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ABSTRACT

Long non-coding RNAs (lncRNAs), transcription factors and microRNAs can 
form lncRNA-mediated feed-forward loops (L-FFLs), which are functional network 
motifs that regulate a wide range of biological processes, such as development 
and carcinogenesis. However, L-FFL network motifs have not been systematically 
identified, and their roles in human cancers are largely unknown. In this study, we 
computationally integrated data from multiple sources to construct a global L-FFL 
network for six types of human cancer and characterized the topological features 
of the network. Our approach revealed several dysregulated L-FFL motifs common 
across different cancers or specific to particular cancers. We also found that L-FFL 
motifs can take part in other types of regulatory networks, such as mRNA-mediated 
FFLs and ceRNA networks, and form the more complex networks in human cancers. In 
addition, survival analyses further indicated that L-FFL motifs could potentially serve 
as prognostic biomarkers. Collectively, this study elucidated the roles of L-FFL motifs 
in human cancers, which could be beneficial for understanding cancer pathogenesis 
and treatment.

INTRODUCTION

Long non-coding RNAs (lncRNAs, > 200 
nucleotides in length) [1] are pervasive across the 
genome [2, 3] and dysregulation of their expression is 
associated with many human diseases [4, 5], including 
cancer [6]. The expression of lncRNA is regulated at 
the transcriptional level by transcription factors (TFs) 
[7] and at the post-transcriptional level by microRNAs 
(miRNAs) [8-10], leading to differential expression in 
different development and disease statuses. While both 
TFs and miRNAs regulate lncRNAs, TFs also regulate 
miRNAs [7]. This lncRNA-mediated feed-forward 
loop (L-FFL) is an important regulatory network motif 
underlying many biological processes, such as muscle 
cell differentiation [11] and cancer [12]. Indeed, many 
lncRNAs, TFs and miRNAs are dysregulated in various 

types of cancer [13, 14]. However, there has been no 
large-scale attempt to identify L-FFL network motifs and 
their specific roles in human cancers.

Large-scale cancer genomics projects, such as the 
Cancer Genome Atlas (TCGA), have provided the global 
expression profiles of some lncRNAs, TFs and miRNAs 
in large samples [15, 16]. In addition, several databases 
have been developed to facilitate the construction of 
L-FFL network motifs. For example, SNP@lincTFBS 
and ChiPBase identify TF-lncRNA interactions from 
ChIP-Seq data [17, 18]. DIANA-LncBase and starBase 
v.2.0 provide experimentally verified miRNA-lncRNA 
interactions from Ago CLIP-seq data [19, 20]. TransmiR 
manually collects experimentally supported TF-miRNA 
regulatory relationships from literature and publications 
[21]. However, these databases provide limited insight into 
the structure and function of the L-FFL network.
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We hypothesized that the integration of large-scale 
cancer expression profiling data and an L-FFL network 
to identify cancer-associated L-FFL motifs may reveal 
novel regulatory mechanisms in human cancers as well as 
potential therapeutic targets. For this study, we developed 
a computational approach that integrates interaction and 
expression data of lncRNAs, TFs and miRNAs to identity 
dysregulated L-FFL motifs common across and specific to 
six types of human cancer. Survival analyses suggest that 
L-FFL motifs may could potentially serve as prognostic 
biomarkers.

RESULTS

The topological characteristics of the L-FFL 
network

We integrated multiple data sources to identify 623 
L-FFL network motifs, each consisting of a TF, an miRNA 

and their common target lncRNA and then constructed a 
global L-FFL network containing 240 nodes (96 lncRNAs, 
17 TFs and 127 miRNAs) and 878 edges (Figure 1A). 
We found that this network approximated the scale-free 
network topology of a transcriptional regulatory network. 
The TFs held a larger degree than the lncRNAs and 
miRNAs and participated in more regulatory relationships 
(Figure 1B). We also analyzed connectivity, topological 
coefficient, and clustering coefficient of nodes. All of 
these features followed a scale-free distribution (Figures 
1C, 1D, 1E), indicating that the L-FFL network behaves 
like a small-world phenomenon [22]. The neighborhood 
connectivity distribution provides the average of the 
neighborhood connectivity of lncRNAs, TFs, and miRNAs 
with k neighbors (k =0, 1…n). The constant decrease in 
the topological coefficient as the degree increases per 
lncRNA, TF, and miRNA indicates that the networks 
may have a hierarchical modularity. If the distribution 
decreases, then most of the edges in the network connect 

Figure 1: The basic characteristics of L-FFL network. A. A global L-FFL network. lncRNAs, miRNAs and TFs are colored 
yellow, blue and red, respectively. Known disease-associated nodes are marked by black circles. B–E. The basic features of the network 
include degree, connectivity, topological coefficients, and clustering coefficients of lncRNA, miRNA and TF. F. Two L-FFL motifs were 
associated with lung cancer and breast cancer.
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low-degree nodes with high-degree nodes, indicating that 
the network consists of sub-networks [23]. Some other 
networks have similar topological features. For example, 
the ceRNA network in cancer usually shows the features 
of multiple layers and being scale-free [24].

In addition, some nodes and edges in the L-FFL 
network were found to be associated with human cancer 
in previous studies. We identified six lncRNAs, 17 TFs 
and 127 miRNAs that were associated with different types 
of human cancers using data from lncRNADisease [25], 
HMDD [26] and the literature (Figure 1A, Supplementary 
Table S1). For example, the lncRNA JPX, the TFs MYC 
and E2F1 and the miRNA let-7 play crucial roles in 
human cancers [27, 28]. More importantly, we found that 
some L-FFL motifs provide novel information on cancer 
regulation. For example, MYC is an onco-protein family 
comprised of c-myc, N-myc and L-myc, all of which 
contribute to pathogenesis in many human cancers. The 
lncRNA H19, which is regulated by c-myc, participates in 
embryonic development and tumorigenesis. Upregulation 
of H19 promotes cell proliferation correlates with poor 
prognosis in non-small-cell lung cancer [29]. MiR-
29a/b/c, miR-106a/b and miR-19b are known disease-
related miRNAs, especially in lung cancer [30-32]. Our 
L-FFL network is composed of L-FFL motifs in lung 

cancer, which may represent a new mechanism in cancer 
(Figure 1F). As another example, the lncRNA JPX is an 
Xist activator, yet Xist expression is downregulated in 
breast cancer [33]. The TF MEF2C is expressed in normal 
mammary epithelial cells and in breast cancer cell lines 
[34]. MiR-193a/b, miR-145, and miR-197 were previously 
reported to promote breast cancer [35-37]. The TF MEF2C 
interacts with the lncRNA JPX, miR-193a/b, miR-145, 
and miR-197, and every transcript in these structures is 
associated with breast cancer (Figure 1F), suggesting they 
may play critical roles in tumorigenesis in combination 
with an L-FFL motif.

Some L-FFL motifs are significantly 
dysregulated in cancer

To further understand the functional significance 
of L-FFL motifs in human cancer, we identified the 
significantly dysregulated L-FFL network motifs for 
different cancer types in the L-FFL network (see Materials 
and Methods). Based on these motifs, we constructed 
significantly dysregulated L-FFL sub-networks for each 
cancer type (Figure 2, Supplementary Table S2). There 
were 12 L-FFL motifs with five lncRNAs, four TFs and 10 
miRNAs in bladder cancer (Figure 2A); 16 L-FFL motifs 

Figure 2: The sub-network of significantly dysregulated L-FFL motifs. A significantly dysregulated sub-network related to  
A. BLCA, B. BRCA, C. KIRP, D. LUAD, E. LUSC and F. UCEC, and G. the union network of six sub-networks. LncRNAs, miRNAs and 
TFs are colored yellow, blue and red, respectively. The node size represents the degree of the node in the network, and the thickness of the 
node border represents the number of cancers in which the nodes participated.
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with eight lncRNAs, six TFs and 13 miRNAs in breast 
cancer (Figure 2B); 14 L-FFL motifs with seven lncRNAs, 
four TFs and eight miRNAs in kidney cancer (Figure 2C); 
11 L-FFL motifs with seven lncRNAs, five TFs and eight 
miRNAs in lung adenocarcinoma (Figure 2D); 15 L-FFL 
motifs with eight lncRNAs, five TFs, and 13 miRNAs in 
lung squamous cell carcinoma (Figure 2E); and 12 L-FFL 
motifs with seven lncRNAs, four TFs and seven miRNAs 
in uterine corpus endometrioid carcinoma (Figure 2F).

Analyzing these sub-networks, we found that 
some nodes and edges were present in multiple types of 
cancer, suggesting they play important roles in human 
carcinogenesis. To investigate these nodes, we first 
constructed a highly dysregulated L-FFL sub-network 
consisting of all of the dysregulated motifs for all six 
types of cancer. This network included 21 lncRNAs, 
nine TFs and 34 miRNAs (Figure 2G). The nodes with 
larger degrees were usually associated with more types 
of cancer and tended to be network hubs, indicating they 
might promote pan-cancer development. For example, 
the TF E2F1, the lncRNA H19 and the miRNA miR-106 
had high degrees and were dysregulated in many types 
of cancer. Indeed, these transcripts are known to promote 
cancer development [38, 39]. Furthermore, we performed 
an enrichment analysis to investigate the function of this 
sub-network using all of the TFs [40]. These TFs were 
enriched in several cancer-related GO terms and pathways, 
such as the cancer pathway (Supplementary Figure S1). 
Significant GO terms included transcriptional regulation, 
transcription factor activity and positive regulation of 
RNA metabolic processes (Supplementary Table S3).

Common and specific dysregulated L-FFL motifs 
across cancer types

Here, L-FFL motifs dysregulated in at least two 
cancer types are designated as “common”, while those 
dysregulated in only one cancer type are considered 
“specific”. In total, 48 L-FFL motifs were identified as 
cancer specific, and 13 L-FFL motifs were common 
between different cancer types (Figure 3A). Some 
common L-FFL motifs were dysregulated in at least 
three types of cancer (Figure 3B, Supplementary Table 
S4). For example, an L-FFL motif consisting of the TF 
E2F1, the miRNA miR-15b and the lncRNA IQCH-AS1 
was dysregulated in breast cancer, lung squamous cell 
carcinomas, and lung adenocarcinoma. Previous studies 
have demonstrated that E2F1 can regulate the expression 
of genes in the cell cycle and act as a tumor suppressor in 
many types of cancer [41]. Also, miR-15b plays a critical 
role in many types of cancer and miR-15 families known 
as oncomiRs have tumor suppressor or oncogene functions 
[42]. We found that the lncRNA IQCH-AS1 interacts with 
E2F1 and miR-15b, suggesting it might be implicated 
in cancer regulation through the L-FFL network. Thus, 
the L-FFL might underlie cancer development processes 

common to many types of cancer. In addition, we also 
found that the L-FFL motif comprised of E2F1, miR-
195 and SNHG12, and the L-FFL motif comprised of 
E2F1, miR-106b and KB-1732A1.1, were dysregulated 
in three types of cancers (Figure 3B). E2F1 appeared 
many times in common L-FFL motifs and therefore 
might play different roles in different types of cancers 
by interacting with different lncRNAs and miRNAs [38]. 
On the other hand, most motifs were specific (Figure 3C, 
Supplementary Table S4). For example, the MYC, miR-
98 and LINC00665 motif was dysregulated only in breast 
cancer, while the MEF2C, miR-145 and JPX motif was 
dysregulated only in bladder cancer.

L-FFL motifs as prognostic biomarkers for 
cancers

We tested whether the expression of each L-FFL 
motif correlated with cancer survival (see Materials 
and Methods). Indeed, the expression of some L-FFL 
motifs correlated with survival in all types of cancer 
tested, excluding lung squamous cell carcinomas (Figure 
4, Supplementary Table S5). For example, the L-FFL 
motif comprised of MYC, miR-98 and LINC00665 
correlated with breast cancer patient survival (P=0.023), 
in agreement with previous studies showing that MYC 
and miR-98 correlate with cancer patient survival [43, 
44]. Also, the MEF2C, miR-145 and JPX correlated with 
the survival of bladder cancer patients (P=0.026). In 
addition, the MYC, miR-429 and MAPKAPK5-AS1 motif 
correlated with kidney cancer patient survival (P=0.065); 
the E2F1, miR-106b and ZNF718 motif correlated with 
lung adenocarcinoma patient survival (P=0.045); and, 
finally, two motifs correlated with endometrial cancer 
patient survival (P=0.019 and P=0.002). Importantly, 
survival analyses using only one type of transcript had 
no prognostic power. For example, the MYC, miR-
429 and MAPKAPK5-AS1 motif did not correlate with 
patient survival when analyzing each of its components 
separately. These results suggest that L-FFL motifs may 
serve as prognostic biomarkers for different cancers.

L-FFL motifs may participate in complex 
biologic network regulation

We investigated whether there is cross-talk between 
the L-FFL motif and other types of network motifs in 
human cancer. First, we identified dysregulated mRNA-
mediated FFL (M-FFL) motifs in different types of 
cancers by following the same pipeline as with the L-FFL 
motif identification. Then, we generated dysregulated 
motifs that included the TFs and miRNAs shared by 
both the L-FFL and the M-FFL motifs (L-M-FFL motif). 
For example, we found that an L-FFL motif constituted 
by SNHG12, E2F1, and miR-16, and an M-FFL motif 
constituted by E2F1, miR-16 and AURKB could form a 
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complex regulation motif by sharing common TF E2F1 
and miRNA miR-16, which were highly dysregulated in 
breast and bladder cancers (Figure 5A, Supplementary 
Table S6). In addition, some L-M-FFL motifs were 
dysregulated in only one type of cancer and could be 
regarded as cancer-specific motifs. For example, an L-M-
FFL motif comprised of KB-1732A1.1, MYC, miR-93, 
and CCND1 was only dysregulated in lung squamous cell 

carcinomas (Figure 5B), and an L-M-FFL motif including 
LINC00662, MYC, miR-34a and VEGF was only 
dysregulated in kidney cancer (Figure 5C). Interestingly, 
we found cases of L-M-FFL motifs for which only the 
L-FFL motif exhibited functional relevance. For example, 
an L-FFL motif constituted by E2F1, miR-15b, and 
IQCH-AS1, and an M-FFL motif made of E2F1, miR-15b 
and BCL2 formed a complex L-M-FFL motif in uterine 

Figure 3: Common and specific dysregulated L-FFL motifs. A. L-FFL motifs dysregulated across cancer types. Each row 
represents an L-FFL motif, and each column represents one type of cancer. The node in the table indicates that this L-FFL motif was 
dysregulated in this cancer. UCEC, LUSC, LUAD, KIRP, BRCA and BLCA are red, orange, yellow, green, blue and purple, respectively. 
B. Three examples of common L-FFL motifs that were dysregulated in at least three types of cancer. C. Six examples of specific L-FFL 
motifs that were dysregulated in BRCA, BLCA, KIRP, LUAD, UCEC and LUSC.
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corpus endometrioid carcinoma, but only the L-FFL motif 
correlated with patient survival (P=0.002, Figure 5D). 
The same result was also found in lung adenocarcinoma 
cancer (Figure 5E). These results indicate that although 
different types of motifs participate in cross-talk within 
the network, only parts of the network motif have a 
specific function.

We also obtained ceRNA motifs associated with 
cancer from the LncACTdb database [16]. We found 
that some dysregulated L-FFL and ceRNA motifs 
shared common miRNAs and lncRNAs in some types of 
cancers. For example, an L-FFL motif comprised of the 
lncRNA H19, the TF MYC and the miRNA miR-29c, 
and an ceRNA motif comprised of the mRNA COL3A1, 
the lncRNA H19 and the miRNA miR-29c, were both 
dysregulated in breast cancer (Figure 5F). In this case, 
the L-FFL and ceRNA motifs might exhibit complex 
regulatory functions and cross-talk in cancer.

DISCUSSION

The cross-talk between different types of regulatory 
transcripts (e.g., mRNAs, lncRNAs, TFs and miRNAs) 
forms complex network motifs that may underlie 
carcinogenesis in some human cancers. In this study, 

we focused on a novel network motif, the L-FFL motif, 
and developed a computational approach to study it by 
integrating interaction and expression data of lncRNA, 
mRNAs and miRNAs. To validate our approach, we 
performed the same analyses using an independent 
microarray dataset from Gene Expression Omnibus 
(GEO, GSE36295) that included 45 breast cancer 
samples and eight normal samples. We obtained the TF, 
miRNA and lncRNA expression data for these samples 
based on the re-annotation of the Affymetrix Human 
Gene 1.0 ST Array and identified six dysregulated L-FFL 
motifs. There were three common dysregulated L-FFL 
motifs between GEO microarray and TCGA RNA-seq 
data, and TFs, miRNAs and lncRNAs were differentially 
expressed between breast cancer and normal samples 
(Figure 6).

In this study, we also identified dysregulated L-FFL 
motifs that were common and specific to several cancers, 
consistent with previous studies on the tissue specificity 
of miRNA and lncRNA [45]. Tissue-specific L-FFL 
motifs could aid the development of drugs that target 
specific cancer tissues while minimizing side effects. Our 
functional and survival analyses suggest that L-FFL motifs 
may serve as prognostic biomarkers for cancer. Similar to 
previous studies highlighting the use of lncRNAs as cancer 

Figure 4: L-FFL motifs are potential prognostic biomarkers for cancers. Kaplan-Meier survival analysis performed on two 
groups of patients with different clinical outcomes. The blue lines represent the group with low risk, and the red lines represent the group 
with high risk.
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biomarkers [46], we found that the expression of lncRNAs 
that participate in L-FFL motifs correlates with prognosis.

There are other types of L-FFL motifs different 
from the ones we focused on in this study, such as those 
in which miRNAs and lncRNAs regulate TFs or lncRNAs 
regulate miRNAs [47]. Under different mechanisms and 
conditions, TFs can activate or repress the expression of 

target lncRNAs and miRNAs in the L-FFL motifs [21]. 
These alternate L-FFL motifs have also been shown to 
participate in the development of several types of cancer 
[48, 49], and can also be constructed with the help of 
databases [50]. Further analyses of these types of motifs 
and their complex regulatory patterns could also reveal 
novel mechanism underlying carcinogenesis.

Figure 5: L-FFL motifs participate in complex biology network regulation. An example of network regulation when combining 
the dysregulated M-FFL and L-FFL motif in A. BRCA and BLCA, B. LUSC, and C. KIRP. D. Survival analysis of the M-FFL motif (left) 
and L-FFL motif (right) in UCEC, and E. LUAD. F. Example of network regulation when combining dysregulated ceRNA and L-FFL 
motif in BRCA.
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In summary, our study provides novel insights 
into the mechanisms underlying the function of 
lncRNAs in cancer. As shown here, the analysis of the 
L-FFL network can help to understand the relevance of 
multi-level cross-talk regulation in cancer by revealing 
functional motifs that are common across or specific to 
different cancer types.

MATERIALS AND METHODS

Expression data of lncRNA, TF and miRNA

We obtained the data from six types of cancers and 
normal expression data of lncRNAs, TFs and miRNAs 
as previously described [16]. Briefly, we downloaded 
the raw read counts for each exon from the TCGA 
level 3 dataset. Then, we mapped these exons to the 
annotation of human TFs and lncRNAs that was derived 
from GENCODE [51]. We recalculated the reads per 
kilobases per million reads (RPKM) values for the TFs 
and lncRNAs, leading to expression data of human TF 
and lncRNA. The miRNA sequencing data (Illumina 
HiSeq miRNASeq) for six types of cancer were 
downloaded from TCGA (level 3) [52]. Cancer samples 
with clinical follow-up information were retained for 
further analysis. The cancer name abbreviations of 
TCGA and the number of cancer and normal samples 
are listed in Supplementary Table S7.

Constructing a global L-FFL network

L-FFL motifs consist of a TF, an miRNA and their 
common target lncRNA, in which the TF regulates the 
expression of the miRNA, and both the TF and the miRNA 
regulate a common set of target lncRNAs [7]. To construct 
a global L-FFL network, three types of regulatory 
interaction are needed: miRNA-lncRNA, TF-lncRNA 
and TF-miRNA. The regulatory interactions chosen in 
this study were downloaded from starBase v2.0 [20], 
which provides comprehensive CLIP-Seq experimentally 
supported miRNA-lncRNA interaction data. The TF-
lncRNA regulatory interactions were downloaded from 
SNP@lincTFBS [18], which identifies transcription 
factor binding sites (TFBSs) of lncRNA using genome-
wide ChIP-Seq data. Finally, the TF-miRNA regulatory 
interactions were downloaded from TransmiR [21], which 
manually collects experimentally supported TF-miRNA 
regulatory relationships from literature and publications.

Topological measurements of the L-FFL network

We investigated several common topological 
measurements to reveal the characteristics of the L-FFL 
network. For the whole L-FFL network, we analyzed 
the degrees, connectivity, topological coefficients, 
and clustering coefficients of nodes (lncRNA, TF and 
miRNA).

Figure 6: Common L-FFL motifs between microarray and RNA-seq data. The numbers of dysregulated L-FFL motifs in 
GEO and TCGA samples for BRCA are shown in red and blue circles, respectively. Three common dysregulated L-FFL motifs are shown. 
The box plots show the differential expression of each L-FFL motif, and TFs, miRNAs and lncRNAs are colored red, blue and yellow, 
respectively.
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Identifying L-FFLs dysregulated in cancer

Using both the L-FFL network and expression 
profiling data, we developed an integrative pipeline to detect 
L-FFL motifs dysregulated in different types of cancer 
(Supplementary Figure S2). First, for each L-FFL motif, we 
computed t-tests or paired t-tests and P-values to measure 
the differences in the expression levels of lncRNAs, TFs 
and miRNAs between cancer and normal samples. For each 
miRNA-lncRNA, TF-lncRNA and TF-miRNA regulatory 
interaction in each L-FFL motif, we calculated Pearson 
correlation coefficients (PCCs) for the cancer and normal 
samples, as well as the difference between them. We used 
the absolute difference between cancer and normal PCCs 
to represent association between interactions. We integrated 
the differential expression P-value and PCCs to calculate 
two comprehensive scores (scorediff and scorecor) for L-FFL 
as follows (Supplementary Figure S3):

p p pscore t mdiff 1=

C N C N C Nscore | ( )( )( ) |tm tm tl tl ml mlcor = − − −

where pt, pm, and pl are the differential expression 
P-values of TF, miRNA and lncRNA, respectively, in 
each L-FFL, and scorediff corresponds to the difference 
in expression of an L-FFL motif between the cancer and 
normal samples. Ctm, Ctl, and Cml are the PCCs for the TF 
and miRNA, TF and lncRNA, and miRNA and lncRNA 
pairs, respectively, in the cancer samples, while Ntm, Ntl, 
and Nml are the PCCs for the TF and miRNA, TF and 
lncRNA, and miRNA and lncRNA pairs, respectively, 
in the normal samples. Scorecor corresponds to the 
absolute difference in the correlation level of an entire 
L-FFL motif between the cancer and normal samples. 
Second, we ranked all of the L-FFL motifs for each 
cancer type using scorediff and scorecor based on an 
equally-weighted, multidimensional ranking method 
[53]. After ranking by each score, we computed a final 
ranking score for each L-FFL motif by integrating its 
two rank positions in a two-rank list. A higher ranking 
corresponds to larger dysregulation in cancer. Third, we 
measured the significance of each L-FFL motif’s ranking 
by comparing its final score with that of L-FFL motifs 
calculated by randomly permuting the sample labels 
for expression profiling. With 1000 permutations, we 
referred to previous studies and generated dysregulated 
L-FFL motifs for each type of cancer based on the 
permutation P-value (P < 0.05)[47].

Survival analysis

For each dysregulated L-FFL motif in each type 
of cancer, a Cox multiple regression analysis was used to 
evaluate the association between expression and cancer 
survival. The corresponding regression coefficient of each 
lncRNA, miRNA and TF in an L-FFL motif was used as a 
weighting coefficient to produce an integrated score. We used 

the integrated score to classify the samples into high-risk and 
low-risk groups. Then, a Kaplan-Meier survival analysis 
was performed for the two clustered groups, and statistical 
significance was assessed using the log-rank test. All of the 
analyses were performed within the R 2.15.3 framework.

Gene set enrichment analysis

Gene Ontology (GO) enrichment and KEGG 
pathways enrichment analyses were performed by the 
DAVID functional annotation web server using default 
parameters [40]. We obtained enriched GO terms (FDR < 
0.05) and KEGG pathways (P < 0.1).
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