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Abstract

Calmodulin, a ubiquitous eukaryotic calcium sensor responsible for the regulation of many

fundamental cellular processes, is a highly flexible protein and exhibits an unusually wide

range of conformations. Furthermore, CaM is known to interact with more than 300 cellular

targets. Molecular dynamics (MD) simulation trajectories suggest that EF-hand loops show

different magnitudes of flexibility. Therefore, the four EF-hand motifs have different affinities

for Ca2+ ions, which enables CaM to function on wide range of Ca2+ ion concentrations. EF-

hand loops are 2–3 times more flexible in apo CaM whereas least flexible in Ca2+/CaM-IQ

motif complexes. We report a unique intermediate conformation of Ca2+/CaM while transi-

tioning from extended to compact form. We also report the complex formation process

between Ca2+/CaM and IQ CaM-binding motifs. Our results showed how IQ motif recognise

its binding site on the CaM and how CaM transforms from extended to compact form upon

binding to IQ motif.

Introduction

Calmodulin (Calcium-modulated protein, a.k.a. CaM) is a “dumbbell” shaped protein ubiqui-

tously present in eukaryotes that mediates calcium-dependent signalling. CaM can bind four

calcium ions (Ca2+) in its N- and C-lobes (two ions per lobe) and thereby regulate numerous

Ca2+-dependent pathways [1–3]. Both N- and C-lobes consist of two highly conserved canoni-

cal EF-hand motifs [4]. In each EF-hand, two α helices are connected by a 12-residue long

acidic loop (helix-turn-helix). Ca2+ binding rearranges the helices in EF-hand and exposes

large phenylalanine (Phe) and methionine (Met) rich hydrophobic clefts for target binding [5–

7]. In the absence of Ca2+, the α-helices are parallel to one another (called “closed conforma-

tion”), whereas in the presence of Ca2+, the α-helices are perpendicular to one another (called

“open conformation”) [8, 9]. Interestingly, the two lobes have different affinities for Ca2+ and

therefore also for target binding [10]. Previous studies have revealed that the four Ca2+-bind-

ing sites (EF- hands) differ in their ability to bind Ca
2+

ions. For example, Ca2+ ions bind the
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C-lobe (Kd*10−6 M) with 10-fold higher affinity than the N-lobe (Kd*10−5 M) [11, 12].

Therefore, CaM can sense a broad range of Ca2+ signals and convert Ca2+ influx into cellular

signals by binding to more than 300 partners.

The two lobes of CaM are connected by a highly flexible central helix in a trans orientation

[13–15]. The linker is largely exposed to the solvent and is involved in target binding [7, 9]. A

fragment of the linker (from arginine-74 to glutamate-83) can unwind to various degrees so

that the two lobes of CaM can re-orient and wrap around the target peptide [14, 16]. Alterna-

tively, target can bind to one of the lobes with no bending taking place in the central helix [17].

Voltage gated calcium channels (VGCC) are multimeric proteins found in the membrane

of excitable cells [18–22]. In response to membrane depolarization, VGCCs mediate Ca2+

influx that initiates several physiological events. There are 10 subfamilies of VGCCs critically

important for brain, heart, and muscle functions [23–25]. VGCCs are divided into L-type

(CaV1.1, CaV1.2, CaV1.3, and CaV1.4), P/Q-type (CaV2.1), N-type (CaV2.2), and R-type

(CaV2.3) [13, 26]. VGCCs are regulated by CaM through their C-terminal IQ motifs (I/L/V)

QXXXRXXXX(R/K) [27–30]. CaM controls the calcium influx by calcium-dependent inacti-

vation (CDI) and calcium-dependent facilitation (CDF) [31]. Numerous studies suggest that

IQ domain mutations in full-length channels can eliminate CDI and CDF [32–34]. Thus, it

will be interesting to know how CaM regulates various ion channels through interaction with

their IQ motifs.

Despite extensive studies, many details about CaM are still not fully understood. For exam-

ple, how CaM can sense a broad range of Ca2+ concentrations and adopt a multitude of con-

formations? It will be interesting to find out how the IQ motifs interact with the CaM

molecule. In this study, we carried out classical molecular dynamic simulations of various Ca2

+/CaM and VGCC IQ motif complexes. We analyse the trajectory to understand the dynamics

of EF-hand helices and the central helix of CaM. We also report the conformational landscape

of CaM transforming from extended to compact conformations during complex formation.

Materials and methods

Molecular dynamics (MD) simulations were performed for apo CaM (Protein Data Bank ID:

1CFD), Ca2+/CaM (PDB ID: 1CLL), Ca2+/CaM (PDB ID: 1PRW), and Ca2+/CaM-IQ motif

complexes. The following structures of CaM and IQ motifs from VGCC complexes were used

for MD simulations: CaV1.2 IQ (2BE6), CaV1.1 IQ (2VAY), CaV2.3 IQ (3BXL), CaV2.2 IQ

(3DVJ), and CaV2.1 IQ (3DVM). All simulations were performed using Gromacs 2020.2 for

50 nanoseconds (ns) using CHARMM36 force field [35]. Simulation inputs were built using

CHARMM-GUI web [36, 37]. Protein molecules were placed in a cubic box located 10 Å
(10−10 meter) from box boundaries. Solvent water was filled with tip3p model around the pro-

tein molecules [38]. Four Ca2+ ions were present in CaM for all MD simulations except for apo

CaM. The simulation time was selected based on previous literature [39] and observing the

RMSD profile. As shown in Fig 2, RMSD stabilizes after around 45 sec and no significant

changes occur after that. While longer MD simulations have been reported [40, 41], we

observed that the dynamic behaviour of CaM occurred within 50 ns. Therefore, to optimize

the computing, we limited the simulation to 50 ns for all complexes. Protein molecules were

neutralized with 0.15M NaCl. Simulations were performed with periodic boundary conditions.

The energy minimization steps comprising gradual reduction of side chain and backbone

restraints were carried out for 250 picoseconds (ps). Water equilibration around the protein

molecule was performed under NVT for 125 ps followed by 125 ps NPT ensembles at 303 K.

The production run was performed at 303 K in the NPT ensemble for 50 ns. The time step was

2 femtosecond (fs) and the trajectory was saved every 10 ps. Temperature was maintained
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using velocity scaling. Bond lengths were constrained with the LINCS algorithm. The pressure

was controlled by isotropic coupling using Parrinello-Rahman barostat. A Verlet scheme was

used for van der Waals and Particle Mesh Ewald electrostatics (PME) interactions within 1.2

nm. Van der Waals interactions were switched above 1.0 nm. The progress of the simulations

was monitored by RMSD profiles.

MD results were analysed in Gromacs 2020.2 package utilities. MD trajectories were

concatenated by using trjcat utility of Gromacs package. The multiple chains of protein mole-

cules were clustered using trjconv utility of Gromacs package with an option for periodic

boundary conditions of clusters. This option fixes the structure broken by the periodic

boundary.

Results

Ca2+/CaM adopts either extended or compact form in the solution. In all known Ca2+-CaM/

VGCC IQ complexes, CaM is found in compact conformation (Fig 1). However, in all these

compact CaM structures relative position of the two lobes varies. CaM central helix is observed

to bend to varying degrees in the reported CaM/VGCC IQ complexes placing the two lobes in

different positions. C-lobes rotate between 140–150˚ to adopt compact form in various CaM/

VGCC IQ complexes. Least rotation occurs (133.85˚) in Ca2+/CaM-IQCav1.1 complex

Fig 1. Comparison of the compact and the extended conformations of CaM. The CaM exist in extended form as

well as in compact form. In the extended form, the N- and C-lobes are in trans configuration whereas in the compact

form, the lobes are in cis configuration. CaM central helix bends to bring the C- and N-lobes close to one another. The

C-lobe rotates around the axis to adopt the compact conformation. CaM complexes are coloured as follows: extended

Ca2+/CaM (1CLL, grey), Ca2+/CaM-Cav1.1IQ (2VAY, yellow), Ca2+/CaM-Cav1.2IQ (1BE6, violet), Ca2

+/CaM-Cav2.1IQ (3BXK, cyan), Ca2+/CaM-Cav2.1IQ (3DVM, wheat), Ca2+/CaM-Cav2.2IQ (3DVE, marine), Ca2

+/CaM-Cav2.2IQ (3DVJ, orange), Ca2+/CaM-Cav2.3IQ (3BXL, forest), and Ca2+/CaM-Cav2.3IQ (3DVK, salmon). Ca2

+ are shown in spheres.

https://doi.org/10.1371/journal.pone.0258112.g001
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structure (2VAY) (Fig 1 and Table 1). Whereas in apo and extended Ca2+/CaM, the two lobes

are in trans conformations, but in all compact CaM, lobes are in cis conformation because of

the bending of central helix (Fig 1).

Dynamic behaviour of Ca2+/CaM-IQ complexes

To assess the dynamic behaviour of the complexes, the time dependent RMSD of all protein

atoms was calculated using original complexes as reference. The apo CaM (without Ca2+)

showed RMSD between 0.5–1.0 nm for up to 45 ns of simulation and thereafter it becomes

constant at ~0.6 nm (Fig 2A). The higher RMSD is mainly due to the central linker (Fig 2A).

The N- and C-lobes exhibit relatively low RMSD (~0.3 nm). The extended Ca2+/CaM (1CLL)

exhibited the highest RMSD value (Fig 2B). RMSD increases close to 1.0 nm at the beginning

up to 10 ns. Thereafter, RMSD decreases slowly and stabilizes at ~ 0.5 nm for rest of the simu-

lation period. The increase followed by the decrease in RMSD of the extended Ca2+/CaM indi-

cates cracking or a local unfolding of the molecule [42]. As discussed below, it is probably due

to the unfolding of the linker fragment [43]. The free-Ca2+/CaM (1PRW) can also adopt the

compact conformation [44]. The RMSD of the free compact CaM is slightly lower (0.2–0.8

nm) than observed for the extended CaM conformation (Fig 2C). Thus, free CaM (apo as well

Ca2+/CaM) are highly flexible in solution.

The RMSD curves of all analysed Ca2+/CaM-IQ complexes are unique (Fig 2D–2H). In

contrast to the apo and free Ca2+/CaM, most of the Ca2+/CaM-IQ complexes are very stable

(RMSD 0.2–0.3 nm) in solution. Thus, RMSD analysis corroborates earlier finding that Ca2+

and IQ motifs stabilize the CaM in solution [45–47]. The RMSDs of N- and C-lobes of Ca2

+/CaM-IQ complexes are between 0.1–0.2 nm; and the central helix RMSDs are 0.2–0.35 nm

(Fig 2D–2H). In the Ca2+/CaM-IQ complexes, the central helix is involved in IQ motif binding

and therefore very less flexible in solution compared to free CaM. Curiously, CaM/Cav1.1IQ

(2VAY) RMSD curve is slightly different (Fig 2D). Its RMSD increases until 30 ns and then

remains constant at 0.4 nm. However, its N-, C-lobes, and linker exhibit similar RMSD (~0.2–

0.25 nm) as observed for other Ca2+/CaM-IQ complexes. Biochemical studies suggest that

CaM interacts with the “pre-IQ” regions of the Cav1.1 IQ motif [48]. Histidine 1532 of IQ

motif will increase the flexibility of a loop of CaM resulting in fewer stabilizing interactions.

Three out of the four unique residues in Cav1.1 IQ motif do not directly interact with CaM

[49]. Thus, the unique interaction behaviour of Cav1.1 IQ motif creates a flexible region in

CaM resulting in higher RMSD.

Dynamic behaviour of calcium binding loops

The dynamic behaviour at residue level was estimated by RMSF calculations. RMSF represents

the positions of the residues across the simulation trajectory. In apo and extended CaM, the

acidic loop I (D20-T28) is flexible in solution (RMSF ~0.45 nm). In contrast, restricted

Table 1. Rotation angles of CaM C-lobes in various reported compact Ca2+/CaM-IQ motif complexes structures.

Complex Rotation angel (˚)

CaM-IQCav1.1 (2VAY) 133.85

CaM-IQCaV1.2 (2BE6) 143.0

CaM-IQCav2.1 (3DVM) 149.0

CaM-IQCav2.2 (3DVJ) 143.2

CaM-IQCav2.3 (3DVK) 149.54

Compact CaM (1PRW) 142.0

https://doi.org/10.1371/journal.pone.0258112.t001
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Fig 2. Root-mean-square deviation (RMSD) of CaM complexes. (A) apo CaM (1CFD), (B) extended Ca2+/CaM

(1CLL), (C) compact Ca2+/CaM (1PRW), (D) Ca2+/CaM-Cav1.1IQ (2VAY), (E) Ca2+/CaM-Cav1.2IQ (2BE6), (F) Ca2

+/CaM-Cav2.1IQ (3DVM), (G) Ca2+/CaM-Cav2.2IQ (3DVJ), and (H) Ca2+/CaM-Cav2.3IQ (3BXL). The RMSD curve

of the whole complex (black), N-lobe (red), C-lobe (green), and central helix (blue) are shown.

https://doi.org/10.1371/journal.pone.0258112.g002
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fluctuation is observed in compact CaM (RMSF ~0.25 nm). This loop is involved in Ca2+ bind-

ing at EF1. In compact Ca2+/CaM, K21 is trapped between helix α2 (EF1) and helix α2 (EF3)

(Fig 4A) explaining the restricted fluctuation revealed by RMSF (Fig 3A). Also, K30 fluctuates

(RMSF ~0.3–0.45 nm) in apo as well as in Ca2+/CaM (both compact and extended) because it

Fig 3. Root-mean-square fluctuations (RMSF) of CaM complexes. (A) apo CaM (black), extended Ca2+/CaM (red),

and compact Ca2+/CaM (green); (B) Ca2+/CaM-Cav1.1IQ (black), Ca2+/CaM-Cav1.2IQ (brown), Ca2+/CaM-Cav2.1IQ

(green), Ca2+/CaM-Cav2.2IQ (blue), and Ca2+/CaM-Cav2.3IQ (orange). The N- and C-lobes, linker, and IQ motifs are

marked. EF hand loops I (D20-T28), loops II (D56-P66), loops III (D93-Y99), and loops IV (I130-E140) are also

shown.

https://doi.org/10.1371/journal.pone.0258112.g003
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remains free in all CaM structures (Fig 3A and 3B). Loop1/2 (L39-E47) that connects EF1 and

EF2 is on the surface in the extended Ca2+/CaM and is highly flexible (RMSF ~ 0.50 nm).

However, in compact Ca2+/CaM structure, α2 (EF2) and α1 (EF3) position close to this loop

restricting its flexibility (RMSF ~0.26 nm) (Figs 3A and 4B). In apo CaM, only α2 (EF2) limits

the movement of loop 1/2 (Fig 4B). The EF2 loop II (D56-P66) is less flexible (RMSD 0.2–0.3

nm) compared to EF1 loop in extended conformation. It exhibits even lower RMSD (0.15–

Fig 4. Structural basis of root mean-square fluctuations in various CaM loops regions. (A) Loop I (EF1) hand motif

is stabilized by the K21 residue in the compact CaM structure. (B) Loop 1/2 is stabilized in both the apo CaM and the

compact CaM structures by the close proximity of the helices α1 (EF3) and α2 (EF2). (C) The central helix is

entrapped between the two lobes in the compact CaM structure (D) Loop III (EF3) is stabilized by K94 in the compact

CaM structure. (E) Loop 3/4 exhibits limited movement in compact CaM due to being in close proximity to helix α1

(EF1). (F) Loop IV (EF4) is highly flexible in apo CaM due to its unusual conformation. The extended Ca2+/CaM, apo

CaM, and the compact Ca2+/CaM are shown in grey, magenta, and cyan, respectively.

https://doi.org/10.1371/journal.pone.0258112.g004
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0.25 nm) in the compact form. However, this loop is highly flexible in apo CaM (Fig 3A) in

agreement with previous studies [42, 50].

The linker residue P66-R74 constitute the α2 helix of EF2 as well as the linker helix. These

residues are trapped between N-lobe helices as well as are in proximity to α1 (EF3). Thereby

explaining the moderate flexibility (RMSF ~0.23 nm) of this region in all 3 forms of CaM (Fig

3A). Specifically, the residue F68 exhibits the lowest RMSF (~0.15 nm) in both conformation

because it is buried deep in the N-lobe (Fig 3A). F68 is involved in the hydrophobic interac-

tions with various targets [51, 52] and F68A mutation is lethal for the cells [53, 54]. Linker resi-

dues (K77-E87) are highly flexible (RMSF ~ 0.50 nm) in apo CaM and extended Ca2+/CaM.

CaM adopts various conformations arising from varying degrees of bending observed in this

region (Fig 1 and Table 1). In apo CaM and extended Ca2+/CaM, the linker residues form an

elongated helix. In the compact form, however, region K77-E87 is sandwiched between the N-

and C-lobes (Fig 4C). Furthermore, target peptides bind between the linker regions (P66-R74)

and K77-E87 region (discussed below). Therefore, not surprisingly, the region K77-E87 is the

least flexible (RMSF ~ 0.20 nm) in the compact form of CaM (Fig 3A).

The temperature factor analysis suggests that the N-lobe is more flexible than the C-lobe,

especially in apo CaM (without Ca2+) [42]. In the C-lobe, loop III (D93-Y99) is highly flexible

in both the apo CaM and the extended Ca2+/CaM (RMSF ~0.50 nm) (Fig 3A). This loop is

involved in Ca2+ coordination at EF3. As in EF1 loop, equivalent lysine (K94) is present in the

EF3 loop as well (Fig 4D). Residue K94 anchors the EF3 loop between helices α1 (EF3) and α2

(EF3) in the compact CaM [55, 56]. Therefore, in the compact CaM, this loop shows limited

fluctuations in solutions (RMSF 0.20 nm) (Fig 3A). In apo CaM and the extended Ca2+/CaM,

the loop 3/4 (N111-E120) between EF3 and EF4 is highly flexible (RMSF ~0.57 nm) (Fig 3A).

However, in the compact CaM, the flexibility in this region is reduced due to its closeness to

α1 (EF1) (Fig 4E). In apo CaM and the extended Ca2+/CaM, α1 (EF1) is too far to make any

contacts (S1 Fig). Also, the loop IV (I130-E140) is flexible in the extended CaM (RMSF 0.5

nm) but is more rigid in the compact CaM (RMSF 0.22 nm). As with loop II, the loop IV

(I130-E140) also shows the highest degree of flexibility in apo CaM (Fig 3A). Interestingly,

whereas in extended Ca2+/CaM and compact Ca2+/CaM, loop IV adopts similar conformation

but in apo CaM, loop IV is in totally different conformation (Fig 4F).

Overall, the compact CaM residues are less flexible than apo CaM and the extended CaM.

Apo CaM and the extended CaM have similar flexible in region. Notable difference is observed

in the region between L39-P66, which contains the EF2-hand motif (Fig 3A). EF-hand motif

residues in apo CaM and the extended Ca2+/CaM reveal RMSF ~0.35 nm, whereas in compact

Ca2+/CaM, RMSF is ~0.2 nm (Fig 3A). The loops involved in Ca2+ coordination in the four

EF-hand motifs, exhibit different extent of flexibility (Table 2). Thus, the four EF-hands are

non-identical and have therefore different degrees of affinities for Ca2+ which agrees to previ-

ous studies [18, 19, 21, 22]. Therefore, CaM can sense a broad range of Ca2+ concentration

[18, 19, 21, 22]. Further, their flexibility decreases in following order: apo CaM > extended

Table 2. RMSD of different loops of Ca2+ binding region of CaM.

Apo CaM (nm) Extended Ca2+/CaM (nm) compact Ca2+/CaM (nm)

Loop I (D20-T28) 0.45 0.45 0.25

loop II (D56-P66) 0.53 0.25 0.2

loop III (D93-Y99) 0.51 0.5 0.2

loop IV (I130-E140) 0.67 0.55 0.22

loop 1/2 (L39-E47) 0.3 0.5 0.3

loop 2/3 (K77-E87) 0.4 0.5 0.24

loop 3/4 (N111-E120) 0.6 0.6 0.4

https://doi.org/10.1371/journal.pone.0258112.t002
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Ca2+/CaM >compact Ca2+/CaM (Table 2). Thus, Ca2+ binding stabilizes the EF-hand motifs

[42]. Comparison of flexibility of loops that connect the EF-hand motifs suggest that EF con-

necting loops are the least flexible in compact Ca2+/CaM (Table 2). It is also worth to note that

many residues come close to each other by flexible motions of central helix [57]. Hence, the

flexibility of individual residues varies during simulation. As discussed below, further reduc-

tion in flexibility is observed when compact Ca2+/CaM interacts with IQ peptides.

Dynamic behaviour of calcium binding loops of CaM-VGCC IQ complexes

CaM adopts compact conformation upon binding to the IQ motifs of VGCCs [33]. The flexi-

ble regions of extended Ca2+/CaM become rigid in CaM-IQ complexes. Overall, the residues

show very low magnitudes of fluctuation (RMSF < 0.2 nm) (Fig 3B). Particularly, the EF motif

residues exhibit very low RMSF (~0.1 nm) because of their involvement in IQ motif binding

and Ca2+ coordination [58]. Most of the hydrophobic residues are involved in either target or

intra-molecular interactions. The linker region R74-D80 reveals higher flexibility (RMSF

~0.35 nm). This region unwinds and bends to make CaM more compact for complex forma-

tion. Due to the complete unwinding of linker region, CaM can adopt a variety of conforma-

tions guided by targets [58]. The bound IQ peptides lock the two lobes in a specific

conformations. Also, the negatively charged residues in Ca2+/CaM make strong electrostatic

interactions with the positively charged IQ motif residues [59]. Consequently, the N- and C-

lobes exhibit very low RMSF values. Taken together, the above analysis revealed that the flexi-

bility of the Ca2+ binding loop and the central helix decreases from apo to compact Ca2+/CaM.

[42].

Principal component analysis (PCA) is a standard procedure to analyse the variable correla-

tions from a MD trajectory. PCA can reveal the most important motions in a system. In brief,

PCA technique is applied to systematically reduce the number of dimensions so that protein

dynamic motions can be filtered from the largest to the smallest spatial scales [58]. We per-

formed PCA to understand the motion of the different lobes of CaM, its linker region, and IQ

motifs (S2 Fig). PCA analysis suggests that Ca2+/CaM IQ motif complexes are relatively stable

and do not undergo significant movement. It seems that in the compact Ca2+/CaM IQ com-

plex, the linker has undergone maximum bending. Further bending of the linker is not ener-

getically favourable. However, the degree of bending depends on the target peptide as different

orientations are observed in different CaM-IQ complexes [33]. The IQ peptides bind CaM in

the most stable way. Only the terminal residue of CaM and IQ motifs exhibited slight move-

ment (S2 Fig). Noticeable movement was observed in CaM/Cav1.1IQ (2VAY). The C-lobe

showed highest degree of movement (in anti-clockwise manner) in respect to the N-lobe

(Fig 5A). The linker residues (77–82) also showed slight movement.

As mentioned above, bending of the linker depends on the target and the orientation of the

two lobes is locked by IQ peptides. Hence, in a particular Ca2+/CaM IQ complex, the position

of the lobes is fixed in the most stable orientation, and further movement is restricted. There-

fore, PCA analysis do not show any domain specific movement despite that the lobes orienta-

tion is different in various Ca2+/CaM IQ complexes. Whereas target free extended and

compact CaM shows flexible lobes and linker region, the target bound Ca2+/CaM IQ motif

complexes do not undergo any significant movement.

Structural rearrangements in CaM undergoing transition from extended to

compact form

Proteins are highly dynamic in aqueous solution and can adopt multiple conformations

required for functioning. CaM is a great example with the ability to assume multiple
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conformations [60] (Fig 1). PCA extracted trajectory was analysed to understand how CaM

transitions to the compact form. The extended CaM (1CLL) undergoes a wide range of confor-

mations in order to reach the compact form (Fig 5B). This starts with the unwinding of the

Fig 5. Principal component study of CaM. (A) Among various Ca2+/CaM-IQ motif complexes, only the Ca2

+/CaM-Cav1.1IQ structure (2VAY) reveals slight movements in the C-lobe and the IQ peptide. Modevector (red

arrow) represent the flexible region. (B) Extended Ca2+/CaM shows significant conformational change in the central

helix region. The central helix bends by ~84˚ and adopts a compact form. (C) Intermediate states of the N-lobes during

structural transition of the linker region. The helix α1 (EF1) is seen 2Å away from its initial position. (D) Similarly,

region T29-P43 is observed in an intermediate position (orange) during the course of simulation. This fragment attains

final stable position at the end of simulation (green). (E) C-lobe is similar to the original structure except for the α2

helix region of EF4 (inset).

https://doi.org/10.1371/journal.pone.0258112.g005
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region D78-E83 [43]. Unwinding favours linker bending and that in turn allows the lobes to

come closer resulting in the compact form (Fig 5B and S1 Movie). The whole structure transi-

tion occurs in a nanosecond [40]. Then, as seen in the S1 Movie and in Fig 5B, both lobes

move from their initial positions to adopt the compact form. The central helix bends by ~84˚

(Fig 5B). We used the coordinates of the final simulated structure and performed DALI server

[61] search to find structural homologs. However, no matches to CaM conformations depos-

ited in Protein Data Bank were obtained. The most similar PDB deposited structure was 6OS4

(Z score 12.9 and RMSD 2.7 Å) which is CaM complexed with prenyl moiety of GTPase

KRAS4b involved several signal transduction pathways [62]. Thus, the simulation reveals that

CaM adopts a unique conformation.

In the N-lobe, the gap between α1 (EF1) helix and the central helix increases (Fig 5C). This

likely represents an intermediate state. During the transitioning from the extended to the com-

pact form, the EF-hand helices also transiently rearrange to facilitate the linker bending [39,

40]. After CaM has adopted the compact form, EF-hand helices regain their original positions.

It seems that in the current simulated structure, the central linker is bent to the compact form,

however, helix α1 (EF1) is yet to reach its final state. Similarly, the region T29-P43 is observed

in the transient intermediate state during simulation but attains the final state at the end of the

simulation period (Fig 5D). However, no significant structural differences were observed in

the C-lobe. Only the terminal residues (140–147) were slightly shifted (Fig 5E). It seems that

the C-lobe has already undergone the structural arrangement required for the formation of the

compact structure. As discussed earlier, the N- and C-lobes are not identical as they differ in

Ca2+ affinities and other biophysical properties [63, 64]. Therefore, their folding pathways are

not coherent, probably structural rearrangement in C-lobe finishes earlier than N-lobe.

We also analysed PCA extracted trajectory of compact Ca2+/CaM (1PRW). Both the N- and

C-lobes move towards each other resulting in a more compact form. However, no apparent

differences were observed within the lobes. The EF-hand motifs did not show any movement.

Only the N-terminal α1 helix shifted slightly (Fig 6A). However, the linker region deviated sig-

nificantly from its original positions causing the C-lobe to reorient into a new position (Fig

6B). No conformational changes occurred in the linker and the bending of the linker was simi-

lar to the one observed in the crystal structure. However, the N- and C-lobes moved slightly

further apart due to the new position of the C-lobe (Fig 6B). Thus, the compact CaM fluctuates

in solution and an intermediate state was captured in this study. The C-lobe does not undergo

any significant conformational change. Dali server search suggested that the closest structural

homologue to the simulated structure is CaM complexed with inhibitor sphingosylphosphor-

ylcholine (PDB ID: 3IF7, Z score 20.1 and RMSD 2.0). Sphingolipid binds in the IQ motif

binding site and CaM is in the compact form (S3 Fig).

Conformational landscape during complex formation

To understand the interaction mechanism between, we prepared an artificial system between

extended Ca2+/CaM (1CLL) and the IQ motifs (3DVM CaV2.1IQ). The IQ motifs were placed

randomly near the residue D80 (CaM) and 15Å (10−10 meter) away from the linker without

making any contacts with CaM (Fig 6C). MD simulation was carried out with similar biophys-

ical conditions as before. The CaV2.1IQ motif travels towards CaM, finds its binding site, and

binds CaM in antiparallel orientation at the same site as in the crystal structure (Fig 6C). Thus,

the target peptide can locate its binding site on CaM in the solution. After peptide binding, the

central linker starts to bend pivoted at T79 (Fig 6D). Bending of the linker brings the C-lobe

close to the peptide and, eventually, the compact form CaM forms. We could see that the linker

was starting to bend in our final simulated structure, though it had not yet reached the full
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extension of the bend (Fig 6D). This finding indicates that during complex formation, first the

IQ peptide binds to CaM followed by peptide induced bending of the central helix. It is the tar-

get peptide that induces the various degrees of bending of the central helix.

Discussion

Many enzymes and proteins undergo conformational changes for their activity and adopt mul-

tiple conformations. The protein folding, ligand interaction, and protein-protein interactions

are very intricate processes that cannot be fully explained by experimental observations. How-

ever, the advent of supercomputers and improved MD simulation algorithms enable the visu-

alization of putative folding pathways [65]. MD simulations provide detailed atomic level

description of protein dynamics using empirical force fields [66]. MD simulations are uniquely

suited for examining the dynamics of protein–protein complexes with atomistic detail. While

X-ray crystallography and solution nuclear magnetic resonance (NMR) spectroscopy struc-

tures do not address the dynamic interactions between the protein complexes, the fluctuations

and conformational changes within biological macromolecules can be studied using MD

Fig 6. (A) Compact Ca2+/ CaM is dynamic in solution. Both lobes and the linker are deviate from their initial

positions. (B) The lobes move apart slightly and widens the compact Ca2+/CaM. (C) In an artificial complex of CaM

and IQ motif (grey), IQ peptide moves towards and binds CaM in its natural binding position. Final simulated

structure is show in multicolour (N-lobe; green, C-lobe; yellow, and linker; violet). Ca2+/CaM-Cav2.1IQ (3DVM) is

shown in wheat colour. (D) Following peptide binding to CaM, the central linker bends. The movement of peptide and

bending of the linker is shown by dotted arrows.

https://doi.org/10.1371/journal.pone.0258112.g006
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simulations. Atomic-level MD simulations allow to characterize the dynamics of protein-pro-

tein complexes computationally.

The interaction of Ca2+ ion with CaM causes significant structural rearrangements. On the

other hand, Ca2+ ions removal from CaM causes reduced stability [45, 67, 68]. How target pro-

tein reduces the binding of Ca2+ ions? In apo CaM, EF-hand loop residues are very flexible

and can therefore easily coordinate free Ca2+ ions. When the target protein binds the CaM, it

restricts the flexibility of the EF-hand loop residues thereby reduces the affinity for Ca2+ ions.

In this work, we show that the flexibility of EF-hand residues directly affects the binding of Ca2

+ ions. The more flexible EF-hand residue binds Ca2+ more strongly (Fig 3). The target pro-

teins regulate the CaM affinity for Ca2+ ions and can alter the CaM conformations [69]. There-

fore, CaM can sense a broad range of Ca2+ concentrations depending on the target it binds.

For instance, in the CaM-CaMBD2-b complex, Ca2+ binds more stably in N-lobe compared to

C-lobe [69].

Furthermore, the binding of target brings the lobes from trans to cis orientation. In cis con-

formation, linker is more stable, and the two lobes have fixed positions. This is corroborated

by lower RMSD values of compact Ca2+/CaM and Ca2+/CaM/IQ motif complexes (Fig 2).

However, the relative orientation of N- and C-lobes also depends on ionic distribution in the

aqueous solution. At lower ionic strength, nonspecific ions accumulate near linker. The

changes in ion concentration near the protein surface allows N- and C-lobes to sample multi-

ple orientations. The CaM protein is stable at physiological ionic strength. However, decrease

in ionic strength or pH favours the compact form [40].

Cooperative conformational changes are seen in many enzymatic reactions. To understand

how CaM forms a complex with its target, structural and dynamic information is required at

single molecule level. Single-molecule methods (e.g. Single-molecule fluorescence resonance

energy transfer (smFRET) and single-molecule force spectroscopy) offer a possibility to track

the time dependent conformations of proteins [70, 71]. MD simulation can be also used to

study the association and dissociation of two proteins during a single trajectory. Our MD sim-

ulations successfully reproduced the Ca2+/CaM transition pathway from extended to compact

form. Residue E31 is a charged polar amino acid that regulates the CaM transition from

extended to compact form. Its ionization state is highly sensitive to pH of the environment.

Wild type CaM undergoes transition from extended to compact form in microseconds. How-

ever, amino acid mutation E31A results in extended to compact transition within tens of nano-

seconds [40]. The VGCC IQ motifs bind CaM in parallel and antiparallel orientation. In the

parallel orientation, the N-lobe and the C-lobe interact with the N-terminal and C-terminal of

IQ motifs, respectively, whereas in the antiparallel binding vice versa interactions occur. In

our simulation, the IQ motif binds CaM in the antiparallel orientation (Fig 6C). Antiparallel

binding is reported for CaV2.1IQ motif (aa 1961–1982) in the crystal structure [72]. Interest-

ingly, a slightly shorter CaV2.1IQ motif (1960–1976) binds Ca2+/CaM in the parallel orienta-

tion [73]. The CaV1.2IQ motif also interacts with Ca2+/CaM in parallel orientation [74, 75].

However, most of the single helix peptides bind Ca2+/CaM in antiparallel orientation [76]. In

parallel orientation, majority of the residues involved in CDF (calcium-dependent facilitation)

do not contact the Ca2+/C-lobe, which is responsible for CDF [75, 77]. Instead, they interact

with Ca2+/N-lobe, which is responsible for CDI (calcium-dependent inactivation) [75, 77].

Therefore, the antiparallel orientation of CaV1.2IQ motif complies with the functional data.

Conclusion

In this study, we report the dynamic states of Ca2+/CaM in extended and compact forms. EF-

hand helices are highly dynamic in solution in both the apo CaM and the extended Ca2+/CaM.
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In compact Ca2+/CaM, many of these helices become stabilized due to structural rearrange-

ments. However, Ca2+/CaM and VGCC IQ motif complexes are highly stable in solution with

RMSD less than 0.15 nm. We also report the process of the formation of the complex between

the Ca2+/CaM and the IQ motif. Cav2.1 IQ motif was placed far from CaM in solution, how-

ever, it moved towards CaM and forms complex with it. We captured the conformational

landscape of CaM undergoing extended to compact form upon binding the IQ peptide.

Supporting information

S1 Fig. In apo CaM and extended Ca2+/CaM, the loop 3/4 (N111-E120) between EF3 and

EF4 is highly flexible (RMSF ~0.57 nm) (Fig 3A). In apo CaM and extended Ca2+/CaM, α1

(EF1) is positioned too far to make any contacts.

(TIF)

S2 Fig. The complexes (A) Ca2+/CaM-Cav1.2IQ, (B) Ca2+/CaM-Cav2.1IQ, (C) Ca2+/CaM--

Cav2.2IQ, and (D) Ca
2+

/CaM-Cav2.3IQ do not show significant movement in solution. Only

the central helix reveals a slight shift.

(TIF)

S3 Fig. The final simulated compact CaM form reveals structural homology with CaM

bound to inhibitor sphingosylphosphorylcholine (SPU). The inhibitor binds to CaM at the

conventional IQ motif binding site.

(TIF)

S1 Movie. Dominant motion of the extended Ca2+/CaM during transitioning from

extended to compact form.

(AVI)

S2 Movie. Dominant motion of the artificial complex between Ca2+/CaM and IQ peptide.

The peptide moves towards CaM and its lobes start to come closer to one another.

(AVI)
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