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A B S T R A C T

Existing local models based on multiple environmental variables clustering (LM-MEVC) treat the influences of
environmental factors on leaf phosphorus concentration (LPC) of rubber trees (Hevea brasiliensis) equally when
grouping samples. In fact, the effects that environmental factors assert on LPC are different. So, environmental
factors need to be treated differently so that the different effects can be taken into consideration when dividing
samples into clusters or groups. According to this basic idea, a local model based on weighted environmental
variables clustering (LM-WEVC) was developed. This approach consists of four steps. Firstly, the most important
environmental variables that influence LPC were selected. Then, the weights of the selected environmental
variables were determined. In the following, the selected environmental variables were weighted and used as
clustering variables to group samples. Finally, within each cluster or group of samples, an estimation model was
established. In order to verify its effectiveness in predicting LPC of rubber trees, the proposed method was applied
to a case study in Hainan Island, China. Rubber tree (cultivar CATAS-7-33-97) leaf samples were collected from
three different sampling periods. Spectral reflectance of the collected leaf samples was measured using an ASD
spectroradiometer, FieldSpec 3. Leaf samples collected from the three different sampling periods were used
separately to test LM-WEVC. Coefficient of determination (R2), root mean squared error (RMSE), and ratio of
prediction deviation (RPD) were employed as evaluation criterion. Performance of LM-WEVC was compared with
that of the existing LM-MEVC. Results indicated that for the three sampling periods, the prediction accuracies of
LM-WEVC were always higher than those of LM-MEVC. The values of R2 and RPD for LM-WEVC were increased by
8.15%–36.68%, and by 11.33%–59.40% respectively, while values of RMSE were reduced by 9.09%–37.5%,
compared with those for LM-MEVC. These results demonstrate that LM-WEVC was effective in estimating LPC of
rubber trees, and also confirmed our hypothesis that environmental factors unequally influenced LPC of rubber
trees.
1. Introduction

Rubber trees (Hevea brasiliensis) are the main source of natural rubber
(van Beilen and Poirier, 2007). In rubber tree, phosphorus is involved in
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the process of natural rubber synthesis, so phosphorus is closely related
to the yield of natural rubber (Guo et al., 2018). Leaf phosphorus con-
centration (LPC) is a good indicator of phosphorus nutrition status of
rubber tree. Therefore, acquiring reliable LPC is the premise for guiding
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farmers to properly apply phosphate fertilizer to rubber trees, which is
important for ensuring the healthy growth of rubber trees and thus
maintaining the high yield of natural rubber (Lu and He, 1982). Hyper-
spectral model has the potential of accurately and rapidly estimating LPC
of rubber seedlings cultivated in the greenhouse (Guo et al., 2016) or
rubber trees planted at the field scale (Guo et al., 2018). However, this
type of models is still limited in predicting LPC of rubber trees grown in
large area due to the high variations in LPC and leaf spectra at regional
scale (Asner et al., 2014). In order to reduce the variation in LPC and the
spectra, a locally modeling approach was developed (Araújo et al., 2014;
Gog�e et al., 2012; Shi et al., 2014). This approach divides the whole
dataset into a few clusters or groups according to the similarity of certain
properties of samples. Then, a local model is built for each cluster or
group. The prediction accuracy of the local model is generally higher
than that of the commonly used global model (GM) at regional scale
(Song et al., 2020a). Thus, this approach is receiving more and more
attention at present.

The local modeling approach can be classified into three categories.
The first one is the local model based on spectral clustering (LM-SC). This
method divides the samples into a number of clusters or groups according
to the spectral similarity of the target variable. Then, the relationship
between target variable and spectra is modeled for each cluster or group
(Liu et al., 2019; Ogen et al., 2019; Shi et al., 2014). For example, Shi
et al. (2014) employed visible-near infrared spectroscopy (350–2500
nm) as input variables to divide the 1581 soil samples collected from
different soil types of China into 5 classes, and within each class a local
model was built for predicting soil organic matter content. This method
can also be applied to estimate leaf nutrients of plants. However, this
method has one limitation that it is opt to classify samples with similar
spectral characteristics but samples with markedly different target at-
tributes (such as soil organic matter contents) could be grouped into a
same cluster (Castro-Esau et al., 2006; Zhang et al., 2018), which would
result in misclassification of samples and consequently reduce the pre-
diction accuracies of local models.

The second one is the local model based on single environment var-
iable clustering (LM-SEVC). This method uses only one influencing
environment factor as input variable for clustering, and partitions the
samples into several clusters or groups in terms of similarity in the
selected environment factor. Then, a local model is built for each cluster
or group (Bao et al., 2020; Moura-Bueno et al., 2019). This method
overcomes the limitation that exists in LM-SC because environmental
factor rather than spectra was used as input variable for clustering. Bao
et al. (2020) selected soil types as clustering variable to classify collected
soil samples into a number of groups. Finally, within each group, a local
model was constructed for predicting soil organic matter content. This
method could also be used to predict leaf nutrients of plants. However,
this method only considers the influence of a single environment factor
on target variable while ignores impacts of other environment variables
when clustering samples into clusters or groups. Therefore, this method is
still insufficient to classify samples into proper groups, which could
adversely impact the predictive abilities of the local models.

The third one is the local model based on multiple or compound
environmental variables clustering (LM-MEVC). This method adopts a
number of environmental factors as input variables for clustering, and
classifies samples into several clusters or groups on basis of similarity in
the employed environmental factors. Then, a local model is fitted for
each cluster or group (Moura-Bueno et al., 2020; Song et al., 2020b).
For example, Moura-Bueno et al. (2020) selected physiographic regions
as the input variable for clustering. Physiographic regions are com-
pound environmental variables which are determined by considering
the combined effects of climate and parent materials. Soil samples were
divided into three groups by physiographic regions, and then a local
model of predicting soil organic carbon was established for each group.
This method could also be employed to estimate leaf nutrients of
plants. However, this method treats the influences of different envi-
ronmental factors on target variable equally, which does not accord
2

with the actual situation. Therefore, this method still has defect in
sample clustering, which would negatively affect the predictive ability
of the local model.

The discussion above indicates that LM-MEVC is seemingly the most
effective method for estimating leaf nutrients of plants at present.
However, this method still has an obvious weakness that it equally
considers the influences of different environmental factors on target
variable when dividing samples into clusters or groups. In fact, influences
of various environmental factors on target variable are different (Said
et al., 2021). For example, Asner et al. (2017) found that geologic sub-
strate and elevation were the main factors affecting leaf nutrients of
tropical forests, whereas topographic slope, local hydrology, and solar
insolation were the secondary factors. Therefore, differences in effects of
environmental factors on leaf nutrients should be taken into consider-
ation when using environmental factors as input variables for clustering.
Only in this way can samples be accurately clustered, and thus can the
optimal local model be obtained.

The aim of this study was to develop a new local modeling approach
to estimate LPC of rubber trees at regional scale. This new approach
named local model based on weighted environmental variables clus-
tering (LM-WEVC). Compared with the existing LM-MEVC, the novelty of
this new approach is that the differences in impacts of various environ-
mental factors on target variable are accounted for when clustering
samples into groups. Thus, it would be expected more accurate classifi-
cation results, which is vital for improving the prediction accuracy of
local models. In the next section of this paper, a detailed description of
this approach is presented, and then this proposed approach was applied
to a case study to evaluate its effectiveness in estimating LPC of rubber
trees at regional scale. Performance of this approach was compared to
that of LM-MEVC.

2. Methods

2.1. Basic idea and overall design

Environmental factors impose different impacts on target variable
(LPC of rubber trees in this study). So, the different effects of environ-
mental factors on target variable should be taken into account when
clustering samples into clusters or groups. According to this basic idea,
this paper develops and proposes a new approach named local model
based on weighted environmental variables clustering (LM-WEVC). This
proposed approach mainly consists of four steps: (1) selection of domi-
nant environmental factors influencing target variable; (2) determination
of weights of different environmental factors; (3) classification of sam-
ples using weighted environmental factors; (4) construction of local
model for each cluster or group.

2.2. Selection of dominant environmental factors influencing target
variable

In this study, maximal information coefficient (MIC) is used to select
the dominant environmental factors that have impacts on the target
variable. MIC is a measure of dependence of relationship between two
variables (Reshef et al., 2011). The MIC cannot only capture linear
relationship but also no-linear relationship between pairwise variables.
At the same time, it provides a score that measures the strength of the
relationship. The score is roughly equivalent to the coefficient of deter-
mination (R2) of the data relevant to the regression function (Reshef
et al., 2011). The formula of MIC is listed as following:

MICðDÞ¼ max
XY<BðnÞ

I*ðD;X;YÞ
logðminX;YÞ (1)

where D denotes the sample data domain which is partitioned into X*Y
grids along the pairwise variable x and y; I*(D, X, Y) indicates the induced
mutual information in the domain D with X*Y grids; B(n) is a function of
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sample size n, and it equals n0.6. Calculation of MIC was performed using
R software with minerva package.

Figure 1 shows the process of how to use MIC to select important
environmental factors that influence the target variable. In the first step,
MIC between target variable and environmental factors is calculated and
a significance test (p < 0.05) is carried out for MIC. If MIC passes the
significance test, the corresponding environmental factor will be saved to
variable set 0 (Set 0); otherwise, the environmental factor will be dis-
regarded. In the second step, the environmental factor (EVs) in Set 0 that
has the strongest correlation with the target variable will be selected and
saved to the variable selected set (referred to as Selected). In the third
step, MIC between the EVs and the other environmental factors is also
calculated, respectively. If the value of MIC is smaller than 0.64 (i.e.,
correlation coefficient (r) is less than 0.8), then it can be assumed that
there is no collinearity between the EVs and the corresponding envi-
ronmental factor (Farrar and Glauber, 1967). So, the corresponding
environmental factor will be moved to variable set 1. Otherwise, the
environmental factor should be ignored (removed from Set 0). Once Set
0 is empty, move all environmental variables from Set 1 to Set 0, and then
repeat the second and the third step until Set 1 is empty. Once the process
is completed, the variables in Selected are the dominant variables to be
used.
Figure 1. The flowchart of selection of main envi
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2.3. Determination of weights of different environmental factors

Influencing weights were calculated using random forest (RF). RF is a
machine learning algorithm which is developed on basis of ensemble
learning (Breiman, 2001). RF employs the sampling with replacement
method to derive quantities of sample sets from the original sample set.
Then, these sample sets are used to generate a large number of decision
trees. Each decision tree votes on the result and the one with the most
votes is determined as the final classification or prediction result. RF not
only can predict target variables, but also can provide a measure of
importance (IncMSE) for auxiliary variables (e.g., environmental fac-
tors). The higher the value, the more important the auxiliary variable is.
Equation of IncMSE is as follows:

IncMSEi ¼ 1
n

Xn

i¼1

�
e
0
i � ei

�
(2)

where IncMSEi is the measure of importance for the ith auxiliary variable,
ei indicates the out-of-bag error of the ith single decision tree, e'i repre-
sents the out-of-bag error of the ith decision tree recalculated after adding
noise to a certain auxiliary variable, and n denotes the number of decision
trees.

IncMSEi was then used to calculate the weights (W) of environmental
factors. Formula of W is listed as below:
ronmental factors influencing target variable.
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Wi ¼ IncMSEiPn IncMSEi
(3)
i¼1

where Wi represents the influencing weight on the target variable for the
ith environmental factor and n is the number of environmental factors.

RF was implemented using R software with the randomForest pack-
age, and IncMSE was acquired by using Eq. (2).

2.4. Classification of samples using weighted environmental factors

Each environmental factor was weighted using the corresponding
weight (Wi), and then the weighted environmental factors were
employed as input variables for clustering. In order to perform the
clustering and classify samples into a few clusters or groups, the K-means
clustering method was adopted. The basic steps of the K-means clustering
are that K initial centroids are randomly generated at first, and then each
sample is allocated to the cluster represented by the centroid closest to
the sample. After the allocation of every sample, the centroid of each
cluster is recalculated according to all samples within each cluster. In the
following, allocation of samples and recalculation of cluster centroid are
repeated and would not stop until changes in cluster centroids are small
or a predefined number of iterations is reached (Hartigan, 1975). Dis-
tance between sample and cluster centroid is calculated by the Euclidean
distance, and the equation is as follows:

D
�
Xi;Cj

�¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
t¼1

�
Xit � Cjt

�2s
(4)

where D(Xi, Cj) is the Euclidean distance between the ith sample (Xi) and
the jth cluster centroid (Cj), Xit represents the tth property of the sample
Xi, and Cjt indicates the tth property of the cluster centroid Cj.

The cluster centroid Cj is a collection of mean values of all properties
of samples within the jth cluster. The formula of Cj is listed as below:

Cj ¼
P

Xi2Sj
Xi��Sj�� (5)

where Sj represents the jth cluster, |Sj| denotes the number of samples in
cluster Sj, and Xi is the ith sample of the cluster Sj.

The K-means clusteringmethod can cluster the samples into K clusters
(or groups) according to the predefined parameter K. However, to date,
there are no universal rules about how to determine the optimal value for
K. In the current study, the elbow method was used to determine the
optimal value for K. This method assumes that the degree of aggregation
of each cluster will gradually increase with the increase of the parameter
K, while the sum of squared error (SSE) of the distance between each
sample and its cluster centroid in all clusters will naturally decrease.
Based on this assumption, it can be expected that when K is far less than
the optimal value, the increase in K will significantly increase the degree
of aggregation of each cluster, and thus the value of SSE would markedly
decrease. However, when K arrives at the optimal point, further increase
in K would not dramatically increase the degree of aggregation, and thus
the corresponding SSE will also decline slowly. Therefore, the relation-
ship between K and SSE is in the shape of an elbow, and the turning point
of the elbow is just corresponding to the optimal K value (IBM Corp,
2011). Formula of SSE is listed as follows:

SSE¼
XK
j¼1

X
X2Sj

�
X � Cj

�2 (6)

where K is the number of clusters, Sj represents the jth cluster, Cj in-
dicates the centroid of Sj, and X denotes the samples belong to Sj.

The K-means clustering algorithm was performed in Matlab 2016a
with the kmeans function.
4

2.5. Construction of local model for each cluster or group

Phosphorus is related to the formation of pigment (Al-Abbas et al.,
1974), protein (Zhang et al., 2013), starch (Okita, 1992), cellulose, and
lignin (Islam et al., 1999) in leaves of plants. These biochemical sub-
stances absorb light of specific wavelengths that can cause variation in
leaf reflectance (Curran, 1989; Kumar et al., 2002). Thus, there are close
relations between LPC and leaf reflectance. Based on these relations, LPC
can be inferred with leaf reflectance. Several studies (Gao et al., 2019;
Knox et al. 2011; Mutanga and Kumar, 2007; Ramoelo et al., 2013) re-
ported that the relations between LPC and leaf reflectance were not
linear. So, a commonly used non-linear modelling approach
back-propagation neural network (BPNN) was employed to model the
relations between LPC and leaf reflectance for each cluster or group in
this study.

The BPNN model consisted of three layers. They were input layer,
hidden layer, and output layer respectively. The input layer contained
leaf reflectance as auxiliary variable. The leaf reflectance here referred to
those a few bands that contribute most to the explanation of variance in
LPC instead of the full spectrum. The reason why used a few important
bands as auxiliary variable was that if the full spectrum (2150 bands) was
used as auxiliary variable, the structure of the BPNN model would be
extremely complex and the model training process could be incredibly
time-consuming (Zou et al., 2010). At the same time, the developed
BPNNmodel with full spectrum as auxiliary variable would be inevitably
overfitted. These important bands were selected using RF. The RF could
provide a measure of importance for each spectral band. According to the
measure of importance, the top 10 most important bands were used as
auxiliary variable. The hidden layer was composed of a number of neu-
rons which play an important role in controlling the learning ability of
the BPNN. If the number of neurons was too small, the developed BPNN
would be insufficient to capture the relations between LPC and leaf
reflectance. In contrast, if the number was large, the developed BPNN
would be overfitted and its generalization ability would be poor (Ito
et al., 2008). Therefore, the determination of the number of neurons
should be proper. In this study, 5 neurons were determined for the hid-
den layer according to the result of our previous research (Guo et al.,
2018). The output layer contained the estimated values of LPC. The more
detailed information about BPNN could be found in Guo et al. (2013).
The BPNN was implemented in Matlab 2016a.

After the construction of local model for each cluster or group, a
discriminant analysis model was also developed. The discriminant
analysis model was used to assign the test samples to one of the clusters
or groups. Then, the value of the test sample can be predicted by using
the corresponding local model. The discriminant analysis model was
established on the basis of the cluster results of the training set and with
the classify function in Matlab 2016a.

3. Case study

3.1. Study area

To verify the validity of LM-WEVC in estimating LPC of rubber trees at
regional scale, this approach was applied to Hainan Island, China. Within
this island, nine sites across environmental gradients were selected
(Figure 2) for leaf sample collection. The elevation of these sites ranges
from 64 to 226 m, mean annual temperature from 23.7 to 24.1 �C, and
precipitation from 925 to 1773 mm. Although soil types of these nine
sites were the same (classified as Udic Ferralsol (sub-order) in the World
Reference Base for Soil Resource (FAO, 1998)), their properties were
significantly different from each other due to the parent materials from
which the soils developed were diverse (Guo et al., 2015). These parent
materials were granites, basalts, metamorphic rocks, neritic sediment,
and sandshale, respectively.



Figure 2. Location of the study area and distribution of sampling sites.
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3.2. Data sources

3.2.1. Leaf samples
Rubber trees exhibit obvious seasonal variations in LPC (Guo et al.,

2018). From April to June, rubber trees put forth buds and leaves, and a
large amount of nutrients is transferred from root and trunk to branches
5

and leaves in order to improve the growth of leaves. So, LPC during this
period is the highest of the year. From July to September, the rubber tree
leaves have grown up and are in a relatively stable development stage.
LPC of rubber trees is in the intermediate level of the year. During the
period of October to December, the leaves of the rubber tree gradually
age, and nutrients are transferred from the leaves to the trunk and other
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parts of the tree. Thus, LPC is the lowest of the year. In order to widen the
range of LPC, leaf sample collections were carried out three times in 2018
according to the three periods mentioned above. At each sampling site,
the field was divided into 14–20 plots in terms of their own coverage. The
size of each plot was 12 m � 21 m (rubber trees were planted with
spacing of 3 m� 7 m). Within each plot, five rubber trees were randomly
selected and two healthy leaves were collected from the lower crown of
each tree. Thus, a total of ten leaves were obtained for each plot and these
leaves were mixed together as one composite sample. Each composite
leaf sample was placed into a polyethylene bag to maintain moisture.
Sample number, name and coordinate of sampling sites, and planting
years were recorded on the surface of the bags. Then, these bags were put
into one white Styrofoam plastic box which contains ice. In total, 540
composite leaf samples were collected from the 9 sites (one hundred and
eighty composite leaf samples were obtained for each sampling period).

Leaf samples were immediately taken back to the dark room for
spectral measurement once the sample is obtained in the field. An ASD
spectroradiometer, FieldSpec 3 (Analytical Spectral Devices, Boulder, CO,
USA) was employed to measure spectral reflectance of leaf samples.
Spectral range of this spectroradiometer is from 350 to 2500 nm. Within
the range of 350–1000 nm, the sampling interval and the spectral reso-
lution are 1.4 and 3 nm respectively, while in the range of 1000–2500 nm,
those are 2 and 10 nm respectively. A vegetation probewith a leaf clip was
used to scan surfaces of leaf samples. The vegetation probe was connected
to the spectroradiometer by fiber optics. A built-in halogen lamp (3.825 V,
4.05 W) was set in the vegetation probe. This halogen lamp provides
illumination for measuring. Prior to each measurement, reflectance
spectra were calibrated against a white Spectralon panel. Then, leaves
were put into the leaf clip in sequence and themiddle left andmiddle right
locations were scanned. Each location was scanned for three times. So, 6
readings were recorded for one leaf, and thus a total of 60 readings were
reserved for one composite sample. The 60 readings were averaged to
obtain onemean value of the spectral reflectance (SR), and themean value
was used as the final spectral data for the composite leaf sample (Figure 3).

In order to further investigate the impacts of different ways of pro-
cessing spectral data on LM-WEVC in estimating LPC of rubber trees, the
other two commonly used spectral data were also calculated and
employed as input variables for the LM-WEVC. These two spectral data
were continuum removed reflectance (CR) (Clark and Roush, 1984) and
the continuum-removed derivative reflectance (CRDR) (Mutanga et al.,
2004). Equation of CR was listed as below:

CR¼ R
Rc

(7)

where R and Rc represent the spectral reflectance and the continuum line,
respectively. Figure 4 shows the results of CR.

The CRDR was calculated on the basis of the CR. CRDR was obtained
by applying the first difference transformation to the CR results. Equation
of CRDR was listed as follows:
Figure 3. Spectral reflectance of rubber tree leaf samples collected for the three samp
to December.
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CRDR¼CR
0

(8)
where 0 indicates the first difference transformation. Figure 5 presents the
result of CRDR.

When the measurement of leaf spectra was completed, leaf samples
were taken to the laboratory for chemical analysis. Leaves were put into
the oven and dried at 105 �C for 30 min, and then at 70 �C for 8 h. The
dried leaves were grinded into powder with a mortar. Then, the powder
was passed through a 1 mm screen, and was digested by a mixture of
concentrated H2SO4 and 30% H2O2. Finally, leaf phosphorus concen-
tration (%) was determined using the molybdenum-antimony colori-
metric method.

3.2.2. Environmental factors
Climate, parent materials, and topography can impose influences on

leaf nutrients of tropical forests (Asner et al., 2009, 2016), so information
about these environmental factors were collected in the current study.
Climate factors including 19 bioclimatic variables (Fick and Hijmans,
2017) were downloaded from the WorldClim website (https://www.
worldclim.org/data/index.html). These bioclimatic variables are in a
GRID format with a spatial resolution of 1 km. Parent materials were
extracted from an existing digitized geology map of Hainan Island at a
cartographic scale of 1: 500,000. There were five parent materials un-
derlain the 9 sampling sites. They were granites, basalts, metamorphic
rocks, neritic sediment and sandshale, respectively. Topographic vari-
ables including elevation, slope, sine of aspect, and cosine of aspect were
also employed in this study. They were calculated from the SRTM DEM
with a spatial resolution of 90 m using the easyGC which is available
online (http://www.easygeoc.net:8090/) (Zhu et al., 2021). The SRTM
DEM was downloaded from the Geospatial Data Cloud website
(https://www.gscloud.cn/search). All these environmental factors were
listed in Table 1.
3.3. Experimental design

To evaluate the effectiveness of the LM-WEVC in predicting LPC of
rubber trees at regional scale, the performance of this approach was
compared with that of LM-MEVC. The reason for selecting LM-MEVC for
comparison was that LM-MEVC gave equal weights for environmental
factors when clustering samples into groups, whereas LM-WEVC put
unequal weights. Comparison was carried out for each sampling period
separately. This means that leaf samples collected from each sampling
period were treated as an independent dataset, respectively. For each
dataset, leaf samples were divided into training set (140 leaf samples)
and test set (40 leaf samples) using the K–S algorithm (Kennard and
Stone, 1969), respectively. Statistical results of the training sets and the
test sets of the three datasets are presented in Figure 6.

When building these estimation models, the spectral reflectance (SR)
was used as input variable. Prediction accuracies of these models were
ling periods: a from April to June, b from July to September, and c from October

https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
http://www.easygeoc.net:8090/
https://www.gscloud.cn/search


Figure 4. Continuum removed reflectance of rubber tree leaf samples collected for the three sampling periods: a from April to June, b from July to September, and c
from October to December.

Figure 5. Continuum-removed derivative reflectance of rubber tree leaf samples collected for the three sampling periods: a from April to June, b from July to
September, and c from October to December.
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evaluated by coefficient of determination (R2), root mean squared error
(RMSE), and ratio of prediction deviation (RPD). Formulas of these in-
dexes are listed as following:
Table 1. Environmental variables used in the current study.

Environmental variables Abbreviation of variables

Parent Materials par

Annual Mean Temperature bio1

Mean Diurnal Range bio2

Isothermality bio3

Temperature Seasonality bio4

Max Temperature of Warmest Month bio5

Min Temperature of Coldest Month bio6

Temperature Annual Range bio7

Mean Temperature of Wettest Quarter bio8

Mean Temperature of Driest Quarter bio9

Mean Temperature of Warmest Quarter bio10

Mean Temperature of Coldest Quarter bio11

Annual Precipitation bio12

Precipitation of Wettest Month bio13

Precipitation of Driest Month bio14

Precipitation Seasonality bio15

Precipitation of Wettest Quarter bio16

Precipitation of Driest Quarter bio17

Precipitation of Warmest Quarter bio18

Precipitation of Coldest Quarter bio19

Elevation ele

Slope slo

Sine of aspect Sinasp

Cosine of aspect Cosasp

7

R2 ¼ 1�
Pn

i¼1ðyi � yÞ2Pn b 2 (9)

i¼1ðyi � yÞ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðbyi � yiÞ2
n

s
(10)

RPD¼ SD
RMSE

(11)

where n is the number of leaf samples, yi and ŷi represent the measured
and predicted value of LPC for the ith sample, ӯ indicates the mean value
of the measured LPC, and SD denotes the standard deviation of the
measured LPC.

R2 indicates the correlation between the predicted andmeasured LPC.
The higher the R2, the stronger is the correlation. RMSE measures the
difference between the predicted and measured LPC. A smaller RMSE
indicates the estimation is reliable. RPD assesses the performance of a
prediction model. The larger value of RPD, the better is the model per-
formance. If RPD <1.4, the prediction accuracy of the model is unac-
ceptable; if 1.4 < RPD <2.0, the prediction accuracy is acceptable but
needs improvement; if RPD >2.0, the prediction accuracy is high (Dong
et al., 2022; Li et al., 2018; Wang et al., 2013, 2021). Therefore, a good
model should have higher R2 and RPD, but lower RMSE.

4. Results

4.1. Selected environmental variables and their impacts on LPC

Table 2 lists selected environmental variables and their effects on LPC
of rubber trees. It can be seen that parent materials, slope and aspect (sine
of aspect and cosine of aspect) were the main factors impacting LPC of
rubber trees for the three sampling periods. Among these selected envi-
ronmental variables, parent materials were the most influencing factor



Figure 6. Statistical results of rubber tree leaf phosphorus concentration for leaf samples collected from different sampling periods.
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since its weights on LPC were always the largest for the three sampling
periods. This finding was consistent with that reported by He et al.
(1991). In their study, they found that parent materials significantly
influenced soil fertility and the nutrient status of rubber trees. Slope and
aspect were the secondary influencing factors. This finding was also
consistent with the situation of the study area. In Hainan Island, rubber
trees are mostly planted in hilly and mountain area. Within these regions,
slope and aspect play an important role in controlling redistribution of
soil, water and temperature which could further impact LPC of rubber
trees. In addition to these selected environmental variables, bioclimatic
variables also exerted some influences on LPC of rubber trees. However,
MICs between parent materials and bioclimatic variables were larger
8

than 0.64, which indicated that there were collinearities between parent
materials and bioclimatic variables. Thus, bioclimatic factors were
disregarded.

4.2. Clustering with the weighted environmental variables

The selected environmental variables were weighted using the
calculated weights (Table 2). Then, the weighted environmental vari-
ables were used as input variables for the K-mean clustering analysis. The
clustering results are shown in Figure 7. It could be seen that 6, 5 and 5
clusters were determined for the leaf samples collected from the first, the
second and the third sampling period respectively.



Table 2. Selected environmental variables and their effects on foliar phosphorus
of rubber trees.

Leaf sampling periods Environmental variables IncMSE (%) Weight

First sampling period par 72.38 0.52

slo 30.60 0.22

Cosasp 35.21 0.25

Second sampling period par 77.49 0.58

slo 25.65 0.19

Sinasp 31.37 0.23

Third sampling period par 42.37 0.37

slo 23.37 0.21

Cosasp 22.15 0.19

Sinasp 26.09 0.23

par, slo, Sinasp and Cosasp represent parent materials, slope, sine of aspect and
cosine of aspect respectively; IncMSE indicates a measure of importance of
environmental factors on foliar phosphorus.
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4.3. Important bands of the clusters

RF was employed to select important bands for each cluster. Table 3
lists the selected bands for the clusters of different sampling periods.
Numbers in bold denoted bands related to the known absorption feature
while those in normal were not associated with known absorption
feature. As can be seen, at least one band was related with the known
absorption feature except bands selected from SR for the cluster 1 of the
second sampling period. These bands were mainly related to chlorophyll
(e.g., 416, 500, 545, 556, 674 nm), protein (e.g., 1011, 1728, 2120,
2170, 2303 nm), starch (e.g., 1459, 1535, 1544, 2319, 2254 nm), cel-
lulose (e.g., 1482, 1728, 1819, 2264, 2338 nm), and lignin (e.g., 1117,
1119, 1206 1416, 1691 nm) (Curran, 1989; Kumar et al., 2002). These
results were in agreement with findings by Guo et al. (2018) and
Ramoelo et al. (2011, 2013). The mechanism involved in the absorption
of radiation by chlorophylls is electron transitions while that by protein,
starch, lignin, and cellulose is bond vibration. The bond vibration
mechanisms associatedwith proteins are N–H, C–H, and C¼O, while with
starch, lignin, and cellulose are O–H and C–H (Kumar et al., 2002).
4.4. Comparison results over the different sampling periods

4.4.1. For the first sampling period
Figure 8 presents prediction accuracies of the LM-WEVC and LM-

MEVC based on the test set from the first sampling period. It can be
seen that no matter which spectral variable was used, data points of the
LM-WEVCwere alwaysmuch closer to the 1:1 reference line than those of
the LM-MEVC. At the same time, values of R2 (0.758, 0.849, and 0.820)
Figure 7. Plot of sum of the squared errors (SSE) versus number of clusters. The c
dashed line indicates the optimal number of clusters.
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for LM-WEVC were much higher than those for LM-MEVC (0.574, 0.638,
and 0.717), whereas values of RMSE (0.025, 0.020, and 0.022) for LM-
WEVC were much smaller than those (0.034, 0.032, and 0.028) for
LM-MEVC. Most importantly, values of RPD for LM-WEVC were all larger
than 2.0 (indicating the model was with good performance) whereas
those for LM-MEVC were all in the range between 1.4 and 2.0 (indicating
the performance of the model was acceptable but needs improvement).
These results indicated that LM-WEVC performed much better than LM-
MEVC in estimating LPC of rubber trees at regional scale for the first
sampling period.

4.4.2. For the second sampling period
Figure 9 gives prediction accuracies of the LM-WEVC and LM-MEVC

on the basis of the test set from the second sampling period. As can be
seen, data points of LM-WEVC and LM-MEVC with high LPC values
(higher than 0.30) were both more discrete around the 1:1 line than
those with lower LPC values, which indicated that these two models both
had limitations in estimating LPC with high values. However, the ability
of LM-WEVC was still stronger in estimating LPC with high values than
that of LM-MEVC, since the data points of LM-WEVC with high LPC
values were closer to the 1:1 line than those of LM-MEVC. At the same
time, values of R2 (0.811, 0.771, and 0.823) for LM-WEVC were higher
than those for LM-MEVC (0.724, 0.677, and 0.761), while values of
RMSE (0.030, 0.031, and 0.027) for LM-WEVC were smaller than those
(0.033, 0.035, and 0.033) for LM-MEVC. Furthermore, values of RPD for
LM-WEVC were all larger than 2.0 (indicating the model had good per-
formance) whereas those for LM-MEVCwere all in the range between 1.4
and 2.0 (indicating the performance of the model was acceptable but
needs improvement). These results demonstrated that LM-WEVC also
outperformed LM-MEVC in predicting LPC of rubber trees at regional
scale for the second sampling period.

4.4.3. For the third sampling period
Figure 10 displays the prediction accuracies of LM-WEVC and LM-

MEVC according to the test set from the third sampling period. It could
be seen that data points of LM-WEVC were closer to 1:1 line than those of
LM-MEVC. At the same time, values of R2 (0.585, 0.628, and 0.679) for
LM-WEVC were higher than those for LM-MEVC (0.428, 0.524, and
0.523), while values of RMSE (0.023, 0.022, and 0.020) for LM-WEVC
were smaller than those (0.027, 0.025, and 0.025) for LM-MEVC. Be-
sides, values of RPD for LM-WEVCwere all in the range between 1.40 and
2.00 (indicating the performance of the model was acceptable but needs
improvement) whereas those for LM-MEVC were only two (the cases of
CR and CRDR) in the same range. In the case of SR, value of RPD for LM-
MEVC was lower than 1.40, indicating the prediction accuracy of the
model was unacceptable. These results again confirmed that LM-WEVC
was superior to LM-MEVC in estimating LPC of rubber trees at regional
scale.
lusters are generated by weighted environmental variables clustering. The red



Table 3. Important bands for each cluster of different sampling periods.

Sampling periods Clusters Bands selected from SR (nm) Bands selected from CR (nm) Bands selected from CRDR (nm)

The first sampling period Cluster1 545, 705, 552, 553, 556, 609,
695, 554, 736, 615

540, 730, 545, 529, 753, 723,
2268, 546, 551, 2239

638, 579, 562, 556, 1158, 738,
618, 513, 748, 1416

Cluster2 1535, 1819, 1544, 2319, 1011,
1265, 901, 1459, 1186, 1678

1548, 2317, 1650, 1668, 2057,
2064, 1221, 2285, 1513, 2341

1355, 1638, 2162, 1927, 1250,
2272, 1212, 2172, 1553, 2005

Cluster3 374, 674, 416, 1612, 1718, 1793,
446, 381, 579, 1729

2330, 1730, 1735, 1740, 1712,
1715, 1684, 1722, 1720, 1748

2081, 1247, 2238, 1062, 735,
1481, 2209, 2057, 980, 1482

Cluster4 2292, 2312, 1117, 2303, 2264,
2304, 2315, 2263, 568, 758

1714, 1695, 1757, 1360, 2141,
670, 1707, 2133, 1687, 1543

2062, 2195, 2258, 667, 2187,
2167, 1599, 1611, 1148, 2024

Cluster5 2170, 2117, 2174, 2120, 1592,
1676, 366, 1658, 1663, 1677

2216, 1686, 1648, 2206, 1644,
2204, 2121, 1694, 1683, 2166

1477, 1478, 2065, 1420, 1464,
2206, 1466, 2171, 1460, 2221

Cluster6 500, 1160, 672, 2338, 550, 1717,
642, 674, 455, 1728

2257, 1206, 1091, 2254, 516,
2383, 376, 679, 1352, 1714

1818, 884, 2224, 902, 681, 903,
667, 708, 2251, 533

The second sampling period Cluster1 354, 795, 374, 1004, 580, 751,
1052, 2032, 789, 1168

1690, 1692, 1268, 1685, 831,
1109, 1717, 625, 1727, 638

2010, 2278, 2291, 1027, 1780,
1677, 1845, 1704, 718, 1819

Cluster2 452, 513, 559, 1225, 2259, 728,
1725, 1311, 516, 849

806, 356, 358, 1215, 1284, 805,
1116, 644, 2216, 1566

941, 913, 971, 445, 2430, 2481,
2216, 966, 416, 1282

Cluster3 683, 684, 956, 574, 1235, 682,
618, 371, 973, 1168

897, 2324, 1129, 847, 2261,
2226, 1272, 479, 2143, 2491

964, 888, 2414, 2473, 1851, 680,
1278, 1251, 1597, 1919

Cluster4 1025, 429, 664, 890, 2357, 470,
971, 654, 384, 514

923, 872, 374, 929, 920, 625,
409, 1097, 517, 1910

402, 914, 2082, 1164, 1096, 441,
1498, 910, 1001, 2299

Cluster5 598, 557, 568, 566, 513, 611,
1482, 1736, 526, 435

810, 546, 730, 545, 603, 538,
1193, 560, 580, 539

2352, 642, 1185, 571, 562, 864,
598, 611, 586, 1691

The third sampling period Cluster1 2301, 411, 660, 442, 1671, 489,
2483, 720, 476, 682

2288, 460, 482, 2273, 2279,
1257, 620, 442, 881, 2253

658, 1137, 1648, 2242, 1179,
1767, 992, 445, 411, 1787

Cluster2 1542, 1039, 1534, 560, 1098,
533, 1556, 1330, 1623, 1380

975, 968, 454, 747, 1782, 949,
752, 2098, 1779, 843

1620, 2160, 1246, 1330, 1674,
760, 1303, 2218, 2156, 2277

Cluster3 357, 359, 1919, 438, 1651, 678,
404, 361, 1691, 886

1182, 513, 1175, 354, 473, 760,
1582, 702, 2245, 631

1145, 1231, 1597, 1166, 500,
946, 1649, 462, 745, 746

Cluster4 2006, 760, 781, 789, 1052, 1028,
983, 878, 945, 1577

851, 1653, 849, 992, 865, 1497,
1565, 1548, 850, 741

1404, 1414, 1925, 1429, 1440,
1405, 1422, 998, 1424, 1418

Cluster5 682, 369, 1329, 735, 1760, 680,
402, 514, 1341, 1400

2312, 803, 1734, 1742, 1299,
2303, 2320, 2289, 2292, 1724

1119, 2215, 2294, 2284, 1706,
2276, 2277, 2089, 2271, 2280

The bands for each cluster are sorted in descending order according to their importance in estimating LPC. Numbers in bold mean the bands associated with known
absorption features listed by Curran (1989) and Kumar et al. (2002) while those in normal format denote the bands are not related with known absorption.
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5. Discussion

5.1. Repeatability and stability of LM-WEVC

In order to test the repeatability and stability of LM-WEVC, the pro-
posed method was applied to datasets from three sampling periods with
different spectral data. From Figures.8 and 9 and 10, it can be seen that
no matter which spectral data (SR, CR or CRDR) was used as input var-
iable, prediction accuracy of LM-WEVC was always higher than that of
LM-MEVC. More importantly, values of RPD for LM-WEVC were larger
than 2.00 (indicating the model had good performance) at two seasons
while those for LM-MEVC were all smaller than 2.00 at the three seasons.
These results indicated that LM-WEVC is superior to LM-MEVC in pre-
dicting LPC of rubber trees constantly over the different ways of pro-
cessing spectral data and over different sampling periods. This
demonstrated that LM-WEVC was good in repeatability and stability.

5.1.1. Improvement of LM-WEVC over the LM-MEVC
The main improvement of LM-WEVC over the existing method LM-

MEVC was that the different effects of environmental variables on LPC
of rubber trees were taken into consideration when classifying samples
into clusters or groups. This manipulation is more in conformity with the
authentic situations because environment factors undoubtedly can
impose influences on the growth and thus the LPC of rubber trees, and the
influences of these environmental factors were likely to be different.
Results of the current study confirmed this hypothesis. It was found that
parent materials, cosine of aspect, and slope were the main factors
affecting LPC of rubber trees (taking leaf samples collected from the first
10
sampling period as example), and the weights of these environmental
factors on LPC were 0.52, 0.25 and 0.22, respectively (Table 2). Asner
et al. (2016) carried out a study throughout Andean and western
Amazonian forests and reported a similar finding that elevation and
substrate were the dominant factors influencing foliar phosphorus of
forests, and the contributions of elevation and substrate to foliar phos-
phorus were around 15% and 10% respectively. Consideration of diverse
influences of environmental factors on target variable would allow the
relationships between LPC and spectra within each cluster or group be
better characterized. Consequently, model predictive ability would be
improved.

5.2. Application conditions and data requirement of LM-WEVC

The LM-WEVC approach was suitable for extensive and complex
geographic regions. Within these areas, geographic environment is
generally complex and with high heterogeneity (Goodchild, 2004; Zhu
et al., 2018). The heterogeneity in geographic environment would give
rise to marked variation in LPC and spectra, which could further result in
unstable or varied relationships between LPC and spectra over space.
From Table 3, it can be seen that important bands of clusters were
different from each other. Taking the first sampling period as example,
important bands selected from SR for cluster 1 were all located in the
visible range (380–780 nm), while those for cluster 2 were mainly
distributed in short-wave infrared (SWIR) (1100–2500 nm) and near
infrared (780–1100 nm) (NIR) range. This indicated that the relation-
ships between spectral data and LPC were not the same for different
clusters. Similarly, Asner et al. (2014) also found that spectral reflectance



Figure 8. Prediction results of LM-WEVC and LM-MEVC in test set from the first sampling period. LM-WEVC and LM-MEVC indicates local model based on weighted
environmental variables clustering, and local model based on multiple environmental variables clustering, respectively. SR, CR, and CRDR represent the spectral
reflectance, the continuum removed reflectance, and the continuum-removed derivative reflectance, respectively.
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of tropical forests was highest within the NIR region but lowest within
the SWIR at the summit of the mountain where the ratio of nitrogen to
phosphorus (N: P) was the lowest. However, relationships between N: P
ratio and spectral reflectance within NIR and SWIR were on the contrary
at the lower elevation sites. The unstable or varied relationships between
target variable and spectra impose challenges on estimating plant traits
using hyperspectral technique at large scale. Up to now, almost all of
studies used GM method to estimate plant traits with hyperspectral
11
reflectance. The commonly used GM method assumed that the relation-
ships between target variable and spectral data were stable over space.
This assumption might be valid within small area or region with homo-
geneous environmental settings, but would be invalid in large area with
complex environmental conditions over which the LM-WEVC is more
appropriate.

Application of LM-WEVC requires a large number of samples.
Within each cluster or group, sufficient samples are acquired to



Figure 9. Prediction results of LM-WEVC and LM-MEVC in test set from the second sampling period. LM-WEVC, and LM-MEVC indicates local model based on
weighted environmental variables clustering, and local model based on multiple environmental variables clustering, respectively. SR, CR, and CRDR represent the
spectral reflectance, the continuum removed reflectance, and the continuum-removed derivative reflectance, respectively.
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Figure 10. Prediction results of LM-WEVC and LM-MEVC in test set from the third sampling period. LM-WEVC and LM-MEVC indicates local model based on weighted
environmental variables clustering and local model based on multiple environmental variables clustering, respectively. SR, CR, and CRDR represent the spectral
reflectance, the continuum removed reflectance, and the continuum-removed derivative reflectance, respectively.
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effectively capture the relationship between target variable and spectra.
If the samples are too small, the relationship between target variable
and spectra could not be characterized well, and the predictive ability
of the estimation model would be reduced. Moura-Bueno et al. (2020)
divided soil samples into three clusters on basis of physiographic re-
gions. Within cluster 2, there were only a small number of soil samples.
These limited soil samples leaded to insufficient capture of variations in
soil organic carbon and spectra, which further brought about large
prediction errors.
13
6. Conclusions

This paper presents a new local modeling approach, LM-WEVC, for
estimating LPC of rubber trees at regional scale. This proposed approach
takes differences in impacts of environmental factors on LPC into
consideration when using environmental factors as classification vari-
ables to divide leaf samples into clusters or groups. The case study
showed that LM-WEVC outperformed the existing LM-MEVC method
which does not consider the different influences of environmental
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variables on LPC when classify leaf samples into clusters or groups. This
demonstrated that consideration of the differences in impacts of envi-
ronmental variables on LPC when classify leaf samples into clusters or
groups can improve the predictive ability of local models. Therefore, the
main contribution of this study is that the existing LM-MEVC is improved
by taking the different influences of environmental variables on LPC into
consideration when divide leaf samples into clusters or groups. The LM-
WEVC is appropriate for estimating LPC of rubber trees at large scale
especially with complex environmental conditions. Nevertheless, appli-
cation of LM-WEVC requires a large quantity of samples to effectively
characterize the relationships between LPC and environmental factors
within each cluster or group.
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