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Abstract

The African swine fever virus (ASFV) was first detected in South Korea on a pig farm in Sep-

tember 2019. Despite active preventive measures to control the spread of ASFV, outbreaks

on pig farms and in wild boar have been increasing. In this study, we investigated the spatial

contamination area using the minimum convex polygon (MCP) approach, and growth rate

using a logistic diffusion model. On the basis of the ASFV outbreak locations recorded from

September 17th, 2019, to May 20th, 2022, the MCP area for the second week was 618.41

km2 and expanded to 37959.67 km2 in the final week. The maximum asymptote of the logis-

tic function was considered as the land area of South Korea, and we estimated logistic

growth rates of 0.022 km2 per week and 0.094 km2 per month. Administrative bodies should

implement preventive and quarantine measures for infectious diseases. The results of this

study will be a reference for epidemiologists, ecologists, and policy makers and contribute to

the establishment of appropriate quarantine measures for disease control and

management.

Introduction

African swine fever virus (ASFV) has been categorized as the most severe animal disease (with

a mortality of approx. 100% in domestic pigs) that the world has faced in a long time [1].

ASFV was first recorded in Kenya in 1921 [2], and it has been spreading throughout Europe

and Asia since its first report in Georgia in 2007 [3, 4]. In South Korea, the first ASFV case was

recorded on September 16th, 2019 [5], and approximately 2632 cases (21 on domestic pig

farms and 2611 in wild boars) were reported between October 9th, 2019, and May 20th, 2022

[6, 7]. Globally, ASFV poses a significant threat to the swine industry, owing to its epidemio-

logical behavior and current spread in both wild boar and domestic pig populations [8]. To

control the spread of ASFV, eradication programs, based on the rapid diagnosis, disposal, and

slaughter of all animals in an infection zone, thorough cleaning and disinfection, surveillance,

desensitization, and movement control measures, should be applied [9, 10]. Ecologists have

suggested that wild boar [11], wolves [12], ticks [13], synanthropic birds [14], feed houses [14],
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slaughterhouses [15], and wildlife in general [16] play a prominent role in the spread, infec-

tion, and maintenance of ASF [17, 18]. The direction of epidemic waves can be observed and

predicted based on disease vector habitats, movement range, and movement patterns [17, 19].

In the present study, we adopted a minimum convex polygon (MCP) approach to track the

infectious boundary zone [20].

The boundary range for wildlife was conceptualized in the early 20th century [21–23], and

over the years, techniques of increasing sophistication and complexity have been introduced

[24–28]. MCP analysis is an internationally accepted standard method for examining a range

of species, particularly in circumstances with presence-only spatially explicit data [29]. The

MCP is the smallest area with all occurrence points and no acute angles at its boundary [30].

Although in Korea, active preventive measures have been adopted, the spatial distribution of

ASFV outbreaks has been increasing continuously since ASFV was first confirmed at a pig

firm in Paju-si, Gyeonggi-do, northern South Korea, on September 16th, 2019 [6, 7, 31].

The lack of vaccinations and effective treatment methods make the control and prevention

of ASFV particularly challenging [31]. Disease occurrence locations and buffer zones must be

continuously recorded [31, 32], and epidemiologists need to rapidly assess the presence of

wildlife species in control areas and identify potential vectors to minimize the risk of disease

transmission [33]. To assist in disease management goals, we examined the contaminated min-

imum convex boundary and estimated the weekly, monthly, and annual increment rates,

assuming the maximum spread area as the convex polygon of outbreak locations using a

widely applied logistic growth function [34].

Materials and methods

Study area

South Korea is an East Asian country (latitudes 33˚ and 39˚N, and longitudes 124˚ and 132˚E),

located in the southern part of the Korean Peninsula, sharing a land border with North Korea

in the north. It has a land area of 100,266 km2 [35] and a population of approximately 51.75

million [36]. The country has a diverse climatic range, high precipitation, and complex terrain,

which provides suitable habitats for a heterogeneous range of wildlife (with more than 100,000

species of animals and plants being recorded) [37]. The ASFV high-risk wild boar is one of the

LR/lc (lower risk/least concern) animals among the 127 mammalian species (84 terrestrial and

43 marine) found in South Korea [38]. Fig 1 presents choropleth maps of the study area, show-

ing the ASFV outbreak frequencies in local administrative areas [39] (Fig 1A) and the outbreak

locations in the different years from September 17th, 2019, to May 20th, 2022, with the recorded

occurrence locations of wild boar surveyed between 2014 and 2018 [40] in provincial adminis-

trative areas (Fig 1B).

Data

Data and information pertaining to ASFV outbreaks between September 17th, 2019, and May

20th, 2020, were mined from the World Organization for Animal Health (OIE) based Pigpeo-

ple [6, 7] portal. During the observation period, 2632 cases were reported (21 in domestic pig

farms and 2611 in wild boar) in 2137 locations. When the outbreak locations were mapped

according to local administrative areas, Hwacheon Gun was established to have highest fre-

quency of outbreaks (157), followed by Sangseomyeon (93), Seomyeon (79), and Yeoncheon

(71) (Fig 1A). The total analyzed ASFV case locations in 2019, 2020, 2021, and 2022 were 67,

716, 819, and 535, respectively (Figs 1B and 2C, and Table 1). The details of the data on out-

break frequencies in different timeframes and the increase in ASFV cases in wild boar (Fig 2D)

are shown in Fig 2. Higher frequencies of ASFV outbreak were detected in the first quartile of
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the year, with the highest frequency occurring in February (396 outbreaks), followed by March

(378) and April (308) (Table 1).

On the basis of monthly outbreaks, we identified three well-defined waves (peaks), at

approximately 0–10, 11–21 and 22–33 months (Fig 2A), with higher case numbers being

Fig 1. Survey area maps. (a) ASFV outbreak frequency in local administrative areas, and (b) ASFV outbreak and reported locations of

wild boar in provincial administrative areas analyzed using QGIS version 3.24.1. Authors specify that this figure is licensed under CC BY

4.0.

https://doi.org/10.1371/journal.pone.0277381.g001

Fig 2. ASFV outbreak locations and cases in different time windows. (a) A frequency plot of ASFV records in 33

months, (b) a frequency plot with respect to months (Jan to Dec), (c) a frequency plot with respect to year since the

first confirmed case, and (d) the daily growth of ASFV cases in wild boar since October 3rd, 2019 to 20 May 20th, 2022

(1275 days).

https://doi.org/10.1371/journal.pone.0277381.g002
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reported in January, February, March, and April (Fig 2B). The cumulative ASFV cases (Total

2611) in wild boar during the study period also increased continuously since initially being

detected on October 3rd, 2019 (Fig 2D), with a linear growth pattern (Cum. Cases = 2.36×Day,

R2 = 0.98).

Model

To determine the spatial proliferation of ASFV, we divided the data into weekly (139 weeks),

monthly (33 months), and annual (4 years) timeframes, and the MCP (100%) of each unit

timeframe was calculated using the animal home estimation tool ’adehabitatHR’ V. 0.4.19 [41]

in the RStudio environment (V. 4.1.3) [42]. A minimum of five coordinates are required to

construct one complete polygon [41], and given that there were only three coordinates in the

first week of the study period, the data collected during this period were excluded from the

analysis. The set of areas (A) in Eq 1 was further assessed using a logistic model to analyze the

growth pattern in each unit timeframe (t) of the nth period.

A ¼ fat; atþ1; atþ2; ::atþn� 1g 8t; n > 0 ð1Þ

The standard form of the logistic differential function (Eq 2) [43] and the root (Eq 3) were

considered to fit the expansion of the contamination zone. The growth parameters were esti-

mated using the non-linear least squares (nls command) method of the R-studio platform

[42]. Fitting with non-linear least squares, necessitates initial start parameters [44], which were

obtained from the linear model (intercept and time) using logit transformation and the scaling

area via a reasonable initial approximation of the asymptote (100,000 km2).

df ðtÞ
dt
¼ f tð Þ 1 � f tð Þ ð2Þð

f tð Þ ¼ E A ¼ Kjtð Þ ¼
K

1þ e� ðaþltÞ
; ð3Þ

where f(t), K, α, λ, and t are the logistic growth function, maximum asymptote (maximum

virus coverage range), displacement parameter along the time axis, logistic growth rate, and

time, respectively. Given that wild boar have spread throughout the country (see Fig 1B), the

Table 1. ASFV outbreak locations in South Korea during different time periods with quartile breakdown.

Year 2019 2020 2021 2022 Total

Quarter Month 3 4 1 2 3 4 1 2 3 4 1 2

Jan 66 80 117 263

Feb 115 129 152 396

Mar 149 94 135 378

Apr 100 111 97 308

May 40 19 34 93

Jun 19 20 39

Jul 30 45 75

Aug 37 85 122

Sep 9 26 49 84

Oct 22 23 33 78

Nov 14 52 63 129

Dec 22 59 91 172

Total 9 58 330 159 93 134 303 150 179 187 404 131 2137

https://doi.org/10.1371/journal.pone.0277381.t001
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maximum asymptote (K) in the model was considered as the total land area of South Korea

(100,266 km2). Finally, to evaluate the model performance for each timeframe, we applied the

extensively used R-square error (R2) (Eq 4) and mean absolute percentage error (MAPE) met-

rics (Eq 5). The value R2, which ranges from 0 to 1, is the error coefficient that provides an

information; of how well the data fit the original data. Higher values of both R2 and MAPE are

interpreted as indicating models with a better fit and greater predictive capability [45]. When

Xt is the predicted and Yt is the actual observed tth value of n observations, R2 and MAPE are

mathematically calculated as follows:

R2 ¼ 1 �

Pn
t¼1
ðXt � YtÞ

2

Pn
t¼1
ð�Y � YtÞ

2
ð4Þ

MAPE ¼
100

n
Pn

t¼1
j
ðYt � XtÞ

Yt
j; ð5Þ

where �Y is the average of the actual observation data.

Results

To examine the minimum possible infected zone using the MCP approach, we performed

weekly, monthly, and annual analysis of data relating to ASFV outbreak locations during the

survey period. Polygon size and ASFV case numbers were found to increase at each of the

assessed time points (Fig 3). An example of the monthly growth of ASFV cases and MCP areas

is illustrated in a glyph star plot (see S1 Appendix), which is designed to visualize the pattern

of multivariate data involving more than two features [46, 47]. To construct the plot, we used

the monthly data with the corresponding two attributes, MCP area and cumulative ASFV

outbreaks.

The convex polygon area was 618.41 km2 in the first month and increased to 37,959.68 km2

at the end date of the survey period on May 20th, 2022.

In Table 2, we present the estimated logistic parameters of the time series growth of the area

in weekly, monthly, and annual timeframes, considering the maximum asymptote as the total

land area (100,266 km2) of the nation, using the non-linear least square regression approach.

Fig 3. The growth of ASFV cases and polygon size (km2) on a (a) weekly and (b) monthly basis.

https://doi.org/10.1371/journal.pone.0277381.g003
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The displacement factor (a) from the time axis and growth rate (λ) for the weekly, monthly,

and annual timeframes were (-3.532, 0.022), (-3.575, 0.095), and (-3.340,0.726), respectively.

We detected highly significant fits (p< 0.001) for weekly and monthly data with R2 and

MAPE values of 0.948, and 21.622% and 0.955 and 29.316%, respectively, whereas for the

annual data, we detected significance at the p< 0.05 level, with a higher MAPE value

(52.96%). On the basis of the MAPE errors and their level of significance, we established that

the weekly growth model provided a better fit than the monthly or annual model (Table 2).

The findings of our reproduction of the data based on the estimated logistic growth param-

eters indicated that growth stabilizes at approximately 300 weeks and 70 months from the ini-

tial outbreak. Details of the spatial growth curves are shown in Fig 4.

Discussion and conclusion

The continuous circulation of ASFV and expansion in the distribution of reported cases, par-

ticularly in forests and mountainous areas, pose a significant threat to the swine industry and

wildlife [15, 48]. In the present study, we analyzed the spatial growth of ASFV based on 2623

wild boar and 21 pig farm cases reported from 2137 locations in South Korea during the period

from September 17th, 2019, to May 20th, 2022. Wild boar are considered a key factor in the

spread and management of ASFV [16, 49–51], and on the basis of survey data collected

between 2014 and 2018 [40], wild boars have extended their range throughout the nation (see

Fig 1B). In this study, we considered the maximum asymptote (carrying capacity) as the total

land area (100,266 km2), and proposed an epidemic spatial proliferation model based on the

logistic growth curve using the MCP approach.

Table 2. Estimated logistic growth parameters.

Parameters Estimate Std. error t-value Pr (>|t|) R2 (MAPE)

Week (N = 139) a -3.532��� 0.063 -56.340 0.000 0.948 (21.622)

λ 0.022��� 0.001 38.690 0.000

Month (N = 33) a -3.575��� 0.128 -28.020 0.000 0.955 (29.316)

λ 0.095��� 0.005 19.720 0.000

Year (N = 4) a -3.340� 0.491 -6.808 0.021 0.958 (52.962)

λ 0.726� 0.143 5.084 0.037

��� and ‘

� denote significant values at the p< 0.001 and p< 0.05 levels.

https://doi.org/10.1371/journal.pone.0277381.t002

Fig 4. ASFV infection growth boundary areas and logistic fit under (a) weekly and (b) monthly scenarios.

https://doi.org/10.1371/journal.pone.0277381.g004
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The first case of ASF in South Korea was detected in Paju-si, Gyeonggi-do, near the border

with North Korea, approximately 4 months after a reported outbreak in Northern Pyongan-

namdo Province (May 30th, 2019) [7, 31, 52]. The persistence of ASFV outbreaks in the Rus-

sian Federation, Europe, China, and other Asian countries, including Korea, has raised aware-

ness of the detrimental impact of this virus on the global pork and food processing industries.

South Korea has been implementing active control measures to eradicate the virus by identify-

ing the biosafety risks associated with movements of people, vehicles, and boar; destroying pig

herds; swill feeding of wild boar; handling of wild boar during hunting and trapping; and dis-

posing of and searching for carcasses [31]. However, despite the training of wild boar capture

and professional carcass search teams, biosafety procedures are sometimes ignored, and given

the limitations of the applied measures, including fencing and trapping [31], the cases and spa-

tial distribution of ASFV have continued to gradually increase from the northern to southern

region of South Korea (Figs 1 and 2).

Wild boar outbreaks and MCP areas are impacted with locations and seasonals (see Fig 2).

During the mating season between October and May, boars come out into heat, and with dis-

persal and group formation, there is an increase in the frequency of interactions [53, 54],

which could be a possible factor contributing to the higher number of outbreaks during this

period (Figs 2B, 3).

In the present study, we applied MCPs to analyze the weekly, monthly, and annual spatial

growth of ASFV. Simple graphs of locational data can reveal significant information [53, 54].

The logistic growth parameters of MCP areas in the current models for the weekly, monthly,

and annual timeframes were (-3.532, 0.022), (-3.575, 0.095), and (-3.340, 0.726), respectively,

and we established that the analysis of micro-level data on a weekly basis yielded more signifi-

cant information with a better fit than either the monthly or annual models (see Table 2 and

Fig 3). By gaining an understanding of growth patterns in this way, plans for disease spread

management and the establishment of buffer zones can be suitably modified [55].

We believe that this study provides a reasonable macro-level analysis of the spatial prolifera-

tion of ASFV in special cases, such as in South Korea, in which the outbreak locations

expanded progressively from north to south. However, we did not assess growth within local

boundaries or the factors contributing to virus transmission. Among the numerous epidemic

diffusion models available [56–58], populations with spatial growth could be analyzed and vali-

dated, including the use of logistic functions, in future studies. The maximum asymptote on

logistic fit was designed based on a consideration of the possible spread area of disease vectors

(wild boar), land cover features, and barriers to vector movement that may influence the diffu-

sion pattern, and by taking into account such factors and the activities of other vectors such as

birds and ticks, local and global scenarios could be analyzed. In addition, further studies could

examine details relating to the habitat suitability of disease hosts (determined using tools such

as MaxEnt) [59], minimum-volume ellipsoid (MVE) [60], and wildlife corridors [61], which

could be applied with occurrence data. Moreover, information on the pattern of infection

cases could provide a basis for research on disease control and management strategies.

To the best of our knowledge, there are significant studies on the disease growth rate and

basic reproduction number in suidae [57, 62–67] but spatial growths have not considered. In

the present study, we applied an approach to analyze the spatial proliferation of ASFV in South

Korea based on logistic growth parameters. Given the current lack of vaccine against ASFV,

the eradication of disease vectors, control, and prevention are the main methods for constrain-

ing the spread of ASFV [68]. In this regard, it will be beneficial to assess disease dynamics and

precautionary measures against viruses, and to gain better understanding of the spatial extent

of the area of contamination and growth rate. Although no model is perfect, most are useful to

varying extents [69], and in the present study, we consulted veterinary inspectors and scientists
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regarding the proposed method, and accordingly believe that this model could serve as a sup-

portive tool in the establishment of policies for wildlife disease management.

Supporting information

S1 Appendix. A glyph star plot of cumulative area and ASFV cases in each indexed month

(total, 33 months). The shape of each glyph increases with time (months), and the area of

minimum convex polygons and ASFV cases increases continuously. The glyph plot imposes

regularity on the variation and thereby enables a clear visualiztion of the monthly growth pat-

terns.

(DOCX)
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