CRC liver metastasis), 
which had large regions occupying 3–4 mm2 (400–500 spots), whereas 
sample HT270P1-H2U1 (PDAC) had a smaller (mean of 0.2 mm2 or 26 
spots) but greater number of microregions (n = 24) (Extended Data 
Fig. 4d–h). In the spatially distinct cohort, samples with the highest 
microregion counts were from BRCA blocks rich in ductal carcinoma 
in situ (DCIS) (HT397B1-S1H2, HT339B1-S1H3 and HT206B1-S1; Extended 
Data Fig. 4d). This distribution could reflect the tendency of ductal 
cancer cells to grow along the secretion duct in both organs, which 
may explain our observation of numerous small regions.

Focal clonal evolution in microregions
We discerned genome-wide CNVs using CalicoST and InferCNV (Sup-
plementary Fig. 1 and Methods), selecting confident events in each 
microregion by filtering those in matching whole-exome sequencing 
(WES) data (Supplementary Table 2). We then clustered microregions 
into spatial subclones based on CNV similarity (Fig. 2a and Methods). 
We detected spatial CNVs in 125 out of the 131 sections, out of which 
we observed 1–3 subclones per section (about 6.5 × 6.5 mm, 72% with 
a single clone, 20% with 2 subclones and 8% with 3 subclones) (Fig. 2b). 
A single clone can be composed of subclones that our workflow cannot 
detect, such as subclones intermixed in the same microregion and sub-
clones differentiated by genetic alterations not covered by the Visium 
transcriptome. Within these limitations, we identified multiple spatial 
subclones in sections from 4 cancer types: BRCA (17 sections), PDAC 
(10 sections), CRC (6 sections) and RCC (2 sections). CNV profiles of 
spatial subclones were compared with matching WES data and showed 
high genome-wide similarity (Methods and Extended Data Fig. 5a).  

We also mapped somatic mutations onto optimal cutting tempera-
ture (OCT)-embedded ST sections, for which each section showed 
1–98 mutations mapped specifically in tumour regions (Fig. 2c and 
Extended Data Fig. 5b).

Sample HT260C1 (CRC liver metastasis) contained 12 tumour micro-
regions, which mapped to 2 spatial subclones (Fig. 2d). Both clonal 
events (chromosome 13 amplification and chromosome 8p deletion), 
as well as several subclonal events (amplifications in chromosomes 6p, 
12p and 20q in clone c2, and amplification of chromosome 12q in clone 
c1), were identified and confirmed with matching single-nucleus RNA 
sequencing (snRNA-seq) data and WES-based CNV inference (Fig. 2e,f). 
Although histology indicated a fibrotic separation between the two 
subclones, multiple shared clonal CNVs suggested a common origin 
(Fig. 2g). Somatic variants from transcripts provided further supporting 
evidence for tumour clonality. In addition, 17 WES-based somatic muta-
tions were mapped to ST (Extended Data Fig. 5c). Several mutations 
showed differential variant allele frequency (VAF) in tumour regions 
compared with normal regions (Extended Data Fig. 5c, left) and differ-
ential VAFs between the two subclones (Extended Data Fig. 5c, right). 
Both subclones showed LDHB expression, and a VAF for mutation LDHB 
c.921G>A was significantly higher in subclone c2 than in c1 (Fig. 2h,i; 
P = 6.58 × 10–6, two-sided proportion test). Using Xenium data, we ana-
lysed both LDHB wild-type (WT) and c.921G>A alleles on a matching 
tumour section, the WT allele in both subclones and the mutant allele 
in subclone c2 (Fig. 2j). Subclone c2 diverged from c1, with a gain of 
unique genetic alterations in both CNV and mutations. Similarly, a 
BRCA liver metastasis sample, HT268B1, showed two distinct spatial 
subclones that were supported by matching snRNA-seq data, with 
chromosomal-arm-level CNV differences (Extended Data Fig. 5d–g) and 
subclonal mutations (Extended Data Fig. 5h). For example, EEF1A1 was 
expressed in both spatial clones, whereas mutation EEF1A1 1324G>C 
was specifically observed in subclone c2 (proportion test FDR < 0.05; 
Extended Data Fig. 5i,j).

Primary PDAC samples, despite their smaller microregions, also 
contained multiple spatial subclones. Sample HT270P1 showed three 
subclones across two sections from two tumour blocks with OCT and 
formalin-fixed paraffin-embedded (FFPE) preservation, respectively 
(Supplementary Fig. 2a). Most primary BRCA cases showed that all 
tumour microregions belonged to a single genetic clone, such as 
HT206B1 across five serial sections (Supplementary Fig. 1b). In seven 
out of nine cases, a single subclone encompassed both DCIS and inva-
sive ductal carcinoma (IDC) morphology, which indicated that the 
transition between them happens without large copy number altera-
tions (Supplementary Fig. 2b). However, primary BRCA sample HT397B1 
showed three spatial subclones across four sections from two tumour 
blocks (Supplementary Fig. 2a). Two of the clones showed both DCIS 
and IDC morphologies, whereas clone 3 only showed IDC morphology, 
which indicated a parallel transition from DCIS to IDC between the 
spatial subclones (Supplementary Fig. 2b).

Single-nucleotide polymorphisms reveal copy-number-neutral loss 
of heterozygosity that is missed by read-depth inference alone. A CRC 
liver metastasis sample (HT112C1-Th1) with strong B allele frequency 
deviation in copy-number-neutral chromosome 21 indicated a sub-
clonal genetic alteration in clone A (Supplementary Fig. 2a). These 
observations collectively suggest that spatial subclones within a 
tumour section probably stem from a common ancestor.

Genetic changes drive tumour disparities
To mitigate the influence of infiltrating immune and stromal cells, 
we first excluded organ-specific, non-malignant cell-type marker 
genes using snRNA-seq data (Methods). Subsequently, we used an 
entropy-based method, ROGUE, to analyse transcriptional heteroge-
neity among tumour microregions (Methods). Our analysis revealed 
that PDAC had the highest heterogeneity (0.1–0.6), whereas BRCA, 
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CRC, RCC and UCEC had moderate levels (0.05–0.45), and CHOL had 
the lowest levels (<0.2) (Extended Data Fig. 6a). To further investigate 
the effect of genetic alterations and microenvironmental adaptations 
on transcriptional profiles, we assessed transcriptional similarity using 
pairwise Pearson correlation among tumour microregions (Methods), 
comparing within and between different genetic clones. We observed 
greater similarity within subclones (Extended Data Fig. 6b, green) 
compared with between different subclones (Extended Data Fig. 6b, 
orange) across all samples from BRCA, CRC, PDAC and RCC (Extended 
Data Fig. 6b and Methods). This pattern remained consistent in both 
primary and metastatic samples in BRCA and CRC, which underscores 
the central role of genetic composition in shaping transcriptional simi-
larities across microregions.

To understand the activation of oncogenic pathways across micro-
regions, we performed gene set enrichment analysis (GSEA) with dif-
ferentially expressed genes (DEGs) between tumour microregions 
and stroma regions (Methods). Our analysis identified common path-
ways such as MYC and E2F shared across microregions, but distinct 

pathways, such as the unfolded protein response, that was specific to 
some microregions in sample HT268B1 (BRCA metastasis) (Extended 
Data Fig. 7a–f). Here genetic alterations controlled the transcriptional 
profile, whereas in other samples, subtle variations arose from the 
local microenvironment or undetected genetic events. For example, 
sample HT260C1 showed two subclones with distinct copy number 
profiles (Fig. 2d), whereas microregions within clone 1 had varying 
expression similarities, despite having similar CNVs (Extended Data 
Fig. 6c, indicated by the dotted boxes).

When applying GSEA to identify subclone-specific pathways, we 
found varied microregional expression levels within the G2M check-
point pathway in clone 1 (Extended Data Figs. 6d and 7g,h, indicated 
by the dotted boxes) in sample HT260C1. This pattern was mirrored in 
MYC for both metastasis samples HT260C1 and HT268B1, with distinct 
sets of MYC downstream genes among tumour subclones (Extended 
Data Fig. 7e,f,i,j and Supplementary Fig. 3). This result underscores the 
complexity of this pathway, which is commonly dysregulated in cancer 
and influences many oncogenic processes17. Clone 2 of HT260C1 had 
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an enrichment of translation initiation complex (eIF family) and G1S 
progression (CDK4), whereas clone 1 had DNA replication genes (MCM 
family) (Extended Data Fig. 7i).

Enrichment tests using Enrichr with the drug perturbation data-
set LINCS L1000 (Methods) predicted varying treatment responses 
of subclones (Supplementary Fig. 4). For instance, all subclones in 
HT397B1-S1H3 and HT112C1-Th1 should respond to the mTOR inhibitor 
torin-2, but only clone 1, not clone 2, in HT268B1-Th1K3 responded. This 
variation underscores the importance of profiling spatial subclones.

Cellular pathways at the tumour core and edge
We further investigated whether different transcriptional programs 
exist in tumour microregion centres (cores) compared to their leading 
edges (interfaces between the tumour and the TME–stroma). To that 
end, we used Morph to measure the distance of each tumour spot to 
its nearest tumour–TME border (Methods and Extended Data Fig. 8a). 
The relationship between the total layer depth of a microregion and its 
size (total area measured as the number of spots occupied) describes 
the general shape of the region (Extended Data Fig. 8b). The dashed 
reference line indicates the depth–size relationship of perfectly cir-
cular regions. For all five cancer types in the spatially distinct cohort 
(n = 50), smaller regions tended to exhibit near-circular shapes. But as 
the layer depth increased, regions tended to deviate from their circular 
shape, and an expanded interface between tumour and non-tumour 
cells arose.

Spatial gene expression profiles can also be characterized in terms 
of layer depth. For each layer-assigned spot, we independently per-
formed a linear regression between gene expression and spot depth 
for each gene. Tumour purity estimates using the methods RCTD18 or 
ESTIMATE19 were included as a covariate to adjust for possible purity 
decreases towards section edges (Methods). A positive correlation 
with depth indicates increased gene expression towards the tumour 
core and vice versa. In the CRC metastasis sample HT260C1, the top 
centre-enriched genes (CKB and VEGFA) and periphery-enriched genes 
(HSP90AB1 and LDHB) are shown with the regression line and spatial 
expression pattern in Extended Data Fig. 6e,f. Also shown are respective 
top centre-enriched (NDRG1, S100A2 and CA9) and periphery-enriched 
genes (TUBA1B, NDUFA4 and TOMM40) for HT206C1 in Extended Data 
Fig. 8c–e. These results were supported by snRNA-seq data from match-
ing tumour samples, which demonstrates that the top shared genes are 
mainly expressed by malignant cells, with small contributions from 
immune and stroma cells (Supplementary Fig. 5a–d).

We subsequently identified genes recurrently enriched in tumour 
centres and in peripheries across cases (Extended Data Fig. 6g). Top 
shared centre-enriched genes were involved in ribosome assembly 
(RPL and RPS family genes such as RPS4X, RPL22 and RPL4), along with 
genes such as TXN20, C5orf46 (ref. 21) and the long non-coding RNA 
SNHG29 (ref. 22), which are linked to tumour growth in various cancer 
types. By contrast, the tumour periphery was enriched in the following 
genes: a different set of ribosomal RPL and RPS genes (RPL35, RPLP1 
and RPS27); ENO1, a multifunctional oncoprotein involved in glyco-
lysis, invasion and immunosuppression23; TMSB10, which promotes 
proliferation and invasion in BRCA24; and ISG15, which induces the 
formation of M2 macrophages25. These differential biological processes 
indicate that malignant cells in the core are actively undergoing protein 
translation, whereas those at the edges are involved in tumour migra-
tion and immune modulation, interfacing with immune and stromal 
components.

Clonal-specific tumour–TME interactions
To investigate TME composition in tumour boundary regions, we 
examined the differential infiltration of non-tumour cells between 
tumour spatial subclones, the location of such infiltration and genes 

and CCIs enriched in boundary regions (Fig. 3a). We used matching 
snRNA-seq data as a reference for spot-level cell-type deconvolution 
and performed pairwise differential infiltration analysis between all 
spatial subclones of the same sample. Top differential cell types in terms 
of infiltration included macrophages in BRCA, hepatocytes in CRC and 
fibroblasts in PDAC (Extended Data Fig. 9a). A primary BRCA sample, 
HT397B1, with three spatial subclones showed differential infiltration 
in both T cells and macrophages, with subclone c3 showing the largest 
fraction of both (Fig. 3b). CODEX data validated the increased level 
of T cell markers (CD3 and CD8) and the non-T cell immune marker 
(HLA-DR) staining in subclone c3.

We used the above-described layer assignments to ascertain whether 
infiltration exhibits spatial patterns, and we defined six ordered regions 
from the tumour core to the TME: T3+, T2, T1, E1, E2 and E3+. These 
showed the expected decreasing trend for tumour cells (Extended 
Data Fig. 9b), but various patterns for non-tumour cells. Macrophages 
clustered outside the tumour in E1 and E2, whereas T cells showed infil-
tration both immediately outside (E1 and E2) and inside the tumour (T1 
and T2) (Fig. 3c). Both macrophage and T cell fractions were decreased 
in the distant TME (layer E3+) where fibroblasts dominate, an obser-
vation supported by CODEX data (Extended Data Fig. 9c). With an 
inter-layer distance of only 100 µm, our observation indicates that 
there is strong spatial recruitment of immune cells by tumours at the 
microscopic level.

We also performed differential expression analysis between the 
boundary regions T1 and E1 and with all other spots (Fig. 3d). Top bound-
ary genes shared across samples and cancer types included genes of 
extracellular matrix proteins (POSTN and FN1) and interferon-induced 
macrophage activation proteins (IFI30) (Extended Data Fig. 9d). 
Matching snRNA-seq data showed that the top boundary genes had 
significantly higher expression (adjusted P < 0.05, Bonferroni cor-
rection) across the cohort in non-tumour cell types (POSTN, FN1 and 
TIMP1 in fibroblasts and IFI30 in macrophages), which suggested that 
there are interactions between tumour and non-tumour cells at the 
boundary (Fig. 3d). To quantify spatial CCIs, we ran COMMOT on 18 
cases with 39 sections and then discerned differential receiver–sender 
signals between spots within and outside tumour boundary regions. 
The top shared CCIs in boundary regions were extracellular matrix 
(ECM) receptors (collagen, laminin, FN1 and THBS), secreted signal-
ling (SEMA3, SEMA4, ncWNT and MK) and cell–cell adhesion (EPHB 
and NOTCH) (Fig. 3e). As an example, the MK pathway was observed in 
CRC, PDAC and BRCA samples, for which the signal goes from malignant 
cell regions to the TME interface (Extended Data Fig. 9e). The pathway 
included interactions between the ligand MDK and the receptors NCL 
and SDC4 (ref. 26). Malignant cells secrete MDK to create an immuno-
suppressive and angiogenic environment27, which in turn promotes 
tumour growth. We also found ECM pathways for which the signal goes 
from the TME towards malignant cell regions. One of the top interac-
tions, the THBS pathway, describes ECM components THBS1–THBS4 
(which encodes thrombospondin) binding to cell surface receptors 
CD36 and CD47, which in turn modulate cell adhesion, proliferation 
and angiogenesis28–30. Enrichment of tumour-associated immune cells, 
genes and CCIs within 200-µm-wide boundary regions illustrates com-
munication between malignant cells and their environment that would 
be invisible to spatially agnostic technologies.

3D tumour structure and TME interactions
To investigate tumour growth patterns and TME interactions in 3D, 
we serially sectioned tumours from BRCA, CRC, PDAC and CHOL, con-
ducting ST on 11 samples and CODEX on 2 samples. Using PASTE2, 
we co-registered 48 sections from the 11 ST specimens to construct 
tumour volumes (Fig. 4a and Methods). Our analysis revealed varia-
tions in tumour volume numbers among samples, with BRCA show-
ing the highest volume count (Fig. 4b), particularly in samples with 
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prominent miniature duct-like tumour growth patterns (HT206B1-S1, 
1A–1E; HT339B1-S1H3, 3D and 3E; and HT397B1-S1H3, 4B–4D; Extended 
Data Fig. 2). By contrast, CHOL, CRC, PDAC and other BRCA sections 
exhibited more invasive tumours that formed larger, continuous struc-
tures that resulted in fewer but larger volumes.

We then analysed these tumour volumes for structural complexity 
using two topological metrics: (1) connectivity (degree), which meas-
ures the number of connections to adjacent microregions, and (2) the  
number of loops per volume, which indicates instances in which adja-
cent sections split and merge to form doughnut-shaped structures. 
The maximum connectivity score serves as an indicator of tumour 
structural complexity. Of the 15 tumour volumes analysed, 8 (6 BRCA,  
1 CHOL and 1 CRC) had a maximum connectivity score exceeding 5, 
which reflected the frequent formation of complex branching struc-
tures in these tumours (Fig. 4c). The highest connectivity score of 11 was 
observed in CHOL sample HT226C1-Th1, which resulted from a large 
merged volume in U1 that fragmented into smaller microregions in the 
adjacent section U2 (Extended Data Fig. 10a,b). Additionally, 5 out of 
81 volumes across 15 tumour pieces contained complex loop struc-
tures, with the highest loop count of 12 found in volume 14 of sample 

HT206B1 (Extended Data Fig. 10c). These loops probably result from 
the interwoven DCIS-like growth pattern in volume 14, as confirmed 
by its histology (Extended Data Fig. 10d).

We selected a BRCA liver metastasis sample, HT268B1-Th1H3, for 
detailed 3D volume reconstruction and structural analysis. This sample 
contained four tumour volumes (volume 1 to volume 4) (Fig. 4d,e). 
Volumes 1, 3 and 4 formed separate subvolumes within clone 2, which 
probably connected beyond the approximately 300 µm tissue section 
examined. Volume 2, the largest and most complex volume, belonged 
solely to clone 1, with a maximum connectivity of 8 and 6 loops, which 
indicated substantial branching and merging (Fig. 4d). Histological 
images of HT268B1 (Extended Data Fig. 2a–e) confirmed visible split-
ting and merging, thereby demonstrating that even tumours without 
clear ductal or lobular structures can exhibit diverse growth patterns, 
invasive behaviour and complex branching.

We next used an unsupervised deep-learning approach to identify 
3D cellular neighbourhoods in serial-sectioned ST datasets (Meth-
ods). After registration of serial sections, a vision transformer (ViT) 
autoencoder was trained on ST, CODEX and H&E sections. Annotated 
image patches were then used to construct 3D cellular neighbourhoods, 
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which enabled the discovery of these neighbourhoods across multi-
ple sections (Extended Data Fig. 10e and Supplementary Fig. 7b). We 
applied this approach to a primary BRCA sample HT397B1 (six H&E, 
four CODEX and two Visium ST sections) and a BRCA liver metastasis 
sample HT268B1 (four Visium ST sections) (Extended Data Fig. 10f and 
Supplementary Fig. 7c,d).

In sample HT268B1, neighbourhoods with at least 60% overlap 
with previously defined spatial subclones (Fig. 2d) were classified as 
tumour-enriched, with the remainder as TME neighbourhoods (Meth-
ods). Two of these neighbourhoods (4 and 6) were in close contact 
with the periphery of both subclones (Fig. 5a,b). Notably, when viewed 
in 3D space, the neighbourhoods largely contiguously surround the 
subclones, except for the upper portion of the block where the neigh-
bourhoods were more broken. We then quantified these two neighbour-
hoods based on shared and unique DEGs (Fig. 5c), and we found immune 
responses (IFI27 and HLA-DRA) and stromal (BST2 and SPARC) genes 
in both. Neighbourhood 4 was enriched in HMGA1, which regulates 
chromatin structure and has a role in malignant cell progression31,32, 
and TYMP, a factor involved in angiogenesis33,34. Neighbourhood 6 
was enriched for genes important for immunoregulatory (CCL19) and 
immunoglobulin receptor binding (IGLC2, IGHG1 and IGKC), which 
are prognostic in BRCA35,36. In three dimensions, we continued to see 
clear association of these DEGs, in particular TYMP1 and IGLC2, with 
clones 1 and 2, respectively, throughout the tissue volume (Fig. 5d and 
Extended Data Fig. 10g).

The primary BRCA sample HT397B1 had two main regions of TME–
tumour morphology: an immune-cold area with both DCIS and IDC 
morphologies containing clones 1 and 2, and an immune-hot IDC region 
that harboured clone 3 (Figs. 5e,f and 3b and Supplementary Fig. 2b). We 
stratified TME neighbourhoods by their contact fraction with clone 3, 

which highlighted the top and bottom quartiles (Fig. 5e,g). According 
to CODEX-based cell-type annotations, neighbourhoods associated 
with clone 3 had a higher fraction of T cells and a decreased fraction of 
fibroblast cells compared with those near clones 1 and 2, a result that 
aligned with previous findings (Figs. 5g and 3b). To further verify the 
immune–stromal status of these neighbourhoods, we selected two 
regions of interest (ROIs): ROI 1, located in the immune-cold clone 2, 
and ROI 2, located in the immune-hot clone 3. ROI 1 had low fractions of 
macrophages, T cells and B cells, whereas ROI 2 had much higher levels 
of these cell types (Fig. 5f). These trends were also evident in CODEX 
sections, for which immune markers were more intense in ROI 2. Addi-
tionally, ROI 1 showed an increased fibroblast cell fraction, with smooth 
muscle actin (SMA) highly expressed in the myoepithelium surrounding 
the tumour regions, a hallmark of DCIS. Our findings indicate that these 
cell-type associations and DCIS and IDC-like subclones are consistent 
in three dimensions, based on calculated cell-type densities around 
the 3D tumour volume and the generation of immune, stromal and 
epithelial volumes (Fig. 5h and Extended Data Fig. 10h). These analyses 
demonstrate that 3D reconstruction offers increased sensitivity for 
investigating heterogeneous tumour microenvironments.

Discussion
This study identified genomically distinct spatial microregions and 
spatially distributed subclones in samples across solid tumour types. 
We propose that CNV variability is a major driver of the transcriptional 
variation seen in these microregions. Spatial subclones identified in 
the same tumour block shared a common ancestry, a finding congru-
ent with previous studies of tumour evolution37–39. A second major 
driver of variability is exposure to the TME, and we observed distinct 
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transcriptional patterns associated with cancer cell depth from the 
microregion edge, as well as specific enriched gene expression in 
edge cells adjacent to immune cells of the TME. Finally, 3D tumour 
volume reconstruction identified 3D neighbourhoods of regional 
TME variation.

We observed genomic and transcriptomic heterogeneities among 
tumour microregions in multiple samples. Although some tumours 
were relatively consistent in their transcriptomic profiles, others 
could be subdivided according to gene expression. This variability 
was partially explained by mapping copy number events to ST regions. 
Distributions of cancer subclones with genetic variations have been 
mapped across tissues40–43, and mutation-based subclones in spatial 
regions within a single tumour have been demonstrated15. In addition 
to spatial mutation mapping from transcriptome and validation with 
allele-specific in situ hybridization, we characterized spatial tumour 
heterogeneity according to changes in gene expression related to 
the proximity of immune and stromal cell types compared with more 

insulated cancer cells within spatial microregions. A more nuanced 
understanding of the way cancer and TME cells shape each other within 
tumours is needed to better exploit these interactions therapeutically.

Subclonal evolution is a major driver of therapeutic resistance, with 
the emergence of resistant subclones often resulting in treatment 
failure2,3,44. Here we characterized the structure and distribution of 
spatially distinct tumour subclones in multiple solid tumours and 
showed that they can exhibit varying responses to identical compounds 
through perturbation gene set overlap analysis. Future translational 
work will probably investigate subclones under the varying selective 
pressures of anticancer therapies, which will help to guide the design 
of new approaches, such as optimizing the combination of local and 
systemic therapies.

There are several limitations of the study. RNA-inferred spatial CNV 
captures large genetic events but not focal copy number changes. 
Spatial mutation mappings provide additional support on subclonal 
identifications, but with the limitation that only mutations near the 
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highest contact fraction with the subclone boundary, are displayed in 3D and  
as a 2D plane overlaid with subclone annotations. Scale bar, 1,000 µm. b, TME 
neighbourhoods displayed by contact fraction with the subclone boundary.  
c, DEGs were categorized into three groups: unique to neighbourhood 4, 
unique to neighbourhood 6, and shared. Spatial expressions of selected genes 
from each group are shown (bottom), with genes mentioned in the main text 
highlighted in bold. d, 3D reconstruction of tumour regions, where tumour 
surface mesh is coloured by the transcript density of TYMP1 and IGLC2 within  
a 50-µm radius of a given location. e, For HT397B1, a primary BRCA sample, 
integrated 3D neighbourhood volumes were generated with 6 H&E, 2 Visium ST 

and 4 CODEX sections spanning 155 µm. TME neighbourhoods described in f 
are shown as a 3D volume. f, Visualization of two ROIs in HT397B1, specifically 
the more immune-cold ROI 1 and immune-hot ROI 2. 2D slices of the 3D volume 
with quartile-highlighted neighbourhoods associated with each ROI are shown. 
Visium ST slides (U1 and U8) are shown as RCTD-imputed cell-type fractions. 
For CODEX slides (U2, U6, U9 and U12), DAPI, pan-cytokeratin (PanCK), SMA, 
HLA-DR, CD45 and CD8 are displayed. Scale bar, 500 µm. g, TME neighbourhoods 
are displayed as a fraction of contact with the border of each of the three subclones. 
Additionally, cell type fraction of CD8+ and CD8– T cells and fibroblasts are 
shown. Cell-type fractions were calculated from CODEX sections. The top and 
bottom quartiles of neighbourhoods with respect to contact fraction with 
subclone 3 are emphasized as dashed boxes. h, 3D epithelial (PanCK, red), 
immune (CD45, green) and stromal (SMA, white) surface volumes generated 
from CODEX sections. Scale bar, 500 µm.
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3′ end of each transcript are preferentially detected. Additionally, our 
ST dataset does not achieve single-cell resolution with the current 
platform (55-µm-diameter spot). Matching snRNA-seq was used to 
infer tumour–non-tumour expression and CODEX imaging was used 
to validate our findings on TME composition. However, direct spatial 
expression from different cell types of origin remains inferred. In clos-
ing, our reconstructed 3D data enabled spatial investigation of tumour 
architecture, subclones, cellular neighbourhoods and TME. We antici-
pate that such analysis will rapidly establish itself more broadly within 
cancer research45. Coming advancements in technology will facilitate 
even deeper analyses and will further empower future tumour studies.
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Methods

Experimental methods
Specimens and sample processing. All samples were collected with 
informed consent at the Washington University School of Medicine in 
St Louis. Samples from BRCA, PDAC, CRC, CHOL, RCC and UCEC were 
collected during surgical resection and verified by standard patho-
logy (institutional review board protocols 201108117, 201411135 and 
202106166). After verification, a 1.5 × 1.5 × 0.5 cm3 portion of the tumour 
was removed, photographed, weighed and measured. Each portion 
was then subdivided into 6–9 pieces and then further subdivided into 
4 transverse-cut pieces. These four pieces were then each respec-
tively placed into formalin, snap-frozen in liquid nitrogen, DMEM and 
snap-frozen before embedding in OCT. The purpose of choosing grid 
processing over punch sampling was utility-based, as it minimized  
remaining tissue. Relevant protocols can be found at protocols.io 
(https://doi.org/10.17504/protocols.io.bszynf7w)46.

ST preparation and sequencing. OCT-embedded tissue or FFPE tissue 
samples were sectioned and placed on a Visium Spatial Gene Expression 
Slide following the Visium Spatial Protocols–Tissue Preparation guide. 
Samples used for serial sections were sectioned and collected with 
an interval range from 5 to 100 µm. When doing serial sectioning, the 
first section was named as U1, followed by U2, U3, and so on. Selected 
sections were loaded onto Visium slides and the distance between each 
section was recorded. For OCT-embedded samples, detailed methods 
have been described in a previous publication10. In brief, fresh tissue 
samples were coated with room temperature OCT without any bubbles. 
After RNA quality check using a Tapestation and a morphology check 
using H&E staining for the OCT-embedded tissue samples, blocks were 
scored into a suitable size that fit the capture areas and then sectioned 
into 10-µm sections. Sections were then fixed in methanol, stained with 
H&E and imaged at ×20 magnification using the bright-field imaging 
setting on a Leica DMi8 microscope. Tissue samples were then permea-
bilized for 18 min and ST libraries were constructed following the Visium 
Spatial Gene Expression Reagent kits user guide CG000239 Rev A (10x 
Genomics). cDNA was reverse transcribed from the poly-adenylated 
messenger RNA, which was captured using primers on the slides. Next, 
the second strand was synthesized and denatured from the first strand. 
Free cDNA was then transferred from slides to tubes for further amplifi-
cation and library construction. Libraries were sequenced on a S4 flow 
cell of an Illumina NovaSeq-6000 system. For FFPE samples, detailed 
methods have been described in a previous publication47. In brief, qual-
ity control was done by evaluating DV200 of RNA extracted from FFPE 
tissue sections per the Qiagen RNeasy FFPE Kit protocol, then followed 
by performing the Tissue Adhesion Test described in the 10x Genomics 
protocol. Sections (5 µm) were placed on a Visium Spatial Gene Expres-
sion Slide according to the Visium Spatial Protocols–Tissue Preparation 
guide (10x Genomics, CG000408 Rev A). After overnight drying, slides 
were incubated at 60 °C for 2 h. Deparaffinization was then performed 
following the protocol for Visium Spatial for FFPE–Deparaffinization, 
H&E staining, Imaging and Decrosslinking (10x Genomics, CG000409 
Rev A). Sections were stained with H&E and imaged at ×20 magnifica-
tion using the bright-field imaging setting on a Leica DMi8 microscope. 
Afterwards, decrosslinking was performed immediately for H&E stained 
sections. Next, human whole transcriptome probe panels were added 
to the tissue. After these probe pairs hybridized to their target genes 
and ligated to one another, the ligation products were released fol-
lowing RNase treatment and permeabilization. The ligated probes 
were then hybridized to the spatially barcoded oligonucleotides on 
the capture area. ST libraries were generated from the probes and  
sequenced on a S4 flow cell of an Illumina NovaSeq 6000 system. Rel-
evant protocols can be found at protocols.io (https://doi.org/10.17504/
protocols.io.x54v9d3opg3e/v1 and https://doi.org/10.17504/protocols.
io.kxygx95ezg8j/v1)48,49.

CODEX preparation and imaging. Carrier-free monoclonal or 
polyclonal anti-human antibodies were purchased (Supplementary  
Table 3) and verified using immunofluorescence (IF) staining in multiple 
channels. After screening, antibodies were conjugated using an Akoya 
Antibody Conjugation kit (Akoya Biosciences, SKU 7000009) with 
a barcode (Akoya Biosciences) assigned according to the IF staining 
results. Several common markers were directly purchased through 
Akoya Biosciences. CODEX staining and imaging were performed  
according to the manufacturer’s instructions (CODEX user manual, Rev 
C). In brief, 5-µm FFPE sections were placed on coverslips coated with 
APTES (Sigma, 440140) and baked at 60 °C overnight before deparaffi-
nization. The next day, tissues were incubated in xylene, rehydrated in 
ethanol and washed in ddH2O before antigen retrieval with TE buffer, 
pH 9 (Genemed, 10-0046) in boiling water for 10 min in a rice cooker. 
The tissue samples were then blocked using blocking buffer (CODEX 
staining kit, SKU 7000008) and stained with the marker antibody 
panel to a volume of 200 µl for 3 h at room temperature in a humidi-
fied chamber. The dilution factor for each antibody is provided in the 
CODEX cycle information sheet (Supplementary Table 3). Imaging of 
the CODEX multicycle experiment was performed using a Keyence 
fluorescence microscope (model BZ-X810) equipped with a Nikon CFI 
Plan Apo λ ×20/0.75 objective, a CODEX instrument (Akoya Biosciences) 
and a CODEX instrument manager (Akoya Biosciences). The raw images 
were then stitched and processed using the CODEX processor (Akoya 
Biosciences). After multiplex imaging was completed, H&E staining 
was performed on the same tissue. Staining quality for each antibody 
in CODEX is shown as a single channel in green with DAPI in blue in 
Supplementary Figs. 10 and 11.

Single-nucleus suspension preparation. Approximately 20–30 mg 
of flash-frozen or cryopulverized or 200 µm of OCT sections of tissue 
from each sample were retrieved and aliquoted for nucleus preparation 
for use in a Next GEM Single Cell Multiome ATAC + Gene Expression kit 
or a Next GEM Single Cell 3′ Kit v.3.1 kit. Samples were resuspended in 
lysis buffer (10 mM Tris-HCl (pH 7.4) (Thermo, 15567027), 10 mM NaCl 
(Thermo, AM9759), 3 mM MgCl2 (Thermo, AM9530G), 0.10% NP-40 
substitute (% v/v) (Sigma, 74385-1L), 1 mM DTT (Sigma, 646563), 1% 
stock BSA solution (% v/v) (MACS, 130-091-376), nuclease-free water 
(Invitrogen, AM9937), plus 0.1 U µl–1 RNase inhibitor), resuspended 
and homogenized through douncing, and filtered through a 40-µm 
cell strainer (pluriSelect), then diluted with wash buffer (2% BSA, 1× 
PBS and RNase inhibitor). The filtrate was collected, then centrifuged 
at 500g for 6 min at 4 °C. The nuclear pellet was then resuspended in 
BSA wash buffer with RNase inhibitor, stained with 7AAD, and nuclei 
were purified and sorted by FACS. Relevant protocols can be found at 
protocols.io (https://doi.org/10.17504/protocols.io.14egn7w6zv5d/v1, 
https://doi.org/10.17504/protocols.io.261gednx7v47/v1)50,51.

Single-cell suspension preparation. Approximately 15–100 mg of 
each tumour was cut into small pieces using a blade. Enzymes and 
reagents from a Human Tumour Dissociation kit (Miltenyi Biotec, 
130-095-929) were added to the tumour tissue along with 1.75 ml of 
DMEM. The resulting suspension was loaded into a gentleMACS C-tube 
(Miltenyi Biotec, 130-093-237) and subjected to the gentleMACS 
Octo Dissociator with Heaters (Miltenyi Biotec, 130-096-427). After  
30–60 min on the heated dissociation programme (37h_TDK_1), sam-
ples were removed from the dissociator and filtered through a 40-µm 
mini strainer (PluriSelect, no. 43-10040-60) or a 40-µm nylon mesh 
(Fisher Scientific, 22-363-547) into a 15-ml conical tube on ice. The 
sample was then spun down at 400g for 5 min at 4 °C. After remov-
ing the supernatant, when a red pellet was visible, the cell pellet was 
resuspended using 200 µl to 3 ml ACK lysis solution (Thermo Fisher, 
A1049201) for 1–5 min. To quench the reaction, 10 ml PBS (Corning;  
21-040-CM) with 0.5% BSA (Miltenyi Biotec; 130-091-376) was 
added and spun down at 400g for 5 min at 4 °C. After removing the 
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supernatant, the cells were resuspended in 1 ml PBS with 0.5% BSA, 
and live and dead cells were visualized using trypan blue. Finally, the 
sample was spun down at 400g for 5 min at 4 °C and resuspended in 
500 µl to 1 ml PBS with 0.5% BSA to a final concentration of 700–1,500 
cells per µl. The protocol is available at protocols.io (https://doi.
org/10.17504/protocols.io.bsnqnddw)52.

Single-nucleus library preparation and sequencing. Nuclei and cells 
and barcoded beads were isolated in oil droplets using a 10x Genomics 
Chromium instrument. Single-nucleus suspensions were counted and 
adjusted to a range of 500–1,800 nuclei per µl using a haemocytometer. 
Reverse transcription was subsequently performed to incorporate 
cell and transcript-specific barcodes. All snRNA-seq samples were run  
using a Chromium Next GEM Single Cell 3′ Library and Gel Bead kit 
v.3.1 (10x Genomics). For the multiome kit, Chromium Next GEM Sin-
gle Cell Multiome ATAC + Gene Expression was used (10x Genomics). 
Nuclei were then subjected to downstream protocols by 10x (Next GEM  
Single Cell Multiome ATAC + Gene Expression: https://cdn.10xgenomics.
com/image/upload/v1666737555/support-documents/CG000338_
ChromiumNextGEM_Multiome_ATAC_GEX_User_Guide_RevF.pdf. Next  
GEM Single Cell 3′ Kit v3.1: https://support.10xgenomics.com/ 
single-cell-gene-expression/library-prep/doc/user-guide-chromium- 
single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index). Single- 
cell suspensions were subject to the Next GEM Single Cell 3′ Kit v.3.1 
protocol. Barcoded libraries were then pooled and sequenced on an 
Illumina NovaSeq 6000 system with associated flow cells.

Genomic DNA extraction. Tumour tissue samples were obtained 
from surgically resected specimens. After a piece was removed for 
fresh single-cell preparation, the remaining sample was snap-frozen 
in liquid nitrogen and stored at −80 °C. Before bulk DNA extraction, 
samples were cryopulverized (Covaris) and aliquoted for bulk extrac-
tion. Genomic DNA was extracted from tissue samples with either a 
DNeasy Blood and Tissue kit (Qiagen, 69504) or a QIAamp DNA Mini 
kit (Qiagen, 51304). Genomic germline DNA was purified from cryo-
preserved peripheral blood mononuclear cells using a QIAamp DNA 
Mini kit (Qiagen, 51304) according to the manufacturer’s instructions 
(Qiagen). The DNA quantity was assessed by fluorometry using a Qubit 
dsDNA HS assay (Q32854) according to the manufacturer’s instruc-
tions (Thermo Fisher Scientific). Protocols are available at protocols.
io (https://doi.org/10.17504/protocols.io.bsnhndb6)53.

WES analysis. About 100–250 ng of genomic DNA was fragmented 
on a Covaris LE220 instrument targeting 250-bp inserts. Automated 
dual-indexed libraries were constructed using a KAPA Hyper library 
prep kit (Roche) on a SciClone NGS platform (Perkin Elmer). Up to ten 
libraries were pooled at an equimolar ratio by mass before the hybrid 
capture targeting a 5-µg library pool. The library pools were hybrid-
ized using xGen Exome Research Panel v.1.0 reagent (IDT Technolo-
gies), which spans a 39-Mb target region (19,396 genes) of the human 
genome. The libraries were hybridized for 16–18 h at 65 °C followed by 
a stringent wash to remove spuriously hybridized library fragments. 
Enriched library fragments were eluted and PCR cycle optimization 
was performed to prevent overamplification. The enriched libraries 
were amplified using KAPA HiFi master mix (Roche) before sequenc-
ing. The concentration of each captured library pool was determined 
through qPCR using a KAPA library Quantification kit according to the 
manufacturer’s protocol (Roche) to produce cluster counts appropriate 
for the Illumina NovaSeq-6000 instrument. Next, 2 × 150 paired-end 
reads were generated targeting 12 Gb of sequence to achieve around 
100× coverage per library.

Xenium library preparation and imaging. Paraffin blocks (FFPE blocks) 
were sectioned at 5 µm and placed on Xenium slides following the FFPE 
Tissue Preparation guide (10x Genomics, CG000578, Rev B). Those 

slides underwent a series of xylene and ethanol washes for deparaffiniza-
tion and decrosslinking, using the FFPE tissue enhancer as outlined (10x 
Genomics, CG000580, Rev B). Overnight in situ probe hybridization 
was performed using 379 probes from the Xenium Human Multi-Tissue 
Panel (10x Genomics, 1000626) plus an additional 100 custom probes 
(Supplementary Table 6). After hybridization probes were ligated, the 
sample underwent rolling circle amplification, and the background 
was quenched using an autofluorescence mixture. Nuclei were stained 
with DAPI to improve sample tracking and approximate cell boundaries 
(10x Genomics, CG000582, Rev D). These samples, along with buffers 
and decoding consumables, were loaded into a Xenium analyzer (10x 
Genomics, 1000481). The run was initialized using the guidance pro-
vided (10x Genomics, CG000584, Rev C). These fluorescent reporters 
hybridized to targeted complementary regions of the barcoded circu-
larized cDNA were imaged. H&E staining was performed on the same 
region after the run was complete.

Analytical methods
Quantification and statistical analysis. All data analyses were con-
ducted in R and Python environments. Details of specific functions and 
libraries are provided in the relevant methods sections above. Signifi-
cance was determined using the Wilcoxon rank-sum test, proportion 
test, hypergeometric test or Pearson correlation test, as appropriate. 
P values < 0.05 were considered significant. Details of statistical tests 
are provided in the figure legends and the relevant methods sections.

WES data processing. FASTQ files were preprocessed using trimGalore 
(v.0.6.7; with parameters: --length 36 and all other parameters set to  
default; https://github.com/FelixKrueger/TrimGalore). FASTQ files 
were then aligned to the GDC’s GRCh38 human reference genome 
(GRCh38.d1.vd1) using BWA-mem (v.0.7.17) with parameter -M and 
all others set to default. The output SAM file was converted to a BAM 
file using the samtools (https://github.com/samtools/samtools; 
v.1.14) view with parameters -Shb, and all others set to default. BAM 
files were sorted and duplicates were marked using Picard (v.2.6.26) 
SortSam tool with the following parameters: CREATE_INDEX=true, 
SORT_ORDER=coordinate, VALIDATION_STRINGENCY=STRICT, and 
all others set to default; and MarkDuplicates with parameter REMOVE_
DUPLICATES=true, and all others set to default. The final BAM files were 
then indexed using the samtools (v.1.14) index with all parameters set 
to default.

Mutation calling using WES. Somatic mutations were called from 
WES data using the Somaticwrapper pipeline (v.2.2; https://github.
com/ding-lab/somaticwrapper), which includes four different callers: 
Strelka (v.2.9.10)54, MUTECT (v.1.1.7)55, VarScan (v.2.3.8)56 and Pindel 
(v.0.2.5)57. We kept exonic single nucleotide variants (SNVs) called by 
any two callers among MUTECT (v.1.1.7), VarScan (v.2.3.8) and Strelka 
(v.2.9.10) and insertions and deletions (indels) called by any two callers 
among VarScan (v.2.3.8), Strelka (v.2.9.10) and Pindel (v.0.2.5). For the 
merged SNVs and indels, we applied a 14× and 8× minimal coverage 
cut-off for tumour and normal tissue, respectively. We also filtered 
SNVs and indels by a minimal VAF of 0.05 in tumours and a maximal 
VAF of 0.02 in normal samples. We also filtered any SNV within 10 bp 
of an indel found in the same tumour sample. Finally, we rescued the 
rare mutations with VAFs within 0.015 and 0.05 based on an established 
gene consensus list58,59. In a downstream step, we used Somaticwrap-
per to combine adjacent SNVs into double-nucleotide polymorphisms 
using COCOON (https://github.com/ding-lab/COCOONS), as reported 
in a previous study60.

Mutation mapping to snRNA-seq and ST data. We applied an in-house 
tool called scVarScan that can identify reads supporting the refer-
ence allele and variant allele covering the variant site in each cell by 
tracing cell and molecular barcode information in a snRNA-seq and 
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single-cell RNA sequencing (scRNA-seq) or Visium bam file. The tool is 
freely available at GitHub (https://github.com/ding-lab/10Xmapping). 
For mapping, we used high-confidence somatic mutations from WES 
data produced by Somaticwrapper (described above). Visium reads 
were prefiltered with the flag ‘xf:i:25’ for reads contributing to unique 
molecular identifier counts.

Spatial mutation VAF statistical test. For each ST section, we applied 
two sets of statistical tests to all WES-based somatic mutations mapped 
to ST. First, for each mutation with greater than 30 reads of coverage 
on ST across all spots, the VAF was calculated for all tumour region 
spots and all non-tumour region spots as the number of variant reads 
across all spots divided by the number of total reads across all spots. 
A binomial test was then done using VAF of non-tumour spots as the 
background: binom.test(alterative=“greater”). Then, a proportion test 
was done between the VAFs in different spatial subclones with prop.
test(alternative=“two.sided”). Finally, multiple testing correction was 
done on both sets of tests with the function p.adjust().

CNV calling using WES. Somatic CNVs were called using GATK 
(v.4.1.9.0)61. Specifically, the hg38 human reference genome (NCI GDC 
data portal) was binned into target intervals using the Preprocess-
Intervals function, with the bin length set to 1,000 bp and using the 
interval-merging-rule of OVERLAPPING_ONLY. A panel of normals was 
then generated using each normal sample as input and the GATK func-
tions CollectReadCounts with the argument --interval-merging-rule 
OVERLAPPING_ONLY, followed by CreateReadCountPanelOfNor-
mals with the argument --minimum-interval-median-percentile 5.0. 
For tumour samples, reads that overlapped the target interval were 
counted using the GATK function CollectReadCounts. Tumour read 
counts were then standardized and denoised using the GATK func-
tion DenoiseReadCounts, with the panel of normals specified by 
--count-panel-of-normals. Allelic counts for tumours were generated 
for variants present in the af-only-gnomad.hg38.vcf according to GATK 
best practices (variants further filtered to 0.2 > af > 0.01 and entries 
marked with ‘PASS’) using the GATK function CollectAllelicCounts. 
Segments were then modelled using the GATK function ModelSeg-
ments, with the denoised copy ratio and tumour allelic counts used 
as inputs. Copy ratios for segments were then called on the segment 
regions using the GATK function CallCopyRatioSegments.

Bedtools62 intersection was used to map copy number ratios from 
segments to genes and to assign the called amplifications or deletions. 
For genes overlapping multiple segments, a custom Python script 
was used to call that gene as amplified, neutral or deleted based on 
a weighted copy number ratio calculated from the copy ratios of 
each overlapped segment, the lengths of the overlaps and the z score 
threshold used by the CallCopyRatioSegments function. If the result-
ing z score cut-off value was within the range of the default z score 
thresholds used by CallCopyRatioSegments (v.0.9,1.1), then the bounds 
of the default z score threshold were used instead (replicating the logic 
of the CallCopyRatioSegments function).

ST data processing. For each sample, we obtained the unfiltered  
feature–barcode matrix per sample by passing the demultiplexed 
FASTQ files and associated H&E image to Space Ranger (v.1.3.0, 
v.2.0.0 and v2.1.0 ‘count’ command using default parameters with 
reorient-images enabled) and the prebuilt GRCh38 genome reference 
2020-A (GRCh38 and Ensembl 98). Seurat was used for all subsequent 
analyses. We constructed a Seurat object using the Load10X_Spatial 
function for every slide. Each slide was then scaled and normalized 
with the SCTransform function to correct for batch effects. Any merged 
analysis or subsequent subsetting of cells and samples for a sample with 
several slides underwent the same scaling and normalization method. 
Spots were clustered using the original Louvain algorithm, and the top 
30 principal component analysis dimensions using the FindNeighbors 

and FindClusters functions as described in the ‘Analysis, visualization, 
and integration of spatial datasets with Seurat’ vignette from Seurat 
(https://satijalab.org/seurat/articles/spatial_vignette.html).

InferCNV and CalicoST for CNV calling on Visium ST data. To detect  
large-scale chromosomal CNVs using scRNA-seq, snRNA-seq and 
Visium data, InferCNV (v.1.10.1) was used with default parameters 
recommended for 10x Genomics data (https://github.com/broad-
institute/inferCNV). InferCNV was run at the sample level and only 
with post-quality control filtered data using the raw counts matrix. For 
snRNA-seq and scRNA-seq data, all non-malignant cells were used as 
a reference with the annotation ‘non-tumour’ and all malignant cells 
had the same annotation ‘tumour’, with the following parameters: 
analysis_mode=“subclusters”, --cluster_by_groups=T, --denoise=T, and 
--HMM=T. For Visium ST data, 200 spots annotated as ‘non-malignant’ 
with the lowest ESTIMATE purity score were used as a reference, and 
‘malignant’ spots had their microregion ID as annotation, with the 
following parameters: window_length=151, analysis_mode=“sample”, 
--cluster_by_groups=T, --denoise=T, and --HMM=T. CalicoST (https://
github.com/raphael-group/CalicoST)63 was run on Visium ST data with 
the same input annotation (microregion ID). All spots from the same 
microregions were treated as the smallest unit of analysis. CalicoST 
was then run with default parameters with results manually inspected.

Copy number profile similarity score calculation. To determine the 
similarity between two spatial CNV profiles, we use a modified Jaccard 
similarity score. A CNV profile was defined as a set of genomic windows 
with annotation copy number neutral (0), amplification (1) or deletion 
(−1). Two CNV profiles were then compared, and overlapping genomic 
windows were broken down so that both profiles had the same sets of 
windows (with the function reduced from the package GenomicRanges 
v.1.46.1). Then, the CNV similarity score (Sim) was defined as follows:
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where wi denotes the size of the genomic window i, CNVA i,  denotes the 
CNV annotation (0, 1 or –1) for profile A in genomic window i, and CNVB i,  
denotes the CNV annotation for profile B in genomic window i across 
all genomic windows where either A or B is not CNV neutral.

To determine the similarity between a spatial CNV profile and 
WES-based CNV (related to Extended Data Fig. 5a), we used a similar-
ity score averaging the sensitivity (fraction of WES-based CNVs also 
detected in spatial CNVs) and specificity (fraction of spatial CNVs agree-
ing with WES-based CNVs). Specifically,
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where wa denotes the size of the genomic window a from spatial CNV, 
we denotes the size of the genomic window e from a WES-based CNV, 
CNVA a,  denotes the CNV annotation (0, 1 or –1) for profile A in genomic 
window a.

Spatial subclone identification based on CNV profile similarity. In 
the OCT workflow (Supplementary Fig. 1a), CalicoST simultaneously 
identified CNVs and groups microregions into spatial subclones. In the 
FFPE workflow, confident spatial CNV events in each microregion were 
first selected by comparing them with matching WES. Then, a pairwise 
CNV similarity score was calculated across all tumour microregions.  
Finally, microregions were clustered with CNV similarity scores using 
the function hclust (d = 1-CNV similarity, method=“ward.D2”), and  
divided into clusters with function cutree (h = 0.8 × max(hclust$height)). 
Final subclone assignments were manually reviewed to avoid overclus-
tering and to eliminate small outlier CNV profiles.
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Tumour microregion annotation and layer determination. Using 
Visium ST, tumour microregions were determined through a multi-
step process using H&E. Each ST spot was assigned as either stroma 
or tumour by manually reviewing the morphology on H&E stained 
sections. If at least 50% of the pixels within a spot covered malignant 
cell morphology, the spot was labelled as tumour. Otherwise, it was 
labelled as stroma. Next, we defined distinct tumour microregions 
using a set of three rules. The first rule specified that tumour spots 
immediately adjacent to one another are initially marked as a sin-
gle tumour microregion. The second rule states that if two distinct 
tumour regions together occupied at least 50% of one single spot, 
the spot is assigned to the distinct tumour region with the higher 
percentage occupied. Finally, the third rule specified that if there 
was a clear morphological difference of the tumour spots within one 
tumour microregion, the microregion must be separated into distinct 
microregions, one per clear morphology.

Afterwards, we ran the Morph toolset (https://github.com/ding-lab/
morph), which uses mathematical morphology to refine the tumour 
microregions. That is, if the total number of spots in a microregion is 
less than or equal to three, then we labelled all such spots as stroma. 
Last, Morph assigned the layer (for example, T1) of each spot of a 
tumour microregion by a sequence of mathematical morphology 
operations described in the Spot-depth correlation analysis method, 
which denotes the depth of a given spot inside a microregion.

Average spot area and microregion size calculation. To calculate the 
area each spot takes, we used the spot size (55 µm) and centre-to-centre 
distance between each spot (100 µm) provided by 10x Genomics 
(http://kb.10xgenomics.com/hc/en-us/articles/360035487572-What- 
is-the-spatial-resolution-and-configuration-of-the-capture-area-of- 
the-Visium-v1-Gene-Expression-Slide-). As illustrated in Supplemen-
tary Fig. 6, the Visium spots form a hexagonal lattice that covers the 
sample. The repeating unit of this lattice is a trapezoid shape centred 
at each spot’s centre that is composed of eight equilateral triangles. 
Each triangle has a side of 50 µm (half of the spot the centre-to-centre 
distance). Using the area equation of equilateral triangles and multiply-
ing it by 8, we obtained the area of each trapezoid as 8,660 µm2, which 
is the average area occupied by each spot. To calculate the microregion 
size, we multiplied the spot count by 8,660 and divided by 106 to obtain 
the size in mm2.

Micoregion density estimation. We estimated microregion density per 
section by following the formula: density per µm2 = n microregion per 
section size (in spots) then divided by 8,660 µm per spot. Then density 
per mm2 = density per µm2 × 106 (n microregion per mm2).

Cell-type annotation. Cell-type assignment was done based on the fol-
lowing known markers: B cell, CD79A, CD79B, CD19, MS4A1, IGHD, CD22 
and CD52; cDC1, CADM1, XCR1, CLEC9A, RAB32 and C1orf54; cDC2, CD1C, 
FCER1A, CLEC10A and CD1E; mregDC, LAMP3, CCR7, FSCN1, CD83 and 
CCL22; pDC, IL3RA, BCL11A, CLEC4C and NRP1; macrophage, CX3CR1, 
CD80, CD86, CD163 and MSR1; mast cell, HPGD, TPSB2, HDC, SLC18A2, 
CPA3 and SLC8A3; endothelial, EMCN, FLT1, PECAM1, VWF, PTPRB, ACTA2 
and ANGPT2; fibroblast, COL1A1, COL3A1, COL5A1, LUM and MMP2; 
pericyte, RGS5, PLXDC1, FN1 and MCAM; NK cell, FCGR3A, GZMA and 
NCAM1; plasma cell, CD38, SDC1, IGHG1, IGKC and MZB1; T cell, IL7R, 
CD4, CD8A, CD8B, CD3G, CD3D and CD3E; and regulatory T cell, IL2RA, 
CTLA4, FOXP3, TNFRSF18 and IKZF2. Normal epithelial cells in the 
breast were annotated with the following markers: LumSec, GABRP, 
ELF5, CL28, KRT15, BARX2 and HS3ST4; LumHR, ANKRD30A, ERBB4, 
AFF3, TTC6, ESR1, NEK10 and XBP1; and basal, SAMD5, FBXO32, TP63, 
RBBP8 and KLHL13. Normal epithelial cells in the liver were annotated 
with the following markers: hepatocyte, ALB, CYP3A7, HMGCS1, ACSS2 
and AKR1C1; cholangiocyte, SOX9, CFTR and PKD2. Normal epithe-
lial cells in the pancreas, including ductal, acinar, islet-α, islet-β and 

islet-γ cells, were annotated with singleR (v.1.8.1) using reference data 
BaronPancreasData(‘human’).

Spot-depth correlation analysis. We identified a correlation between 
gene expression and spot depth in its tumour microregion. First, 
each spot was assigned a depth defined as the distance to the closest 
TME-facing spot in its tumour microregion. This depth was quantified 
in several layers through an iterative process whereby all the malignant 
spots immediately adjacent to non-malignant spots were considered 
layer 1, and then all malignant spots immediately adjacent to layer 1 
were considered layer 2, and the process was repeated until all spots 
were assigned with a layer number. If a spot’s layer was larger than the 
smallest distance between the spot and any Visium border (including 
the edge of the Visium capture window, edge of the tissue section and 
any empty spots inside the section), then we excluded such spots, as 
we only knew the upper bound of the depth of this spot. Addition-
ally, tumour microregions with fewer than 3 layers or 50 spots were 
excluded from the analysis. The distance between layers was taken as 
the centre-to-centre distance of Visium spots (100 µm).

To give the same weight to bigger and smaller regions, the depth of 
each spot was further normalized by the maximum depth of the micro-
region this spot belonged. Then, we performed partial correlation tests 
independently between gene expression (at least 1 transcript detected 
from the gene in more than 50% of all spots) and normalized depth of 
each spot, with tumour purity as a covariate as follows:

bExpression = rho × (layer fraction) + × purity

where layer fraction is the layer number divided by the total number 
of layers in a tumour to normalize for large and small microregions, 
rho is the layer correlation coefficient, and b is the correlation coef-
ficient for covariant purity. Purity was inferred with deconvolution 
when there was matching snRNA-seq data (deconvoluted tumour 
fraction per spot by RCTD), or with ESTIMATE (that is, tumour purity 
estimate score per spot) otherwise. Each gene was checked against a 
set of snRNA-seq-derived non-malignant gene lists to ensure that the 
change in fraction did not derive from a shift in cell type composition. 
Finally, we performed multiple-testing adjustments for all tests done 
in each ST section.

Spot-depth GSEA pathway enrichment analysis. To summarize 
biological programs enriched in the centre and periphery of tumour 
microregions across sections, we first obtained the cohort-level aver-
age layer correlation coefficient. If a test was not significant (P ≥ 0.05), 
rho was assigned to be 0 to indicate no correlation. If a test was not 
performed on a section (<50% of the spots have at least one transcript), 
rho was also assigned as 0. When a case had multiple sections, we first 
took the average rho across sections to avoid bias towards tumours 
with more sections. Then, the average of rho was calculated for each 
cohort (all samples or samples from each cancer type).

In the same fashion, rank statistics were calculated for each test as 
–log10(P value) × rho for tests with P < 0.05. For tests with P ≥ 0.05 or 
genes not tested, the rank statistic was 0. We then calculated aver-
age rank statistics per case, followed by the average per cancer type. 
Finally, with the full list of rank statistics calculated for all genes tested, 
we used the function GSEA (parameters: pvalueCutoff=0.5; package: 
clusterProfiler v.3.18.1) to obtain the normalized enrichment score of 
Hallmark pathways (package: msigdbr 7.5.1) from the MSigDB64. Finally, 
only pathways with P < 0.1 were kept in the final results.

Tumour intrinsic and non-tumour gene categorization. We use 
differential expression and per cent expression filters, comparing  
expression among cell types in the matching snRNA-seq data to further 
characterize genes identified in the centre and periphery enriched 
analysis. The steps implemented in this workflow generated four 
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categories: tumour-specific, stromal-specific, tumour-enriched and 
stromal-enriched (Supplementary Fig. 8a,b). Genes that did not pass the 
significant cutoff in any differential expression analysis were labelled 
separately as not DEG.

To distinguish these four groups, we first performed differential 
gene analysis of cell types in the matching snRNA-seq data, filtered by 
a conventional significance cut-off (log2(fold change) > 0.5, adjusted 
P < 0.05, Bonferroni correction), to obtain DEGs (Supplementary 
Fig. 8a). Given the heterogeneity in tumours, certain tumour-specific 
genes might only exist in a subpopulation of tumours. Therefore, we 
first subclustered the tumour populations (using the Subcluster func-
tion in Seurat with a resolution of 0.5) to obtain tumour subclusters. 
We then compared each subcluster with all other non-tumour cells. A 
gene was considered a tumour DEG if at least one tumour subcluster 
showed significant expression compared with the non-tumour cells 
and vice versa for non-tumour DEGs (Supplementary Fig. 8a,b).

For candidate tumour or stromal-specific genes, a DEG was desig-
nated as tumour-specific if it met both of the following criteria: (1) it is 
a DEG when compared with all non-tumour cell types from at least one 
tumour subcluster; and (2) its expression was <15% in all non-tumour 
cell types (Supplementary Fig. 8c).

The reverse applied to candidate stromal-specific DEGs. If a DEG did 
not meet both of these requirements to be tumour or stromal specific, 
it was designated as either tumour-enriched or stromal-enriched based 
on whether the expression level was higher in tumour or stromal cell 
types (Supplementary Fig. 8a).

Spatial subclone-specific treatment response analysis. We focused  
on ten cases (comprising four BRCA, two CRC and four PDAC sam-
ples) with multiple spatial subclones for this analysis. To obtain 
subclone-specific DEGs, we used FindMarkers from the function 
in Seurat with the ‘wilcox’ test option DEGs between each subclone 
and TME. We then applied the cut-off for adjusted P < 0.01, aver-
age log2(fold change) > 1 and per cent expression in at least one cell 
type > 0.4 to select significant DEGs. To infer treatment response, we 
used the perturbation database LINCS L1000 (ref. 65), specifically the 
LINCS_L1000_Chem_Pert_down dataset from Enrichr66, to evaluate 
the gene set overlap between upregulated DEGs in spatial subclones 
and downregulated genes after compound treatment. To make the 
plot in Supplementary Fig. 4, we sorted the data by ‘Odd.Ratio’ and 
selected top compounds from each subclone. The corresponding com-
pound metadata, including mechanism of action, was obtained from 
CLUE (clue.io, ‘Expanded CMap LINCS Resource 2020 Release’) to add  
annotation on the heatmap.

Organ-specific gene blacklist for non-malignant cell types. To  
distinguish transcripts originating from cancerous versus non- 
malignant stromal or immune cells, we used merged snRNA-seq data 
per organ (breast, kidney, liver and pancreas) for cell-type marker analy-
sis. This analysis used the FindAllMarkers function in Seurat with the 
‘wilcox’ test option. Subsequently, we refined the gene list by applying 
filters such as average log2(fold change) > 2, per cent expression in at 
least one cell type > 0.4 and adjusted P values < 0.01 to ensure robust 
marker selection for each cell type. The resultant gene list is available 
in Supplementary Table 5. This list was instrumental in excluding 
non-cancerous cell genes from analyses pertaining to cancer-specific 
expression patterns, such as pairwise microregion similarity analysis. 
Of note, during the analysis, we observed a notable mapping of vari-
ous epithelial cell types in the snRNA-seq reference dataset for BRCA 
when using the RCTD deconvolution method. This observation prob-
ably stems from the diverse BRCA subtypes present in the cohort. To 
address this, we opted to combine all epithelial cell types into a single 
category during the identification of cell-type markers and excluded 
them from the blacklist. For tumours originating from organs other 
than the four mentioned above, we aggregated all genes present in the 

blacklist across organs to form a comprehensive multiorgan blacklist, 
which aided in filtering out non-cancerous transcripts.

Microregion transcriptional profile analysis. For overall tumour 
heterogeneity, we selected Morph-identified spots then ran ROGUE 
(v.1.0)67 to measure heterogeneity as 1-ROGUE. We then compared the 
transcriptional profiles of microregions by selecting the top 500 most 
variable features after excluding stroma regions in ST samples following 
Morph processing. Our initial evaluation involved conducting Pearson 
correlation tests for each pair of microregions, using a range of the top 
250–1,500 most variable genes with increments of 250 (that is, 250, 
500, 750, …, 1,500). We observed consistent correlations for nearly 
all values beyond using more than 500, which led us to select the top 
500 genes for this analysis. This choice reduced the risk of selecting 
too few variable genes (for example, <250 most variable genes) while 
also avoiding the inclusion of numerous genes with minimal effect on 
the transcriptional profile. GSEA analysis was done using the function 
GSEA (parameters: pvalueCutoff = 0.5; package: clusterProfiler v.3.18.1) 
to obtain the normalized enrichment score of Hallmark pathways (pack-
age: msigdbr v.7.5.1) from the MSigDB64.

Module score calculation. Module scores on top of each heatmap in 
Extended Data Fig. 6 were calculated with the AddModuleScore func-
tion from Seurat68 using the genes listed in each heatmap. This score 
represents the average expression levels of a gene set. The score was 
calculated for each spot and a box plot was used to show the distribu-
tion of module scores in each microregion.

ST cell-type decomposition. Cell-type composition per spot was  
deconvolved using RCTD18 with default parameters and doublet_mode = 
‘multi’. The reference for each run was the cell types manually annotated 
from the Seurat object of the matching snRNA-seq or Multiome sample. 
To quantify spatial distribution of each cell type, cell type fraction of 
6 layers (T3 and above, T2, T1, E1, E2, E3 and above) from each tumour 
microregion is calculated and averaged in each sample. To compare dif-
ferential TME infiltration between spatial subclones, cell type fraction 
from all spots between spatial subclones was compared with pairwise 
Wilcoxon rank-sum test and FDR adjustment.

Spatial cell–cell interaction at tumour boundary. We evaluated the 
spatial-based cell–cell interaction (CCI) in the ST sample using COM-
MOT69 with CellChat database and distance threshold of 1,000 µm, 
following the same threshold used in the original publication for  
Visium. The median sender and receiver signals for each interaction 
family were compared between all tumour boundary spots (including 
tumour boundary layer and TME boundary layer) and all non-boundary 
spots (Wilcoxon rank-sum test) on a sample. Interaction pathways with 
signal difference great than 0.1 and FDR less than 0.05 are considered 
significantly boundary-enriched. Boundary DEGs were identified with 
FindMarkers function on three sets of comparisons: boundary/tumour, 
boundary/TME and boundary/all non-boundary. A boundary DEG has 
adjusted P value 0.25 in boundary/non-boundary test, and log2(fold 
change) > 0 in the other two tests.

Serial section alignment and branching factor calculation. We  
applied PASTE2 (ref. 70), the updated ST-based alignment tool PASTE70, 
to enable partial image alignment. Serial sections of the same tumour 
piece were aligned pairwise with default settings. Each Visium data 
point in every ST section received new coordinates, denoted as x′ and y′, 
based on the alignment results. We then identified the nearest spot on 
each adjacent section for every spot, connecting them along the z axis. 
This process facilitated the linking of spots across all sections on the 
z axis. To assess whether one microregion was connected to another in 
an adjacent section, we first removed stromal spots and then counted 
the connected spots. If any microregion on one section connected to 
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the next section with more than three shared spots, then we considered 
these two microregions, located on different sections, as connected in 
3D space and forming the same tumour volume. This connection was 
labelled as volume 1, volume 2, and so forth in the figures (Fig. 5d,e and 
Extended Data Fig. 9a–d).

We used two geometric metrics to describe tumour volume: con-
nectivity and loop. For connectivity (degree), this metric quantifies 
the number of connections from an individual microregion to adja-
cent sections. For example, if microregion 2 in section 2 connects to 
3 microregions in section 1 and 2 in section 3, its connectivity is 5. The 
maximum connectivity of a tumour volume is the highest connectivity 
among its microregions. For loop, this metric was calculated as the total 
number of connections minus the total number of microregions plus 
one, identifying intricate loop structures within the tumour volume.

Registration of Visium, CODEX and H&E serial sections. Before 
registration, imaging data underwent the following transformations. 
Multiplex images were converted to greyscale images of DAPI inten-
sity. The image was then downscaled by a factor of 5 before key point 
selection. H&E images (also downsampled by a factor of 5) were used 
for keypoint selection with Visium data.

For registration, we used BigWarp71, which was packaged in the Fiji/
ImageJ software application. To register each collection of serial images, 
we used the first serial section as the fixed image and the second image 
as the moving image. After the second image was warped to the first 
image, the second image was used as the fixed image for the transfor-
mation of the third image. Key point registration proceeded in this 
fashion for all images in the serial section experiment. A total of 4–20 
key points were selected per image transformation. Once key points 
were selected, a moving field was exported from BigWarp for each 
image transformation. This dense displacement field was then upscaled 
by a factor of 5 so it could be used to warp the full-resolution imaging 
data. The full-resolution dense displacement field was then used to 
register its corresponding multiplex or Visium data. The code used 
for registration is available at GitHub (https://github.com/ding-lab/
mushroom/tree/subclone_submission).

Neighbourhood identification input preprocessing. Once imaging 
data were registered, they were processed in the following manner 
before model input.

For Visium ST data, genes were limited to genes expressed in a mini-
mum of 5% of spots across all serial sections and expression counts 
were log2 transformed. CODEX, Visium ST and H&E data were normal-
ized by subtracting the mean expression and dividing by the standard 
deviation for each gene.

Expression profiles for each patch were generated differently for 
image-native data (CODEX and H&E) and point-based data (Visium). 
Expressions for CODEX and H&E patches were calculated as the average 
pixel intensities for each image channel over all pixels within the patch 
bounds. Visium patches were calculated in largely the same manner; 
however, the expression profile of each spot within the patch was lin-
early weighted by its distance to the centre of the patch. This differential 
weight helped to account for variation expression due to the number 
of spots that fall within patch boundaries.

Neighbourhood identification model architecture. The neighbour-
hood annotation model consisted of an autoencoder with a vision 
transformer (ViT) backbone (Supplementary Fig. 7). In brief, an auto-
encoder is an unsupervised training method for which an encoder 
(embedding component) and a decoder (reconstruction component) 
work together to learn how input data are generated. Specifically, the 
network derives an approximation, Q, to the true posterior generating 
function, P, for the output, given the input. The autoencoder used was 
asymmetric, meaning that the encoder and decoder were not inverse 
copies of one another. The encoder consisted of a ViT with a similar 

architecture to previously described architectures72,73 (Supplementary  
Table 4).

ViTs work on image tokens as input. In brief, image tokens are 
n-dimensional representations of patches of the input image. Dur-
ing training, image tiles were sampled from a uniform distribution 
across the set of input sections (Supplementary Fig. 7a). The sampled 
tile was then split into patches, for which the number of patches was 
determined by two hyperparameters: patch height (ph) and patch 
width (pw). Each patch was then flattened to a 1 × (ph × pw × c) vector, 
where c is the number of channels in the image (in the case of spatial 
transcriptomics data, c is the number of genes). The unrolled patches 
were then concatenated into a n × (ph × pw × c) matrix, where n is the 
number of patches in the image tile. Each row in this matrix is a token 
that represents a patch in the image tile. The tokens were then pro-
jected by a linear layer to shape n × d, where d is the dimension of the 
transformer blocks.

After this, a slide token was concatenated to patch tokens. The slide 
token (representing the slide from which the image tile was selected) 
was indexed from a trainable embedding of size n_slides × d, where 
n_slides is the number of slides in the serial section experiment. The 
motivation for the slide token is that as it is passed through the trans-
former blocks, along with the patch tokens, information can be shared 
across all tokens, allowing the slide token to learn to attend to useful 
representations of the patches. This feature allowed the model to be 
more robust to batch effects between serial sections. Following the 
addition of the slide token, positional embeddings were added to all 
tokens and passed through the transformer blocks comprising the ViT 
encoder. All variables above and details of the transformer architecture 
are available in Supplementary Table 4.

Once passed through the encoder, patches were represented as an 
embedding of size n × d. The next step of the architecture was neigh-
bourhood assignment. Neighbourhoods were assigned to patches in 
a hierarchical manner, meaning that a patch was classified into several 
neighbourhoods that differed in level of specificity. For each level of 
the neighbourhood hierarchy, the subsequent levels comprised par-
titions of the previous levels’ neighbourhoods, that is, except for the 
first level, each neighbourhood was a subset of a neighbourhood in a 
previous level of the hierarchy. For this analysis, the model generated 
three levels of neighbourhoods, each with the capacity to discover up 
to n = 8 (level 1), n = 32 (level 2) and n = 64 (level 3) neighbourhoods, 
respectively. For this analysis, all neighbourhoods shown are neigh-
bourhoods annotated at hierarchy level 3. The model contained three 
codebooks (one for each level) that are of size n_NBHDs × d, where  
n_NBHDs is the number of possible neighbourhoods that can be 
assigned for the given level. The patch embeddings output by the ViT 
encoder were projected by three independent blocks of linear layers 
(one for each level) that output each patch’s probability of assign-
ment to a given neighbourhood. These probabilities were then used 
to retrieve neighbourhood embeddings from the codebook corre-
sponding to the neighbourhood level. Three linear blocks (one for each 
level) were then used to independently reconstruct patch embeddings 
at each level to each patch’s original pixel values. The code used for 
training the model is available at GitHub (https://github.com/ding-lab/
mushroom/tree/subclone_submission).

Model loss function. The overall loss function has two main contribu-
tions: mean squared error (MSE) on the reconstruction of the input 
patches, and cross-entropy loss on the encoded distribution and the 
normal distribution with 0 mean and 1.0 variance.

During training, the autoencoder was simultaneously trying to opti-
mize two main tasks: the reconstruction of the expression profile of 
each image patch embedding and the alignment of neighbourhood 
labels between adjacent sections. These two competing objectives 
forced the model to learn representative expression patterns while also 
keeping neighbourhoods aligned between input sections, which helped 
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to combat neighbourhood differences due to batch effects. Differences 
in patch expression were quantified by MSE, whereas neighbourhood 
adjacency was enforced by minimizing the cross-entropy of patches 
adjacent to each other in the z direction during training.

The overall loss function is defined below:

λ λ= +overall NBHD NBHD MSE MSEL L L

Where λNBHD (maximum of 0.01) and λMSE (set to 1.0) are scalers for the 
neighbourhood loss (LNBHD) and reconstruction loss (LMSE), respec-
tively. During training, λNBHD for was linearly increased from 0 to its 
maximum value.

Model training and inference. Two separate runs of the model were 
trained for HT397B1 (six H&E, four CODEX and two Visium ST slides) 
and HT268B1 (four Visium ST slides). Training hyperparameters, such 
as batch size and number of training steps, are provided in Supple-
mentary Table 4. For HT268B1, only one instance was trained because 
only one data type was present. For HT397B1, three model instances 
were trained (one for each data type) and were subsequently merged 
following the procedure described in the section ‘3D neighbourhood 
construction and integration’.

Following training, the model inference was performed on overlap-
ping image tiles for each slide using a sliding window of size 8 and a 
stride of 2 (that is, 2 overlapping patches between image tiles). The 
2 × 2 centre patches of each tile were extracted and retiled to match the 
original slide orientation. Each reconstructed ‘patch embedding image’ 
was at a resolution of 50 pixels µm–1 (that is, each neighbourhood patch 
represents an area that is 50 µm wide) with the exception of Visium ST, 
for which the patch resolution was 100 pixels µm–1.

3D neighbourhood construction and integration. After the assign-
ment of neighbourhoods for each section, slides were interpolated to 
generate a 3D neighbourhood volume. For this, we used linear inter-
polation of neighbourhood assignment probabilities with the torchio 
library74.

Following interpolation, we also integrated neighbourhood volumes 
for HT397B1, for which multiple data-type-specific volumes were gen-
erated using a graph-based clustering approach. In brief, all overlap-
ping neighbourhood voxel annotations were identified. A graph was 
then constructed, whereby nodes represented each neighbourhood 
partition combination, and edges are the distance (in the expression 
profile) between these partition combinations. This graph was then 
clustered with the Leiden graph clustering algorithm to identify inte-
grated neighbourhoods. Hyperparameters for the above clustering 
process are provided in Supplementary Table 4. 3D neighbourhoods 
were displayed using the open-source visualization tool Napari (https://
github.com/napari/napari).

Analysis and quantification of 3D neighbourhoods. Neighbourhoods 
were then assigned to Visium ST spots in the following manner. Each 
spot was assigned the neighbourhood label of the neighbourhood 
overlapping its spot centroid.

To focus on neighbourhoods most related to the TME biology, we 
filtered out neighbourhoods with >50% overlap with copy number 
annotated subclones. Additionally, we excluded neighbourhoods that 
mapped to fewer than ten total spots across all ST sections for a sample.

The subclone boundary region for tumour clones was defined as 
the union of the outermost layer of subclone annotated spots and the 
spots one layer expanded out from them, representing an area roughly 
100–150 µm at the tumour–TME interface. Subclone-specific fractions 
were calculated as the neighbourhood overlaps with the outermost 
layer of each subclone.

In HT397B1, DEGs were calculated for all neighbourhoods, not only 
those filtered for subclone overlap and spot count. The top 50 DEGs for 

neighbourhoods 4 and 6 were grouped into three categories: shared, 
unique to neighbourhood 4 and unique to neighbourhood 6. For the 
display in Fig. 5, the top 10 for each group were selected for display 
based on the following sorting criteria. The mean expression delta 
between neighbourhoods 4 and 6 was calculated for each gene by sub-
tracting the mean expression in neighbourhood 6 from neighbour-
hood 4. Shared DEGs were ordered in ascending fashion based on the 
absolute expression delta of each gene. Genes unique to neighbour-
hood 4 and neighbourhood 6 were ordered by mean expression delta 
in descending and ascending fashion, respectively.

Cell-type annotation of CODEX imaging data. Our workflow for cell 
annotation consisted of four main steps: (1) image format conversion, 
(2) cell segmentation, (3) spatial feature generation and (4) cell-type 
classification. First, we converted image output by the CODEX platform 
(.qptiff) to the popular open-source OME-TIFF format. During this pro-
cess, we also produced a separate image for each sample, as multiple 
sections of tissue are sometimes included on the same imaging run. 
We then used the Mesmer pre-trained nuclei + membrane segmenta-
tion model in the DeepCell framework75 to segment nuclei and whole 
cells. DAPI was used as the nuclei intensity image, and the channels 
pan-cytokeratin, HLA-DR, SMA, CD4, CD45, Hep-Par-1, CD31, E-cadherin, 
CD68 and CD3e were, for those present in a given image, mean-averaged 
to a single channel and used as the membrane intensity image.

We then use a gating procedure to identify cell types. First, to combat 
differences in protein intensity distributions between imaging runs 
and tissue types, thresholds were manually set for all protein channels 
used during cell typing for each image by visual inspection. Above 
this intensity threshold, a pixel was considered positive for a given 
marker, and below it, a pixel was considered negative. We then used 
the cell segmentation boundaries from the previous step to calculate 
the fraction of positive pixels for all cell typing markers in each cell. 
The result of this process is a feature matrix (num cells × num proteins) 
representing positive marker fractions for each cell typing protein in 
every cell. A cell was considered positive for a marker if >5% of its pixels 
were positive for that marker. Cells were then labelled with a gating 
strategy specific to each sample. During gating, each cell was subjected 
to a series of AND gates, whereby if a cell passed all criteria for a given 
step, it was annotated as the cell type specified for that step, whereas 
if it failed the criteria it was passed on to the next downstream step in 
the gating strategy. The gating strategies used for the samples in this 
paper are presented in Supplementary Table 4.

The following labels were the set of all possible cell type annotations: 
epithelial, CD4 T cell, CD8 T cell, regulatory T cell, T cell, macrophage, 
macrophage-M2, B cell, dendritic, immune, endothelial, fibroblast 
and hepatocyte. For some images, not all proteins required to gate 
a specific cell type were present. For example, CD4 was not in every 
image panel and available to use in the annotation of CD4 T cells. In 
these instances, the gating strategy was constructed such that cells 
can be labelled as more general cell types if specific proteins are not 
present (that is, labelled more broadly as T cell instead of CD4 T cell). 
If a cell was negative for all steps in the gating strategy, it was anno-
tated as ‘unlabelled’. The code for image format conversion and cell 
segmentation can be found at GitHub (https://github.com/estorrs/
multiplex-imaging-pipeline).

Distance to tumour boundary quantification on CODEX. After regis-
tration, Visium spots labelled as tumours were mapped to CODEX slides 
using the coordinates of the aligned images. The coordinates of the cen-
tre of each spot in the CODEX-aligned slide were the same as its Visium 
counterpart. Each spot in the CODEX-aligned slide occupied the area 
of a circle with a radius of 150 pixels. The Euclidean distance transforms 
in the CODEX-aligned slide were then calculated for each pixel using 
Python’s scipy.ndimage.distance_transform_edt. Both the distances 
from the microregions and within the microregions were calculated.
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3D tumour volume reconstruction and location quantification. 
The surface mesh visualizations of the tumour volumes for HT397B1 
and HT268B1 were generated using the following steps: (1) tumour 
neighbourhood selection, (2) mesh construction and (3) mesh colour-
ing. First, integrated neighbourhoods with tumour metrics (des-
cribed below) exceeding a given threshold were considered to be 
part of the tumour volume. In HT268B1, the metric used to quantify 
epithelial character was the fraction of subclone annotated Visium ST 
spots per neighbourhood. Neighbourhoods with >60% subclone spots 
were considered tumour. In HT397B1, we instead used the fraction of 
CODEX-annotated epithelial cells, as CODEX sections outnumbered 
the Visium ST sections for that sample. Neighbourhoods with >60% 
fraction of epithelial cells were considered tumour.

A new volume was then constructed whereby neighbourhoods 
classified as tumour neighbourhoods using the above criteria 
were considered tumour-positive voxels, and all other voxels were 
tumour-negative. This 3D tumour mask was then smoothed with a 
Gaussian kernel (sigma = 1.0). The resulting values were then used 
as input for the marching cubes algorithm76,77 to generate a surface 
mesh for the tumour volume. We used the scikit-image implementation 
(skimage.measure.marching_cubes) of the marching cubes algorithm 
with default parameters.

To colour the surface mesh, we generated 3D feature volumes 
(described below), and then coloured points on the surface mesh based 
on the voxel value at the corresponding location in the feature volume. A 
feature volume is a volume whereby each voxel in the volume describes 
some feature from the serial section dataset (for example, expression of 
a given gene, fraction of cells, and so on). Feature volumes used in this 
analysis were constructed in the following manner. First, in the serial 
sections for which a feature was applicable, the feature was binned at 
the same resolution as the 3D neighbourhoods (50 µm in this case). 
The binned feature was then interpolated in the z direction to fill in 
gaps between sections. The resulting volume was of the same shape 
as the integrated neighbourhood volume, for which the value of each 
voxel was the aggregated feature count for the voxel. For HT268B1, the 
features used were logged expression of TYMP1 and IGLC2. For HT397B1, 
we used fibroblast and immune cell fraction. Cells were annotated as 
described in the section ‘Cell-type annotation of CODEX imaging data’. 
The surface mesh was visualized using Napari (https://github.com/
napari/napari) and contrast was adjusted on a volume-to-volume basis. 
We also visualized the HT397B1 tissue volume with the Imaris platform, 
for which we generated surfaces from the following CODEX markers: 
pan-cytokeratin (epithelial), CD45 (immune) and SMA (stromal).

Xenium probe design. Custom Xenium gene and mutation probes were 
designed using Xenium Panel Designer (https://cloud.10xgenomics.
com/xenium-panel-designer) following instructions outlined in the 
‘Getting Started with Xenium Panel Design’ instructions (https://
www.10xgenomics.com/support/in-situ-gene-expression/documenta-
tion/steps/panel-design/xenium-panel-getting-started#design-tool). 
In brief, 21-bp sequences flanking the targeted transcribed variant site 
were curated from the Ensembl canonical transcript (Ensembl v.100). 
All four possible ligation junctions (two for the WT allele and two for 
the variant allele, three in the case of deletions—two for the WT allele 
and one for the variant allele) were then evaluated. Variant sites for 
which only non-preferred junctions (CG, GT, GG and GC) were available 
were excluded. The two bases of the ligation junction sequence were 
the last base of the RBD5 (RNA binding domain) and the first base of the 
RBD3 probe. Preferred junctions were always prioritized over neutral 
junctions unless a neutral junction was necessary to avoid hairpins, 
homopolymer regions, dimers or an unfavourable annealing tempera-
ture. Probe lengths for RBD5 and RBD3 were then adjusted from the 
21-bp starting length to target a temperature between 50 °C and 70 °C 
per probe (overall target 68 °C and 82 °C). Variant sites with probes pre-
dicted to form dimers or hairpins by IDT’s oligo analyzer were excluded. 

Variant sites with homopolymer regions of five consecutive bases or 
more in either the RBD5 or RBD3 probes were excluded.

Spatial expression deconvolution. Here we used both deconvolu-
tion results and cell-type-specific expressions in the snRNA-seq data 
to deconvolve the Visium ST expression data (Supplementary Fig. 9). 
In brief, for a given Gene1, we first calculated the average expression 
of Gene1 per cell type in matched snRNA-seq data, subsequently fil-
tering out the expression of such genes in cell types having <5% of the 
highest average expression, and then dividing each cell-type average 
expression from the sum of all average expressions, thereby creat-
ing the expression contribution per cell type matrix (Q). Then for a 
given spot, the contribution per cell type was multiplied by cell type 
proportion from the cell type devolution result (for example, RCTD), 
then normalized to 1 to give a final expression contribution matrix 
(WN). For instance, in Supplementary Fig. 9a, Gene1 has 40%, 30% 
and 30% contributions from respective cell types A, B and C based 
on the filtered snRNA-seq expression. For Spot1, as there is only 1 cell 
type, B, in the spot, 40% × 1/40% × 1 gives the final 100% contribution 
of Gene1 to cell type B in Spot1. Spot2 contains 50% A and B cell types, 
respectively, the normalized cell type contribution in spot 2 is therefore 
50% × 40%/(50% × 40% + 50% × 30%) ≈ 57.1% for the cell type A, and 
50%  × 30%/(50% × 40% + 50% × 30%) ≈ 42.9% for the cell type B. The 
final deconvolved expression was obtained by multiplying the original 
expression per spot (5 and 20 in Spot1 and Spot2) with the respective 
cell-type-based contribution to obtain the final deconvoluted expres-
sion values of Spot1 – cell type B = 5, Spot2 – cell type A ≈ 10.42, and 
Spot2 – cell type B ≈ 8.58.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Visium, scRNA-seq, snRNA-seq, WES, Xenium and CODEX imaging data 
are part of HTAN dbGaP study accession phs002371.v3.p1 (https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.
v3.p1), and the data can be accessed through the HTAN DCC Portal 
(https://data.humantumoratlas.org/) under the HTAN WUSTL Atlas. 
Individual samples can be identified using Biospecimen ID from the 
Sample_ID_Lookup_table.xlsx on the GitHub page (https://github.
com/ding-lab/ST_subclone_publication). GRCh38 references used 
for scRNA-seq and snRNA-seq (refdata-gex-GRCh38-2020-A) are freely 
available from the 10x Genomics website (https://support.10xgenomics.
com). The reference GRCh38 genome (GRCh38.d1.vd1.fa.tar.gz) used 
for WES reads alignment is available from GDC (https://gdc.cancer.gov/
about-data/gdc-data-processing/gdc-reference-files). The MSigDB 
hallmark gene sets is available from the GSEA website (https://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp). The L1000 perturba-
tion database is available through the resource page on the Harmoni-
zome website (https://maayanlab.cloud/Harmonizome/resource/LIN
CS+L1000+Connectivity+Map) and the library page on the Enrichr 
website https://maayanlab.cloud/Enrichr/#libraries).

Code availability
All bioinformatics programs used in this study can be accessed from 
the GitHub public repository (https://github.com/ding-lab/ST_sub-
clone_publication). The code for 3D neighbourhood identification 
and construction is available at GitHub (https://github.com/ding-lab/
mushroom/tree/subclone-resubmission). The code for multiplex 
imaging processing is hosted at GitHub (https://github.com/estorrs/
multiplex-imaging-pipeline). The code for Morph is accessible at 
GitHub (https://github.com/ding-lab/morph).
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Extended Data Fig. 1 | Data Overview in Spatial Tumor Cohorts. a, Overview 
of the data availability of the spatial tumor cohort with assay types, cancer 
types, and study cohort. b, 48 snRNA-seq from matching tumor blocks across 7 

tissue types (left). Cell type distribution from multi-sample tissue types (right). 
c, 22 Co-detection by indexing (CODEX) multiplexed immunofluorescence 
imaging from matching tumor sections.



Extended Data Fig. 2 | Histology of the Spatially Distinct Cohort. Histology of the spatially distinct cohort colored by cancer type. Light pink BRCA (n = 23), 
light purple CHOL (n = 1), orange CRC (n slice = 18), light blue PDAC (n = 5), and light brown RCC (n = 3).
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Extended Data Fig. 3 | Histology of the Spatially Diffuse Cohort. Histology of the spatially diffuse cohort colored by cancer types. Light pink BRCA (n = 31), light 
purple CHOL (n = 6), orange CRC (n = 12), light blue PDAC (n = 18), light brown RCC (n = 9), and pale orange UCEC (n = 5).



Extended Data Fig. 4 | Microregion Distribution and Characteristics across 
Cohorts. a, Sample count distribution for each cohort, primary vs. metastasis, 
cancer type, and count of section per sample. b, microregion size distribution 
between primary and metastasis samples (primary n = 98 sections from 60 cases; 
metastasis n = 33 sections from 16 cases). c, table with the count of microregions 

per size. d, Estimated microregion density per tissue block. The number of 
microregions, sections, and primary vs metastasis status, cancer of each block 
is indicated on the left. e, Example microregion sizes, f, size distribution 
histograms, and g, microregion and h, size groups visualized on Visium ST for 
HT268B1-Th1K3U1 (BRCA), HT260C1-Th1K1U1 (CRC), and HT270P1-H2U1 (PDAC).
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Extended Data Fig. 5 | Genomic Profiling of Spatial Subclones. a, Spatial 
subclone genome-wide CNV profile similarity compared with matching WES- 
inferred CNV. b, Distribution of variants mapped to ST transcripts out of all 
somatic mutations detected from matching WES. Ref: reference allele; Var: 
variant allele. c, Somatic mutations mapped to HT260C1 are shared and unique 
to two spatial subclones. For each WES-derived mutation, VAFs between tumor 
and non-tumor regions (binomial test, left) and VAFs between two spatial 
subclones (proportion test, right) were compared. Mutations with FDR<0.05 
(Benjamini & Hochberg correction) were annotated with * and ** for VAF and 
VAF differences, respectively. d, A breast cancer liver metastasis sample 
(HT268B1) showing 2 spatial subclones across 5 sections. e, In the heatmap 
(top), estimated somatic copy number variations (CNV) per spot show both 

shared and unique CNV events between the two spatial subclones. The b-allele 
frequencies (BAF) in each spatial subclone from the same genomic window are 
shown in the middle tracks, while the snRNA- and WES-inferred CNV status of 
the same genomic window is shown in the bottom tracks. f, The predicted 
phylogenetic relationship of the 2 tumor spatial subclones. g, UMAP of matching 
snRNA showing cell types and two tumor subclones. h, Somatic mutations 
mapped to HT268B1 are shared and unique to two spatial subclones. VAF 
calculations and their statistical analyses are the same as in panel c. i-j, Subclonal 
mutation EEF1A1.1324G>C is uniquely detected in Clone2 in spatial transcriptomics, 
while EEF1A1 expression is in both spatial subclones (p < 2.22 × 10−16, two-sided 
proportion test).



Extended Data Fig. 6 | Spatial Expression Pattern of Tumor Microregions 
Driven by Genetic Alteration and Tumor Depth. a, Tumor heterogeneity 
evaluated by 1- ROGUE scoring. Higher scores indicate higher heterogeneities. 
Each point represents one section and is colored by its respective cohort 
designation and number of subclones (n = 131 sections from 78 cases). The box 
plot’s center line represents the median, with the lower and upper hinges 
indicating the first and third quartiles. Whiskers extend to the highest and 
lowest values within 1.5 times the interquartile range (IQR) from the hinges.  
b, (Top panel) Distribution of pairwise Pearson correlations between pairs of 
microregions within the same section. Distribution is split by those from the 
same tumor subclone (green) and those from different subclones (orange). The 
number in the boxes and the solid line indicate the mean of each distribution. 
(Bottom panel) Number of tumor subclones, microregions, and sections per 
tissue block. c. Pairwise Pearson correlation of microregions based on the top 

500 most variable genes in section U1 of HT260C1-Th1H3. The red box highlights 
the pairwise Pearson correlations of microregions within Clone 1. d, Pathway 
enrichment scores for Clone 1 (c1), and Clone 2 (c2), and TME, where bubble size 
represents corrected p-value (two-sided Wilcoxon rank-sum test FDR adjusted). 
e, Partial correlation coefficient rho (with tumor purity as a covariate) and 
-log10(p-value) between expression level and layer for all genes in the same 
section. Positive correlation indicates higher expression in the tumor center 
and negative correlation indicates higher expression in the tumor periphery. 
Genes are categorized using matching snRNA-seq as follows: purple for tumor- 
specific, orange for tumor-enriched, green for stromal-enriched, and light 
purple for not DEG. f, Center- and periphery-enriched genes with their correlation 
lines and spatial expression patterns (Pearson correlation). g, Top shared center- 
 and periphery-enriched genes across cancer types (FDR<0.05 and rho>0.1 or 
rho<−0.1) (partial correlation with Benjamini-Hochberg procedure).



Article

Extended Data Fig. 7 | Transcriptional Variability and Pathway Enrichment 
in Tumor Subclones. a, Pairwise Pearson correlation of the top 500 most 
variable genes in all 5 sections of Block HT268B1-Th1H3. Microregions with less 
than 10 spots were filtered out for this analysis. b, GSEA hallmark pathway 
enrichment analysis of tumor subclones compared to TME in the first section 
(U1) of HT268B1-Th1H3 (Two-sided Wilcoxon rank-sum test FDR adjusted). 
Average gene expression of upregulated genes in subclones from GSEA 
analysis and example spatial expression in c, d, Unfolded protein response, and 
e, f, MYC target v1 gene set in the first section (U1). g, h, G2M checkpoint, and  

i, j, MYC target v1 gene set. (i) Genes involved in DNA replication (light blue),  
cell cycle progression (light green), and translation initiation (light red) are 
highlighted. Average gene expression of upregulated genes in subclones from 
GSEA analysis and example spatial expression in c, e, g, i, (top panels) Module 
score, or average expression level of the program, calculated with Seurat 
AddModuleScore function (Method) using genes listed in each heatmap. The 
box plot’s center line represents the median, with the lower and upper hinges 
indicating the first and third quartiles. Whiskers extend to the highest and 
lowest values within 1.5 times the interquartile range (IQR) from the hinges.



Extended Data Fig. 8 | Layer Depth and Gene Expression in Tumor 
Microregions. a, Schema of tumor depth designation for tumor microregions 
quantified in the number of layers. Starting from the tumor/TME border, 
proximal layers of tumor spots are iteratively defined as T1, T2, T3, etc, and 
distal TME spots are similarly defined as E1, E2, E3, etc. b, Relationship between 
the depth (measured in a total number of layers) and size (measured in the 
number of spots) of each microregion. The dashed reference line represents 
the projected depth-size relationship of perfect circular regions. c, A primary 
breast cancer sample with two tumor microregions eligible for the layer 
correlation analysis. Spots excluded from the analysis due to their proximity  
to the physical edge of the tissue are labeled in gray. d, Partial correlation 

coefficient rho (with tumor purity as covariate) and -log10(p-value) between 
expression levels and layers for all genes. Positive correlation indicates higher 
expression in the tumor center and negative correlation indicates higher 
expression in the tumor periphery. e, Top center- and periphery-enriched 
genes with their correlation lines and spatial expression patterns (Pearson 
correlation). The box plot’s center line represents the median, with the lower 
and upper hinges indicating the first and third quartiles. Whiskers extend to 
the highest and lowest values within 1.5 times the interquartile range (IQR) 
from the hinges. Using Spatial Expression Deconvolution method to infer 
cell-type-specific expression yielded nearly identical results (Supplementary 
Fig. 9 and Methods).
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Extended Data Fig. 9 | Spatial Subclone Infiltration and Cell Composition 
Across Tumor Layers. a, FDR statistics of comparing infiltration level by cell 
type between any two pairs of spatial subclones on the same sample. All 
significant FDR (<0.05) of the cell type from each sample was shown here 
indicating differential infiltration is observed (n = 16 spatially distinct cases 
with available matching deconvolution). b, Cell type composition of 6 regions 
defined by the following layers, T3 and above (T3+), T2, T1, E1, E2, and E3 and 

above (E3+), in 16 cases. c, Fraction of macrophage, T cell, fibroblast, and tumor 
in CODEX across 6 regions defined by the following layers, T3 and above, T2, T1, 
E1, E2, and E3 and above. Each data point represents one sample and data points 
from the same sample are connected. d, Spatial expression of boundary-enriched 
genes POSTN and IFI30. e, Example cell-cell interactions in MK pathway (MDK) 
in two tumor sections, with the arrow direction indicating signal direction and 
the arrow length indicating signal strength.



Extended Data Fig. 10 | Spatial Mapping and 3D Reconstruction of Tumor 
Microregions. a, Analogous Sankey plot and b, tumor volume spatial distributions 
on the ST sections for tissue block HT226C1-Th1. c, Analogous Sankey plot and. 
d, Histology, spatial tumor microregion, and distribution of tumor volume 
Vol.14 in HT206B1-S1. e, Overview of the spatial neighborhood identification 
workflow. Briefly, serial sections are registered and then used to train a vision 
transformer (ViT) autoencoder that produces image patch embeddings that 

are assigned to neighborhoods and assembled into 3-dimensional volumes.  
f, Visium ST for HT268B1 overlaid with copy number subclone annotations with 
distance in microns shown between sections. g, Spatial expression of additional 
DEGs corresponding to TME neighborhoods 4 (TYMP), 6 (CCL9), and shared 
(HLA-DRA) genes. h, 3D reconstruction of tumor regions for HT397B1. The 
tumor surface mesh is colored by the density of fibroblasts and immune cells 
within a 50-micron radius of a given location.
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