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Abstract
Purpose The aim of this study was to develop and test a post-processing technique for detection and classification of lesions
according to the BI-RADS atlas in automated breast ultrasound (ABUS) based on deep convolutional neural networks (dCNNs).
Methods and materials In this retrospective study, 645 ABUS datasets from 113 patients were included; 55 patients had lesions
classified as highmalignancy probability. Lesionswere categorized inBI-RADS2 (no suspicion ofmalignancy), BI-RADS3 (probability
of malignancy < 3%), and BI-RADS 4/5 (probability of malignancy > 3%). A deep convolutional neural network was trained after data
augmentationwith images of lesions and normal breast tissue, and a sliding-window approach for lesion detectionwas implemented. The
algorithmwas applied to a test dataset containing 128 images and performancewas comparedwith readings of 2 experienced radiologists.
Results Results of calculations performed on single images showed accuracy of 79.7% and AUC of 0.91 [95% CI: 0.85–0.96] in
categorization according to BI-RADS. Moderate agreement between dCNN and ground truth has been achieved (κ: 0.57 [95% CI:
0.50–0.64]) what is comparable with human readers. Analysis of whole dataset improved categorization accuracy to 90.9% and AUC
of 0.91 [95% CI: 0.77–1.00], while achieving almost perfect agreement with ground truth (κ: 0.82 [95% CI: 0.69–0.95]), performing
on par with human readers. Furthermore, the object localization technique allowed the detection of lesion position slice-wise.
Conclusions Our results show that a dCNN can be trained to detect and distinguish lesions in ABUS according to the BI-RADS
classification with similar accuracy as experienced radiologists.
Key Points
• A deep convolutional neural network (dCNN) was trained for classification of ABUS lesions according to the BI-RADS atlas.
• A sliding-window approach allows accurate automatic detection and classification of lesions in ABUS examinations.

Keywords Ultrasonography,Mammary .Machine learning . Breast neoplasms

Abbreviations
ABUS Automated breast ultrasound
ACR American College of Radiology
AUC Area under the curve
BI-RADS Breast Imaging-Reporting and Data System
CAD Computer-aided detection
dCNN Deep convolutional neural network

HHUS Hand-held ultrasound
ROC Receiver operating characteristic
US Ultrasound

Introduction

Breast cancer is one of the most common causes of cancer death
in females, and mortality rates are increasing worldwide [1]. In
total, 2.3 million women were diagnosed with breast cancer in
2020 alone, causing 685,000 deaths worldwide [2]. The life-time
probability to develop breast cancer is estimated to be 12.3% [3]
and 1-, 3-, and 5-year survival rates are 92%, 75%, and 73% [4].

Current screening programs most commonly rely on mam-
mography, which is known to reduce breast cancer–related
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mortality by up to 45% [5]. In spite of its cost-effectiveness,
mammography screening exhibits some shortcomings reduc-
ing the effectiveness in quality-controlled organized screening
programs and opportunistic breast cancer screening. Due to
the need of breast compression in conventional mammogra-
phy, many women decide not to undergo screening mammog-
raphies because of the fear of pain [6]. Moreover, dense breast
tissue decreases the sensitivity of conventional mammogra-
phy in cancer detection [7–10]. For women with dense breast
tissue or women unwilling to undergo mammography, breast
ultrasound may be a robust alternative modality, used as an
adjunct to mammography or as an independent screening mo-
dality providing an increased accuracy for cancer detection
[11, 12] but results are highly dependent on operators’ skill
and experience, on top of that requiring an expert’s interpre-
tation of results that may be highly subjective.

The Breast Imaging-Reporting and Data System (BI-
RADS) was developed by the American College of
Radiology (ACR) as a classification system to standardize
quality control and risk assessment in mammography [13,
14]. The BI-RADS guidelines apply a numeric scale to de-
scribe the presence of lesions and the probability for malig-
nancy. BI-RADS 1 corresponds to an image with nomasses or
lesions detected; BI-RADS 2 describes a lesion with no sus-
picion for malignancy; BI-RADS 3 stands for low probability
of malignancy (< 3%); 4a—low suspicion of malignancy (2–
10%); 4b—intermediate suspicion (11–50%); 4c—high sus-
picion (51–94%); and BI-RADS 5 corresponds to high prob-
ability of malignancy (> 95%) [15].

Automated breast ultrasound (ABUS) may be used instead
of the more commonly applied hand-held ultrasound (HHUS)
allowing a standardization of the image acquisition, complete
coverage of the whole breast volume, and the delegation of the
acquisition task to the technician [16, 17]. In first clinical
studies, ABUS demonstrated similar accuracy as hand-held
ultrasound; moreover, ABUS increased the cancer detection
rate in combination with conventional mammography [18,
19]. One of the disadvantages of ABUS examinations is the
large number of images resulting in an increased reading time
for inexperienced radiologists. Additionally, a higher reader
dependence of ABUS assessments has been reported [20].

Machine learning techniques have been shown to allow de-
tection and classification of breast imaging findings [21], and
particularly deep convolutional neural networks (dCNNs) pro-
vide a powerful tool in breast imaging, for example in detection
and classification of microcalcifications in mammography [22],
as well as the detection of breast cancer in hand-held US images
and mammographies [23]. Applying dCNNs for feature extrac-
tion from ABUS examinations resulted in an increase of diag-
nostic reliability for second reading [24].

In this study, we trained a dCNN algorithm with ABUS find-
ings to imitate the radiological decision-making according to the
ACR BI-RADS recommendations of risk assessment in ABUS

examinations. Moreover, a sliding-window approach was imple-
mented for automatic localization of suspicious and non-
suspicious lesions in ABUS datasets based on the dCNN
classification.

Materials and methods

Patient data

This retrospective study has been approved by the local ethics
committee (“Kantonale Ethikkommission Zurich”; Approval
Number: 2016-00064). ABUS images for training, validation,
and testing of the algorithm have been retrospectively gath-
ered from the PACS database of the University Hospital of
Zurich among the exams performed between 2017 and 2019.
In total, 645 ABUS image sets containing lesions from 113
female patients were selected by an experienced radiologist
with over 8 years of experience in breast imaging and over 3
years of experience in ABUS imaging. From the selected data,
55 patients had lesions of high probability for malignancy (BI-
RADS 4/5) and 58 patients had lesions of low probability of
malignancy (BI-RADS 2/3), all later confirmed as stable le-
sions or histologically proven fibroadenomas. For training of a
model, 189 images containing a lesion with high malignancy
probability and 178 images with low probability were used.
For model validation, each BI-RADS category contained 75
images. Dataset for testing comprised of 71 images with high
malignancy probability from 10 patients and 57 images with
low malignancy probability from 10 patients that were not
used for training nor validation of a model.

ABUS examination

Images were acquired with a dedicated ABUS device
(Invenia™ Automated Breast Ultrasound System, GE
Healthcare) by a trained technician. Acquisition consisted of
three volumes per breast in order to cover the whole breast
volume. Each image set consists of a stack of 2D images with
a matrix size of 600 × 600 pixels; each of them presents a US
view plane 0.5 mm apart from each other.

Image selection and data preparation

From the complete datasets, single images depicting lesions were
selected by the radiologist and classified according to BI-RADS
categories. Depiction of a single image from the image stack is
shown in Fig. 1. Ten image sets were excluded from further
analysis due to presence of artifacts. For training and validation
of the dCNN, the area surrounding the lesion was selected by the
radiologist and cropped as a rectangular image with a size of 151
× 181 pixels. Training/validation images were augmented to im-
prove the generalization of training and to balance the classes of
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the dataset using the TensorFlow (Google LLC) data augmenta-
tion tool for rotation, height and width shift, shear, zoom, and
horizontal flipping. Detailed data on the number of augmented
images used for each part of learning process are presented in a
Table 1. To allow for a step-wise detection and classification, 3
dCNN models were trained:

Model 1—distinguishing between image background
from breast tissue
Model 2—distinguishing between normal breast tissue
and presence of a lesion (both benign and malignant)
Model 3—determination of the BI-RADS category of the
detected lesion (BI-RADS 2/3 or BI-RADS 4/5)

dCNN architecture

The models were trained using a deep convolutional neural
network with 13 convolutional layers with 5 max pooling
layers for downsampling followed by 2 dense layers with
the ReLU activation function. A 50% dropout was applied
to reduce overfitting and a softmax activation function was
used for the final weights. For model training, a stochastic
gradient descent optimization was used with binary cross-
entropy loss function. Batches of 16 were applied and the

learning rate was set to 1.0 × 10−6, a Nesterov momentum of
0.90 was used, and training was stopped after training and
validation accuracies stopped improving, what meant 120
epochs for models 1 and 2 and 160 epochs for model 3.
dCNNs were trained with a TensorFlow 2.0 software library
on a machine running Ubuntu 16.04 OS with an Nvidia 1080
GTXGPU. Class weighting was used to reduce the imbalance
in training datasets.

Image analysis and lesion detection

To localize regions of an image, in which tissue or lesions are
depicted, and to create a probability map showing pixel-by-
pixel the probability of lesion presence, a sliding-window ap-
proach was implemented in the programming language
Python 3.5. From the original ABUS image with a size of
600 × 600 pixels, sections of 151 × 181 pixels around given
x,y coordinates were cropped in a loop over x and y, and with
each cropped image the step-wise dCNN classification algo-
rithm was applied. Probability results of calculations were
written into 3 arrays (results for each model is written into
separate array) with corresponding x and y coordinates. After
all the dCNN evaluations for one cropped area were done, the
center on the original image was moved by 10 pixels in X or Y
direction in the loop. A detailed scheme of the sliding-window
approach is presented in Fig. 2.

Table 1 Models training and
validation dataset information and
training and validation results

Training
dataset

Validation
dataset

Training
accuracy

Validation
accuracy

Model 1—Tissues 2560 images 1110 images 99.40% 99.10%

Model 2—Lesions 6241 images 3386 images 98.20% 96.90%

Model 3—BI-RADS 2/3 versus
4/5

7164 images 3530 images 98.50% 98.80%

Fig. 1 Visualization of single image extraction from ABUS examination dataset
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For each analyzed image, the sliding-window algorithm
results in three 60 × 60 matrices consisting of the class
probabilities of the step-wise classification. Results of cal-
culations performed with 3 trained models are visualized as
heatmaps giving spatial information on the probability of
detection and classification. A visualization of an exempla-
ry calculation is presented in Fig. 3. In the colormaps,
results are presented as overlays on the original image in
red and blue color representing the probabilities of dCNN
classification to the BI-RADS 2/3 or BI-RADS 4/5 catego-
ries. Due to the step-wise classification of the image re-
gion, only those areas representing a detected lesion (eval-
uation step 2) were evaluated in step 3 using the model
classifying into BI-RADS 2/3 or BI-RADS 4/5 (evaluation
step 3). Therefore, only those areas which represent a de-
tected lesion exhibit colors of red or blue in the colormap.
To generate probability maps from the complete image
volume, the previously described method was consecutive-
ly applied to all images from the image stack resulting in a
matrix of 60 × 60 × 3 × 330 (3 probability matrices with a
dimension 60 × 60 for each of the 330 images from a full
examination set).

Comparison with human reading

The test dataset was categorized into the three categories BI-
RADS 2 (no suspicion of breast cancer), BI-RADS 3 (low
probability of breast cancer), and BIRADS 4/5 (high likeli-
hood of breast cancer) by two radiologists, reader 1 with more
than 10 years of experience in breast imaging and reader 2
with more than 5 years of experience in breast imaging. All
lesions were also classified according to the previously de-
scribed 3 categories by the step-wise dCNN algorithm for
lesion detection and classification.

Intra-reader reliability was obtained by a repeated catego-
rization of the same datasets by the same radiologists after a
period of 3 months (Fig. 4).

Statistical analysis

The statistical analysis was performed using the Scikit-learn
0.22.1 package for the Python programming language.
Confusion matrices were applied to compare the performance
of the dCNN with the ground truth categorization (human
readers). Agreement of categorization between dCNN and

Fig. 2 Sliding-window approach for localization and prediction of
lesions on images. For analysis of the whole image, separate crops are
being selected (a). Prediction based on cropped image with a window of a

fixed size (b). All 3 models are being applied to cropped fragment of an
image. Probability result from each of them is written into table with
corresponding coordinates of center of an image (c)

Fig. 3 Probability maps are generated for each image. Sliding-window
algorithm was applied to the original image (a). As a result of model 1
calculations, grayscale probability map was generated presenting area of
breast tissue depiction (b). Application of model 2 on an image results in

depiction of suspected lesion visualized by grayscale probability map (c).
Lesions were classified according to BI-RADS with model 3 and visual-
ized in blue (BI-RADS 2/3) and red (BI-RADS 4/5) colors (d)
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human readers and inter- and intra-reader correlations have been
calculated using Cohen’s kappa coefficient (κ). The diagnostic
performances of the trainedmodels were calculated using receiv-
er operating characteristics. Diagnostic accuracy was evaluated
in a form of binary classification accuracy and area under the
curve (AUC) statistic of ROC curves with a confidence interval
CI = 0.95 from Monte Carlo simulation.

Results

Model training

Training of the dCNN models resulted in accuracies between
98.2 and 99.0% on the training datasets and between 96.9 and
99.1% accuracy on the validation datasets. Training and val-
idation curves for the model distinguishing between normal
tissue and lesions (model 2) and for the model classifying a
detected lesion in probably benign (BI-RADS 2/3) or suspi-
cious (BI-RADS 4/5) are presented in Fig. 5. Detailed results

of the training and validation accuracies and the number of
images are presented in Table 1.

Validation on single images presenting lesions

For testing the dCNNmodels with data not used for training or
validation, a dataset of 128 images was applied, each
depicting a lesion of either BI-RADS 2/3 or BI-RADS 4/5,
using the double-read radiological report from the RIS archive
as ground truth. In the image analysis, the dCNN and two
experienced human readers were compared treating each im-
age as an independent case.

Using model 3 for analysis, an accuracy of 79.7%was found,
and a ROC analysis for model 3 leads to an AUC of 0.91 (AUC:
0.91 [95% CI: 0.85–0.96]) with Youden’s index J of 0.92. AUC
for reader 1was 0.80 [95%CI: 0.73–0.87], and for reader 2AUC
was 0.71 [95% CI: 0.63–0.78]. Confusion matrices for the
dCNN model and both human readers are presented in
Table 2, detailed results regarding accuracies, inter-reader

Fig. 4 Presentation of probability results in 3D space. In a whole ABUS dataset (a), each image underwent the prediction algorithm. Based on slice
spacing, result of lesion localization is plotted in 3D space (b) and probability of malignancy is evaluated and plotted in 3D (c)

Fig. 5 Results of training and validation of model 2 (a) and model 3—BI-RADS categorization (b)

4872 Eur Radiol  (2022) 32:4868–4878

1 3



agreement, and ROC analyses are presented in Table 3 and
Table 4, and corresponding ROC curves are depicted in Fig. 6.

The agreement between the dCNNmodel 3 and the ground
truth was moderate (κ: 0.57 [95% CI: 0.50–0.64]). The agree-
ment between reader 1 and the ground truth was substantial
(κ: 0.61 [95% CI: 0.53–0.68]), whereas the agreement be-
tween reader 2 and the ground truth was moderate (κ: 0.44
[95% CI: 0.36–0.51]). Agreement between readers was mod-
erate (κ: 0.43 [95% CI: 0.28–0.58]).

Intra-reader agreement was substantial for both reader 1 (κ:
0.64 [95% CI: 0.54–0.77]) and reader 2 (κ: 0.66 [95% CI:
0.54–0.78]).

Validation on full 3D ABUS datasets

Analyzing complete 3D ABUS datasets and classifying this
dataset according to the highest BI-RADS score of lesions pres-
ent, the accuracy of classification of the algorithm improved to
90.9% compared to the radiological report as a ground truth.
ROC analyses for dCNN resulted in an AUC of 0.91 (AUC:
0.91 [95% CI: 0.77–1.00]) with Youden’s index J of 0.92. The
AUC for reader 1 was 0.82 [95%CI: 0.68–1.00] and for reader 2
was 0.91 [95% CI: 0.77–1.00]. ROC curves for the analysis of
complete ABUS datasets are depicted in Fig. 6, and the confu-
sion matrices are shown in Table 5.

Table 2 Confusion matrices comparing BI-RADS 2/3 and BI-RADS 4/5 classification results of dCNN (a), human reader 1 (b), and reader 2 (c) to
ground truth (actuals) based on single images and inter-reader agreement (d), intra-reader reliability for reader 1 (e) and reader 2 (f)

Actuals Actuals
BI-RADS 

2/3
BI-RADS 

4/5
BI-RADS 

2/3
BI-RADS 

4/5

dC
NN BI

-R
AD

S 
2/

3

33 2

Re
ad

er
 1

BI
-R

AD
S 

2/
3

47 15

BI
-R

AD
S 

4/
5

24 69

BI
-R

AD
S 

4/
5

10 56

a) b)

Actuals Reader 2
BI-RADS 

2/3
BI-RADS 

4/5
BI-RADS 

2/3
BI-RADS 

4/5

Re
ad

er
 2

BI
-R

AD
S 

2/
3

34 12

Re
ad

er
 1

BI
-R

AD
S 

2/
3

36 26

BI
-R

AD
S 

4/
5

23 59
BI

-R
AD

S 
4/

5
10 56

c) d)

First readout First readout
BI-RADS 

2/3
BI-RADS 

4/5
BI-RADS 

2/3
BI-RADS 

4/5

Se
co

nd
 re

ad
ou

t

BI
-R

AD
S 

2/
3

54 15

Se
co

nd
 re

ad
ou

t

BI
-R

AD
S 

2/
3

48 22

BI
-R

AD
S 

4/
5

8 51

BI
-R

AD
S 

4/
5

0 58

e) f)
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The agreement between the dCNN algorithm and the ground
truth was almost perfect (κ: 0.82 [95% CI: 0.60–0.95]) and the
agreement between readers and ground truth was substantial to
almost perfect (reader 1—κ: 0.63 [95%CI: 0.47–0.81] and read-
er 2—κ: 0.82 [95%CI: 0.60–0.95]). Agreement between readers
was moderate (κ: 0.46 [95% CI: 0.09–0.82]).

Intra-reader agreement was fair (κ: 0.32 [95% CI: 0.01–
0.65]) for reader 1 and almost perfect (κ: 0.81 [95% CI:
0.56–1.00]) for reader 2.

Discussion

In the current study, we were able to show that a deep
convolutional neural network (dCNN) can be trained to clas-
sify lesions in ABUS according to the ACR BI-RADS classi-
fication with accuracies higher than 95% in both the training
and the validation datasets. Compared to human reading by
experienced radiologists, the dCNN showed similar diagnos-
tic accuracy on test datasets not used for training of the

Table 3 Inter-rater agreement for both image-wise and for full examination for both readers and the dCNN compared to ground truth

Accuracy [%] κ (95% CI) Agreement

Single images dCNN/actuals 79.7% 0.57 (0.50–0.64) Moderate

Reader 1/actuals 80.5% 0.61 (0.53–0.68) Substantial

Reader 2/actuals 72.7% 0.44 (0.36–0.51) Moderate

Reader 1/Reader 2 71.9% 0.43 (0.28–0.58) Moderate

Full imageset dCNN/actuals 90.9% 0.82 (0.69–0.95) Almost perfect

Reader 1/actuals 81.8% 0.63 (0.47–0.81) Substantial

Reader 2/actuals 90.9% 0.82 (0.69–0.95) Almost perfect

Reader 1/Reader 2 72.7% 0.46 (0.09–0.82) Moderate

Table 4 ROC analysis for the test dataset in relation to radiological report as ground truth

AUC (95% CI) Specificity [%] Sensitivity [%] PPV [%] NPV [%]

Single images Reader 1 0.80 (0.73–0.87) 78.9% 82.5% 75.8% 84.9%

Reader 2 0.71 (0.63–0.78) 83.1% 59.7% 73.9% 72.0%

dCNN 0.91 (0.85–0.96) 97.2% 57.9% 94.3% 74.2%

Full imageset Reader 1 0.82 (0.68–1.00) 72.7% 90.9% 76.9% 88.9%

Reader 2 0.91 (0.77–1.00) 90.9% 90.9% 90.9% 90.9%

dCNN 0.91 (0.77–1.00) 90.9% 90.9% 90.9% 90.9%

Fig. 6 ROC curves for dCNN and both readers showing discrimination capabilities of test dataset based on single images (a) and discrimination
capabilities of test dataset based on full examination imageset (b)
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machine learning algorithm, and also inter-reader agreement
between the dCNN was comparable to the inter-reader agree-
ment of experienced radiologists. Applying a 3-dimensional
sliding-window approach with a step-wise assessment of the
region of interest, the dCNN was able to detect and classify
lesions according to the BI-RADS atlas with accuracy provid-
ing a technique for the automatic reading of 3D ABUS
datasets mimicking the human workflow.

In the clinical routine, the evaluation of radiological breast
images is standardized according to the BI-RADS atlas grad-
ing the probability of the presence of breast cancer based on
atlas images. In spite of this standardization, the quality of
radiological decision-making is dependent on the experience
of the reader as well as the workload. It has been shown that
even after short-term re-evaluation of images, up to 29% of
BI-RADS assessments may be reclassified [25]. The usability

Table 5 Confusion matrices comparing BI-RADS 2/3 and BI-RADS 4/5 classification results of dCNN (a), human reader 1 (b), and reader 2 (c) to
ground truth (actuals) based on full examination imageset and inter-reader agreement (d), intra-reader reliability for reader 1 (e) and reader 2 (f)

Actuals Actuals

dC
NN

BI-RADS 2/3 BI-RADS 4/5 BI-RADS 2/3 BI-RADS 4/5

BI
-R

AD
S 

2/
3

10 1

Re
ad

er
 1

BI
-R

AD
S 

2/
3

10 3

BI
-R

AD
S 

4/
5

1 10

BI
-R

AD
S 

4/
5

1 8

a) b)

Actuals Reader 2
BI-RADS 2/3 BI-RADS 4/5 BI-RADS 2/3 BI-RADS 4/5

Re
ad

er
 2

BI
-R

AD
S 

2/
3

10 1
Re

ad
er

 1

BI
-R

AD
S 

2/
3

9 2

BI
-R

AD
S 

4/
5

1 10

BI
-R

AD
S 

4/
5

4 7

c) d)

First readout First readout
BI-RADS 2/3 BI-RADS 4/5 BI-RADS 2/3 BI-RADS 4/5

Se
co

nd
 re

ad
ou

t

BI
-R

AD
S 

2/
3

6 1

Se
co

nd
 re

ad
ou

t

BI
-R

AD
S 

2/
3

8 1

BI
-R

AD
S 

4/
5

7 8

BI
-R

AD
S 

4/
5

1 12

e) f)
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of AI models as a support tool for radiologists in the decision-
making process has been shown in several studies, e.g. [26],
which particularly can be used to decrease the false-positive
rates in mammography screening [27].

Ultrasound as an adjunct to mammography has been shown
to decrease the false-negative rate of conventional mammogra-
phy, and ABUS may be used instead of hand-held ultrasound
exhibiting similar cancer detection rates [28]. As the ABUS ex-
amination is typically carried out by the technician, a workflow
improvement is achieved in radiological institutions replacing
hand-held ultrasound with ABUS. Moreover, as the complete
breast volume is examined and stored as 3D datasets, ABUS is
a step further in the standardization of breast imaging workflow.
Another unwanted effect of ABUS is the relatively long reading
time and the higher rate of false-negative lesions. Here, our pro-
posed algorithm may offer a significant improvement: it high-
lights suspicious lesions in the large volumetric 3D dataset and
gives also a suggestion of the correct classification of the lesion,
which may be helpful for inexperienced readers. Application of
AI in clinical routine potentially offers a reliable second opinion
tool for experienced radiologists as well as providing a training
platform for inexperienced readers. An AI solution is observer-
independent and minimizes the impact of experience and exter-
nal factors for diagnosis. Instead of working as a “black-box,”
the explainable AI concept is applied in this study. By providing
step-wise solutions, each decision made by the AI program can
be traced back, which enables deeper understanding and adapta-
tion of the AI program in clinical use.

The accuracy of our algorithm trained for classification of
ABUS lesions is comparable to the results of Wang et al [24],
who used multiview CNNs to classify breast lesions in
datasets obtained from a breast volume scanner with accuracy
in the order of 88%. Lee et al showed that similar algorithms
allow for precise lesion segmentation with Spearman’s corre-
lation coefficient of ρ = 0.929 [29].

In clinical usage, CAD software has proven to significantly
improve and accelerate workflow. Those systems have al-
ready proven its high sensitivity in mammography with detec-
tion of masses of 91% on initial and 89% on follow-up mam-
mograms [30] as well as ultrasonography with sensitivity of
90.9% [31]. ABUS’s main advantages over other examination
types, like volumetric representation and relative procedure
simplicity, increase requirements for results analysis for radi-
ologists. CAD systems allow to overcome this issue and pro-
vide reliable second opinion to specialist [32]. The application
of CAD software for ABUS in clinical use demonstrated an
evaluation speed up by 9–15% [33, 34]. Segmentation
methods used for CAD have shown to improve the ability to
distinguish positive from negative cases (AUC) by 6% when
used as support program by inexperienced readers [35].
Commercially available AI CAD software based on minimum
intensity projection visualization (MinIP) improves sensitivity
of the readout by 5.2–10.6%, but may come with a possible

decrease of specificity in the range of 1.4–5.7%, while addi-
tionally requiring parameter adjustment for readout that af-
fects sensitivity [36]. Even though proven to work in a clinical
environment, those methods come with limitations in regard
to irregularities and various lesion sizes what may lead to an
increased number of false-positives [37] and may require pa-
rameter fine-tuning and extensive image preprocessing [38].
The presented method provides improved generalization and
allows a possibility for customization for specific manufactur-
ers and adjustment to internal work processes.

Our study has some limitations: (1) A retrospective study
design was chosen for validating the algorithm resulting in
potential bias due to the choice of datasets. However, a pro-
spective evaluation was out of the scope of this methodological
study. (2) All data was gathered from one single institution and
data from only one device supplier was used for acquisition.
Nonetheless, the purpose of this study was not to demonstrate
that our algorithm works well on every possible clinical setup
but to demonstrate in principle that an algorithm can be trained
to mimic human reading in ABUS examinations. (3) Although
data was derived from the general female patient cohort of our
institution, not all ethnicities were included in this study. (4)
Only one dCNN architecture and detection algorithm has been
investigated and no comparison with pretrained models has
been made; therefore, we cannot exclude that other dCNN ar-
chitectures potentially would result in even higher accuracies.

In conclusion, the trained AI models allowed for further
standardization as an independent second opinion tool in
ABUS examinations according to BI-RADS catalogue.
Implementation of our AI models into the clinical routine
potentially could improve reliability of assessment while re-
ducing workload for radiologists.
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