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Abstract

The human brain has the impressive capacity to adapt how it processes information to high-

level goals. While it is known that these cognitive control skills are malleable and can be

improved through training, the underlying plasticity mechanisms are not well understood.

Here, we develop and evaluate a model of how people learn when to exert cognitive control,

which controlled process to use, and how much effort to exert. We derive this model from

a general theory according to which the function of cognitive control is to select and config-

ure neural pathways so as to make optimal use of finite time and limited computational

resources. The central idea of our Learned Value of Control model is that people use rein-

forcement learning to predict the value of candidate control signals of different types and

intensities based on stimulus features. This model correctly predicts the learning and trans-

fer effects underlying the adaptive control-demanding behavior observed in an experiment

on visual attention and four experiments on interference control in Stroop and Flanker para-

digms. Moreover, our model explained these findings significantly better than an associative

learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and

experience might shape people’s ability and propensity to adaptively control their minds and

behavior. We conclude by predicting under which circumstances these learning mecha-

nisms might lead to self-control failure.

Author summary

The human brain has the impressive ability to adapt how it processes information to high

level goals. While it is known that these cognitive control skills are malleable and can be

improved through training, the underlying plasticity mechanisms are not well under-

stood. Here, we derive a computational model of how people learn when to exert cognitive

control, which controlled process to use, and how much effort to exert from a formal the-

ory of the function of cognitive control. Across five experiments, we find that our model

correctly predicts that people learn to adaptively regulate their attention and decision-
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making and how these learning effects transfer to novel situations. Our findings elucidate

how learning and experience might shape people’s ability and propensity to adaptively

control their minds and behavior. We conclude by predicting under which circumstances

these learning mechanisms might lead to self-control failure.

Introduction

The human brain has the impressive ability to adapt how it processes information and

responds to stimuli in the service of high level goals, such as writing an article [1]. The mecha-

nisms underlying this behavioral flexibility range from seemingly simple processes, such as

inhibiting the impulse to browse your Facebook feed, to very complex processes such as

orchestrating your thoughts to reach a solid conclusion. Our capacity for cognitive control
enables us to override automatic processes when they are inappropriate for the current situa-

tion or misaligned with our current goals. One of the paradigms used to study cognitive con-

trol is the Stroop task, where participants are instructed to name the hue of a color word (e.g.,

respond “green” when seeing the stimulus REDÞwhile inhibiting their automatic tendency to

read the word (“red”) [2]. Similarly, in the Eriksen flanker task, participants are asked to report

the identity of a target stimulus surrounded by multiple distractors while overcoming their

automatic tendency to respond instead to the distractors. Individual differences in the capacity

for cognitive control are highly predictive of academic achievement, interpersonal success, and

many other important life outcomes [3,4].

While exerting cognitive control improves people’s performance in these tasks, it is also

effortful and appears to be intrinsically costly [5,6]. The Expected Value of Control (EVC) the-

ory maintains that the brain therefore specifies how much control to exert according to a ratio-

nal cost-benefit analysis, weighing these effort costs against attendant rewards for achieving

one’s goals [7]. In broad accord with the predictions of the EVC theory, previous research has

found that control specification is context-sensitive [8,9] and modulated by reward across

multiple domains [10,11], such as attention, response inhibition, interference control, and task

switching. While previous theories account for that fact that people’s performance in these

task is sensitive to reward [7,12–14], it remains unclear how these dependencies arise from

people’s experience. Recently, it has been proposed that the underlying mechanism is associa-

tive learning [15,16]. Indeed, a number of studies have demonstrated that cognitive control

specification is plastic: whether people exert cognitive control in a given situation, which con-

trolled processes they employ, and how much control they allocate to them is learned from

experience. For instance, it has been demonstrated that participants in visual search tasks grad-

ually learn to allocate their attention to locations whose features predict the appearance of a

target [17], and a recent study found that learning continuously adjusts how much cognitive

control people exert in a Stroop task with changing difficulty [18]. Furthermore, it has been

shown that people learn to exert more cognitive control after their performance on a control-

demanding task was rewarded [10] and learn to exert more control in response to potentially

control-demanding stimuli that are associated with reward than to those that are not [11].

These studies provide evidence that people can use information from their environment

(e.g., stimulus features) to learn when to exert cognitive control and how to exert control, and

it has recently been suggested that this can be thought of in terms of associative learning

[15,16]. Other studies suggested that cognitive control can be improved through training [19–

21]. However, achieving transfer remains challenging [22–25], the underlying learning mecha-

nisms are poorly understood, and there is currently no theory that could be used to determine
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which training regimens will be most effective and which real-life situations the training will

transfer to. Developing precise computational models of the plasticity of cognitive control may

be a promising way to address these problems and to enable more effective training programs

for remediating executive dysfunctions and enabling people to pursue their goals more

effectively.

In this article, we extend the EVC theory to develop a theoretical framework for modeling

the function and plasticity of cognitive control specification. This extension incorporates

recent theoretical advances inspired by the rational metareasoning framework developed in

the artificial intelligence literature [26,27]. We leverage the resulting framework to derive the

Learned Value of Control (LVOC) model which can learn to efficiently select control signals

based on features of the task environment. The LVOC model can be used to simulate cognitive

control (e.g., responding to a goal-relevant target that competes with distractors) and, more

importantly, how it is shaped by learning. According to the LVOC model, people learn the

value of different cognitive control signals (e.g., how much to attend one stimulus or another).

A key strength of this model is that it is very general and can be applied to phenomena ranging

from simple learning effects in the Stroop task to the acquisition of complex strategies for rea-

soning and problem-solving. In order to demonstrate the validity and generality of this model,

we show that it can capture the empirical findings of five cognitive control experiments on the

plasticity of visual attention [17], the interacting effects of reward and task difficulty on the

plasticity of interference control [10,11], and the transfer of such learning to novel stimuli

[8,9]. Moreover, the LVOC model outperforms alternate models of such learning processes

that rely only on associative learning or a basic win-lose-stay-shift strategy. Our findings shed

light on how learning and experience might shape people’s ability and propensity to adaptively

control their minds and behavior, and the LVOC model predicts under which circumstances

these mechanisms might lead to self-control failure.

Models

Formalizing the function of cognitive control

At an abstract level, all cognitive control processes serve the same function: to adapt neural

information processing to achieve a goal [28]. At this abstract level, neural information pro-

cessing can be characterized by the computations being performed, and the extent to which

the brain achieves its goals can be quantified by the expected utility of the resulting actions.

From this perspective, an important function of cognitive control is to select computations so

as to maximize the agent’s reward rate (i.e., reward per unit time). This problem is formally

equivalent to the rational metareasoning [26,29] problem studied in computer science: select-

ing computations so as to make optimal use of the controlled system’s limited computational

resources (i.e., to achieve the highest possible sum of rewards with a limited amount of

computation).

Thus, rational metareasoning suggests that the specification of cognitive control is a meta-

cognitive decision problem. In reinforcement learning [30], decision problems are typically

defined by a set of possible actions, the set of possible states, an initial state, the conditional

probabilities of transitioning from one state to another depending on the action taken by the

agent, and a reward function. Together these five components define a Markov decision pro-

cess (MDP [30]). In a typical application of this framework the agent is an animal, robot, or

computer program, actions are behaviors (e.g., pressing a lever), the state characterizes the

external environment E (e.g., the rat’s location in the maze), and the rewards are obtained

from the environment (e.g., pressing a lever dispenses cheese). In general, the agent cannot

observe the state of the environment directly; for instance, the rat running through a maze
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does not have direct access to its location but has to infer this from sensory observations. The

decision problems posed by an environment that is only partially observable can be modelled

as a partially observable MDP (POMDP [31]). For each POMDP there is an equivalent MDP

whose state encodes what the agent knows about the environment and is thus fully observable;

this is known as the belief-MDP [31].

Critically, the belief-MDP formalism can also be applied to the choice of internal computa-

tions [27]–such as allocating attention [32] or gating information into working memory

[33,34]–rather than only physical actions. In the rational metareasoning framework, the agent

is the cognitive control system whose actions are control signals that specify which computa-

tions the controlled systems should perform. The internal state of the controlled systems is

only partially observable. We can formally define the problem of optimal cognitive control

specification as maximizing reward the in the meta-level MDP

M ¼ ðS; s0; C;T; rÞ; ð1Þ

where S is the set of possible information states, comprising beliefs about the external environ-

ment (e.g., the choices afforded by the current situation) and beliefs about the agent’s internal

state (e.g., the decision system’s estimates of the choices’ utilities), s0 denotes the initial informa-

tion state, C is the set of possible control signals that may be discrete (e.g., “Simulate action 1.”)

or continuous (e.g., “Increase the decision threshold by 0.175.” or “Suppress the activity of the

word-reading pathway by 75%.”), T is a transition model, and r is the reward function that cog-

nitive control seeks to maximize. The transition model specifies the conditional probability of

transitioning from belief state s to belief state s0 if the control signal is c by T(s, c, s0). The meta-

level reward function r combines the utility of outcome X (of actions resulting from control sig-

nal c in belief state s) with the computational cost associated with exerting cognitive control:

rðs; cÞ ¼ uðXÞ � costðs; cÞ; ð2Þ

where X is the outcome of the resulting action, u is utility function of the brain’s reward system,

and cost(s, c) is the cost of implementing the controlled process.

Within this framework, we can define a cognitive control strategy p : S ! C as a mapping

from belief states s 2 S to control signals c 2 C. The optimal cognitive control strategy π? is

the one that always chooses the computation with the highest expected value of computation

(EVOC):

p? : s 7! argmaxc EVOCðc; sÞ: ð3Þ

The EVOC is the expected sum of computational costs and benefits of performing the com-

putation specified by the control signal c and continuing optimally from there on:

EVOCðc; sÞ ¼ Qp?ðs; cÞ ¼ E½rðs; cÞ þ Vp?ðStþ1ÞjSt ¼ s;Ck ¼ c;T�; ð4Þ

where Qp? is known as the Q-function of the optimal control strategy π?, and Vp?ðStþ1Þ is the

expected sum of meta-level rewards of starting π? in state St+1.

In summary, cognitive control specification selects the sequence of cognitive control signals

that maximizes the expected sum of rewards of the resulting actions minus the cost of the con-

trolled process. The optimal solution to this problem is given by the optimal control policy π?.
So far, we have assumed that the cognitive control system chooses one control signal at a

time, but c could also be a vector comprising multiple control signals (e.g., one that increases

the rate at which evidence is accumulated towards the correct decision via an attentional

mechanism and a second one that adjusts the decision threshold). Furthermore, overriding a

habit by a well-reasoned decision also requires executing a coordinated sequence of cognitive
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operations for planning and reasoning. Instead of specifying each of these operations by a sep-

arate control signal, the cognitive control system might sometimes use a single control signal

to instruct the decision system to execute an entire planning strategy. The rational metareason-

ing framework allows us to model cognitive strategies as options [35–38]. An option is a policy

combined with an initiation set and a termination condition [38]. Options can be treated as

if they were elementary computations and elementary computations can be interpreted as

options that terminate after the first step. With this extension, the optimal solution to the cog-

nitive control specification problem becomes

p?ðsÞ ¼ argmax
o2O

Q?ðs; oÞ; ð5Þ

where the set of options O may include control strategies and elementary control signals.

Critically, this rational metareasoning perspective on cognitive control covers not only sim-

ple phenomena, such as inhibiting a pre-potent automatic response in the Stroop task, but also

more complex ones, such as sequencing one’s thoughts so as to follow a good decision strategy,

and very complex phenomena such as reasoning about how to best solve a complex problem.

The LVOC model of the plasticity of cognitive control specification

The computations required to determine the expected value of control may themselves be costly

and time consuming. Yet, in some situations cognitive control has to be engaged very rapidly,

because maladaptive reflexes, impulses, and habitual responses have to be inhibited before the

triggered response has been executed. In such situations, there is simply not enough time to

compute the expected value of control on the fly. Fortunately, this may not be necessary because

an approximation to the EVOC can be learned from experience. We therefore hypothesize that

the cognitive control system learns to predict the context-dependent value of alternative control

signals. By understanding how this learning occurs, we might be able to explain the experience-

dependent changes in how people use their capacity for cognitive control, which we will refer to

as the plasticity of cognitive control specification. In addition to these systematic, experience-

driven changes cognitive control is also intrinsically variable. To model the plasticity and the

variability of cognitive control, this section develops a model that combines a novel feature-

based learning mechanism with a new control specification mechanism that explores promising

control signals probabilistically to accelerate learning which of them is most effective.

The previous section characterized the problem of cognitive control specification as a

sequential meta-decision problem. This makes reinforcement learning algorithms [39] a natu-

ral starting point for exploring how the cognitive control systems learns the EVOC from expe-

rience. Approximate Q-learning appears particularly suitable because the optimal control

strategy can be expressed in terms of the optimal Q-function (Eqs 3–5). From this perspective,

the plasticity mechanisms of cognitive control specification serve to learn an approximation to

the value Qt(s, c) of selecting control signal c in state s based on one’s experience with selecting

control signals c = (c1,� � �,ct) in states s = (s1,� � �,st) and receiving the meta-level rewards r =

(r1,� � �,rt). Learning an approximate Q-function Qt from this information could enable the cog-

nitive control system to efficiently select a control strategy by comparing learned values rather

than reasoning about their effects.

Learning the optimal meta-level state-value function Q? can be challenging because the

value of each control signal may depend on the outcomes of the control signals selected after-

wards. Furthermore, the state space of the meta-level MDP has a very high dimensionality as

it comprises all possible states that the controlled system could be in. To overcome these chal-

lenges, a neural system like the brain might learn a linear approximation to the meta-level state

value function instead of estimating each of its entries separately. Concretely, the cognitive

Rational metareasoning and the plasticity of cognitive control

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006043 April 25, 2018 5 / 27

https://doi.org/10.1371/journal.pcbi.1006043


control system might learn to predict the value of selecting a control strategy (e.g., focusing on

the presenting speaker instead of attending to an incoming phone call) by a weighted sum of

features of the internal state and the current context (e.g. being in a conference room). For

instance, the value Q?(s, c) of choosing control signal c in the internal state s can be predicted

from the features fk(s), the implied control signal intensities c, their interactions with the fea-

tures, that is fk(s) ci, and their costs. Concretely, the EVOC of selecting control signal c in state

s is approximated by the Learned Value of Control (LVOC),

LVOCðs; c;wÞ ¼ w0 þ
XK

k¼1

wðf Þk � fkðsÞ

 !

þ
XL

l¼1

wðcÞl � cl

 !

þ
XK

k¼1

XL

l¼1

wðf�cÞ
k;l � fkðsÞ � cl

 !

� costðcÞ � wðTÞ � T; ð6Þ

where the weight vector w includes the offset w0, the weights wðf Þk of the states’ features, the

weights w(c) of the control signal intensities, the weights wðf�cÞ
k;l of their interaction terms, the

weight w(T) of the response time T, and cost(c) is the intrinsic cost of control which scales with

the amount of cognitive control applied to the task.

The optimal way to update the weights based on experience in a stationary environment is

given by Bayes rule. Our model therefore maintains and continues to update an approximation

to the posterior distribution

Pðwje1;���;tÞ / Pðwje1;���;t� 1Þ � PðetjwÞ; ð7Þ

on the weight vector w given its experience e1,� � �,t up until the present time t, where each expe-

rience ei = (si, ci, ri, Ti, si+1) comprises the state, the selected control signal, the reward, the

response time, and the next state. In simple settings where a single control signal determines a

single reward our model’s learning mechanism is equivalent to Bayesian linear regression

[40,41]. In more complex settings involving a series of control signals or delayed rewards the

learning rule approximates the Bayesian update by substituting the delayed costs and benefits

of control by the model’s predictions. For more details, see S1 Text.

If the value of control is initially unknown, the optimal way to select control signals is to

balance exploiting previous experience to maximize the expected immediate performance with

exploring alternative control allocations that might prove even more effective. Our model

solves this dilemma by an exploration strategy similar to Thompson sampling: It draws k sam-

ples from the posterior distribution on the weights and averages them, that is

~w1; � � � ; ~wk � P wje1;���;t

� �
; ~w ¼

1

k
�
Xk

i¼1

~wi: ð8Þ

According to the LVOC model the brain then selects a control signal by maximizing the

EVOC predicted by the average weight ~w, that is

ct � argmaxc LVOCðst; c; ~wÞ: ð9Þ

Together, Eqs 6–9 define the LVOC model of the plasticity of cognitive control. The LVOC

model extends the EVC theory [7] which defines optimal control signals in terms of the EVOC

(Eq 3), by proposing two mechanisms through which the brain might be able to approximate

this normative ideal: learning a feature-based, probabilistic model of the EVOC (Eqs 6 and 7)

and selecting control signals by sampling from this model (Eqs 8 and 9). This model is very

general and can be applied to model cognitive control of many different processes (e.g., which

Rational metareasoning and the plasticity of cognitive control
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location to saccade to vs. how strongly to inhibit the word-reading pathway) and different

components of the same process (e.g., rate of evidence accumulation towards the correct deci-

sion vs. the decision threshold). The LVOC model’s core assumptions are that the brain learns

to predict the EVOC of alternative control specifications from features of the situation and the

control signals, and that the brain then probabilistically selects the control specification with

the highest predicted value of control. Both of these components could be implemented by

many different mechanisms. For instance, instead of implementing the proposed approxima-

tion to Bayesian regression, the brain might learn to predict the EVOC through the reward-

modulated associative plasticity mechanism outlined in the SI. We are therefore not commit-

ted to the specific instantiation we used (Eqs 7–9) for the purpose of the simulations reported

below.

The LVOC model instantiates the very general theory that the brain learns how to process

information via metacognitive reinforcement learning. This includes not only the plasticity of

cognitive control but also how people might discover cognitive strategies for reasoning and

decision-making and how they learn to regulate their mental activities during problem solving.

As a proof of concept, the following sections validate the LVOC model against five experi-

ments on the plasticity of attention and interference control.

Alternative models: Associative learning and Win-Stay Lose-Shift

In principle, the control-demanding behavior considered in this paper could result from sim-

pler mechanisms than the ones proposed here. In this section, we consider two simple models

that we use as alternatives to compare against the more complex LVOC model. The first model

relies on the assumption that the plasticity of cognitive control can be understood in terms of

associative learning [15,16]. We therefore evaluate our model against an associative learning

model based on the Rescorla-Wagner learning rule [42]. This model forms stimulus-control

associations based on the resulting reward. The association As,c between a stimulus s and a con-

trol signal c is strengthened when it is accompanied by (intrinsic or extrinsic) reward and

weakened otherwise. Concretely, the association strengths involving the chosen response were

updated according to the Rescorla-Wagner rule, that is

As;c ¼ As;c þ a � R �
X

s

Is � As;c

 !

; ð10Þ

where α is the learning rate, R is the reward and the indicator variable Is is 1 when the stimulus

s was present and 0 else. Given the learned associations, the control signal is chosen probabilis-

tically according to the exponentiated Luce’s choice rule, that is each control signal c is selected

with probability

p cð Þ ¼
expðAs;cÞP
cexpðAs;cÞ

: ð11Þ

The second alternative model is based on previous research suggesting that people sequen-

tially adjust their strategy through a simple Win-Stay Lose-Shift mechanism [43]. On the first

trial, this mechanism chooses a strategy at random, and on each subsequent trial it either

repeats the previous strategy when it was successful or switches to a different strategy when the

current strategy failed. Here, we apply this idea to model how the brain learns which control

signal to select. Concretely, our WSLS model repeats the previous control signal (e.g., “Attend

to green.”) when it leads to a positive outcome (Win-Stay) and randomly selects a different

control signal (e.g., “Attend to red.”) otherwise (Lose-Shift).

Rational metareasoning and the plasticity of cognitive control
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In contrast to the LVOC mode, the two alternative models assume that control signals are

discrete rather than continuous. In the context of visual attention, they choose their control

signal c from the set {1,2,3,� � �,12} of possible locations to attend, and in the context of inhibi-

tory control they decide to either inhibit the process completely or not at all (c 2 {0,1}).

Simulations of learning and transfer effects in cognitive control paradigms

To evaluate the proposed models, we used them to simulate the plasticity of attentional control

in a visual search task [17] as well as learning and transfer effects in Stroop and Flanker para-

digms [8–11]. Table 1 summarizes the simulated phenomena and how the LVOC model

explains each at a conceptual level.

Learning to control visual attention. Previous research has shown that how people allo-

cate their attention is shaped by learning [8–11,15–17]. For instance, Lin and colleagues [17]

had participants perform a visual search task in which they gradually learned to allocate their

attention to locations whose color predicted the appearance of the target (Fig 1a). In this task,

participants viewed an array of four rotated letters (one T and three L’s), each encompassed by

a different colored circle. They were instructed to report the orientation of the T. The circles

appeared before the letters allowing participants to allocate their attention by saccading to

a promising location before the letters appeared. In the training phase, the target always

appeared within the green circle, but in the test phase it was equally likely to appear in any of

the four circles.

Visual search entails sequentially allocating cognitive control to different locations based on

their visual features. Since attention can be understood as an instance of cognitive control, this

problem is naturally modeled as a meta-level MDP. We therefore applied our LVOC theory to

predict the dynamics and consequences of learning which locations to attend to based on their

features (the colored circles) in this paradigm. Since the stimuli were presented along a circle,

Table 1. The core assumption of the LVOC model explains the learning effects observed in five different cognitive

control experiments.

Phenomenon Explanation of the LVOC model

Lin et al.

(2016), Exp. 1

In the training block, participants learn to find

the target increasingly faster when it always

appears in a location with a certain color. In the

test block, participants are significantly slower on

trials that violate this regularity.

People learn to predict the value of attending to

different locations from their color.

Krebs et al.

(2010), Exp. 1

People come to name the color of incongruent

words faster and more accurately for colors for

which performance is rewarded.

People learn to predict the value of increasing

control intensity from the color of the word.

Braem et al.

(2012), Exp. 1

On a congruent Flanker trial, people are faster

when the previous trial was rewarded and

congruent than when it was unrewarded and

congruent, but the opposite holds when the

previous trial was incongruent. These effects are

amplified in people with high reward sensitivity.

People learn to exert more control on

incongruent trials. Thus, rewarded incongruent

trials tend to reinforce higher control signals

while rewarded congruent trials tend to

reinforce low control signals. Thus, people

increase control after the former and lower

control after the latter.

Bugg et al.

(2008), Exp. 2

People become faster and more accurate at

naming the color of an incongruently colored

word when it is usually incongruent than when it

is usually congruent.

People learn that exerting more control is more

valuable when the color or word is predictive of

incongruence.

Bugg et al.

(2011), Exp. 2

People are faster at naming animals in novel,

incongruently labelled images when that species

was mostly incongruently labelled in the training

phase than when it was mostly congruently

labelled.

People learn that exerting more control is more

valuable when the semantic category of the

picture is predictive of incongruence.

https://doi.org/10.1371/journal.pcbi.1006043.t001
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approximating locations people might naturally attend around a clock, we assumed that the

control signal c 2 {1,2,3,. . .,12} specifies which of 12 locations to attend, the state st encodes

which of the 12 locations were highlighted by a colored circle (see Fig 1a), the circles’ colors,

the unknown position of the target, and the list of locations that have already been inspected

on the current trial. Since the set of possible control signals is small, our simulation assumes

that the brain always finds the control signal that maximizes the predicted EVOC (Eq 9).

The features f(s, c) encode only observable aspects of the state s that are relevant to the value

of the control signal c. Concretely, our simulations assumed that the features encode whether

the attended location was highlighted by a colored circle, the color of that circle (one binary

indicator variable for each possible color), its position (by one binary indicator variable for

each of the four possible locations), and whether or not it has been attended before. To capture

Fig 1. Learning to control the allocation of attention. a) Visual search task used by Lin et al. (2016). b) Human data from

Experiment 1 of Lin et al. (2016). c) Predictions of the LVOC model. d) Fit of Win-Stay Lose-Shift model. e) Fit of Rescorla-

Wagner model.

https://doi.org/10.1371/journal.pcbi.1006043.g001
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people’s prior knowledge that attending a location a second time is unlikely to provide new

information, we set the prior on the weight of the last feature to −1; this captures the well-

known inhibition of return mechanism in visual attention [44]. For all other features the mean

of the prior on the weights was 0. Based on the results reported by [17], we modeled reaction

times as the sum of a non-decision time of 319ms and a decision-time of 98ms per attended

location. Our simulation assumed that people incur a fixed cost (r(s, c) = cost(c) = −1 for all c
2 {1,2,3,4}) every time they deploy their attention to a location. For simplicity, we assume that

in this simple task people always search until they find the target and that when they attend to

a location they always recognize the presence/absence of the target and respond accordingly.

Hence, the intuition that people should try to find the target with as few saccades as possible

follows directly from the objective of maximizing the sum of meta-level rewards. Applied to

this visual search task, the LVOC model offers a mechanism for how people learn where to

allocate their attention based on environmental cues in order to find the target as quickly as

possible.

Our associative learning model assumed that finding the target yields an intrinsic reward of

+1 and no reward or cost otherwise. The responses C were saccades to one of the 12 locations.

The stimuli S comprised indicator variables for each of the four colors, the absence of a circle,

and whether the location had been inspected before, and one feature that was always 1. To cap-

ture the inhibition of return, the reward associations with the stimulus-feature indicating that

a location had been attended previously were initialized to −1. All other association strengths

were initialized to 0 and the learning rate of the Rescorla-Wagner model was fit to the data

from [17] using maximum-likelihood estimation.

In this task, the WSLS model also produces a sequence of saccades c1, c2, � � � 2 C by repeat-

edly shifting its attention to a different location until the target is found.

Learning and transfer effects in inhibitory control. In Stroop and Flanker paradigms,

the cognitive control strategy o is defined by a single control signal c 2 [0,1] which serves to

bias processing away from an automatic mechanism. Following the classic model by Cohen

and colleagues [45], we assume that control signals determine the relative contribution of the

automatic versus the controlled process to the drift rate d with which evidence is accumulated

towards the controlled response [46]:

d ¼ c � dcontrolled þ ð1 � cÞ � C � dautomatic; ð12Þ

where dcontrolled and dautomatic are the drift rates of the controlled and the automatic process

respectively, and C = 1 when the trial is congruent or −1 when the trial is incongruent. The

drift rates, in turn, affect the response and response time according to a drift-diffusion model

[46]. When the decision variable exceeds the threshold +θ, then the response agrees with the

controlled process (equivalent to the correct response for these tasks). When the decision vari-

able falls below −θ, the response is incorrect. To capture sources of error outside of the evi-

dence accumulation process (e.g., motor execution errors), our simulation assumes that

people accidentally give the opposite of their intended response on a small fraction of trials

(pflip<0.05).

We model the selection of continuous control signals as a gradient ascent on the EVOC

predicted by Thompson sampling (Eqs 8 and 9). Concretely, continuous control signals are

selecting by repeatedly applying the update rule

c cþ Z �
d LVOCðs; c; ~wÞ

dc
ð13Þ

until the change in the Euclidean norm of the control signal intensity vector is less than δc.
This mechanism starts from the control signal deployed on the previous trial and thereby
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captures the inertia of control specification [47]. Furthermore, it predicts that control intensi-

ties are adjusted gradually and continually, thereby allowing control to be exerted while the

optimal control signal is still being determined. This feature of our model makes the intuitive

prediction that time pressure might reduce the magnitude of control adjustment [cf. 48,49].

We model the cost associated with a continuous control signal c as the sum of the control

cost required to exert that amount of control (cost(c)) and the opportunity cost of executing

the controlled process (ω�t), that is

costðs; cÞ ¼ o � t þ costðcÞ; ð14Þ

where ω is the opportunity cost per unit time, t is the duration of the controlled process, and

cost(c) is the intrinsic cost of exerting the control signal c. While the first term captures that

goal-directed control processes, such as planning, can take significantly longer than automatic

processes, such as habits, the second term captures that due to interference between overlap-

ping pathways the cost of a control signal increases with its intensity [13] even when control

intensity accelerates the decision process [11,50,51]. In many real-world scenarios and some

experiments, the opportunity cost is time-varying. This can be incorporated into our model by

adding a learning mechanism that estimates ω from experience [52,53]. Following [46], we

model the intrinsic cost of control as the implementation cost

costðcÞ ¼ expðai� kck þbiÞ; ð15Þ

where c is the control signal, ai specifies how rapidly control cost increases with control inten-

sity, and bi determines the lowest possible cost. The monotonic increase of control cost with

control signal intensity expressed by this equation models the fact that the more intensely you

focus on one process, say color-naming, the less you are able to do other valuable things, such

as verbal reasoning. This cognitive opportunity cost of control is a consequence of overlap

between neural pathways serving different functions [13,54,55]. We do not assume any recon-

figuration costs [46] but our framework can be easily extended to include them.

In all of our simulations, the number of samples drawn from the posterior distribution on

the weights was k = 2. For simplicity, we modeled control allocation in each trial of the Stroop

and Flanker tasks simulated below as an independent, non-sequential, metacognitive control

problem. The opportunity cost of time (ω in Eq 14) was set to $8/h [cf. 51]. Model parameters

were fitted by maximum likelihood estimation using Bayesian optimization [56]. The drift

rates of the controlled and the automatic process (Eq 12) were determined from people’s

response times on neutral trials. The model’s prior precision on the weights was set to assign

95% confidence to the EVOC of a stimulus lying between the equivalent of ±5 cents per

second.

In the color-word Stroop task by Krebs et al. [11] the participant’s task was to name the font

color of a series of color words which were either congruent or incongruent with the word

itself (Fig 2a). For two of the four colors, giving the correct response yielded a monetary

reward whereas responses to other two colors were never rewarded. Our simulation of this

experiment assumed that people represent each stimulus by a list of binary features that encode

the presence of each possible color and each possible word independently but do not encode

their combinations. To capture the contribution of the experiment’s financial incentives for

correct responses, we assumed that the utility u(X) in Eq 2 is the sum of the financial reward

and the intrinsic utility of getting it right [57], that is

uðcorrectÞ ¼ rexternal þ rintrinsic; ð16Þ

uðwrongÞ ¼ � ðrexternal þ rintrinsicÞ; ð17Þ
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where the monetary reward rexternal was 10 cents on rewarded trials and zero otherwise. The

non-decision time was set to 300ms. The implementation cost parameters (ai and bi in Eq 15),

the probability of accidental response flips (pflip), the intrinsic reward rintrinsic of responding

correctly (Eqs 16 and 17), and the noise parameter σ of the drift diffusion model (Eq 12) were

fit to the empirical data shown in Fig 2b and 2c. To enable a fair comparison, we gave the asso-

ciative learning model and the Win-Stay Lose-Shift model degrees of freedom similar to those

of the LVOC model by adding parameters for the intrinsic reward of being correct, the proba-

bility of response error, and the noise of the drift-diffusion process. In addition, the Rescorla-

Wagner model was equipped with a learning rate parameter. Each model was fitted using max-

imum-likelihood estimation using the Bayes adaptive direct search algorithm [58].

In the Flanker task by Braem et al. [10], participants were instructed to name the color of a

central square (the target) flanked by two other squares (distractors) whose color was either the

same as the color of the target (congruent trials) or different from it (incongruent trials) (Fig

3a). On a random 25% of the trials, responding correctly was rewarded and on the other 75%

of the trials it was not. Our simulation assumed that people predict the EVOC from two fea-

tures that encode the presence of conflict and congruency respectively: The conflict feature

was +1 when the flankers and the target differed in color and zero otherwise. Conversely, the

value of the congruency feature was +1 when the flankers had the same color as the target and

zero else. To capture that people exert more cognitive control when they detect conflict [59],

the prior mean on these weights was +1 for the interaction between control signal intensity

and incongruence and −1 for the interaction between control signal intensity and congruence.

Providing our model with these features instantiates our assumption that in the Flanker task

perception is easy but response inhibition can be challenging. In other words, our model

assumes that errors in the Flanker arise from the failure to translate three correct percepts into

one correct response by inhibiting the automatic responses to the other two. Furthermore, the

incongruency feature can also be interpreted as a proxy for the resulting response conflict that

Fig 2. LVOC model captures that in the paradigm by Krebs et al. (a) People learn to exert more cognitive control on stimuli

whose features predict that performance will be rewarded which manifests in faster responses (b) and fewer errors (c).

https://doi.org/10.1371/journal.pcbi.1006043.g002
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Fig 3. Metacognitive reinforcement learning captures the effect of reward on learning from experienced conflict

observed by Braem et al. (2012). a) Illustration of the Flanker task by Braem et al. (2012). b) Human data by Braem

et al. (2012). c) Fit of LVOC model. d) Fit of Rescorla-Wagner model. e) Fit of Win-Stay Lose-Shift model.

https://doi.org/10.1371/journal.pcbi.1006043.g003
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is widely assumed to drive the within-trial adjustment of control signals in the Flanker task

[59].

Our simulation assumed that people only learn on trials with feedback. The effect of control

was modelled as inhibiting the interference from the flankers according to

d ¼ dtarget þ ð1 � cÞ � C � df lankers; ð18Þ

where C = 1 if the distractors are congruent and C = −1 when they are incongruent. The drift

rates for accumulating information from the target (dtarget) and the distractors (dflankers) were

assumed to be identical. Their value was fit to the response time for color naming on rewarded

neutral trials reported in [11], and the non-decision time was 300ms. The perceived reward

value of the positive feedback was determined by distributing the prize for high performance

(EUR 10) over the 168 rewarded trials of the experiment (z = 7.5 US cents per correct

response). Braem et al. [10] found that the effect of reward increased with people’s reward sen-

sitivity. To capture individual differences in reward sensitivity, we modelled people’s subjective

utility by

uðcorrectÞ ¼ za þ rintrinsic; ð19Þ

uðwrongÞ ¼ � rintrinsic; ð20Þ

where z� 0 is the payoff and α 2 [0,1] is the reward sensitivity. The reward sensitivity was set

to 1, and the intrinsic reward of being correct (rintrinsic), the standard deviation of the noise (σ),

the threshold of the drift-diffusion model (θ), the implementation cost parameters (ai, bi) were

fit to the effects of reward on the reaction times on congruent trials (Fig 3c), the average reac-

tion time, and the effect of reward sensitivity on conflict adaptation reported by [10]. The

probability of accidentally giving the opposite of the intended response was set to zero.

To enable a fair comparison between LVOC model and the two simpler models, we

equipped the associative learning model and the Win-Stay Lose-Shift model with the same

assumptions and degrees of freedom as the LVOC model. Equivalently to the LVOC model of

this task, they included a bias against exerting control was instantiated by an association of -1

between either stimulus feature and control exertion. The effect of control was modeled using

the same drift-diffusion model with same set of free parameters, and like the LVOC model

they also included a free parameter for the intrinsic reward of being correct and the probability

of response error. Furthermore, these models included a free parameter for the cost of exerting

control that is equivalent to two parameters of the LVOC model’s implementation and recon-

figuration cost parameters, because their control signal was either 1 or 0. Furthermore, the

Rescorla-Wagner model included an additional parameter for its learning rate, giving it the

same number of parameters as the LVOC model.

Experiment 2 by Bugg et al. [8] asked participants to name the color of Stroop stimuli like

those used by Krebs et al. [11]. Critically, some of the color words were printed in color that

appeared on congruent trials 80% of the time whereas other color words were printed in a

color that appeared on incongruent trials 80% of the time (Fig 4a). Each word was written

either in cursive or standard font. We modeled the stimuli by four binary features indicating

the presence of each of the four possible words (1 if the feature is present and 0 otherwise), and

a fifth feature indicating the font type (0 for regular and 1 for cursive). The non-decision time

was set to 400ms. Since there were no external rewards for good performance, the utility of

correct/incorrect responses was ± rintrinsic. The implementation cost parameters (ai and bi),

the probability of accidental response flips (pflip), the intrinsic reward of being correct

(rintrinsic), and the standard deviation of the noise (σ) were fit to the empirical data shown in
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Fig 4. The LVOC model captures the finding that people learn to adjust their control intensity based on features that predict incongruence. a)

Color-Word Stroop paradigm by Bugg et al. (2008). b-c) LVOC model captures that people learn to exploit features that predict incongruency to

respond faster and more accurately on incongruent trial. d) Picture-Word Stroop paradigm by Bugg, Jacoby, and Chanani (2011). e-f) Just as human

participants, the LVOC model responds more quickly and accurately to novel exemplars from animal categories that it previously learned to associate

with more frequent incongruent trials.

https://doi.org/10.1371/journal.pcbi.1006043.g004
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Fig 4b and 4c. Given these parameters, the drift rate for color naming and reading where deter-

mined to match the reaction times on unrewarded neutral trials reported in [11].

Finally, Bugg et al. [9] presented their participants with pictures of animals overlaid by ani-

mal names Fig 4d). The participants’ task was to name the animal shown in the picture. Criti-

cally, for some animals, the picture and the word were usually congruent whereas for other

animals the picture and the word were usually incongruent. The training phase was followed

by a test phase that used novel pictures of the same animal species. We modelled this picture-

word Stroop by representing each stimulus by a vector of binary indicator variables. Con-

cretely, our representation assumed one binary indicator variable for each word (i.e., BIRD,

DOG, CAT, FISH) and one indicator variable for each image category (i.e., bird, dog, cat,

fish). The non-decision time was set to 400ms. The implementation cost parameters (ai and

bi), the intrinsic reward of being correct (rintrinsic), the standard deviation of the noise (σ), and

the probability of accidental response flips (pflip) were fit to the empirical data shown in Fig 4e

and 4f. Given these parameters, the drift rate for word reading was fit as above and the drift

rate for picture naming was fit to a response time of 750ms.

Results

We found that our model correctly predicted the learning effects observed in five different cog-

nitive control experiments by virtue of its fundamental assumption that people reinforcement-

learn to predict the value of potential control signals and control signal intensities from situa-

tional features (see Table 1). The following sections describe these findings in detail.

Plasticity of attentional control in visual search

Lin et al. [17] had participants perform a visual search task for which the target of attention

could either be predicted (training and predictable test trials) or not (unpredictable test trials)

(Fig 1a). For this task, given its core reinforcement learning assumption (Table 1), the LVOC

model predicts that 1) people should learn to attend to the circle with the predictive color and

thus become faster at finding the target over the course of training, 2) continue to use the

learned attentional control strategy in the test block and hence be significantly slower when

the target appears in a circle of a different color during the test block, and 3) gradually unlearn

their attentional bias during the test block (Fig 1c). As shown Fig 1b, all three predictions were

confirmed by Lin and colleagues [17].

We compared the performance of LVOC to two plausible alternative models of these con-

trol adjustments: a Win-Stay Lose-Shift model and a simple associative learning model based

on the Rescorla-Wagner learning rule. We found that the Win-Stay Lose-Shift model failed to

capture that people’s performance improved gradually during training, and it also failed to

capture the difference between people’s response times to predicted versus unpredicted target

locations in the test block (see Fig 1d). As Fig 1e shows, the fit of the associative learning

model (estimated learning rate: 0.0927) captures that after learning to exploit the predictive

regularity in the training block participants were significantly slower in the test block. How-

ever, this simple model predicted significantly less learning induced improvement and signifi-

cantly slower reaction times than was evident from the data by [17]. A quantitative model

comparisons using the Bayesian Information Criterion [60,61] provided very strong evidence

that the LVOC model explains the data by [17] better than the Rescorla-Wagner model or the

Win-Stay Lose-Shift model (BICLVOC = 1817.8, BICRW = 9763.2, BICWSLS = 3449.9). This

reflects that our model was able to accurately predict the data from [17] without any free

parameters being fitted to those data. In conclusion, findings suggest that the LVOC model
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correctly predicted essential learning effects observed by [17] and explains these data signifi-

cantly better than a simple associative learning model and a Win-Stay Lose-Shift model.

To more accurately capture both the slow improvement in the training block and the rapid

unlearning in the test block simultaneously, the LVOC model could be extended by including

a mechanism that discounts what has been learned or increases the learning rate when a

change is detected [62,63]. Next, we evaluate the LVOC model against empirical data on the

plasticity of inhibitory control.

Plasticity of Inhibitory control

We found that our model can capture reward-driven learning effects in Stroop and Flanker

tasks, as well as how people learn to adjust their control allocation based on features that pre-

dict incongruence and the transfer of these learning effects to novel stimuli. In each case, the

LVOC model captured the empirical phenomenon more accurately than either a simple Win-

Stay Lose-Shift model or a simple associative learning model. The following two sections pres-

ent these results in turn.

Reward-driven plasticity in interference control

People learn to allocate more control on rewarded trials. To determine whether our

integrated theory captures the reward-modulated plasticity of cognitive control specification,

we used the LVOC model to simulate two sets of experiments that examined the influences of

reward on cognitive control. Krebs et al. [11] found that participants performing a color-word

Stroop task learned to respond faster and more accurately to incongruently colored color

words when their color predicted that performance would be rewarded than when the color

predicted that performance would not be rewarded. We found that our model can capture

these effects with reasonable parameter values (see Table 2). Fig 2 shows that our model cap-

tures Krebs et al.’s finding that people learn to exert more control on trials with rewarded col-

ors than on trials with unrewarded colors even though they were interspersed within the same

block. Concretely, our model captured that people become faster (691 ± 8ms vs. 541 ± 7ms;

t(959998) = −14.6, p< 10−15) and more accurate (11.8 ± 0.03% errors vs. 4.9 ± 0.02% errors;

t(959998) = −164.7, p< 10−15) when the color of the word is associated with reward. Critically,

the qualitative effects observed in this experiment follow logically from the core assumption of

the LVOC model (see Table 1).

We compared the LVOC model’s performance to that of an associative learning model with

equivalent parameters (see Models); the maximum likelihood estimates of these parameters

were α = 0.0447 for the learning rate, rintrinsic = 0.1811 for the intrinsic reward, σε = 0.1525 for

the noise of the drift-diffusion process, and perror = 0.1799. While the Rescorla-Wagner model

was able to qualitatively capture the effect of potential reward on reaction time and error rate,

its quantitative fit was far worse than the fit of the LVOC model (see Fig 2b and 2c); thus, a

quantitative model comparison controlling for the number of parameters provided very

strong evidence for the LVOC model over the Rescorla-Wagner model (BICLVOC = 45.3 vs.

Table 2. Model parameters used in the simulations of empirical findings.

ai bi θ σ rintrinsic pflip

Krebs, et al. (2010) 1.60 −0.01 3 0.05 1.60¢ 3.5%

Braem et al. (2012) 4.17 −2 2.75 5 4.17¢ 0.8%

Bugg et al. (2008) 1.95 −2.1 2.65 3.01 3.89¢ 0.4%

Bugg et al. (2011) 5 −2 2.75 3 18.00¢ 0.8%

https://doi.org/10.1371/journal.pcbi.1006043.t002
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BICRW = 1333.9). We also fitted the Win-Stay Lose-Shift model and its parameter estimates

were rintrinsic = 0 for the intrinsic reward, σε = 0 for the noise of the drift-diffusion process, and

perror = 0.07). We found that the WSLS model was unable to capture the effect of reward on

response times and error rates (see Fig 2b and 2c) because its control signals are uninformed

by the stimulus presented on the current trial. Consequently, a formal model comparison pro-

vided strong evidence for the LVOC model over the Win-Stay Lose-Shift model (BICLVOC =

45.3 vs. BICWSLS = 2454.8).

Reward accelerates trial-by-trial learning of how to allocate control. Braem et al. [10]

found that participants in their Flanker task allocated more cognitive control after rewarded

incongruent trials than after rewarded congruent trials or unrewarded trials. As Fig 3b shows,

the LVOC model can capture this reward-induced conflict-adaptation effect with a plausible

set of parameters (see Table 2). Our model correctly predicted that people’s responses on con-

gruent trials are faster when they are preceded by rewarded congruent trials than when they

are preceded by rewarded incongruent trials. The predicted difference (7 ms) was smaller than

the empirically observed difference (27 ms) but it was statistically significant (t(99) = 37.99,

p< 10−15). According to our model, people learn to exert more control on incongruent trials

than on congruent trials. Furthermore, being rewarded for exerting a low level of control

reduces the control intensity on the subsequent trial, whereas being rewarded for exerting a

high level of control increases the control intensity on the subsequent trial. Thus, our model

predicts that control intensity should increase after rewarded incongruent trials but decrease

after rewarded congruent trials. On congruent trials, more control leads to slower responses

because it inhibits the facilitating signal from the flankers (Eq 18). This suggests that our mod-

el’s metacognitive reinforcement learning mechanism correctly predicts the findings of Braem

et al. [10] (see Fig 3 and Table 1).

The LVOC model’s learning increases with the magnitude of the reward. Consequently, the

LVOC model predicts that the effect shown in Fig 3b should increase with people’s reward sen-

sitivity. Concretely, as we increased the reward sensitivity parameter α from 0 to 1, the pre-

dicted reward-driven effect of conflict monotonically increased from 0.6ms to 8.0ms (t(102) =

4.77, p< 0.0001). Consistent with this prediction, Braem and colleagues [10] found that the

magnitude of reward-driven conflict adaptation effect increased with people’s reward sensitiv-

ity, suggesting that the reward experienced for exerting cognitive control was the driving force

of their adjustments. The significant positive correlation between people’s reward sensitivity

and the magnitude of their conflict adaptation effect reported by [10] confirms our model’s

prediction. Our model captures all of these effects because it learns to predict the expected

rewards and costs of exerting control from features of the situation and probabilistically

chooses the control signal that achieves the best cost-benefit tradeoff.

We compared the LVOC’s fit to these behaviors with the associative learning and Win-Stay

Lose-Shift models. Even though the associative learning model had the same number of

parameters as the LVOC model, its fit was substantially worse than the fit of the LVOC model

(mean squared errors: MSERW = 3.33 vs. MSELVOC = 1.35), and its best fit (Fig 3d) failed to

capture the qualitative effect shown in Fig 3c. Finally, we evaluated a Win-Stay Lose-Shift

model. This model was equipped with the same set of parameters as our Rescorla-Wagner

model except for the learning rate parameter. We found that the Win-Stay Lose-Shift model

was unable to capture the data by Braem et al. Fig 3e) because it stays with the controlled pro-

cess forever once it has been rewarded for using it (MSEWSLS = 19.4). Taken together with the

previous results, this suggests that the simple mechanisms assumed by the associative learning

model and the Win-Stay Lose-Shift model are insufficient to explain the complexity of cogni-

tive control plasticity, but the LVOC model can capture it.
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Transfer of learning effects in interference control

The expected value of computation depends not only on the rewards for correct performance

but also on the difficulty of the task. In easy situations, such as the congruent trials of the

Stroop task, the automatic response can be as accurate, faster, and less costly than the con-

trolled response. In cases like this, the expected value of exerting control is less than the EVOC

of exerting no control. By contrast, in more challenging situations, such as incongruent Stroop

trials, the controlled process is more accurate and therefore has a positive EVOC as long as

accurate performance is sufficiently important. Therefore, on incongruent trials the expected

value of control is larger than the EVOC of exerting no control. Our model thus learns to exert

control on incongruent trials but not on congruent trials. Our model achieves this by learning

to predict the EVOC from features of the stimuli. This predicts that people should learn to

exert more control when they encounter a stimulus feature (such as a color or word) that is

predictive of incongruence than when they encounter a feature that is predictive of congruence

(see Table 1).

Consistent with our model’s predictions, Bugg and colleagues [8] found that people learn to

exert more control in response to stimulus features that predict incongruence than stimulus

features that predict congruence. Their participants performed a color-word Stroop task with

four colors and their names printed either in cursive or regular font. Our model captured the

effects of congruency-predictive features on control allocation with a plausible set of parame-

ters (see Table 2). As shown in Fig 4a and 4b, the LVOC model predicted that responses should

be faster (655 ± 9 ms vs. 722 ± 11 ms; t(49) = 5.39, p< 0.0001) and more accurate (2.85 ± 0.2%

errors vs. 4.3 ± 0.3% errors; t(49) = 5.01, p< 0.0001) on incongruent trials if the word was pre-

dictive of incongruence than when it was not. To their surprise, Bugg and colleagues observed

that adding an additional feature (font) that conveyed the same information about congruence

as the color, did not enhance learning. This is exactly what our model predicted because the

presence of a second predictive feature reduces the evidence for the predictive power of the

first one and vice versa–this is directly analogous to a phenomenon from the Pavlovian litera-

ture known as blocking, whereby an animal fails to learn an association between a stimulus

and an outcome that is already perfectly predicted by a second stimulus [64].

Since our model learns about the predictive relationship between features and the EVOC, it

predicts that all learning effects should transfer to novel stimuli that share the features that

were predictive of the expected value of control in the training trials (see Table 1). A separate

study by Bugg and colleagues [9] confirmed this prediction. They trained participants in a pic-

ture-word Stroop task to associate particular images of certain categories (e.g., cats and dogs)

with incongruence and associated particular images of other categories (e.g., fish and birds)

with congruence. As expected, participants learned to exert more control when viewing the sti-

muli associated with incongruence. More importantly, these participants also exerted more

control when tested on novel instances of the category associated with incongruence (e.g., cats)

than on novel instances of the category associated with congruence (e.g., fish). This finding

provides strong evidence for the feature-based learning mechanism that is at the core of our

model of the plasticity of cognitive control and is entirely accounted for by our model. As

shown in Fig 4e and 4f, our model correctly predicted the positive and the negative transfer

effects reported by [9] with reasonable parameters (see Table 2): The model’s responses were

faster (709 ± 3 ms vs. 685 ± 2 ms; t(99) = −8.13, p< 0.0001) and more accurate (4.8 ± 0.3%

errors vs. 3.2 ± 0.1% errors; t(99) = −5.06, p< 0.0001) on incongruent trials if the word was

predictive of incongruence than when it was not (positive transfer). Conversely, on congruent

trials, the predicted responses were slightly slower when the features wrongly predicted incon-

gruence (527 ± 0.2ms vs. 530 ± 0.1ms, t(99) = 9.28, p< 0.0001; negative transfer).
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Discussion

Building on previous work modeling the specification of cognitive control in terms of meta-

decision making [12–14,29,33,65,66] and reinforcement learning [33,34,67–69], we have illus-

trated that at least some of the functions of cognitive control can be characterized using the

formal framework of rational metareasoning [26] and meta-level Markov decision processes

[27]. Concretely, modeling the function of cognitive control as a meta-level MDP allowed us

to derive the first formal computational model of how people learn to specify continuous con-

trol signals and how these learning effects transfer to novel situations. This model provides a

unifying explanation for how people learn where to attend, the interacting effects of reward

and incongruence on interference control, and their transfer to novel stimuli.

Our simulations of learning in Stroop and Flanker paradigms illustrate that the LVOC

model can account for people’s ability to learn when and how intensely to engage controlled

processing and inhibit automatic processing. We further found that the LVOC model correctly

predicted the learning curve in the visual attention experiment by Lin et al. [17] without any

free parameters. Critically, all of our model’s qualitative predictions follow directly from our

theory’s core assumption that people reinforcement-learn to predict the value of alternative

control signals and control signal intensities from stimulus features (see Table 1). None of our

model’s auxiliary assumptions about the cost of control, the reward for being correct, the drift-

diffusion model, the details of learning and control signal selection, and the corresponding

parameters summarized in Table 2 are necessary to derive these qualitative predictions; instead

they only serve to increase the quantitative accuracy of those predictions.

While the LVOC model is more complex than basic associative learning and the Win-Stay

Lose-Shift mechanism, neither of these simpler models was able to capture human learning in

the simulated visual search, Stroop, and Flanker paradigms. This suggests that the complexity

of the LVOC model may be currently warranted to capture how people learn when to exert

how much cognitive control. Furthermore, the LVOC model’s sophistication may be necessary

to explain more complex phenomena such as how people learn to orchestrate their thoughts to

solve complex problems and acquire sophisticated cognitive strategies. Recent work has indeed

shown that the learning mechanism instantiated by the LVOC model can also capture aspects

of how people learn how to plan [70] and to flexibly and adaptively choose between alternative

cognitive strategies [53]. Testing whether people learn to select sequences of control signals in

the way predicted by our model is an interesting direction for future research.

The LVOC model integrates control specification and strategy selection

learning

The model developed in this article builds on two previous theories: the EVC theory, which

offered a normative account of control specification [7], and the rational metareasoning theory

of strategy selection [53], which suggested that people acquire the capacity to select heuristics

adaptively by learning a predictive model of the execution time and accuracy of those heuris-

tics. The LVOC model synergistically integrates these two theories: it augments the EVC the-

ory with the metacognitive learning and prediction mechanisms identified by [53], and it

augments rational metareasoning models of strategy selection with the capacity to specify con-

tinuous control signals that gradually adjust parameters of the controlled process (see S2 Text).

Empirical predictions

All else being equal, the proposed learning rules (see Eq 7, S1 Text Equations 1–7, and S3 Text

Equations 13–14) predict that people’s propensity to exert cognitive control should increase
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when the controlled process was less costly (e.g., faster) or generated more reward than

expected [19]. The experience that less controlled (more automatic) processing was more

costly or less rewarding than expected should also increase our propensity to exert cognitive

control [71–73]. Conversely, if a controlled process performed worse than expected or if an

automatic process performed better than expected, people’s propensity to exert cognitive con-

trol should decrease [74].

At a more detailed level, our theory predicts that the influence of environmental features on

control allocation generalizes across contexts, to the extent that their features are similar.

Thus, adding or removing features to the internal predictive model of the EVOC should have a

profound effect on the degree to which observed performance of the controlled process in

Context A changes people’s propensity to select it in Context B, and vice versa. This mecha-

nism can account for empirical evidence that suggests a role for feature-binding in mecha-

nisms of task switching [75–78]. These studies suggest that participants associate the task that

they perform on a stimulus with the features of that stimulus. Once they are asked to engage in

a new task on that stimulus, the old (associated) task interferes, leading to switch costs.

Furthermore, our theory predicts that increasing the rewards and punishments for the out-

comes of the controlled or automatic processes should increase the speed with which people’s

control allocation adapts to new task requirements, because the resulting weight updates will

be larger; this becomes especially apparent when the updates are rewritten in terms of predic-

tion errors (see S3 Text, Eqs 1 and 2). Finally, when the assumptions of the internal model are

met and its features distinguish between the situations in which each controlled process per-

forms best, then control signal selection should become increasingly more adaptive over time

[79,80]. But in situations where the internal model’s assumptions are violated, for instance

because the value of control is not additive and linear in the features, then the control system’s

plasticity mechanisms may become maladaptive.

This prediction has been confirmed in a recent experiment with a novel color-word Stroop

paradigm comprising two association phases and a test phase [81]. In the first association

phase, participants learned that color naming was rewarded for certain colors whereas word

reading was rewarded for the other colors. In the second association phase, participants

learned that color-naming was rewarded for certain words whereas word-reading was

rewarded for other words. Critically, in the test phase, naming the color was rewarded if either

the word or the color had been associated with color naming (SINGLE trials); but when both

the color and the word were associated with color naming then participants had to instead

read the word (BOTH trials). This non-linear relationship between stimulus-features and con-

trol demands caused mal-transfer from SINGLE trials to BOTH trials that significantly inter-

fered with participants’ performance (resulting in participants incorrectly engaging in color-

naming, the more control-demanding task which in that context was also less rewarding). The

LVOC model may thus be able to explain the puzzling phenomenon that people sometimes

overexert cognitive control even when it hurts their performance. For instance, if your past

experience has taught you to choose your words very carefully on a certain topic then receiving

an email on that topic might compel you to mentally compose a perfect response even when

you would be better off thinking about how to open the talk you have to deliver in 5 minutes.

According to the LVOC model, control allocation is a process of continuing gradual adjust-

ment (Eq 13). This means that the control intensity for a new situation starts out with the con-

trol intensity from the previous situation and is then gradually adjusted towards its optimal

value—just like in anchoring-and-adjustment [48,82]. This might provide a mechanism for

commonly observed phenomena associated with task set inertia and switch costs [47]. Since

control adjustment takes time, this mechanism predicts that increased time pressure could

potentially lead to decreased control adjustment, thereby biasing people’s control allocation to
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its value on the previous trial and thus decreasing their cognitive flexibility. Finally, thinking

about the neural implementation of the LVOC model leads to additional neural predictions as

detailed in the S3 Text.

Avenues for future research

We view rational metareasoning as a general theoretical framework for modeling the alloca-

tion and plasticity of cognitive control. As such, it could be used to develop unifying models of

different manifestations of cognitive control, such as attention, response inhibition, and cogni-

tive flexibility. Furthermore, rational metareasoning can also be used to connect existing mod-

els of cognitive control [6,7,32–34,46,65,66,79,80,83,84]. Interpreting previously proposed

mechanisms of control allocation as approximations to rational metareasoning and consider-

ing how else rational metareasoning could be approximated might facilitate the systematic

evaluation of alternative representations and computational mechanisms and inspire new

models. While our computational explorations have focused on which control signal the cog-

nitive control system should select, future work might also shed light on how the cognitive

control system monitors the state of the controlled system by viewing the problem solved by

the cognitive control system as a partially observable MDP. Concretely, the function of cogni-

tive monitoring could be formulated as a meta-level MDP whose computational actions

include sensing operations that update the cognitive control system’s beliefs about the state of

the monitored system.

Future work should further evaluate the proposed computational mechanism and its neural

implementation by performing quantitative model comparisons against simpler models across

a wider range of cognitive control phenomena. This line of work should also evaluate the per-

formance of the proposed metacognitive learning mechanism and evaluate it against alterna-

tive mechanisms (e.g., temporal difference learning mechanisms with eligibility traces [30]).

Another interesting direction will be to use the learning models to investigate the plasticity

of people’s cognitive control skills. We are optimistic that this line of work will lead to better

quantitative models of control plasticity that can be used to develop interventions to improve

people’s executive functions via a combination of cognitive training and augmenting environ-

ments where people’s automatic responses are maladaptive with cues that prime them to

employ an appropriate control signal. In addition, future work may also explore model-based

metacognitive reinforcement learning [85] as a model of the plasticity of cognitive control

specification. Model-based hierarchical reinforcement learning approaches [37], such as

option models [38], could be used to integrate the learning mechanisms for the value of indi-

vidual control signals with the strategy selection model to provide an account of how the brain

discovers control strategies. This might explain how people learn to adaptively coordinate

their thoughts and actions to pursue increasingly more challenging goals over increasingly lon-

ger periods of time.

Finally, the rational metareasoning framework can also be used to model how people reason

about the costs and benefits of exerting mental effort and to delineate self-control failure from

rational resource-preservation through a normative account of effort avoidance [13,86].

Conclusion

Our simulation results suggested that the LVOC model provides a promising step towards a

mathematical theory of cognitive plasticity that can serve as a scientific foundation for design-

ing cognitive training programs to improve people’s executive functions. This illustrates the

utility of formalizing the function of cognitive control in terms of rational metareasoning.

Rational metareasoning provides a unifying framework for modeling executive functions, and
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thus opens up exciting avenues for future research. We are optimistic that the connection

between executive functions and metareasoning will channel a flow of useful models and pro-

ductive ideas from artificial intelligence and machine learning into the neuroscience and psy-

chology of cognitive control.
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