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Simple Summary: Testicular diffuse large B-cell lymphoma (T-DLBCL) is a rare and aggressive
lymphoma entity that mainly affects elderly men. It has a high relapse rate with especially the
relapses of the central nervous system associating with dismal outcome. T-DLBCL has a unique
biology with distinct genetic characteristics and clinical presentation, and the increasing knowledge
on the tumor microenvironment of T-DLBCL highlights the significance of the host immunity and
immune escape in this rare lymphoma, presenting in an immune-privileged site of the testis. This
review provides an update on the latest progress made in T-DLBCL research and summarizes the
clinical perspectives in T-DLBCL.

Abstract: Primary testicular lymphoma is a rare lymphoma entity, yet it is the most common testicular
malignancy among elderly men. The majority of the cases represent non-germinal center B-cell-
like (non-GCB) diffuse large B-cell lymphoma (DLBCL) with aggressive clinical behavior and a
relatively high relapse rate. Due to the rareness of the disease, no randomized clinical trials have been
conducted and the currently recognized standard of care is based on retrospective analyses and few
phase II trials. During recent years, the tumor microenvironment (TME) and tumor-related immunity
have been the focus of many tumor biology studies, and the emergence of targeted therapies and
checkpoint inhibitors has significantly modulated the field of cancer therapies. Testicular DLBCL
(T-DLBCL) is presented in an immune-privileged site of the testis, and the roles of NF-κB pathway
signaling, 9p24.1 aberrations, and tumor-infiltrating immune cells, especially immune checkpoint
expressing lymphocytes and macrophages, seem to be unique compared to other lymphoma entities.
Preliminary data on the use of immune checkpoint inhibitors in the treatment of T-DLBCL are
promising and more studies are ongoing.

Keywords: testicular diffuse large B-cell lymphoma; lymphoma immunology; tumor micro-environment

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive B-cell ma-
lignancy with a distribution of 30–58% of all lymphomas previously classified as Non-
Hodgkin lymphomas (NHLs) and has a consistently rising incidence. Depending on the
clinical and biological risk factors, 50–90% of DLBCL patients can be cured with standard
treatment options.

Extranodal presentation is a known clinical risk factor in DLBCL, and testicular
DLBCL (T-DLBCL) is a rare and aggressive entity. T-DLBCL accounts for 1–2% of NHLs,
with an incidence of 0.09–0.26/100,000 population, representing about 5% of all testicular
malignancies. However, it is the most common testicular neoplasm in elderly men with a
reported median age at diagnosis varying approximately between 60 and 70 years [1–7].
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T-DLBCL arises primarily in the immune-privileged site of the testis and represents the
most commonly activated B-cell-like (ABC) or non-germinal center B-cell-like (non-GCB)
phenotype [6–15]. It has a high tendency of relapsing in other extranodal sites, typically
the contralateral testis and the central nervous system (CNS), and especially relapses of the
CNS, associated with poor prognosis [16].

Treatment of T-DLBCL is designated to gain both local and systemic control of the
disease, as well as to prevent a possible relapse in the contralateral testis and the CNS. Due
to the rareness of the disease, no randomized phase III trials have been conducted and
the internationally recognized standard of care is based on data from phase II trials and
retrospective analysis [1,17–22]. According to the few phase II trials, the median 5-year
overall survival (OS) and progression-free survival (PFS) rates are 66–85% and 70–75%,
respectively [18,19].

The tumor microenvironment (TME) of T-DLBCL has been demonstrated to harbor
characteristic features that highlight the role of immune escape [23,24]. The TME consists
of different host immune cells, stromal cells, blood vessels, cell matrices, as well as different
cytokines, chemokines, and exosomes, and the role of host immunity in tumor evolution
was originally recognized decades ago [25]. However, only recent advancements in the
understanding of the complexity of the host-related factors and immunosurveillance
have led to major achievements in the medical field, as checkpoint inhibitors and other
immune modulators have shown their effectiveness in the treatment of several malignancies
including lymphomas [25–27]. Although preliminary data on the use of immune checkpoint
inhibitors seem promising in T-DLBCL, the understanding of the TME of the disease is
only beginning to unfold [28].

We conducted a PubMed search to identify preclinical and clinical data on T-DLBCL
and its TME. As the majority (75–90%) of primary testicular lymphoma cases represent
DLBCL, our review focuses on T-DLBCL, leaving out other rare lymphoma entities with
reported testicular involvement, such as testicular follicular lymphoma, mantle cell lym-
phoma, and Burkitt lymphoma [7].

2. Etiology and Pathogenesis

T-DLBCL is a malignancy of the B-cells, in which normal development and differen-
tiation of B-cells are disturbed. Distinct mechanisms of lymphoma pathogenesis in the
unique immune-privileged environment of the testis remain unsolved, but the majority
of T-DLBCLs can be associated with the plasmablast/post germinal center (GC) phase of
B-cell differentiation [29,30].

The original DLBCL cell-of-origin (COO) classification was based on gene expression
profiling (GEP) of 3186 genes with known importance to lymphocyte and/or cancer biol-
ogy and separated two distinct DLBCL entities: Tumors with germinal center B-cell-like
(GCB) phenotype expressed genes characteristic to B-cells of the GC “light zone” and are
associated with better prognosis in response to CHOP (doxorubicin-cyclophosphamide-
vincristine-prednisone)-like chemotherapy, whereas tumors with ABC phenotype are asso-
ciated with worse outcome and expressed genes that are induced during in vitro activation
of peripheral B-lymphocytes, indicating that the tumor cells had experienced the GC phase
and were closest to plasmablast stage of B-cell development [29]. As GEP is not available
for routine clinical practice in all laboratories, more feasible techniques such as immunohis-
tochemistry (IHC)-based algorithms have been applied in determining the COO [31–34].
The most commonly used IHC-based algorithm is the Hans algorithm that classifies COO
into GCB or non-GCB phenotypes based on the expression of CD10, Bcl-6, and MUM1, and
reported longer survival among patients with GCB phenotype even though later reports on
the prognostic value of COO have been inconsistent [31,35–40]. Among T-DLBCLs, 60–96%
of the cases have been reported to represent ABC/non-GCB phenotype, mainly based on
Hans algorithm, although characterizing extranodal entities with IHC-based algorithms
originally designed to classify nodal DLBCL is not unequivocally approved [6,7,9–12,41].
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Only one of the studies used GEP, and in this study, the proportion of ABC phenotype was
96% [41].

Little is known about the etiology of T-DLBCL. HIV infection is a recognized risk factor
for aggressive and primary extranodal lymphomas, and the only well-described etiological
factor of T-DLBCL. Even though T-DLBCL mainly affects elderly men, in non-immune
competent individuals such as patients with HIV/AIDS, it may also arise in younger
patients [42,43].

The genetic aberrations in T-DLBCL, leading to oncogenic signaling, NF-κB pathway
activation, and immune-escape phenotype, as well as characteristics of the TME, seem to
distinguish T-DLBCL from nodal DLBCL, potentially highlighting the unique pathogenesis
of T-DLBCL [12,23,44]. Additionally, mechanisms that protect the developing gametocytes
in the immune-privileged site of the testis may serve T-DLBCL an exquisite milieu ideal
for developing an immune-escape phenotype similar to PCNSL [13,15,45–47]. Besides the
mechanical and functional properties of the blood barriers protecting these vulnerable
organs, the definitive underlying mechanisms of the pathogenesis and evolution of these
aggressive lymphomas remain unsolved.

3. Lymphoma Classification

Lymphoma entities are classified according to the World Health Organization (WHO)
“Classification of Tumours of Haematopoietic and Lymphoid Tissues” that subdivides
DLBCL into morphological variants, molecular subtypes, and clinically distinct disease
entities [48].

T-DLBCL, as DLBCL in general, is defined as a lymphoma of medium or large B-cells
that have a nuclear size equal to or exceeding normal macrophage nuclei or more than
twice the size of a normal lymphocyte, with a diffuse growth pattern [46]. The neoplastic
cells typically express pan-B-cell markers such as CD19, CD20, CD22, CD79a, and PAX5.
Surface and cytoplasmic immunoglobulin (Ig), most commonly IgM, is demonstrated in
the majority of the cases, and proliferation index Ki-67 is high [48].

Characteristic for T-DLBCL is its location in the immune-privileged site of the testis,
where the blood–testis barrier protects the vulnerable testicular tissue from, e.g., harmful
chemicals. Another aggressive lymphoma entity arising in an immune-privileged site is
primary central nervous system lymphoma (PCNSL), with a similar blood–brain barrier
protecting the brain. However, even though primary DLBCL of the CNS shares several bio-
logical features with T-DLBCL and is classified as its own entity by the WHO classification,
T-DLBCL has not yet been recognized as a distinct DLBCL entity.

4. Clinical Presentation; Diagnosis, Staging, and Prognostic Factors

T-DLBCL typically presents as a firm, 4–6 cm sized, painless mass in the testis with
no preference for either side. It is the most common bilateral testicular malignancy with
synchronous bilateral involvement described in 6–15% of the cases [5,6,21,49]. T-DLBCL
has a high relapse rate and the recurrence most often occurs in the CNS or the contralateral
testis [4,6,16,21]. The involvement/recurrence of the CNS is especially associated with a
dismal prognosis, and relapses in the CNS have been reported in up to 30% of the cases
within 1–2 years from diagnosis, but relapses can also occur in other extranodal sites and up
to 10 years after primary diagnosis [5,6,16,21]. B-symptoms (fever, loss of weight, and/or
sweating) are rare and occur mainly in the case of disseminated disease, in 20–30% of the
patients at diagnosis [5,6,16].

Histopathological diagnosis of T-DLBCL is obtained from a tissue sample of the in-
volved testis. Staging is commonly classified by the Ann Arbor lymphoma staging with few
modifications, and requires an ultrasound of the contralateral testis and contrast-enhanced
computer tomography (CT) of the whole body and neck, with additional magnetic res-
onance imaging (MRI) of the brain and cytological and flow cytometric analysis of the
cerebrospinal fluid recommended (Table 1) [22,50,51]. Whole-body 18-fluorodeoxyglucose
positron emission tomography-computed tomography (18-FDG-PET-CT) is more sensi-
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tive in detecting possible other extranodal lymphoma lesions and is considered to be a
part of the standard practice for both staging and response assessment [22,50,52]. Bone
marrow biopsy is needed to assess possible lymphoma involvement but can be omitted
if PET-CT-scan demonstrates bone disease [50]. The majority of T-DLBCL cases have
limited stage disease with lymphoma only in the testis (stage IE). Approximately 20%
have locally advanced stage II disease, whereas disseminated stage IV disease is virtually
indistinguishable from a nodal DLBCL with testicular involvement.

Table 1. Ann Arbor lymphoma stage classification. In T-DLBCL, stage III-IV is defined as advanced stage with mono or
bilateral testicular involvement with involvement of distant lymph nodes and/or extranodal sites.

Stage Description

I Involvement of a single lymphatic region (I) or localized involvement of single extranodal organ or site (testis mono or
bilateral) (IE)

II
Involvement of two or more lymphatic regions on the same side of the diaphragm (II) or localized involvement of a

single extranodal organ or site (testis mono or bilateral) and of one or more lymphatic regions on the same side of the
diaphragm (locoregional lymph nodes; iliac and/or lomboaortic) (IIE)

III Involvement of lymphatic regions on both sides of the diaphragm

IV Diffuse or disseminated involvement of one or more extranodal organs with or without lymphatic involvement

Some clinical features, such as higher age at diagnosis and advanced stage (stage
III–IV) disease, are well-recognized risk factors in DLBCL, and the same clinical factors
are prognostic also in T-DLBCL [1,4–6,9,21,49,53–58]. However, at the moment, no specific
prognostic score has been developed for T-DLBCL, although some clinical features such as
absolute lymphocyte counts in the peripheral blood are shown to be predictive [59]. For
the time being, the outcome of T-DLBCL patients can be estimated according to the Interna-
tional Prognostic Index (IPI) or the modified age-adjusted IPI (aaIPI), revised IPI (R-IPI), or
the National Comprehensive Cancer Network IPI (NCCN-IPI) Tables 2 and 3 [53,60–62].

Table 2. International Prognostic Index. 1 score for each: Stage III–IV, elevated Lactate Dehydrogenase,
age over 60 years at diagnosis, ECOG performance status 3–4, more than 1 extranodal lymphoma site.

Risk Group IPI Score 3-Year OS, (95% CI), %

Low 0 or 1 91 (89–94)
Intermediate low 2 81 (76–86)
Intermediate high 3 65 (58–73)

High 4 or 5 59 (49–69)

Table 3. Age-adjusted International Prognostic Index (aaIPI). 1 score for each: Stage III–IV, elevated
Lactate Dehydrogenase, ECOG performance status 3–4.

Risk Group aaIPI Score 3-Year OS, (95% CI), %

Low 0 98 (96–100)
Intermediate low 1 92 (87–95)
Intermediate high 2

75 (66–82)High 3

5. Treatment

Besides reaching a complete remission, the aim of T-DLBCL treatment is to prevent
relapses of the contralateral testis and the CNS. Due to the lack of randomized phase III
trials, the treatment recommendations rely on two prospective phase II trials and retro-
spective data with consistent evidence on anthracycline-based chemotherapy improving
the outcome of patients with T-DLBCL [17–19,21]. Although commonly included in the
treatment regimen, the effect of anti-CD20 monoclonal antibody (mAb) rituximab on the
survival and the risk of CNS relapse has not been thoroughly established and seems to be
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controversial, though retrospective data suggest it is beneficial, especially among high-risk
patients [1,5,19,20,58,63]. Treatment of the contralateral testis, either surgical or irradiation,
has been shown to reduce the risk of recurrence of the contralateral testis [1,18,19,57,64].

The optimal administration of CNS-targeted therapy has not been univocally de-
fined. Results from a large Nordic retrospective analysis showed that systemic intra-
venously (IV) administered CNS-targeted chemotherapy correlates with a significantly
improved overall survival in comparison to immunochemotherapy treatment with R-
CHOP (rituximab-doxorubicin-cyclophosphamide-vincristine-prednisone)-like regimen
alone, also among elderly (≥70 years at diagnosis) patients, with no difference in the
CNS relapse rate, highlighting the role of systemic CNS-targeted therapy in gaining better
systemic control in T-DLBCL [1]. However, no solid evidence on the benefit of intrathecal
(IT) CNS-targeted chemotherapy has been shown even though some retrospective series
from the pre-rituximab era reported improved PFS rates among patients treated with IT
CNS-targeted chemotherapy [1,21,58].

Based on these data, the internationally recognized standard of care consists of or-
chiectomy followed by immunochemotherapy with six cycles of R-CHOP or R-CHOP-like
regimen given every 21 days [22,50]. The addition of CNS prophylaxis with IV adminis-
tered CNS-penetrating chemotherapy such as high dose methotrexate (HD-Mtx) or high
dose cytarabine (HD-Ara-C) and/or IT chemotherapy as well as irradiation or excision of
the contralateral testis are highly recommended [1,17–19,21,22,50].

6. Genetic Landscape

The genetic landscape of T-DLBCL shares similarities with nodal DLBCL, but also
has its own unique characteristics. As the majority of T-DLBCLs represent the ABC/non-
GCB phenotype, the frequency of BCL2 and MYC rearrangements is comparable to nodal
ABC-DLBCL (about 10% and 15%, respectively), while BCL6 rearrangements seem less
common in T-DLBCL (about 40% and 60%, respectively) [44]. Co-translocation (so-called
double-/triple-hit lymphomas) and co-expression (so-called double-/triple-expressers)
of these genes are associated with significantly worse outcomes as well as increased risk
of extranodal involvement and CNS relapse in DLBCL in general, but the frequency of
double-expressers has been reported to be markedly lower in T-DLBCL (about 13% in
T-DLBCL and 20–30% in DLBCL in general) [12,38,65–83].

In more recent genetic studies, different stromal, host immune response, and lymphoma
driver gene signatures have been shown to separate DLBCL patients into distinct subgroups
with different genetic aberrations, phenotypes, and treatment responses [37,84–87]. The
majority of T-DLBCL cases have been found to cluster among DLBCLs with worse prog-
nosis and genetic alterations previously associated with ABC-DLBCLs, such as frequent
mutations of CD79B and MYD88 [85,86]. With additional near-uniform 18q gain, likely
associated with increased expression of BCL2 and other candidate drivers such as MALT1,
these aberrations lead to oncogenic signaling and constitutive activation of the NF-κB
pathway, ultimately resulting in increased cell survival and proliferation (Figure 1).
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marked with red stars. BTK, Bruton’s tyrosine kinase; IRAK, interleukin-1 receptor-associated 
kinases; JAK, Janus kinase; MALT1, mucosa-associated lymphoid tissue; MTOR, mammalian tar-
get of rapamycin; PI3K, phosphoinositide 3-kinase; PKCβ, protein kinase C beta; STAT, signal 
transducer and activator of transcription; SYK: spleen-associated tyrosine kinase; TLR, toll-like 
receptor. Adapted from King et al., 2021 [88]. 
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DLBCL, rearrangements of CD274 and PDCD1LG2 (coding programmed cell death lig-
ands 1 and 2, PD-L1 and PD-L2, respectively) and BCL6 have been associated with in-
creased risk of CNS relapse, and mutations of TBL1XR1 and overexpression of p53 with 
inferior outcome [96–98]. Frequent copy number alterations and translocations of 9p24.1 
resulting in increased expression of PD-L1/L2 proteins as well as loss of HLA genes are 
among the characteristic genetic features of T-DLBCL and PCNSL, highlighting the sig-
nificant role of the TME and immune-escape in these diseases [8,9,95,99,100]. 
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NFKBIZ Copy number gain 42% 9% 20% [45] 

MYD88 Amplifications, mutations, and dele-
tions 60–82% 18–27% 29% [8,45,91,92,101] 

CD79b Mutations and deletions 19–34% 14–15% 23% [91,92,101,102] 
CDKN2A Copy number alterations 71% 24% 35% [45] 

9p24.1 Translocation and copy number altera-
tions 

54% <10% <10% [45] 
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tions, and increased protein expression 

35% 27% 45% [45,89,103] 

PDCD1LG2 Rearrangements, copy number altera-
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47% <5% ND 1 [45,89,104] 

pSTAT1/pSTAT
3 Expression 82% ND ND [12] 

Figure 1. Dysregulated NF-κB signaling in T-DLBCL. Genomic alterations in the BCR and TLR
signaling result in constitutive activation of NF-κB signaling. Aberrations typical for T-DLBCL
are marked with red stars. BTK, Bruton’s tyrosine kinase; IRAK, interleukin-1 receptor-associated
kinases; JAK, Janus kinase; MALT1, mucosa-associated lymphoid tissue; MTOR, mammalian target
of rapamycin; PI3K, phosphoinositide 3-kinase; PKCβ, protein kinase C beta; STAT, signal transducer
and activator of transcription; SYK: spleen-associated tyrosine kinase; TLR, toll-like receptor. Adapted
from King et al., 2021 [88].

However, increasing evidence shows marked differences in the biology of T-DLBCL
and nodal ABC-DLBCLs, with many of the unique genetic and molecular features of
T-DLBCL shared with PCNSL, and summarized in Table 4 [8,9,12,23,45–47,89–95]. In
T-DLBCL, rearrangements of CD274 and PDCD1LG2 (coding programmed cell death
ligands 1 and 2, PD-L1 and PD-L2, respectively) and BCL6 have been associated with
increased risk of CNS relapse, and mutations of TBL1XR1 and overexpression of p53
with inferior outcome [96–98]. Frequent copy number alterations and translocations of
9p24.1 resulting in increased expression of PD-L1/L2 proteins as well as loss of HLA genes
are among the characteristic genetic features of T-DLBCL and PCNSL, highlighting the
significant role of the TME and immune-escape in these diseases [8,9,95,99,100].

Table 4. Genetic alterations characteristic of T-DLBCL.

Gene/
Chromosome Aberration Occurrence

in T-DLBCL
Occurrence
in DLBCL

Occurrence in
Non-GCB-DLBCL Ref.

NFKBIZ Copy number gain 42% 9% 20% [45]

MYD88 Amplifications, mutations, and deletions 60–82% 18–27% 29% [8,45,91,92,101]

CD79b Mutations and deletions 19–34% 14–15% 23% [91,92,101,102]

CDKN2A Copy number alterations 71% 24% 35% [45]

9p24.1 Translocation and copy number
alterations 54% <10% <10% [45]

CD274
Rearrangements, copy number

alterations, and increased protein
expression

35% 27% 45% [45,89,103]

PDCD1LG2
Rearrangements, copy number

alterations, and increased protein
expression

47% <5% ND 1 [45,89,104]
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Table 4. Cont.

Gene/
Chromosome Aberration Occurrence

in T-DLBCL
Occurrence
in DLBCL

Occurrence in
Non-GCB-DLBCL Ref.

pSTAT1/pSTAT3 Expression 82% ND ND [12]

BCL2/MYC Rearrangements 10–15% 10–30% ~35% [44,101,105]

BCL6 Rearrangements and deregulation 16–48% 35% 19–60% [12,45,86,91,
106,107]

CIITA Rearrangements 10% 3–6% ND [89,101]

FOXP1 Rearrangements and increased protein
expression 7–78% 8–10% 15–30% [9,89,106,108]

HLA
region/genes

Mutations, deletions, and loss of
expression 61–77% 4–22% ND [23,46,47,90,94,

95,101]

IgH V(D)J rearrangement and SHMs 43% <80% ND [9,109]

CD37 Mutations 26% ND ND [93]
1 ND, not determined.

7. The Tumor Microenvironment

The role of host immunity and immune escape is becoming increasingly recognized
in many cancers, including lymphomas [110–112]. Lymphomas can, however, be seen as a
dysfunction of the immune system per se, as they develop from and are malignancies of
the immune cells: B-cells, T-cells, or natural killer (NK) cells. The additional changes in
the TME lead to a delicate and complex system with numerous different immune cells and
pathways involved in the tumor pathogenesis and tumor evolution.

Tumors seem to have the capability of reprogramming host immune cells towards
immunosuppressive activity. Reduced immunogenicity and escape from T-cell-mediated
anti-tumor immune response can be caused by several mechanisms: direct interactions
between the tumor and the host immune cells, altered expression of surface molecules
leading to decreased recognition by the host immune cells or a state of T-cell exhaustion
and impaired T-cell-mediated cytotoxicity, or recruitment of immunosuppressive cells that
downregulate T-cell activation [113]. In T-DLBCL, the tumor cells can furthermore have
additional mechanisms that can, e.g., enable their escape from the macrophage-mediated
immune response.

The unique location of T-DLBCL and PCNSL in the immune-privileged sites of the
testis and the CNS, protected by the blood–testis barrier and the blood–brain barrier,
creates these malignancies a naturally distinct TME to develop in. The blood–testis barrier
consists of three components that suppress detrimental immune responses against auto-
antigenic germ cells [14]. The anatomical barrier restricts the passage of molecules and cells,
the physiological barrier regulates the movement of substance, and the immunological
barrier limits access by immunological mechanisms. Together these barriers create a
microenvironment ideal for the proper development and maturation of germ cells as well
as unique for lymphoma pathogenesis and evolution. The increasing knowledge on the
characteristics of the TME of T-DLBCL, and the prognostic role of certain host immune cells
widens the understanding of the biology of the disease, with hopefully also applications to
therapeutic approaches in the future.

7.1. Tumor-Infiltrating Lymphocytes

Tumor-infiltrating lymphocytes (TILs) are a heterogeneous and versatile group of
immune cells that have a dominant role in developing a host immune response against
tumor cells [114–116]. CD8+ cytotoxic T-lymphocytes (CTLs) are essential in cell-mediated
immune defense while regulatory T-cells (Tregs) reduce the responses of both innate and
adaptive immune systems and collaborate with numerous different immune cell subtypes
including M2 macrophages and cancer-associated fibroblasts (CAFs) [117]. T helper (Th)
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cells differentiate from naive CD4+ T-cells, are needed in adaptive immune response, and
provide help to both B-cells and T-cells as well as assist in activating and promoting DC
maturation and function [118]. Th cells can be further divided into subgroups such as
Th1 cells that are essential in the cell-mediated immune response against intracellular
pathogens and have a crucial role in effective anti-tumor immunity, and Th2 cells that drive
host defense against extracellular parasites and suppress the differentiation of Th1 cells
and function of DCs [118]. In the TME, Th cells can also promote the priming, activity, and
effector and memory functions of CTLs [119].

In T-DLBCL, higher content of CD3+ TILs in general (Figure 2A), as well as higher
proportions of both CTLs and CD4+ TILs, has been demonstrated to be associated with
favorable outcomes [23]. Higher expression of a 121-gene T-lymphocyte signature was
demonstrated to correlate with longer survival, especially among rituximab-treated T-
DLBCL patients, and high expression of individual T-lymphocyte surface markers such as
CD3D/E/G, CD4, and CD8A/B was shown to translate to favorable outcomes, emphasizing
the prognostic impact of TILs [23]. Lower expression of HLA class I and II genes, that code
MHC class I and II proteins needed to initiate the cellular immune response by presenting
antigens to T-cells, and their membrane expression was shown to be associated with low
expression of the T-lymphocyte signature genes and worse prognosis [23].
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Figure 2. Examples of distinct cell types in the T-DLBCL and their impact on survival. (A) Multiplex-IHC (mIHC) image
(upper panel) showing high proportion of T cells in T-DLBCL TME. CD3 = blue, CD4 = white, CD8 = red, and CD56 = green
(scale bar 20 µm). In the lower panel, Kaplan Meier plot demonstrating the impact of high T cell proportions on improved
survival in T-DLBCL patients. (B) In the upper panel mIHC image showing FoxP3+Tbet+CD4+ T cells in the T-DLBCL TME.
CD3 = green, CD4 = cyan, FoxP3 = red, T-bet = blue. In the lower panel Kaplan Meier plot demonstrating the inferior effect
of FoXP3-Tbet-positivity on T-DLBCL survival. (C) In the upper panel, mIHC image showing high levels of PD-L1-positive
macrophages in the T-DLBCL TME. PD-L1 = blue, PD-L2 = red, CD68 = white, c-Maf = green (scale bar 40 µm). In the lower
panel, Kaplan–Meier plot demonstrating the impact of low PD-L1-positive macrophages on poorer survival in T-DLBCL.
The figure was reproduced and adapted from Pollari et al., 2018, Leivonen et al., 2019, and Pollari et al., 2020 with the
permission of the Ferrata Storti Foundation (A,C) and John Wiley and Sons, Inc. (Hoboken, NJ, USA) (B) [23,24,120].

The function of TILs is highly complicated, and although beneficial in infections,
uncontrolled Th1 response against self-antigens can, for example, lead to an aggressive
autoimmune disease [121]. Therefore, several distinct mechanisms of the immune system
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and the TME regulate the activity of TILs. In addition to the self-regulatory mechanism of
highly activated TILs, other immune cells, such as CAFs, M2-like macrophages, and Tregs,
can downregulate the activity of TILs, with Tregs having a significant role in regulating
both Th1 cells as well as CTL-mediated anti-tumor immune response [122–124]. During
a strong Th1 response, Tregs have been demonstrated to be able to differentiate into a
subgroup of Tregs that express both forkhead box P3 (FoxP3) and T-box transcription
factor TBX21 (T-bet), which are optimized to suppress the activity of Th1 cells, and are
associated with tumor growth [114,115,121,125–129]. Additionally, in normal conditions,
the expression of inhibitory receptors such as programmed cell death-1 (PD-1) and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) on T-cells downregulate the excessive immune
response, autoimmune activity, and tissue damage. In the TME, the continuous antigen
exposure can, however, drive CTLs into a state of exhaustion with decreased cytokine
production, reduced proliferation and cytotoxic activity, and induced expression of the
inhibitory receptors [110,130–132]. In T-DLBCL, higher proportions of PD-1 expressing
CTLs and CD4+ TILs have been shown to correlate with significantly longer survival
while a subpopulation of FoxP3+T-bet+ double-positive Tregs has been identified to have a
significant adverse effect on outcome (Figure 2B) [23,24,120]. Together with the preliminary
promising results with PD-1 targeting mAbs in T-DLBCL, these findings highlight the
exquisitely delicate TME of the disease, although leave more detailed questions about the
function of these immune cells unresolved [23,24,28].

7.2. Macrophages

Macrophages have a role in both innate and adaptive immune systems and can
derive into different subtypes with distinct functions according to their microenviron-
ment [133,134]. Tumor-associated macrophages (TAMs) have been demonstrated to have
alternative roles depending on the tumor phase and other TME-related factors, and seem
to be able to convert from tumor suppressive M1-like macrophages into pro-tumor M2-like
macrophages and vice versa [133,135]. Especially in the early stages of tumor evolution,
TAMs have been described to secrete pro-inflammatory cytokines and have M1-like tumor-
suppressive functions such as elimination of the tumor cells, and the immunosuppressive
phenotype of TAMs has been associated with defective activation of NF-κB [136,137]. The
phagocytotic activity of TAMs can be inhibited by factors such as NF-κB-regulated expres-
sion of immune checkpoint molecules like PD-1, and TAMs have also been reported to
resemble M2 macrophages with a decreased ability to lyse tumor cells and a capability of
directly promoting tumor angiogenesis, tumor growth, and metastasis [136,138–141].

In T-DLBCL, a marked proportion of TAMs and lymphoma cells have been shown to
express PD-L1, and higher proportions of PD-L1+CD68+ TAMs have been associated with
longer survival (Figure 2C) [24,142]. Unlike in DLBCL in general, no association to survival
could be seen with the overall proportion of CD68+ TAMs in T-DLBCL, and the proportion
of PD-L1+CD68− cells did not seem to have an effect on the outcome [24,143,144]. Instead,
higher overall expression of PD-L1 was demonstrated to translate to superior outcomes,
and although the association seems to be especially related to the expression on CD68+

TAMs, a higher content of PD-L1+ lymphoma cells may be advantageous, though this
finding has not been consistent in smaller studies [24,142].

TAMs have several different mechanisms for regulating the activity of T-cells [145]. As
one of the main functions of macrophages is to induce T-cell recruitment and activation, in
the TME, this can be disturbed by the poor tumor-associated antigen-presenting capability
of TAMs. Additionally, M2-like TAMs can decrease T-cell activation by suppressing the
function of other APCs such as DCs, shift the balance of Th1/Th2 differentiation towards
Th2 cell activation, and induce the activation of Tregs, leading to further suppression of
immune response against the tumor. In T-DLBCL, the content of PD-L1+CD68+ TAMs has
been shown to correlate with the content of PD-1+CD4+ TILs and PD-1+ CTLs, suggesting
that these TAMs with a favorable prognostic value might more likely represent an M1-
than M2-like phenotype [24]. The finding that PD-L1+CD163+ TAMs, denoting M2-like



Cancers 2021, 13, 4049 10 of 18

phenotype, was not associated with survival supports the assumption that the favorable
prognostic impact of TAMs is presumably associated with PD-L1 expressing M1-like
phenotype in T-DLBCL [24].

7.3. The Role of Host Immunity and Immune-Escape

The role of host immunity and immune-escape seem to have special importance in
T-DLBCL. The distribution of TILs and TAMs, as well as their expression of immune
checkpoint molecules, has been shown to have a great variation and is associated with
survival [24,120]. Copy number losses of HLA class I and II genes resulting in decreased
expression of MHC I and II and limited tumor-antigen presentation to TILs, gains and
amplifications of CD274 and PDCD1LG2 with their increased transcription and PD-L1/PD-
L2 protein expression implicating immune escape, as well as T-DLBCL’s location in an
immune-privilege site are all hallmarks of T-DLBCL and highlight the significance of the
TME and host-related factors [45,47,99,146]. Higher proportions of PD-L1+CD68+ TAMs
correlating with higher content of PD-1+CD4+ TILs and PD-1+ CTLs and a favorable
prognosis further emphasize the complexity of the PD-1–PD-L1 pathway and its role in
host immunity [24]. The content of other immune cells of the TME, such as NK cells, seems
to be markedly low, and their possible role in T-DLBCL remains to be further studied [23].

The TME has an important role in achieving treatment response. Both CD4+ T-cells and
CTLs as well as complement activation, NK cells, neutrophils, and macrophages have been
reported to be involved in the Ab-dependent cell-mediated cytotoxicity [129,147–156]. In
T-DLBCL, the overall beneficial role of TILs and PD-L1+ TAMs was shown to be especially
evident among immunochemotherapy-treated patients and can therefore relate to the
crucial role of host immunity and the pre-existing TIL and TAM populations that can induce
a response to both chemotherapy agents and rituximab. Additionally, as HLA proteins are
crucial in antigen presentation and tumor cell recognition, loss of HLA protein expression
may, in addition to facilitating lymphoma cells in their escape from immunosurveillance,
also lead to impaired recruitment of TILs and inadequate response to therapeutic agents,
which is in line with the association of HLA class I and II and the T-lymphocyte signature
gene expression levels and worse prognosis particularly in rituximab-treated T-DLBCL
patients [23,46,47,90,94,100].

Increasing knowledge on the complexity of the TME and host-related factors involved
in the tumor immune-escape is continuously revealing new therapeutic opportunities [25,27].
Immunotherapy and especially host T-cell-specific immune response promoting therapies
have lately been the main focuses of clinical trials in many malignancies including lym-
phomas [119,124,157–159]. Taking into account the reports on PD-L1 expression on tumor
cells associated with immune-escape and T-cell non-responsiveness, findings on PD-1
expression on CTLs, as well as promising preliminary results with PD-1 blockade therapy
in T-DLBCL, the results on immune checkpoint molecule expression in T-DLBCL can be
seen somewhat paradoxical [28]. The PD-1–PD-L1 pathway and its functions in the TME
have, however, been shown to be much more complicated. Besides PD-1, also additional
binding sites to PD-L1 and PD-L2 have been described [160–162]. Co-expression of immune
checkpoint molecules including PD-1 have been demonstrated to define a group of not
merely exhausted, but highly activated and functional CTLs [163]. PD-1 expression on
TAMs has been associated with inhibited phagocytosis and tumor immunity, and blockade
of the PD-1–PD-L1 pathway can reverse this [140]. Conversely, blockade of PD-1 was
demonstrated to increase the proliferation and activity of antitumor immune response
suppressive Tregs [164].

As a conclusion, the role of the TME and the favorable prognostic value of immune
checkpoint expressing TILs and TAMs is especially evident in T-DLBCL, whereas no
such positive association with survival has been observed in nodal DLBCL [23,24,165]. In
contrast, a higher proportion of TILs with immune checkpoint expression has been demon-
strated to translate to unfavorable survival among DLBCL patients in general [165,166].
However, PD-1 blockade with nivolumab has shown only modest responses in patients
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with relapsed/refractory DLBCL in general [167]. While the role of immune checkpoint
inhibitors and other targeted therapies in T-DLBCL remains to be established, preliminary
results have been encouraging and a phase II study of nivolumab in relapsed and refractory
PCNSL and T-DLBCL patients (NCT02857426) is currently ongoing.

8. Conclusions and Future Perspectives

T-DLBCL is a unique entity of aggressive B-cell lymphomas with a characteristic
genetic profile that highlights significant NF-κB/TLR-mediated signaling, often with con-
current B-cell receptor pathway activation. The distinct predictive value of the TME
together with the current knowledge on the PD-1-PD-L1 signaling and suggested inter-
actions between tumor cells and the host immune cells highlights the clinical relevance
of host-related factors in the TME of T-DLBCL. As the overall beneficial roles of TILs and
PD-L1+ TAMs seem especially evident among immunochemotherapy-treated T-DLBCL pa-
tients, the data suggest that the TME and the pre-existing TIL and TAM populations have a
crucial role in inducing response to both chemotherapeutic agents and rituximab. However,
the adverse effect of FoxP3+T-bet+ double positive Tregs remains to be further defined,
and future studies are awaited to better characterize the cell-to-cell interactions and spatial
heterogeneity of the TME as well as to determine the optimal targets for immunotherapies.
Results from ongoing phase II studies and future clinical trials will determine the role of
PD-1–PD-L1 blockade, and the increasing understanding of the TME will hopefully bring
more treatment options, also with commonly well-tolerated mAbs, in treating patients
with T-DLBCL in the future. Targeting the adverse prognostic factors of the TME could
bring significant benefit to patients that do not respond to the current standard of care.
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