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Abstract

Background: The transcriptome of the cerebral cortex is remarkably homogeneous, with variations being stronger between
individuals than between areas. It is thought that due to the presence of many distinct cell types, differences within one cell
population will be averaged with the noise from others. Studies of sorted cells expressing the same transgene have shown
that cell populations can be distinguished according to their transcriptional profile.

Methodology: We have prepared a low-redundancy set of 16,209 full-length cDNA clones which represents the
transcriptome of the mouse visual cortex in its coding and non-coding aspects. Using an independent tag-based approach,
CAGE, we confirmed the cortical expression of 72% of the clones. Clones were amplified by PCR and spotted on glass slides,
and we interrogated the microarrays with RNA from flow-sorted fluorescent cells from the cerebral cortex of parvalbumin-
egfp transgenic mice.

Conclusions: We provide an annotated cDNA clone collection which is particularly suitable for transcriptomic analysis in the
mouse brain. Spotting it on microarrays, we compared the transcriptome of EGFP positive and negative cells in a
parvalbumin-egfp transgenic background and showed that more than 30% of clones are differentially expressed. Our clone
collection will be a useful resource for the study of the transcriptome of single cell types in the cerebral cortex.
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Introduction

Despite the genome sequence of the human and several other

mammalian species having been determined [1–2], it has become

evident that the transcriptional output of the genome is much

more complex than the predicted protein coding genes. Although

a mammalian genome contains about 20,000 protein coding

genes, there are an additional 23,000 transcriptional units (TUs)

comprised of RNA without protein coding potential [3], which

originate from more than 181,000 different transcripts in the

mouse. As detected by whole genome tiling arrays, the human

genome also shows comparable complexity [4]; reviewed in [5]).

EST analysis has shown that RNA expression is frequently

restricted to specific tissues. For instance, more than 110,000 39

end cDNA clusters, out of a total of 171,000 39 end EST clusters

prepared during the Mouse cDNA Encyclopedia Project, were

identified from only one library [6], largely from the brain [7].

These data suggest that to comprehensively identify the RNAs

involved in specific biological processes, or at least the tissue-

specific RNA/mRNA isoforms, it is essential to prepare novel EST

collections, preferably using normalization and subtraction to

identify rarely expressed mRNAs.

Apart from the importance for expression profiling studies, full-

length cDNAs are essential for the understanding of the structure

of the protein encoded in specific tissues. Full-length cDNAs also

constitute an invaluable resource for future functional studies such

as ectopic expression with lentiviral vectors [8]. Additionally, they

provide specific information for gene start and termination sites

[9]. In particular, 59 -ends help to identify tissue-specific promoter

elements to connect them to TUs, and at the same time to novel

datasets that allow for mRNA expression profiling based on

measuring transcriptional activity at the start site (or mRNA cap).

Accordingly, we have previously developed the cap-analysis gene

expression (CAGE) method ([10–11]), which is based upon the

production of short (20–21 nt) tags corresponding to the 59 end of

capped RNA transcripts. After high-throughput profiling, these

are aligned onto the genome to identify their promoter elements,

and the specific activity at a certain start site is measured as the
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frequency of CAGE tags. Full-length cDNA collections, and 59

ESTs are very beneficial to map CAGE tags to TUs, which exhibit

alternative promoter usage in at least 50% of the cases ([12]).

Here, we have developed a full-length cDNA and microarray

resource for studies with particular emphasis on the mouse visual

cortex. Due to tissue restriction of mRNA expression [6], we tested

the resource for differential gene expression across different cell

types by comparing the transcriptome of parvalbumin (pvalb) cells

versus the rest of cortex. The pvalb-cell network has recently been

identified as an important trigger for critical period plasticity in the

postnatal visual cortex [13]. Sensory deprivation typically between

postnatal day P20–P40 in mice leads to a functional and structural

rewiring of visual cortical circuits that underlies an enduring loss of

visual acuity (amblyopia). Direct manipulation of postnatal GABA

function can delay or accelerate plasticity onset [13], carrying

potentially broad implications for therapies in adulthood as well as

a deeper mechanistic understanding of cognitive developmental

disorders.

Results and Discussion

We previously prepared four full-length cDNA libraries from

whole extracts of wild-type mouse visual cortex at P18, P24, P28

and P55 using the CAP trapper method [14]. The libraries were

subjected to subtraction and normalization [15]. A total of 76,999

59 ends and 75,757 39 ends were sequenced, and a cluster analysis

showed that the resulting libraries had an average redundancy of

1.7 [15]. These libraries were used as a starting point for the

preparation of a non-redundant clone collection representing the

transcriptome of the visual cortex across its postnatal development.

We pooled the 59 ESTs from all four libraries and grouped them

into 6,818 clusters and 9,391 singletons using the stackPACK

software [16]. Thus, the redundancy increased to 4.75 after in silico

pooling. We counted the number of 59 ends per cluster, and

identified the genes with the most imbalanced expression patterns,

in order to detect potential genes of interest for the study of the

maturation of visual cortex. We used the method developed by

Stekel et al. [17] for comparing digital expression patterns, and

calculated a R statistic for each cluster, using an in-house program

available upon request. This method did not allow a quantitative

prediction of false discovery rate. Hence, the upper interval of R

values which cannot be fitted to an exponentially decreasing

distribution were kept as potentially significant, as suggested in

Stekel et al. [17]. We then arbitrarily selected 11 as a cut-off value

(Figure 1), which highlighted fourteen protein-coding genes

(Table 1).

One representative clone was selected for each cluster. Together

with the singletons, they constituted 16,209 different clones that

were selected for rearray and PCR amplification in order to set up

a microarray platform. 400 cDNAs were full-length sequenced and

annotated as FANTOM 3 clones [3]. Of these, 179 have been

annotated as non-coding by the FANTOM 3 consortium. This

suggests that our whole collection is well enriched in non-coding

cDNAs. To annotate the clones for which only partial sequence

Figure 1. Counts in discrete intervals of R-values (natural logarithmic scale). The line was fit to the part of the curve which can be
approximated by a logarithmic function. Its intersection with the x axis is suggested as a rough threshold estimate above which R-values are
considered significant.
doi:10.1371/journal.pone.0003012.g001
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was available, we compared their 59 ends to Transcription Units

(TUs) of FANTOM3’s Representative Transcript Set (RTS) that

includes ESTs (ftp://fantom.gsc.riken.jp/RTPS/fantom3_

mouse/primary_est_rtps). TUs are clusters of full-length tran-

scripts that contain a common core of genetic information [18].

13,189 clones whose 59 EST was co-located to a TU inherited

their annotation and identification number. The full-length

cDNAs that define the TUs originate mostly from libraries made

totally or partially from brain tissues (brain, whole head, whole

embryo), from libraries related to the immune system (immune

cells are present in most tissues and therefore contribute to their

transcriptome), and from a testis library. The 3,020 clones whose

59 end did not match a FANTOM3 TU are those whose sequence

satisfied our quality criteria for clustering, but were discarded by

the more stringent filters of the FANTOM3 RTS. There are 580

FANTOM 3 ESTs that are unique to our visual cortex libraries

according to the FANTOM3 representative transcript set, of

which 292 have been included in our spotted clone collection.

To confirm the expression of our clones in the visual cortex, we

prepared CAGE libraries [10–11] from the visual cortex of mice at

four developmental stages (P21, P26, P54 and P71) and compared

the overlap of the cDNA and CAGE libraries for gene detection.

We mapped the CAGE tags to the mouse genome in order to

assign them to TUs [12] and pooled them in one virtual library of

180,984 tags. 16,194 TUs were identified by this technique as

being expressed in the visual cortex. Of these, 6,874 had a

counterpart in our clone collection. Interestingly, 7,005 TUs of our

collection also had a counterpart in a CAGE library of similar

sequencing depth (211,541 tags) made from cerebellar tissue [12].

This suggests that our collection can also be useful in the analysis

of non-cortical brain tissues (Figure 2).

Cerebral cortex is composed of many cellular and neuronal

types. Our spotted clone collection represents their combined

transcriptomes. We sought to investigate the complexity of a

homogeneous subset of cortical cells. Parvalbumin (pvalb) is a

calcium-binding protein which is used as a molecular signature of

some GABAergic interneuron cell types [19–20]. Using a BAC

transgenic line expressing the green fluorescent protein (EGFP)

under the control of the pvalb regulatory sequences [21], we

dissociated and sorted fluorescent and non-fluorescent cells from

mouse cerebral cortex at the peak of the visual critical period

(P28–29) and compared their transcriptional profiles on micro-

arrays made with the first 4,512 clones of our collection, each

spotted three times. Cy5- and Cy3-labeled cDNAs were prepared

from the total RNA of 15,000–20,000 cells using the method of

[22], and compared five samples using a dye-swap strategy. The

data discussed in this publication have been deposited in NCBIs

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

Table 1. EST clusters with a strongly imbalanced developmental expression pattern.

Clone ID R-value EST count Gene symbol Full official name

K230007N19 15.5 43,9,23,8 Exdl2 exonuclease 39-59 domain-like 2

K230008D05 14.3 4,0,17,0 Kctd10 potassium channel tetramerisation domain containing 10

K330007G06 14.3 0,11,0,2 Aldh1b1 aldehyde dehydrogenase 1 family, member B1

K230004E20 13.8 26,5,16,2 Fbxw7 F-box and WD-40 domain protein 7, archipelago homolog
Drosophila)

K430007K11 13.5 0,0,13,2 Kcnv1 potassium channel, subfamily V, member 1

K230005P19 13.5 22,12,1,20 Decr2 2-4-dienoyl-Coenzyme A reductase 2, peroxisomal

K330313B11 13.2 0,2,1,14 1500002O20Rik RIKEN cDNA 1500002O20 gene

K230309E11 12.9 1,11,1,0 Ev1 Ena-vasodilator stimulated phosphoprotein

K230034K22 12.2 2,13,1,1 4632419K20Rik RIKEN cDNA 4632419K20 gene

K230035O10 12.2 2,0,15,2 Srgap2 SLIT-ROBO Rho GTPase activating protein 3

K230025H24 12.1 2,0,16,10 Mfn2 mitofusin 2

K530003G22 12.0 0,0,0,9 Arid1b AT rich interactive domain 1B (Swi1 like)

K230006M16 11.7 3,1,20,5 Rbm39 RNA binding motif 39

K430007G04 11.6 0,0,9,0 6330500D04Rik RIKEN cDNA 6330500D04 gene

doi:10.1371/journal.pone.0003012.t001

Figure 2. Venn diagram representing the overlap between
transcription units (TUs) of our clone collection and two sets of
CAGE tags originating from the cerebellum or visual cortex.
Only 15% of TUs do not have a counterpart in the CAGE libraries,
suggesting that our clone collection is well suited to interrogate brain
samples.
doi:10.1371/journal.pone.0003012.g002
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geo/) and are accessible through GEO Series accession number

GSE8968.

The slides were scanned with the photomultiplier set to

maximize signal intensity while avoiding excess saturation. The

fluorescence intensity values were normalized using LOWESS

normalization. To ensure data quality, we first investigated the

overall quality of each slide and decided to discard the data from

one slide. Second, we examined data consistency using dye-swap

information within each sample and excluded clones that did not

meet criterion from later statistical analysis, lowering the total

number of included clones to 4,250. We ranked them by p-values

based on a t-test. To address multiple comparisons, we chose q-

values as a false discovery rate-based measure of significance [23].

By setting the significance criterion at p,0.05, 1,400 of the 4,250

clones were differentially expressed (p,0.05) (Table 2, Figure 3A).

The q-value corresponding to criterion was 0.066, so the number

of false positives was estimated to be at most 92 (92 = q6n).

As a control for the quality of cell sorting, we checked for genes

known to be absent from pvalb-expressing neurons. Both GABA-

synthetic enzymes, GAD65 and GAD67, were included as control

genes, however, they are not ideal, as pvalb-cells constitute only a

subset of GABAergic neuron [13]. Thus, the non-pvalb fraction of

our homogenates would include a substantial amount of GAD gene

expression. Instead, we used pvalb itself as a control. Moreover, the

glutamate receptor Gria2 (GluR2) was significantly underrepresent-

ed in the sample prepared from fluorescent cells (p = 0.00048,

M = 20.77), as expected for pvalb-cells that express little or no

GluR2 subunits [24]. Instead, Gria1, another receptor from the

same family that is expressed in pvalb-expressing cells, was over-

represented in the fluorescent samples (p = 0.0042, M = 1.2).

We inspected the significantly over- or under-represented genes

exhibiting the strongest expression differences between EGFP-

positive and negative samples. Table 3 lists the 24 strongest

variations in both directions. Prompted by the co-occurrence in

Table 3 of genes implicated in ATP metabolism, such as subunits

of the mitochondrial ATPase or components of the oxidative

chain, we examined all other genes from these families, and found

that they are particularly abundant among over-represented genes

(Figure 3B, Table 4). This may reflect the intense metabolic

activity of the fast-spiking pvalb-expressing cells [25].

To confirm that the fluorescent cells consisted only of neurons, we

checked for the expression of Myelin Basic Protein (Mbp). Our slides

contained two different clones coding for the Mbp gene, both showing

a strong underrepresentation (M<22.1 each). Despite this strong

value, it was not prominently ranked since the p-value was slightly

lower than 5%. These two Mbp clones exemplify a class of genes

which display a strong variability in their differential expression across

the analyzed samples (Figure 3C). Among these, we could also find

another myelin-related gene, plp1, and a component of the MAP

kinase pathway, Map2k6. In the case of the Mbp gene, we hypothesize

that the source of the noise affecting the p-value was the quantity of

oligodendrocytes included amongst the non-fluorescent cells, which

can vary significantly with each dissection.

Figure 3. Statistical analysis of microarray results. A: q and p values ranked by p-values. B: Vulcano plot showing the p-values as a function of
expression changes. Blue diamonds: genes from the Nduf family. Red triangles: genes from the Atp5 family. Green dots: genes from the Cox6 family.
C: Absolute value of M ranked by increasing values of p. The red bars represent the standard deviation of M. Some genes have a low rank despite a
strong M value, often because of their higher variability, as indicated by the length of their vertical bars.
doi:10.1371/journal.pone.0003012.g003

Table 2. Lowest p- and q-values for given number of ranked
clones, and number of clones reaching given p- or q-values.

top n p q n6q n p q n6q

2000 0.12 0.11 220 1400 ,0.05 0.066 92

1000 0.025 0.046 46 1062 0.029 ,0.05 53

500 0.0073 0.027 13 617 ,0.01 0.030 18

200 0.0019 0.017 3 46 0.00025 ,0.01 0

doi:10.1371/journal.pone.0003012.t002
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We then sought to investigate the differential expression of non-

coding transcripts. Since we do not have the full-length sequence

of most of these clones, we relied on their annotation to identify

those that are potentially non-coding. We reasoned that most

protein-coding genes are given an original gene symbol, whereas

the clones whose function was unknown keep their transient MGI

(Mouse Genome Informatics) name for a long time. In our

collection, these clones typically have a symbol constructed by

adding ‘‘Rik’’ to the clone identifier. Using the FANTOM 3

genome browser, we inspected the mapping of the the top 100

clones (ranked by their p-value) which inherited a gene symbol

including ‘‘Rik’’. Only seven of these were likely to be non-coding

(Figure 4).

This low occurrence of non-coding clones in the differentially

regulated set can be explained as follows. First, non-coding RNAs

are often weakly expressed, which makes the detection of variation

in expression harder. Second, it has been reported that more than

one third of all transcribed sequences exist in polyadenylated and

non-poly-adenylated forms [4]. Since we used oligo dT primers

during the reverse-transcription, this aggravates low expression

levels. Importantly, because the function of the non-coding

transcriptome is still poorly characterized, it remains unknown

whether technical reasons alone or biological considerations

explain the low occurrence of differentially expressed non-coding

transcripts. From this perspective, our results suggest that the non-

coding transcriptome is homogeneous at the level of different

mature cortical populations.

We created a collection of 16,209 RIKEN clones by

subtracting, normalizing and clustering cDNA libraries from the

mouse visual cortex. This clone collection is representative of the

brain transcriptome as confirmed by an independent transcrip-

tional profiling using the CAGE technology. Comparison of a

homogeneous interneuron population to a whole-tissue control

with our cDNA microarray platform identified more than 30% of

differentially expressed RNAs even taking a conservative

approach. Besides full-length cDNA arrays, and the investment

in equipment and resources that these technologies require, other

alternatives strategies can be conceived. Possible choices are the

oligonucleotide arrays. However, due to prevalence of alternative

promoters, exons and polyadenylation site, one would ideally have

to prepare multiple oligonucleotides for each coding and non-

coding gene. Our clone collection aims at maximizing the

possibility of implicating novel non-coding cDNAs in a neural

function, and its advantage is that when a candidate is found, a

full-length cDNA is available. For analysis focused on transcrip-

tional control, we would rather recommend CAGE when the

technology to make CAGE libraries from limited amount of tissue

will be available.

The large heterogeneity of gene expression between cells

strongly suggests that future studies will require the separation of

single neuron populations. This is particularly true for cells that

are rare in a tissue, such as the pvalb-expressing neurons, whose

specific transcriptome variations during development and brain

plasticity would be masked by the large majority of unrelated cells.

Table 3. Clones showing the strongest statistically significant differential expression.

under-represented over-represented

SYMBOL CLONE_ID p M SYMBOL CLONE_ID p M

Crip2 K230313M18 7.58E-3 22.69 Cplx1 K230003P17 4.44E-3 2.58

C1qb K230028J21 1.00E-2 22.68 Fgf9 K230018I07 9.07E-5 2.32

Syt5 K230336L04 2.31E-3 22.40 Gtl2 K230042M22 3.93E-3 1.88

Ctxn K230013F20 1.93E-3 22.33 9130213B05Rik K230034N12 9.41E-4 1.69

Sepp1 K230009C19 4.85E-4 22.23 6330512M04Rik K230318F21 5.29E-3 1.62

Apoe K230004K09 1.66E-2 22.23 Ndufa11 K230031N16 7.69E-3 1.61

Nrn1 K230014L09 1.19E-2 22.13 Evl K230309E11 1.06E-2 1.55

Snca K230001F08 1.07E-3 22.02 Vip K230041M20 1.25E-3 1.54

6330527O06Rik K230003M18 2.02E-3 22.00 Btbd14a K330002G16 1.81E-2 1.48

6330403K07Rik K230304J17 4.34E-4 21.97 K330002G06 1.96E-2 1.48

D11Ertd707e K230009N15 6.26E-5 21.94 Cox6c K230002F10 4.77E-3 1.46

Ptn K230334M04 6.56E-4 21.91 Pcdhac2 K230029N10 2.58E-3 1.45

Schip1 K230006C03 1.35E-3 21.83 Atp5g3 K330002E13 3.25E-4 1.44

Baiap2 K230319I19 1.76E-2 21.83 2010107H07Rik K330010C07 1.20E-3 1.44

3110035E14Rik K230010N04 2.01E-2 21.82 Vamp1 K230001K20 2.35E-3 1.43

H2-DMa K230007M04 3.35E-4 21.78 9530058B02Rik K230010H11 6.03E-3 1.40

Hn1 K230005H22 1.68E-4 21.62 Cox6c K230006O16 8.83E-3 1.37

K230011F01 1.23E-2 21.61 1810012P15Rik K230027M24 1.26E-2 1.37

Ngef K330017A06 3.67E-3 21.51 Stac2 K230027M01 1.92E-3 1.34

Gap43 K230009L16 3.03E-2 21.44 AI836003 K230306I16 2.78E-6 1.33

K230302E22 2.48E-4 21.42 Ccne1 K230044G09 1.36E-3 1.31

Fbxl2 K230024L20 5.40E-3 21.42 Pdlim3 K230306A09 6.48E-3 1.31

Pcsk2 K230002M17 1.59E-3 21.37 Atp1b1 K230006G24 1.56E-2 1.29

Ctsb K230008F16 1.35E-2 21.37 2610205H19Rik K230306A08 7.83E-6 1.26

doi:10.1371/journal.pone.0003012.t003
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In general, these data emphasize once more the importance of

dissecting neuronal sub-types when expression profiling to study

specific brain regions. In summary, these findings show that our

clone collection, assembled with an unbiased and hypothesis-free

strategy, is suitable for probing the transcriptome of purified cell

populations and is broad enough to provide control genes. Our

publicly available cDNAs are thus a proven tool for the profiling

and comparison of homogeneous cell types within the brain. This

will help progress toward better defining these cell types at a

transcriptomic level [26–27].

Materials and Methods

Sequencing and clustering
76,999 59 ESTs from the K2, K3, K4 and K5 libraries were

sequenced with RISA sequencers [28] and deposited in DDBJ

under the accession numbers BY237236–BY298532 (all the

range), CJ142844–CJ159349 (a subset of the range). 367

additional ESTs were used but not deposited in DDBJ because

they were superseded by higher quality reads for the same clone.

Their sequence is available upon request. The 59 ESTs were

clustered using stackPACK [16] with the following external

programs: d2_cluster [29] (word_size = 6, similarity_cutoff = 0.98,

minimum_sequence_size = 50, window_size = 200, reverse_com-

parison = 1), phrap (P. Green, unpublished) (old_ace = 1, vector_

bound = 0, forcelevel = 5, trim_score = 20, penalty = 22, gap_

init = 24, gap_ext = 23, ins_gap_ext = 23, del_gap_ext = 23,

maxgap = 30, flags = -retain_duplicates -node_space 8) and craw

[30] (sig = 0.5, window_size = 100, ignore_first = 50). In addition,

75,757 39 ESTs were deposited in DDBJ under the accession

numbers BY599749–BY660055 and CJ279459–CJ294908.

Annotation
The annotation of full-length cDNAs which were sequenced

after completion of the FANTOM3 project was made in a pipeline

containing five filters (Figures S1 and S2). First, the FANTOM3

representative transcript set [3] and refSeq [31] were searched for

identical DNA sequences (. = 98% similarity over . = 100 bp)

using the fasta34 program from the fasta3 package [32] with the

parameters -Q -H -n -d0 -m9 -E100. Clones with no identical

match were searched for open reading frames identical or similar

to the entries of Swiss-Prot [33], TrEMBL [33] or refSeq using the

fasty34 program from the fasta3 package, with the parameters -Q

-H -n -d0 -m9 -E100. cDNA clones with no match were scanned

for potential open reading frames (ESTs were skipped) using the

DECODER [34], geneid 1.2 [35] and orfind (Tatusov, unpub-

lished) programs. ESTs were compared to the UniGene database

[36] using fasta34 with the same parameters. Clones which were

not caught by any of these filters were mapped on the mouse

genome (release UCSC mm5 [2]) using the sim4 [37] program.

CAGE analysis
Cage libraries were prepared as in [10], using the visual cortex of

mice at age P21, P26, P54 and P71. The libraries were sequenced and

analyzed as in [12], and were deposited in DDBJ under the accession

numbers AAAAN0000001–AAAAN0074253, AAAAI0000001–

AAAAI0019356, AAAAM0000001–AAAAM0054286 and

AAAAK0000001–AAAAK0041805 respectively. The cerebellar

CAGE library is available under the accession numbers

AAAAA0000001–AAAA0240780.

Rearray and clone amplification
cDNA clones were rearrayed with a Q-bot instrument (Genetix)

from 20% glycerol/LB ampicillin stocks that were kept at 280uC.

A growth check was performed on all glycerol stocks. For the

growth check, 384-well plates were translated into four 96-well

plates per 384-well plate and one bacterial culture per glycerol

stock was inoculated. All plates were analyzed after 18 h of growth

at 37uC by visual inspection. We performed one Plasmid DNA

Preparation per Glycerol Stock using a Montage Purification Kit

(Millipore) and our robotic systems. One quality control was

Table 4. Differential expression of the Atp5, Cox6 or Nduf
family genes.

CLONE_ID SYMBOL p M

K230031N16 Ndufa11 7.69E-3 1.61

K230002F10 Cox6c 4.77E-3 1.46

K330002E13 Atp5g3 3.25E-4 1.44

K230006O16 Cox6c 8.83E-3 1.37

K230309I10 Cox6b1 4.73E-4 1.22

K230001M19 Atp5h 1.99E-6 1.22

K230340G22 Ndufb9 2.84E-3 1.16

K230002E05 Ndufb8 2.84E-4 1.15

K230006I15 Ndufa8 5.80E-3 1.14

K230009H06 Ndufs5 3.36E-3 1.13

K230012O10 Ndufa2 2.13E-2 1.13

K230310N23 Ndufb7 9.34E-4 1.11

K330022I20 Ndufa6 4.48E-4 1.11

K230010M09 Atp5h 4.84E-5 1.09

K230310M07 Ndufa5 1.50E-2 1.09

K230044G12 Ndufc2 1.06E-3 1.06

K230319K23 Atp5g1 3.37E-3 1.04

K230012P07 Atp5j 3.80E-4 1.02

K230304A02 Ndufa5 8.35E-3 0.96

K230019O17 Ndufs2 2.80E-4 0.95

K230304I19 Ndufb10 7.66E-4 0.95

K330018J12 Atp5e 1.94E-3 0.92

K230039K18 Atp5c1 2.06E-4 0.89

K230050F20 Ndufb2 2.15E-3 0.85

K230053K02 Atp5o 1.98E-4 0.83

K230014B16 Atp5c1 6.17E-4 0.81

K230003F11 Ndufs8 4.23E-3 0.80

K230304N08 Ndufv2 3.12E-4 0.79

K330022A12 Ndufv1 7.91E-3 0.78

K230008K02 Ndufa10 1.25E-2 0.76

K230001C13 Cox6a1 7.63E-3 0.66

K330009A17 Atp5d 1.36E-2 0.60

K230053L04 Ndufs3 5.61E-3 0.49

K230005J19 Ndufaf1 5.43E-3 0.32

K230034B16 Atp5g2 1.27E-1 0.27

K230003B02 Ndufs1 8.05E-2 0.22

K230003P04 Atp5f1 4.42E-1 0.16

K230018C04 Atp5b 6.76E-1 0.14

K230001F17 Atp5a1 6.43E-1 0.07

K230302C16 Atp5s 7.52E-1 0.04

K230001C22 Atp5b 5.26E-1 20.21

doi:10.1371/journal.pone.0003012.t004
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Figure 4. Non-coding clones which show over-representation (M.0) or under-representation (M,0) in the parvalbumin-egfp cells.
Pictures extracted from the FANTOM 3 genome browser. The RIKEN clone ID is indicated, followed by the p and M values. Black rulers: chromosomal
coordinates. Red arrows: known promoters. Stronger promoters are represented by bigger arrows with a stronger color. Plain arrows: known full-
length cDNAs (brown boxing: plus strand; magenta boxing: reverse strand). Pink areas in the cDNAs: predicted coding sequences. The 59 ends of the
selected clones (and the 39 end, in the case of K23022K18) are represented by plain arrows in a yellow background. K330007E03: clone overlapping
the promoter of a coding gene. K230014I16: variant of a spliced non-coding gene. K230322K18: intronic clone overlapping the last exon of a coding
gene. K230002G07: unspliced clone sharing the promoter of a coding gene in a head-to-head arrangement. K230002P11: intergenic clone. The
coding sequence detected in one of the cDNAs is unlikely to be productive as the ATG is starting the transcript. K230013M23: spliced clone matching
cDNAs with no known coding sequence. K230008M20: clone forming a sense-antisense chain with two genes oriented head-to-head.
doi:10.1371/journal.pone.0003012.g004
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performed on three clones per plate, and the yield was 2.66 mg

DNA61.73. For the preparation of PCR templates, we diluted the

plasmid DNA preparation by 1:500. 5 ml of template were

amplified in 50 ml reactions in 96-well plates with 1.25 U Expand

High Fidelity Taq/Tgo polymerase blend (Roche), 15 pmol of

forward primer (TGTAAAACGACGGCCAGT), 15 pmol of reverse

primer (AGCGGATAACAATTTCACACAGGA) and 200 mM of each dNTP

(TaKaRa) in 16 Expand High Fidelity buffer (Roche). The

program of the thermocycler was 2 min at 94uC followed by 30

cycles of 15 s at 94uC, 30 s at 60uC, and 2 min 30 s at 68uC, plus

a final step of 7 min at 72uC. The amplification products were

then purified with Multiscreen PCR plates (Millipore) following

manufacturer instruction, and dried. With this protocol, we could

achieve an average yield of .8 mg for 92.7% of the wells.

Animals and tissue preparation
We used C57Bl/6 BAC transgenic mice expressing the

enhanced green fluorescent protein (EGFP) under the control of

the parvalbumin regulatory sequences [21]. Animals were main-

tained on a 12 h light/dark cycle with access to food and water ad

libitum. All procedures involving animals and their care were

carried out in accordance with the directives of RIKEN’s

Institutional Animal Care and Use Committee. All experimental

groups were sacrificed at a similar time of day to avoid possible

circadian effects. Primary visual cortex (area V1) from anesthe-

tized mice was dissected and homogenized by sonication.

Microarray analysis
The PCR-amplified cDNAs were resuspended in 50% DMSO

(Nacalai Tesque, Kyoto, Japan), and microarrays were printed on

UltraGAPS slides (Corning) using an OmniGrid arrayer (Genomic

Solutions) with Microarray Stealth Spotting pins (SMP3B, Tele-

Chem). Detailed information about clone names, coordinates and

accession numbers have been deposited in NCBIs Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are

accessible through GEO Platform accession number GPL5681.

Total RNA was extracted from 15,000–20,000 FACS-sorted

cells (Wagatsuma et al, in prep.) using the RNEasy Mini kit from

Qiagen according to the manufacturer’s instructions, and stored at

280uC until use.

The following protocol is for one slide, and was scaled

accordingly if more than one slide was to be hybridized. Total

RNA samples were mixed with 2 ml of SPIKE Mix (GE

Healthcare Lucidea universal scorecard), and probes were

prepared following the method of [22], except that 3 mg of cDNA

were used per slide, and that the probes were dried and

resuspended in 6 ml of water. The probes were then denatured

at 95uC for 2 min and then mixed with 7.5 ml 46 Microarray

hybridization solution version 2 (Amersham, Cat. No RPK0325),

15 ml formamide, and 145 ml of hybridization buffer (2.5 ng/ml

oligo(dT) 12–18 primers (Invitrogen), 500 ng/ml mouse Cot-1

DNA (Invitrogen), 0.56Microarray hybridization buffer version 2

(Amersham, Cat. No RPK0325, stock concentration: 46), 25%

formamide (Nacalai Tesque), 50% ULTRAhyb buffer (Ambion)),

at 50uC.

The mixture of Cy3- and Cy5-labeled probes was applied at

75uC onto arrays, and hybridized for 3 h at 65uC, 3 h at 55uC and

12 h at 50uC in the dark, using an automatic hybridizer,

GeneMachines HybStation (Genomic Solutions). After hybridiza-

tion, slides were washed once in 26saline-sodium citrate (SSC) and

0.2% SDS at 53uC, in 16SSC and 0.2% SDS at 53uC, in 26SSC

at 24uC, and in 0.26SSC for 5 min at 24uC using one cycle of 10 s

flow and 1 s hold, and 15 (first wash) or 13 (other washes) cycles of

1 s flow and 10 s hold, and then dried by spinning for 1 min.

The scanning was done using an Axon GenPix 4000B scanner

(Axon Instruments, Union City, CA) at 10 mm resolution. PMT

voltage settings were varied to obtain maximum signal intensities

with ,5% probe saturation. TIFF images were captured and

analyzed with GenePix 6.0 (Axon Ins.) software and Acuity 4.0

(Axon Ins.). We used the Autoflag function to exclude spots for

which the signal intensity was not higher than the local

background. In addition, we also flagged the spots for which the

scanning area was lower than 100 pixels. We call ‘‘standard’’ the

experiments in which the probes prepared from the fluorescent

cells were labelled with Cy5, and ‘‘swapped’’ the ones where the

label was Cy3.

Statistical analysis
Lowess (locally weighted scatter plot for smoother) analysis was

used for normalizing microarray data. Within-print-tip-group

normalization was conducted by using the loess.smooth function in

the statistical software package R [38]. In short, this lowess

normalization approach is to use the dependence of M = log2 (Cy5/

Cy3) on A = log2 (Cy56Cy3) for estimating its normalizing curve,

which is a function of A [39–40]. Due to its estimation procedure,

its normalization curve is considered as estimated mostly based on

unexpressed clones (which should be the majority) in each small

segment of A [40] (we used 50 segments). We tried to further

ensure this point in our lowess normalization; for each segment of

A we defined a window that included 40% of the points that are

nearest. Inside this window, the standard deviation of M values

was calculated and lowess normalization curve was estimated by

using only data points whose M values fell into a range within

three times the standard deviation in each A segment. Similar

results could be obtained using smaller cutoff values, e.g. 1 s.d.,

suggesting that this three s.d. is stringent enough (data not shown).

Once the normalization curve was estimated, data points out of

the range were also normalized.

To ensure data quality, we then excluded some clones from

later statistical analysis by using the following two criteria, called

global filtering and individual filtering. For global filtering, overall

quality of each sample was examined using 3 repeated spottings

(called replicates and denoted by rep1, rep2, rep3 below). For each

standard or swap dataset (of each sample), the correlation of M

values was calculated between replicates (e.g. the correlation

between rep1 and rep2) and averaged over three cases (i.e. rep1 vs.

rep2, rep2 vs. rep3, and rep3 vs. rep1). In all standard and swap

datasets except the sample 2 standard dataset, the averaged

correlation was larger than 0.899, whereas it was only 0.663 in the

sample 2 standard dataset. We inspected the sample 2 standard

dataset by creating the color image of M values in the format of the

original microarray plate, and found blurred traces largely

stretched over the plate. Given these, we decided to discard the

sample 2 standard dataset from later statistical analysis.

Next, for individual filtering, we examined the clone-wise

consistency between standard and swap datasets (within each

sample). We used the lowess-adjusted M values for this purpose

and first obtained the mean of the adjusted M values over

replicates for standard and swap datasets, denoted by M
_ std

ij and

M
_ swp

ij , respectively, where i and j are the indices of clones and

samples, respectively, i.e. i = 1,…4541, j = 1,…5. Second, for each

sample (each fixed j), ideally we expect a consistency such that

M
_ std

ij is nearly equal to {M
_ swp

ij , where the multiplier 21 is

necessary because of the swapped dye labeling. Hence, for each

sample (each fixed j), we calculated the standard deviation of

M
_ std

ij { {M
_ swp

ij

� �
over clones (i.e. over the index i). Clones were

flagged, if they were outside the range of two times the standard
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deviation; these flagged clones were excluded from later statistical

analysis.

We used two statistics, p-value for identifying differentially

expressed genes and q-value for dealing with issues of multiple

hypotheses testing, i.e. controlling false discovery rate (see below).

In calculating these, dye-averaged value was used for each

clone, given by multiplying 21 to M
_ swp

ij as

Mij~ M
_ std

ij z {M
_ swp

ij

� �� ��
2. Note that due to the filtering

analysis described above, sample 2-standard dataset and also

clones flagged by individual filtering were excluded from the

calculation. In cases when the number of samples for each clone

became less than 3 due to the above filtering or some other bad

conditions, the clone was excluded from calculation to secure

further robustness. p-value was obtained by calculating t-statistics

ti~

mean
j

Mij

� �
si=

ffiffiffi
n
p with n21 degrees of freedom, where n was the

number of samples taken into account for calculating the mean of

each clone. q-value can be used to assess false discovery rate (FDR;

more precisely, pFDR, see [41] for details). For this calculation, we

used QVALUE software at http://genomine.org/qvalue/. In

short, for a specified threshold r (0,r#1), we can write

FDR rð Þ~ bpp0mr

# piƒrf g , where m indicates the number of pi, and

bpp0 is estimated by bpp0 lð Þ~ # piwl; i~1, . . . ,mf g
m 1{lð Þ where l is a

tuning parameter to adjust the degree of conservative estimate of

FDR and q value [23]. We used cubic spline at l = 1 and the q

value is estimated by q̂ pið Þ~ min
r§pi

FDR rð Þ.

Supporting Information

Figure S1 Annotation pipeline (databases).

Found at: doi:10.1371/journal.pone.0003012.s001 (0.06 MB

PNG)

Figure S2 Annotation pipeline (scores).

Found at: doi:10.1371/journal.pone.0003012.s002 (0.09 MB

PNG)
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20. Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, et al. (1999) Cellular

distribution of the calcium-binding proteins parvalbumin, calbindin, and

calretinin in the neocortex of mammals: phylogenetic and developmental

patterns. J Chem Neuroanat 16: 77–116.

21. Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of

parvalbumin-positive interneurons and analysis of electrical coupling in

identified neurons. J Neurosci 22: 7055–7064.

22. Xiang CC, Kozhich OA, Chen M, Inman JM, Phan QN, et al. (2002) Amine-

modified random primers to label probes for DNA microarrays. Nat Biotechnol

20: 738–742.

23. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.

Proc Natl Acad Sci U S A 100: 9440–9445.

24. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H (1994) Differences in

Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical

neurons caused by differential GluR-B subunit expression. Neuron 12:

1281–1289.
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