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Abstract: The quantitative assessment of ecosystem health is important for interpreting the ecological
effects of land use changes and formulating effective measures of sustainable ecological development
by policymakers. This study investigated the response of ecosystem health to land use changes and
landscape patterns in the karst mountainous regions of southwest China by taking Guiyang City as a
case study area and assessing the spatial and temporal changes in ecosystem health from 2008 to 2017
using the vigor–organization–resilience model; it analyzed the influence of land use changes and
landscape patterns on ecosystem health using spatial overlay analysis, the Dunnett’s T3 test, and the
Spearman correlation analysis. The results show that the land use structure dramatically changed,
with a trend of a sharp decrement of farmland and rapid increment of forestland and construction
land due to rapid urbanization and ecologization. The overall ecosystem health was at a relatively
strong level, with the average value greater than 0.6. The deterioration of ecosystem health was
attributed to the expansion of construction land and farmland and the degradation of forestland,
while the increment of forestland was the major contributor to the improvement of ecosystem health.
The ecosystem health of the forestland + farmland landscape was significantly superior to that
of forestland + construction land and construction land + farmland landscapes. Moreover, each
landscape configurations had a significant positive or negative correlation with the ecosystem health.
This study provides a valuable reference for formulating sustainable environmental management
strategies in karst mountainous regions in China.

Keywords: ecosystem health; vigor–organization–resilience framework; land use change; landscape
composition and configuration; karst mountainous region

1. Introduction

Natural ecosystems provide both the material basis and ecological services for human
survival and development, and a healthy ecosystem is a fundamental guarantee of sus-
tainable social and economic development [1–3]. However, due to the expanded breadth
and intensity of human activities, rapid urbanization and industrialization have led to un-
precedented changes to the global ecosystem, resulting in the degradation of the ecosystem
and its services, which poses a serious threat to the survival and sustainable development
of human society [1,4–6]. Ecosystem health is the purpose and basis of environmental
management, and the core of comprehensive ecosystem evaluation; thus, increasing atten-
tion has been paid to assessing ecosystem health and the impact of human activities on
ecological health in recent decades [7–11].

The concept of ecological health was first proposed in [12], which enriched the study
of ecosystems and has gained wide acceptance among scientists [2,13]. Scholars have since
supplemented and improved the concept of ecosystem health [4,10,13–16]. In general,
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ecosystem health refers to the self-organization, self-maintenance, and recovery ability of
natural ecosystems under conditions of stress [4,12], and the ability to meet the reasonable
requirements of human society [1,15]; it reflects the ecosystem’s stability and sustainabil-
ity [12]. In addition, ecosystem health represents the regional ecological quality from
two aspects of ecosystem structure and function and is an important basis for compre-
hensive ecosystem evaluation and management at the macro scale [1,11]. Costanza [13]
pointed out that a healthy ecosystem is based on the three main aspects of vigor, orga-
nization, and resilience, which provide an effective scientific research perspective and
method for assessment [17]. Therefore, in recent years, numerous methods and models
for assessing ecosystem health have been developed, such as the pressure–state–response
framework [17–20], the driving force–pressure–state–impact–response–management frame-
work [21], and the natural–social–economic model [22]. The vigor–organization–resilience
(VOR) paradigm, the most widely accepted classical framework, is still widely used in
relevant studies [2,7,11,23].

Land use change not only has caused tremendous changes to the surface landscape
structure, but also has affected materials cycles and energy flows of landscapes, profoundly
impacting regional ecological processes [1,24–26]. Rapport [4] pointed out that a healthy
ecosystem has an integral structure and is resistant to external disturbances, whilst also
offering sustainable resources for humans. The structural and functional integrity of a land-
scape are basic prerequisites for maintaining ecosystem health and achieving sustainable
development [27]. Therefore, regional ecological health assessment based on landscape
ecology theory is considered an effective method to research the impact of spatial patterns
on ecological processes at a regional scale [7].

A quantitative study of the response of ecological health to regional land use change
could be conducive to a comprehensive evaluation of the macroecological effects of land
use change [1]. Several scholars have studied the effects of land use/land cover change and
its related transformation of landscape patterns with regard to ecological health [1,2,9,20].
However, the relevant research perspective was mainly focused on the ecological health
response under the single effect of land use change in rapidly urbanizing, rural, or ecological
restoration regions [7,11,18,19,22,27,28]. In fact, with the rapid development of social
economy and the continuous strengthening of human efforts in ecological protection,
the land use landscape of some typical regions displays the coupling of ecologization
and urbanization with a more complication change in land use structure, and the impact
of land use change on ecological health is also more complex [10]. On the other hand,
there are few studies on the response of ecological health to land use change under the
coupling of ecologization and urbanization. Thus, it is vital to scientifically monitor and
assess the temporal and spatial changes in regional ecological health under the coupling
of ecologization and urbanization in order to formulate regional sustainable development
policies now and in the future. In addition, research on the influence of spatial patterns
on ecological health and their relationship from the landscape perspective has attracted
attention in recent years [1,2]. Peng et al. [2] pointed out that a simple analysis of ecosystem
structure in terms of regional ecosystem health at the landscape scale should be incomplete
because the landscape composition and configuration are being substantially changed by
humankind, affecting the stability of landscape structure and ecosystem services [15,29].
Therefore, understanding the response of regional ecosystem health from the perspective
of landscape structure is an urgent scientific issue with regard to regional ecological health
assessment and environmental management.

The southwest karst mountainous region of China, represented by Guiyang City,
Guizhou Province, is characterized by abundant natural ecosystem resources with rich
biodiversity and a fragmented heterogeneous landscape [30,31]. The plant biodiversity
in this region comprises 30–40% southern China flora, and there are many nationally
and internationally protected plant and animal species. For example, 123 species (31.6%
of the total) appeared on the first iteration of the list of nationally protected vegetation
species [32]. As this region has a unique geological setting and high landscape heterogene-
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ity, the eco-environmental sensitivity is so high that once a strong artificial disturbance
occurs, it is difficult to rehabilitate the environment and rebuild the ecosystem [33,34]. For
example, in recent years, under the multiple influences of social economic development,
the urbanization process has been accelerating, which has worsened the effects on the
fragile environment and caused an intensification of landscape fragmentation, leading
to the declined EH in urban expansion areas [35–37]. Meanwhile, ecological protection
and restoration measures have been largely implemented, and the overall environmental
quality has obviously improved [37]. At present, the coupled development of land use
patterns driven by ecologization and urbanization is typical of land use landscape with the
trend of forestland and construction land synchronously increasing, resulting in a complex
impact on ecosystem health [37,38]. This provides an ideal study area to perform a regional
ecosystem health assessment under the coupled effect of urbanization and ecologization.
Moreover, the heterogeneous karst landscape and diverse land use types provide abun-
dant research objects to revealing the relationship between regional ecological health and
landscape patterns.

Taking Guiyang City as a case study, a spatial and temporal assessment of ecological
health was conducted by adopting the most widely used VOR framework. The aims of this
study were as follows: (1) to analyze the spatial and temporal changes in land use patterns
under the coupled influence of urbanization and ecological restoration; (2) to determine
the response of ecological health to different types of land use change; (3) to explore the
differences in ecological health in different landscape structures and compositions, and the
relationship between landscape configuration and ecological health.

2. Materials and Methods
2.1. Study Area

Guiyang City (106◦07′–107◦17′ E, 26◦11′–27◦22′ N), a typical karst mountainous region
in southwest China, is located in a hilly area of the middle mountains of Guizhou Province,
and the watershed between the Yangtze and Pearl Rivers. Guiyang landform consists of
mountains and hills (Figure 1). The karst environment is fragile, and the climate type
in the region is a subtropical monsoon climate with an average annual temperature and
precipitation of 15.3 ◦C and 1197–1248 mm, respectively [39]. As the capital of Guizhou
Province, Guiyang City experienced rapid urbanization in the last decades [38]. The
Chinese government implemented a series of ongoing ecological restoration projects in
the study area to restore the natural conditions of the ecosystem [18]. The study area is
1 of the richest biodiversity regions in China, with diverse vegetation types; the average
vegetation coverage reached 50% in 2020. The primary natural vegetation type in the region
is subtropical evergreen forests. The dominant canopy species in natural forest stands are
in the Fagaceae and Lauraceae families, while plants from Theaceae and Magnoliaceae
families are also common [36]. The main vegetation types of artificial and secondary forest
are evergreen broad-leaved, evergreen coniferous, and mixed coniferous and broad-leaved
forests, and the main tree species are Pinus massoniana, Pinus armandii, Ligustrum lucidum,
Cryptomeria japonica, Cunninghamia lanceolate, Cinnamomum longepaniculatum, and Betula
alnoides, etc. Therefore, it is an optimal area to study the ecological effects of urbanization
and ecologization caused by land use changes in a karst region.

2.2. Data Source and Data Processing

In this study, the main sources of data used for EH assessment were Landsat-5 The-
matic Mapper (TM) images for 2008 and Landsat-8 OLI images for 2013 and 2017. Remote
satellite images were collected from the International Scientific and Technical Data website
of the Chinese Academy of Sciences (http://www.gscloud.cn/(accessed on 10 December
2021)) [40]. The cloud content of all of the images was less than 5%, and the coordinate sys-
tem of all images was uniformly resampled to the WGS_1984_UTM_Zone_48N projection
coordinate system with a spatial resolution of 30 m× 30 m. Based on the ENVI 5.3 software
platform (ITT Visual Information Solutions, Herndon, VA, USA), all of the images for each

http://www.gscloud.cn/(accessed
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period were pre-processed by radiometric calibration, atmospheric correction, geometric
correction, image enhancement, image mosaic and image subset, etc. Furthermore, accord-
ing to China’s land use classification standard (GB/T 21010–2017), the land use types were
classified into 6 categories (farmland, forestland, grassland, construction land, water body,
and bare land) using the support vector machine supervision classification method based
on the ENVI 5.3 software platform (Figure 2). The classification accuracy of each land use
type and the overall classification accuracy of each period were more than 90%, with the
kappa coefficient greater than 0.85.
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2.3. Assessment Framework of Ecosystem Health

The vigor–organization–resilience model (VOR), proposed by Constanza [13], is a
widely used model to assess ecosystem health (EH). In the VOR model, EH is measured
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through three aspects: vigor indicates ecosystem metabolism and primary productivity;
organization represents ecosystem diversity, connectivity, and interactions; and resilience
measures the capability to rebound from perturbations, and resilience of maintaining
ecosystem structure and function when there is interference [1,13,23].

2.3.1. Ecosystem Vigor (V)

As the normalized difference vegetation index (NDVI) is significantly positive cor-
related to primary productivity, it has generally been used to measure the ecosystem
vigor [1,11]. Based on the band ratio method, NDVI is defined as the ratio of the difference
between the near infrared band (NIR) and the visible red band (R) [1]. NIR and R are the
fourth and third bands for Landsat TM images, and the fifth and fourth bands for Landsat
OLI images. The value of NDVI ranges from 0 to 1, and a value close to 1 indicates relatively
higher productivity (vigor). The formula of NDVI is as following:

NDVI =
NIR− R
NIR + R

(1)

2.3.2. Ecosystem Organization (O)
Ecosystem organization refers the stability of ecosystem structure, which is mainly

reflected in the diversity of the natural landscape and the impact of human activities, and
can be quantitatively measured by landscape pattern indices, such as landscape hetero-
geneity, connectivity, and shape [1,11,41,42]. In the present study, the Shannon diversity
index (SHDI) and Shannon evenness index (SHEI) were selected to measure landscape
heterogeneity (LH). The cohension index (COHESION), contagion index (CONTAG), and
landscape division index (DIVISION) were used to calculate landscape connectivity (LC).
Landscape shape (LS) was assessed using the area-weighted mean fractal index (AWMFDI)
and mean perimeter-area ratio index (MNPARA) [2,7]. The landscape pattern indices were
calculated by using a moving window method based on the land use datasets of different
periods in Fragstats 4.2 software. According to the relevant literature on ecosystem health
assessment [11,17,18], the weight of each index and sub-index was assigned using the
analytic hierarchy process (AHP). The weight of each index is shown in Table 1, among
which consistency ratio (CR) was 0.0019 (<0.10). The formula of ecosystem organization
(O) was set as follows:

O = 0.7153 × LH + 0.1870 × LC + 0.0977 × LS
= (0.4769 × SHDI + 0.2384 × SHEI) + (0.0255 × COHESION + 0.1169 × CON
TAG + 0.0446 × DIVISION) + (0.0814 × AWMFDI + 0.0163 ×MNPARA)

(2)

2.3.3. Ecosystem Resilience (R)

Ecosystem resilience, which can also be referred to as ecosystem elasticity, refers to
ability of ecosystem structures and behavioral patterns to rebound to the initial stage
following human or natural disturbances [1]. A healthy ecosystem has enough resilience
to withstand various forms of interference [7,10]. Ecosystem resilience can be character-
ized by the resistance and resilience to external disturbances [1,11]. Based on previous
studies [1,7], resistance and resilience were given a weight of 0.6 and 0.4, respectively
(Table 2). Ecosystem resilience was calculated using the following equation:

R = 0.6 × Resis + 0.4 × Resil (3)

where, ER refers to the ecosystem resilience, ‘Resis’ and ‘Resil’ refer to the resistance
coefficient and resilience coefficient, respectively.
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Table 1. Weights of criterion and sub-index layers of ecosystem organization using AHP.

Criterion Layer LH LC LS

LH 1 1/4 1/7

LC 4 1 1/2

LS 7 2 1

Wic 0.7153 0.187 0.0977

CR 0.0019

sub-index layer SHDI SHEI COHESION CONTAG DIVISION MNPARA AWMFDI

SHDI 1 1/2

SHEI 2 1

COHESION 1 4 2

CONTAG 1/4 1 1/3

DIVISION 1/2 3 1

MNPARA 1 5

AWMFDI 1/5 1

Wis 0.6667 0.3333 0.1365 0.6250 0.2385 0.1667 0.8333

CR 0.0000 0.0176 0.0000

Wii 0.4769 0.2384 0.0255 0.1169 0.0446 0.0814 0.0163

Note: LH, landscape heterogeneity; LC, landscape connectivity; LS, landscape shape; Wic, weight of criterion
layers; Wis, weight of sub-index layers; Wii, weight of each ecosystem organization index; CR, consistency
ratio; SHDI, Shannon diversity index; SHEI, Shannon evenness index; COHESION, cohension index; CONTAG,
contagion index; DIVISION, landscape division index; MNPARA, mean perimeter-area ratio index; AWMFDI,
area-weighted mean fractal index.

Table 2. The ecosystem resilience coefficient of each landscape type in Guiyang City.

Landscape
Type Forestland Grassland Farmland Construction

Land
Water
Body Bare Land

Resis 1.0 0.6 0.5 0.3 0.8 0.2
Resil 0.6 0.8 0.3 0.2 0.7 1.0

R 0.84 0.68 0.42 0.26 0.76 0.52
Note: ‘Resis’ and ‘Resil’ refer to the resistance coefficient and resilience coefficient, respectively. ‘R’ refers to
ecosystem resilience.

2.3.4. Normalization and Classification of Ecosystem Health (EH)

In this study, the EH of Guiyang City was assessed according to Costanza’s defini-
tion [13] and Yan’s study [23], which applied the VOR framework. The formula of the VOR
model is as follows:

EH = V × O × R (4)

where EH is the ecosystem health assessment score, and V, O, and R represent ecosystem
vigor, organization, and resilience, respectively. EH indices at different periods were
normalized to be comparable by using maximum difference normalization method with
the range of [0,1]. Then, EH was divided into 5 levels with the intervals of 0.2: strong, 0.8
to 1; relatively strong, 0.6 to 0.8; ordinary, 0.4 to 0.6; relatively weak, 0.2 to 0.4; and weak, 0
to 0.2 (Figure 3).
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2.4. Comprehensive Analysis of Landscape Patterns and Changes in EH
2.4.1. Impact of Land Use Landscape Changes on EH

To reveal the impact of land use landscape changes on EH, we divided EH and
land use change into 2 phases: 2008–2013 and 2013–2017. First, the raster calculator tool
of the ArcGIS 10.8 software platform (Environmental Systems Research Institute, Inc.,
Redlands, CA, USA) was used to extract the spatial transfer maps of different EH levels
and determine the improved areas and deteriorated areas in 2008–2013 and 2013–2017,
respectively (Figure 4); the tool was also used to extract the land use spatial transfer maps of
those two periods [43]. Then, using the raster spatial overlay analysis method provided by
ArcGIS 10.8 software, EH and land use spatial transfer maps in the different periods were
overlaid to calculate the area of different land use transfer directions in EH improvement
areas and deterioration areas.
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2.4.2. Impact of Landscape Composition and Configuration on EH

To explore the impact and relationship of the landscape matrix, composition, and
spatial configuration on EH, the landscape type and ecological health index datasets of the
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study area in 2017 were divided into 1 km × 1 km grids using the Create Fishnet tool in
ArcGIS 10.8. Based on the 1 km × 1 km grid scale, taking the 3 typical dominant landscape
types (forestland, farmland, and construction land) as representatives, 4 typical landscape
composition types (forestland + farmland landscape (FFL), forestland + construction land
landscape (FCL), construction land + farmland landscape (CFL), and forestland + farmland
+ construction land mixed landscape (FFCL)) were selected, with a total sample number of
857. Then, according to the area ratio of landscape composition in each landscape type, FFL,
FCL, and CFL were further divided into five landscape subtypes and FFCL was divided
into four subtypes (Figure 5).
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Figure 5. Schematic diagram of different landscape composition types. ArFo, ArFa, and ArCo
indicate the area ratio of forestland, farmland, and construction land in 1 km × 1 km grid of different
landscape types, respectively.

Dunnett’s T3 ANOVA analysis was conducted in order to analyze the differences
in ecological health among the different landscape composition types and sub types. In
addition, eight landscape metrics at the landscape level (SHEI, SHDI, SPLIT, LSI, DIVISION,
AWFRAC, LPI, and CONTAG) were selected to represent the landscape spatial configura-
tion, and Spearman correlation analysis was conducted to analyze the relationship between
the average ecological health index of different landscape composition types and landscape
spatial configuration metrics. The landscape metrics for each gird were calculated using
Fragstats 4.2 software.

3. Results
3.1. Land Use Dynamics from 2008 to 2017

The land use pattern of Guiyang City notably changed from 2008 to 2017 (Figure 2).
Farmland and forestland were the main land use types, with their area accounting for
more than 86% of the total area. Due to the coupled influence of rapid urbanization and
substantial ecologization, the area of farmland continuously decreased, whereas forestland
became the dominant land use types since 2013, accounting for 51.86% and 56.13% in 2013
and 2017, respectively. Meanwhile, the area of construction land significantly increased by
167.27% and 91.12% in 2008–2013 and 2013–2017, respectively (Table 3).
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Table 3. The area and ratio of different land use types in 2008, 2013 and 2017.

Land Use Types
2008 2013 2017 Change in Land Use (%)

Area (km2) Ratio (%) Area
(km2) Ratio (%) Area

(km2) Ratio (%) 2008–2013 2013–2017 2008–2017

Farmland 3703.08 48.51 2763.64 36.20 2297.61 30.10 −25.37 −16.86 −37.95
Forestland 3426.42 44.88 3959.30 51.86 4285.26 56.13 15.55 8.23 25.07
Grassland 260.95 3.42 290.53 3.81 130.39 1.71 11.34 −55.12 −50.03

Construction land 137.83 1.81 368.37 4.83 704.04 9.22 167.27 91.12 410.82
Water body 92.57 1.21 155.61 2.04 97.17 1.27 68.10 −37.55 4.97
Bare land 13.48 0.18 96.87 1.27 119.85 1.57 618.69 23.72 789.18

3.2. Changes in EH from 2008 to 2017

The EH of the study area was at a relatively strong level, with an average EH value of
0.63, 0.65, and 0.62 in 2008, 2013, and 2017, respectively. During the study period, EH was
mainly classified as ordinary, relatively strong, and strong, with these 3 classes accounting
for more than 93% of the total study area. From 2008 to 2013, areas with relatively strong
and strong levels increased, whereas the relatively weak level significantly decreased, and
EH was slightly improved in this period. From 2013 to 2017, the relatively weak class
was further reduced, only accounting for 0.05% of the total study area, and the area of
ordinary and strong classes also decreased. Meanwhile, the area of weak and relatively
strong classes increased to varying degrees (Table 4). On the whole, the EH changes show
the coupled characteristics of deterioration and improvement in 2008–2017. As for the
spatial distribution of EH values (Figure 3), lower values were mainly concentrated in and
around the built-up area located in the south-central part of the study area with strong
human interference, while higher values were mainly distributed in the ecological land
region (forestland, grassland).

Table 4. Area and ratio of different ecosystem health classes in 2008, 2013, and 2017.

Ecosystem
Health Level

2008 2013 2017

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

Weak 240.14 3.15 411.72 5.39 750.17 9.83
Relatively weak 250.49 3.28 52.73 0.69 3.61 0.05

Ordinary 3467.53 45.42 2901.20 38.01 2486.02 32.58
Relatively

strong 1558.71 20.42 1739.67 22.79 2236.21 29.30

Strong 2117.45 27.74 2527.38 33.11 2155.52 28.24

3.3. Relationship between Landscape Types Change and Ecosystem Health

Figures 4 and 6 show the EH changes and correspond to the transfer of landscape
types between 2008 and 2017. The area of deteriorated EH was 1269.33 and 1710.43 km2 in
2008–2013 and 2013–2017, respectively. The main contributors were forest land degradation
(40.20 and 42.23%), transfer of forest land to farmland (27.60 and 19.85%), and transfer of
forest land to construction land (16.96 and 15.38%) (Figures 4a and 6). By contrast, the area
of improved EH was 1815.31 and 1107.92 km2 in 2008–2013 and 2013–2017, respectively,
and the transfer of farmland to forestland, forestland improvement, and transfer of farm-
land to grassland driven by ecological restoration measures were the main contributors
accounting for 44.75, 20.55, and 11.52% in 2008–2013 and 55.70, 17.08, and 5.52% in 2013–
2017, respectively (Figures 4b and 6). This indicates that rapid expansion of urbanization
or agriculturalization could cause a decline in EH, whereas ecological construction and
restoration could be effective measures to improve EH.
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Figure 6. The contribution ratio of different land use transfer directions on ecosystem health (EH)
improvement or deterioration in 2008–2013 (a) and 2013–2017 (b).

3.4. Influence of Landscape Composition and Configuration on Ecosystem Health

Figure 7 shows the difference in EH of four landscape composition types (FFL, FCL,
CFL, and FFCL). It was found that the landscape composition had a significant effect
on EH (p < 0.05). The average EH of the FFL type was significantly higher than that of
FCL, CFL, and FFCL (p < 0.05), and there was not significant difference between FCL
and CFL (p > 0.05), with the average EH value of these 2 types below 0.4 (Figure 7A). In
addition, different proportions of landscape components in the same landscape type have
significantly different effects on EH (p < 0.05). With a reduced proportion of forestland or
farmland, the average EH of FFL, FCL, and CFL significantly decreased. The average EH
of FFL was at the ordinary or relatively weak level when the proportion of forestland was
less than 40% (Figure 7B). The average EH of FCL and CFL was at the relatively weak or
weak levels when the proportion of forestland in FCL and farmland in CFL was less than
60% and 80%, respectively (Figure 7C,D). As for the mixed FFCL, when the proportion of
construction land was greater than the total area of forestland and farmland, the average
EH of FFCL (FFCL3) was closed to the weak level, whereas the EH of other FFCL types
(FFCL1, FFCL2, and FFCL4) was significantly higher than that of FFCL1 (p < 0.05), with the
average EH of ordinary, relatively strong, and strong levels (Figure 7E).
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Figure 7. Ecosystem health differences between landscape composition types. (A) differences be-
tween four landscape types; (B) difference between five subtypes of forestland + farmland landscape;
(C) difference between five subtypes of forestland + construction land landscape; (D) difference be-
tween five subtypes of construction land + farmland landscape; (E) difference between four subtypes
of forestland + farmland + construction land landscape. FFL, forestland + farmland landscape; FCL,
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forestland + construction land landscape; CFL, construction land + farmland landscape; FFCL,
forestland + farmland + construction land landscape. Same letters indicate no significant differ-
ences between landscape types, and different letters indicate significant differences types based on
Dunnett’s T3 ANOVA analysis (p < 0.05).

Based on the 1 × 1 km grid scale, the landscape configuration was shown to have a
significant or highly significant negative or positive correlation with the EH; however, the
correlations differed in different landscape composition types and subtypes. For FFL, FCL
and CFL dominated by construction land (FCL3, FCL4, FCL5, CFL3, CFL4, and CFL5), and
FFCL dominated by farmland (FFCL2), SHEI, SHDI, LSI, DIVISION, and AWFRAC indices
had a significant (p < 0.05) or extremely significant (p < 0.01) positive correlation with EH,
whereas the LPI and CONTAG indices had a significant or extremely significant negative
correlation with EH (Figures 8–11). The opposite phenomenon was found for FCL and
FFCL dominated by forestland (FCL1, FCL2, and FFCL1) and CFL dominated by farmland
(CFL1 and CFL2); however, the correlation between landscape pattern indices and EH also
displayed a significant or extremely significant relationship (Figures 9–11). In addition,
for FFCL with similar proportions of different landscape components (FFCL4), EH had a
negative correlation with SHEI, SHDI, LPI, and CONTAG indices and a positive correlation
with SPLIT, LSI, DIVISION, and AWFRAC; however, the correlation between EH and these
indices in FFCL was not significant (p > 0.05) (Figure 11).
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Figure 8. Correlation of landscape composition and configuration with the ecosystem health in
forestland + farmland landscape. FFL, forestland + farmland landscape; SHEI, Shannon’s evenness
index; SHDI, Shannon’s diversity index; SPLIT, splitting index; LSI, landscape shape index; DIVISION,
landscape division index; AWFRAC, area-weighted mean fractal dimension index; LPI, largest patch
index; CONTAG, contagion index. * p-values at 5% level; ** p-value at 1% level.
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Figure 9. Correlation of landscape composition and configuration with ecosystem health in forestland
+ construction land landscape. FCL, forestland + construction land landscape; SHEI, Shannon’s
evenness index; SHDI, Shannon’s diversity index; SPLIT, splitting index; LSI, landscape shape index;
DIVISION, landscape division index; AWFRAC, area-weighted mean fractal dimension index; LPI,
largest patch index; CONTAG, contagion index. ** p-value at 1% level.
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Figure 10. Correlation of landscape composition and configuration with ecosystem health in con-
struction land + farmland landscape. CFL, construction land + farmland landscape; SHEI, Shannon’s
evenness index; SHDI, Shannon’s diversity index; SPLIT, splitting index; LSI, landscape shape index;
DIVISION, landscape division index; AWFRAC, area-weighted mean fractal dimension index; LPI,
largest patch index; CONTAG, contagion index. * p-values at 5% level; ** p-value at 1% level.
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Figure 11. Correlation of landscape composition and configuration with ecosystem health in forest-
land + farmland + construction land mixed landscape. FFCL, forestland + farmland + construction
land mixed landscape; SHEI, Shannon’s evenness index; SHDI, Shannon’s diversity index; SPLIT,
splitting index; LSI, landscape shape index; DIVISION, landscape division index; AWFRAC, area-
weighted mean fractal dimension index; LPI, largest patch index; CONTAG, contagion index. *
p-values at 5% level; ** p-value at 1% level.

4. Discussion
4.1. Response of Ecosystem Health to Land Use Changes

Previous studies have shown that land use changes can lead to distinct environmen-
tal and socioeconomic changes, which in turn affect ecosystem services and ecological
health [2,44]. Land use change, especially urbanization expansion, leads to large-scale envi-
ronmental degradation and is the main driver of ecological health degradation [11,19]. The
fragile ecological system of karst mountainous areas in China has weak self-recovery ability
of the landscape after disturbance, with the high potential risk to ecological health [31,45].
With economic growth, increased population, and social development in recent years,
urbanization expansion has become the main trend and direction of land use change in
karst mountainous areas, which poses a serious threat to ecological health [37,38].

In this study, it was found that areas with poor ecosystem health in Guiyang City
were mainly distributed in and around built-up areas with a concentration of construc-
tion land. Areas with degraded ecosystem health were also mainly concentrated in the
urbanization expansion region (Figures 2 and 3). This finding is similar to the results of
studies in the Golden Triangle of Southern Fujian Province, China [19], and in the Kolkata
Metropolitan Area in India [11]. Therefore, this demonstrates that changes in the land use
structure by urbanization expansion is the main reason for ecosystem health degradation.
This also agrees with findings in other studies [2,35,46]. On the other hand, large-scale
ecological restoration projects (such as the Natural Forest Protection Project, the Grain to
Green Program, the Public Welfare Forest Protection, and the Karst Rocky Desertification
Restoration Project) have been implemented to protect the fragile ecological environment,
improve the ecological quality, and maintain the ecosystem services in karst mountainous
region in China [18]. More than USD 19 billion has been invested in ecological restoration
projects since the end of the 1990s, and most of the farmlands on sloped hills has been
abandoned and is currently covered by shrubs, tree plantations, or secondary and man-
made forests [18,31,47]. In this way, ecological restoration measures have produced positive
ecological effects, with significant improvements in vegetation coverage (ecosystem vigor)
and ecosystem resilience and services [48,49].



Int. J. Environ. Res. Public Health 2022, 19, 3273 14 of 18

Due to the high ecological vigor and resilience of the natural ecosystem dominated
by forestland, the areas with relatively strong and strong levels of ecosystem health were
distributed in the forestland and ecological restoration areas (Figures 4 and 6), which is
supported by previous studies [18]. In addition, with regards to the distribution and change
in ecosystem health of Guiyang City in 2008–2017, the overall ecosystem health of the
study area was relatively strong, with the average ecosystem health index greater than 0.6
(Figure 3). Ecological restoration measures led to optimization of the land use structure and
retarded the deterioration of ecosystem health caused by expanding urbanization. However,
with the intensification of rapid urban expansion, the trend of ecosystem health degradation
was still severe, especially in and around the built-up area (Figures 2 and 3). Therefore, it is
necessary to further strengthen ecological restoration and protection measures, conserve
natural ecosystems, optimize the quantitative structure and spatial patterns of land use
in urbanization areas, and limit the sprawl of construction land, and aim for sustainable
ecological development [2].

4.2. Relationship between Landscape Structure and Ecosystem Health

The landscape structure, comprising landscape composition and configuration, is an
indicator reflecting the spatial patterns of the ecosystem and the connectivity between
different landscape elements [50–52]. Landscape composition and configuration not only
directly affect energy and material flows, but also impact particular ecosystem services
and regional ecosystem functions [53,54]. Thus, incorporating landscape structure into
the assessment of ecosystem health is considered a suitable for assessing comprehensive
ecosystem functions on the macro scale [2]. In addition, the impact of landscape structure
on ecosystem functions and services and human well-being is one of the core issues in
landscape sustainability science [55]. Specific landscape structures composed by different
landscape matrices can generate distinct ecological effects.

In this study, the four landscape composition types (FFL, FCL, CFL, and FFCL) rep-
resent the results of different forms and degrees of human interference in the landscape
and can reflect the different stages of landscape evolution. It indicates that the overall
ecosystem health of the landscape type with a natural or semi-natural ecosystem (FFL) was
significantly better than that of landscape types with an artificial ecosystem (FCL and CFL).
Different proportions of compositions in the same landscape types have various effects
on ecosystem health (Figure 7). For example, in the natural and semi-natural landscape
type (FFL), when the area ratio of the natural ecosystem type (forestland) was not less than
40% at the 1 km × 1 km grid scale, ecosystem health could be maintained at a relatively
good level. While this law varied in other landscape types, the area ratio of forestland in
FCL and farmland in CFL should be greater than 60% and 80%, respectively, to effectively
maintain ecosystem health at a relatively good level (Figure 7C,D). This finding provides a
valuable reference basis (threshold) for the optimization and planning of land use spatial
patterns and environmental management in karst mountainous regions.

Changes in landscape composition metrics play a direct role in landscape configu-
ration, and then jointly affect ecological functions and processes, leading to changes in
ecosystem services and health [51,54,56]. However, the interactions between landscape
pattern changes and ecological processes are not unidirectional, and the complexity of
the interaction between landscape structure and function determines the diverse impacts
of landscape configuration on ecosystem health [2]. The relationship between the con-
figurations of landscape matrix types and ecosystem health usually shows a significant
difference. For instance, in this study, it was found that ecosystem health in the landscape
types dominated by construction land (FCL3, FCL4, FCL5, CFL3, CFL4, and CFL5) was
significantly negatively correlated with LPI and CONTAG and significantly positively
correlated with SHEI, SHDI, SPLIT, LSI, DIVISION, and AWFRAC, in contrast to land-
scape types dominated by forestland (FCL1, FCL2, and FFCL1) or farmland (CFL1 and
CFL2) (Figures 8–11). LPI, as a typical landscape composition metric, reflects the ability
of landscape patches to resist fragmentation, and can explain landscape homogeneity,
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whereas CONTAG represents landscape clumpiness and aggregation. A higher CON-
TAG value indicates that the landscape patch types are clumped and have lower spatial
diversity [50,53]. As for the landscape types dominated by artificial ecosystems (FCL3,
FCL4, FCL5, CFL3, CFL4, and CFL5), higher LPI and CONTAG values clearly suggest the
dominance of construction land in the landscape with a concentrated distribution. This
can lead to obstacles to for material circulation and energy flow in the landscape, reduce
the ecological connectivity within the landscape, and then result in the degradation of
ecosystem health. Accordingly, strengthening landscape uniformity, connectivity, and
diversity, increasing the complexity of landscape patch shapes, and promoting the internal
ecological flow of the landscape through the edge effect might be an effective strategy to
maintaining ecosystem health. However, for landscape types dominated by a natural or
semi-natural ecosystem (FCL1, FCL2, FFCL1, CFL1, and CFL2), maintaining the integrity
of natural ecosystems and habitats, reducing landscape fragmentation and complexity, and
promoting the ecological function and process of landscape “sources” could be conducive
to improving ecosystem health. Therefore, we considered that in and around built-up
areas with a high degree of urbanization and rapid urban expansion, FCL with more than
60% of forestland and FCL with good natural ecosystem integrity and strong landscape
connectivity are ideal landscapes for maintaining and improving ecosystem health in karst
mountainous cities. Whereas in rural or peri-urban areas, aside from limiting the rapid ex-
pansion of urbanization and strengthening ecological restoration, improving the diversity,
connectivity, and complexity of landscape patterns might be a reasonable measure for land
use landscape planning and environmental management policymaking in the future.

4.3. Limitations and Future Work

Pattern or heterogeneity is the cornerstone concept and essential attribute of land-
scape ecology [57]. Diversity and heterogeneity of the landscape lead to the complexity of
landscape ecological functions, processes, and services at different scales and in different
regions. Undoubtedly, ecosystem health is a complex concept, and its assessment has been
conducted at the ecosystem, landscape, regional, and global scales [7]. On the landscape
scale, research on the relationship between specific landscapes caused by land use changes
and ecosystem health provides an integrated view for ecosystem health assessment and
environmental management [1,7,58]. This study found that there is indeed an inseparable
relationship between landscape structure and ecosystem health, but it is not simply a
positive or negative correlation in different landscape matrices, compositions, and config-
urations. The impact mechanism of various landscape structures on ecosystem health is
still difficult to clarify. Thus, quantitatively describing the relationship between landscape
structure and ecosystem health, exploring the response of regional ecosystem health to
different landscape structures and the influencing factors, and revealing the interaction
mechanism between landscape structures and ecosystem health remains to be analyzed
more deeply in future research. Moreover, more attention should be paid to optimizing land
use patterns and adopting effective environmental management measures at the landscape
scale in order to maintain regional ecosystem health and achieve sustainable development
of human society in the future.

5. Conclusions

We conclude the following: (1) the land use pattern in Guiyang City from 2008 to 2017
was dramatically changed. Rapid urbanization and ecologization were the major trends
of land use changes. Forestland was the predominant land use type in 2017. (2) Overall
ecosystem health was relatively strong. The increase in forestland area had a positive effect
on EH, whereas the interference of human activities, especially urban and agricultural
expansion, posed a serious threat to EH at this stage. (3) The EH of the natural and semi-
natural landscape type was superior to that of other landscape types. The EH of landscape
types dominated by construction land and forestland + farmland was significantly nega-
tively correlated with LPI and CONTAG, and significantly positively correlated with SHEI,
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SHDI, LSI, SPLIT, DIVISION, and AWFRAC. However, it was opposite for landscape types
dominated by forestland or farmland. The findings of this study on the response of EH to
different land use changes and landscape structures can provide guidance and reference for
landscape pattern planning and environmental management policy formulation at different
development stages in the karst mountainous regions.
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