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Over the last decade, the field of bioinformatics has been increasing rapidly. Robust

bioinformatics tools are going to play a vital role in future progress. Scientists working

in the field of bioinformatics conduct a large number of researches to extract knowledge

from the biological data available. Several bioinformatics issues have evolved as a result

of the creation of massive amounts of unbalanced data. The classification of precursor

microRNA (pre miRNA) from the imbalanced RNA genome data is one such problem. The

examinations proved that pre miRNAs (precursor microRNAs) could serve as oncogene

or tumor suppressors in various cancer types. This paper introduces a Hybrid Deep

Neural Network framework (H-DNN) for the classification of pre miRNA in imbalanced

data. The proposed H-DNN framework is an integration of Deep Artificial Neural Networks

(Deep ANN) and Deep Decision Tree Classifiers. The Deep ANN in the proposed H-DNN

helps to extract the meaningful features and the Deep Decision Tree Classifier helps to

classify the pre miRNA accurately. Experimentation of H-DNN was done with genomes

of animals, plants, humans, and Arabidopsis with an imbalance ratio up to 1:5000 and

virus with a ratio of 1:400. Experimental results showed an accuracy of more than 99%

in all the cases and the time complexity of the proposed H-DNN is also very less when

compared with the other existing approaches.

Keywords: bioinformatics, precursor microRNA, hybrid deep neural network, deep artificial neural network, deep

decision tree classifier

INTRODUCTION

The problem of imbalanced data has often been recognized as a significant challenge in Machine
and Deep Learning. The ML classifiers tend to get influenced by the majority classes when it comes
to imbalanced data. This results in a poor classification of the minority classes. Whenever the
class sizes are significantly different, the classification methods perform much better in the larger
class, achieving accurate results, whereas the minority class seems to have a very poor recall. The
classification of one class being considerably neglected in comparison to another is still one of the
most difficult problems to solve in the creation of new classificationmodels today. Bioinformatics is
one of the major streams that provide a large number of highly imbalanced data. These enormous
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datasets require a great solution that can handle such problems
and are appropriate for such imbalance ratios. One of the major
data imbalance problems in bioinformatics is the identification
of the precursor micro RNAs (pre-miRNA) from the genome.
The miRNA is a special type of non-coding RNA. They have
a length of 21 nucleotides and they play a key role in the
posttranscriptional regulation of gene expression. The miRNA
is a minute, endogenous RNA having a hairpin-like structure.
Numerous key biological processes, such as disease genesis and
progression, are regulated by miRNAs. They can act as an
oncogene or tumor suppressor in a variety of cancers assisting
in prognosis prediction, therapeutic assessment, and disease
diagnosis (1). A promising therapy for breast cancer is delivered
by the latest miRNA-based drugs (2).

The genome data consists of hundreds of thousands of
sequences out of which there will be only a few miRNAs.
Moreover, there are several other similar RNAs which makes
it even more difficult to differentiate them. Further, the
minority class usually contains a small number of high-
variability instances, making it more challenging for a classifier
the generalization of the new dataset. So, to find them in the
highly imbalanced genome data and classify them is a great
challenge and hence there is a need to find an optimal solution
for identifying them with a simple procedure. Although the
computational methods have been necessary tools in miRNA
gene finding and functional studies (3). The Machine Learning
(ML) techniques have made it possible to classify them to a good
extent (4). Machine Learning andDeep Learning (DL) have taken
control over every field and are providing adequate solutions for
every complex problem. There are few algorithms proposed for
which the True Positive Rate (TPR) is very less and complexity is
more. For the genome datasets, there are many negative samples
and very few positive samples of miRNA sequences. Generally,
this type of problem is related to Imbalanced data. To handle such
Imbalanced data there are a few solutions out of which Sampling
is the most famous and efficient way. There are two variants
of sampling: Oversampling and Undersampling. Oversampling
is the technique in which the fewer samples in the dataset will
be upscale (in other words upscaling the minorities) to make
the data to be balanced. In this technique, many dummies for
fewer samples are generated. When the dataset is with a smaller
number of samples (both positive and negative) this technique
will help to build a model with an adequate number of samples.
Under Sampling is the technique in which the greater number
of samples in the dataset will be downscaled (in other words
downscaling the majorities) to make the data to be balanced.
In this technique, the Selection method or Random sample
method is chosen. In general, when the dataset is very large,
the model will take a huge time to execute, this technique will
help us to overcome this issue. In one of the proposed models
(5), they chose an Imbalance Ratio (IR) up to 1:2000 (meaning
one positive sample and 2,000 negative samples), and different
ratios like 1:1, 1:100, 1:500, 1:1000, 1:1500, 1:2000. To improve
the model and follow the consistency, different IRs like 1:2500,
1:3000, 1:3500, 1:4000, 1:4500, 1:5000 have been added. A model
was proposed where, in addition to the Animal and Plant dataset,
the Human and Arabidopsis dataset with IR up to 1:5000 and

virus dataset with IR up to 1:400 was considered to enhance the
performance (6).

The existing systems like Multi-layer perceptron (MLP),
Support Vector Machine (SVM), Deep Self-Organizing Map
(DeepSOM), Deep Elastic SOM(DeSOM), Deep Elastic Ensemble
SOM (DeeSOM), Deep Belief Neural Network (DeepBN) can
solve this problem to some extent only. The Deep Architectures
which work without SMOTE (Synthetic Minority Oversampling
Technique) (7) take more time and accuracy is also poor, the
other systems stated above also produce low accuracy if the class
imbalance ratio is gradually increased. Most of the existing works
so far have not considered multiclass pre-miRNA classification
having an imbalanced dataset, even if they have discussed their
performance is not up to the mark and hence end up having
low accuracy. The accuracy of the existing work also goes down
as the imbalance ratio is increased as it is given in the real-
time scenarios. So, to address the problems like high run time
and low accuracy faced in these existing systems, we propose a
Hybrid Deep Neural Network (H-DNN) architecture, which is
implemented by integrating the Deep Artificial Neural Networks
(ANN) with a Deep Decision Tree classifier (Deep DT). Deep
ANN is capable of optimizing a wide range of coefficients. As
a result, Deep ANN can tolerate a much larger variation than
traditional models. With enough training, Deep ANN will be
prepared for any circumstance. It is a type of machine learning
technology with a large memory capacity since it is capable
of remembering every call. On imbalanced data, DT usually
performs effectively. They operate by understanding a hierarchy
of if/else scenarios, which forces them to address both majorities
as well as minority classes. The main contributions of the
proposed work can be listed as follows:

• Preprocessing of multiclass genome dataset and
selection of features using Select-K-Best and Recursive
Feature Elimination.
• Building proposed H-DNN framework by integrating Deep

Artificial Neural Network and Deep Decision Tree for
classification of miRNA from a multiclass genome dataset.
• Apply the H-DNN architecture with different imbalance ratios

of multiclass genome dataset consisting of Animal, Plant,
Arabidopsis, Human, and Virus genomes.

The rest of the paper is organized as follows: Section Related
Work discusses the related work. Section Proposed Work
discusses the proposed H-DNN architecture and its components.
Section Experimental Work details the experiments and presents
the results of H-DNN and section Results and Discussions
summarizes the proposed approach and its future enhancements.

RELATED WORK

Due to the imbalanced class distributions in the data, handling
such class imbalance problems and drawing a large amount of
interest toward it, has become the major issue. To deal with these
class imbalance problems many ensemble methods are proposed
but most of them focus on the two-class imbalance problems,
leaving many issues unsolved in the multiclass imbalance
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problems. To solve those multi-class problems efficiently an
algorithm called AdaBoost.NC was proposed. It produced better
results when compared with other popular ensemble Techniques
(8). As the availability is expanding in all kinds of fields it
becomes difficult to perform analysis and progress from raw data
to decision-making processes. Even though new data engineering
techniques are showing great success in solving real-world
problems, learning from imbalanced data has emerged as a new
challenge. To enable efficient learning from imbalanced data it
is required to have new approaches, understandings, algorithms,
principles, and tools, because of its complex characteristics
(9, 10). Class imbalances make supervised learning problems
difficult because some classes have more examples than others.
The existing methods have completely focused on binary-class
cases. A dynamic sampling method for Multilayer Perceptron
(MLP) was proposed to solve the multi-class imbalance
problems. To train the MLP, DyS dynamically selects informative
data. This Dynamic sampling technique has performedwell when
compared with other techniques (11). There are several other
preprocessing techniques for the data, classification algorithms,
and evaluating the model involved in modeling methods (12).
The important regulators of gene expression are MicroRNAs
(miRNAs). The genetic loss of the tumor suppressor miRNAs
or Amplification and the overexpression of one’s ’oncomiRs’ is
related to human cancer and is enough to cause tumorigenesis

in mouse models. Besides, the depletion of global miRNA
by genetics and in the components of miRNA biogenesis
machinery epigenetic alterations is oncogenic. All these together
with novel miRNA regulatory pathways and factors show how
important miRNA dysregulation is in cancer (13). Even after
identifying hundreds of miRNAs in different species, a lot of
others remain unknown. So, in understanding miRNA-mediated
posttranscriptional regulation mechanisms the discovery of new
miRNA genes is an important step. The biological approaches
in identifying miRNA genes might be limited. So, to overcome
those limitations in the biological approaches sophisticated
computational approaches are followed to identify the possible
miRNA (14). Some of the work deals with the miRNAs in terms
of diagnosing dreadful diseases in the medical field. Several web-
based bioinformatics tools were proposed for the analysis of
miRNA such as expression, detection, etc. with an easy-to-use
model that doesn’t require any previous knowledge of utilization
(15). A Support Vector Machine (SVM) based approach was
proposed to classify the real and pseudo miRNA. It achieved
an accuracy of up to 90% (16). The model was exclusively for
the human dataset but the remaining datasets could also be
used. In this work, then genomic information was not required.
Later, software that classified the RNA of mammals, nematodes,
and also urochordates was proposed. A new methodology was
proposed based on Support Vector Machine (SVM) and named

TABLE 1 | Comparison of various state-of-the-art methodologies.

Author Methodology used Metrics Dataset

Park (25) Recurrent Neural Network (RNN). Various Metrics were used. Experimental results

yielded an F1-score of 0.93 for the Human dataset,

0.94 for the Cross-Species dataset, and 0.93 for

the New pre-miRNA dataset.

Human, Cross-Species

and New miRNA

Thomas et al. (26) Deep Learning with a restricted Boltzmann machine

(RBM) for classification and Modified sampling

technique is applied to address the class imbalance

problem.

Various Metrics were used. The model gave an

accuracy of 0.968

Human Dataset

Stegmayer et al. (27) Deep Self-organizing maps (DeepSOM) with Clustering Various evaluation metrics were used. The model

provided almost 95% of Gm and 97% of accuracy

for the most imbalanced data.

H. sapien and A.

thaliana, Animal, and

Plant

Bugnon et al. (5) Hybrid deep learning method with CNN and LSTM. Various Metrics were used for different imbalance

ratios. Experimental results yielded an F1-score of

more than 40% for Animal and more than 33% for

the Plant dataset.

Animal and Plant

Tang et al. (28) CNN with different types of feature learning and

encoding methods.

The results gave an accuracy of 99.25% and an

F1-score of 99.25% for Rfam-300

Rfam-300, Rfam-120,

Rfam-60, Rfam-30

Shi et al. (29) Localized multiple kernel learning model with a

nonlinear synthetic kernel (LMKL-D)

The model gave an accuracy of 98.3%, sensitivity of

93.06

Specificity of 99.27 and mean of 96.11.

pre-microRNAsand

pseudo pre-microRNA

Yones et al. (30) Convolutional deep residual neural network The model provided a precision of

0.93 for A. thaliana full genome, 0.67 for A.

gambiae, and 0.50 for H. Sapiens

A. thaliana, C. elegans,

A. gambiae, and

H. Sapiens

Proposed HDNN

Methodology

Artificial Neural Network embedded with Decision Tree Various metrics were used for evaluation for different

imbalance ratios. The results yielded F1 Score of

more than 0.50 (0.50–0.93) for Animal, more than

0.58 (0.58–0.95) for Plant, more than 0.60

(0.60–0.94) for Human, more than 0.50 (0.50–0.95)

for Arabidopsis and more than 0.50 (0.50–0.94) for

Virus.

Animal, Plant, Human,

Arabidopsis, and Virus.
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as Microprocessor SVM, which predicted with 50% accuracy
(17). To improve the accuracy of this model, the model was
trained with another classifier and ensemble both to get better
results than acquire 90% in total. Another work dealt with the
miRNA sequences of the mouse and human using the SVM
approach (18). The model worked with around 377 mouse
data and 475 human data and with the candidates, the dataset
had 3,441 humans and 3,476 mouse samples in total. The
classification was done according to the structure of the miRNAs,
the model names, and the mirCoS. One of the works also dealt
with the use of ab initio Prediction model clustered microRNA
identification (19).

An application for the classification of pre-miRNAs was
proposed which dealt with the classification of the mammalian
miRNAs such as Human, Rat, and Mouse (20). This approach
analyzed the genome properly using the model named ab initio
which gives an accuracy of up to 60% when they undergo cross-
validation. To analyze the structure of miRNA, a tool named
MiRFinder was proposed which was built with the SVM model
(21). The structure of the miRNA is a hairpin-like structure,
the prediction mainly focused on the structure and later the
features were used to predict the miRNA. This tool was mainly
used for the genome-wide search of the miRNAs. The dataset
which has 697 real miRNA and 5,428 pseudos from different
sources was collected and experimented with. The tool gained
sensitivity up to 93%. Another model named miRenSVM was

proposed that gave good results for the data in miRBase 13.0
animal and other species (22). For animal data in miRBase 13.0,
it gave 100% sensitivity. A novel RNA effective classification
methodology namely microPred was proposed which classified
the types of miRNA using the Machine Learning approach (23).
It used a classifier namely microPred, which also could handle
the data imbalance issue as well as new feature extraction relevant
biologically. It achieved a specificity of 97.28% and a sensitivity of
90.02%. Themodel gave the prediction rate of 92.71% for humans
and 94.24% for the virus. Another new model was developed that
used amethod named YamiPred, which is an ensemble of Genetic
Algorithms (GA) and Support Vector Machine (SVM) for the
prediction of miRNAs (24). The model mainly used a human
dataset to predict the human miRNAs. The model appeared to
be robust and efficient with different performance characteristics.
Table 1 illustrates the comparison of various state-of-the-art
methodologies used for the classification of miRNA.

PROPOSED WORK

In this section, we discuss the proposed Hybrid Deep Neural
Network approach for the classification of miRNA from genome
data. Different genome datasets have been considered in our
proposed work such as Animal, Plant, Human, Arabidopsis,
and Virus datasets. First, the dataset is preprocessed and all

FIGURE 1 | Correlation matrix.

Frontiers in Public Health | www.frontiersin.org 4 December 2021 | Volume 9 | Article 821410

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


R. et al. Data Imbalance in microRNA

the important features are selected and extracted and the non-
useful features are omitted. For feature selection and extraction
feature selection Algorithms like Select-K-Best and Recursive
Feature Elimination are used. After preprocessing the dataset, the
proposed H-DNN algorithm is implemented. The proposed H-
DNN framework is the integration of Deep ANN with the Deep
DT. Then the implemented model has experimented with the
different genome datasets (31).

Preprocessing
Pre-processing refers to Feature Selection or Feature Extraction.
Different Feature Selection algorithms have been applied with
the dataset (32). To have a clear idea of feature selection, the
dataset has to be analyzed first. Different genome datasets have
been considered in our proposed work such as Animal, Plant,
Human, Arabidopsis, and Virus datasets. Even though these
datasets have a different number of samples in each, they have
the same number of features (33). The dataset used here has a
total of 30 features in which one is a serial number, hence we
omit that attribute. The remaining 29 features are taken into
consideration and passed to the Feature Selection Algorithms
(34). Figure 1 illustrates the correlation matrix plotted for all the
features and a heat map is produced out of that as shown. The
correlation matrix helps us to characterize and sum up the data
for our understanding. Correlation, here, helps us to compute the
association between two variables by testing the effectiveness of
their linear relationship. After estimating the correlation matrix,
the Feature selection Algorithms like Select-K-Best and Recursive
Feature Elimination are used. In the Select-K-Best algorithm,
the features are assigned with particular scores. The Selection
is generally made based on the scores which are greater than
the mean of all the scores in this Feature Selection (35). In
the Recursive Feature Elimination, the rank is assigned to each
feature and the ranks may be the same for more than one feature.
The feature selection ismade based on the ranks that are assigned.
Generally, the selection is done based on the first few ranks
like 10, 12, etc., based on several features (36). The Recursive
Feature Elimination with Cross-Validation is used. This gives
scores between 0 and 1. The 0, being the least important and one
is the most important feature to build any model. This algorithm
is applied to the dataset and the results state that all the features
are nearer to the one (37). Hence, all the features are important.
This proves that there is no need for removal or elimination of
any feature from the data so all 29 features are used to build the
proposed model (38).

Proposed H-DNN Architecture
In this section, we discuss our proposed work. We have
developed a Hybrid Deep Neural Network (H-DNN) wherein
we have integrated Deep Artificial Neural Network and Deep
Decision Tree (DT) classification technique for classifying
the miRNAs in the genome data. The integration of feature
extraction using machine learning techniques and feature
analysis and classification using Deep Neural Network has
provided better results. The experimental results have been
carried out using Animal, Plant, Human, Arabidopsis and, Virus
genome datasets. The results are then analyzed and compared

for the model using Deep ANN and Deep DT. Deep ANN
here helps in analyzing the features by optimizing a wide range
of coefficients. As a result, Deep ANN can tolerate a much
larger variation than traditional models. Deep ANN gets well
prepared for any circumstance with sufficient training. It is
a type of machine learning technology with a large memory
capacity since it is capable of remembering every call. DT usually
performs effectively in case of imbalanced data by understanding
a hierarchy of making decisions for different scenarios, which
forces them to address both majorities as well as minority classes.

The structure of ANN consists of a neuron, a propagation
function, and a bias. Consider a neuron k having an input Ik(t)
received from the previously connected neurons. The neuron will
have an activation function ak(t), an optional threshold θk, an
activation function f for computing new activation for time t+ 1
as given in Equation 1, and a function fout for computing the
activation output which is formulated as given in Equation 2.

ak (t + 1) = f (ak (t) , pk (t) , θk) (1)

Ok = fout(ak(t) (2)

The input, Im(t) to the neuron m from the output of k, is
computed using the propagation function defined as given by
Equation 3. After adding the bias, w0m, we formulate the input
as given in Equation 4.

Im (t) =
∑

k

Ok(t)wkm (3)

Im (t) =
∑

k

Ok (t)wkm + w0m (4)

Artificial Neural Networks (ANNs) have several different
coefficients, which the ANNs can optimize. So, when compared
with the traditional models, ANNs can handle much more

FIGURE 2 | Structure of ANN in each node of Decision Tree in the proposed

framework.
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variability (39). This makes ANN a stronger model when it
comes to memorization (40). A decision tree is a supervised
learning Algorithm. Both regression and classification problems
can be solved using Decision Trees. In the tree representation,
each leaf node represents a class label and the internal node of
the tree represents the attributes. Decision trees include three
main units that are node, branch, and leaf. The node is the
decision. The branch is the potential decision, and the leaf is
the potential outcome of each decision. The DT illustrates the
long-term consequences of certain decisions. The trade-offs and
probabilities can also be expressed using decision trees. In a
decision tree, after every level, we have a split taking place which
in turn results in the next level. Therefore, the major challenge in
Decision trees is to identify the attribute for the root node in each
level. This is called attribute selection. There are various popular
attribute selection measures in decision trees we have used Gini
Index for attribute selection in our framework. Gini index can be
formulated as shown in Equation 5.

Gini Index = 1−
∑

j

p2j (5)

here pj denoted probability for class j. Gini index is used here
as a cost function for the split evaluation in feature selection.
When compared with other algorithms, the decision tree needs
less effort for data preparation during preprocessing. It does not
require scaling of data or normalization of the data. In addition to
this transparency and ease of use makes the decision tree a better
model to handle large amounts of data.

The most challenging task is to handle the imbalanced data.
The current state-of-the-art methods do not define the decision
process take more time and accuracy is also poor. Generally,
the state-of-the-art frameworks produce low accuracy if the class
imbalance ratio is gradually increased. Before DNN, decision
trees were the standard method used to improve accuracy and
performance. Though as compared to DNN the accuracy gained
by using a decision tree for classification are less the DT preserves
the interpretability. So to preserve the DT’s interpretability and
match the DNN’s performance, we use the H-DNN architecture
wherein we integrate the Decision Tree and the ANN. The H-
DNN model consists of a DT wherein each node of the DT will
have an ANN model. The DT is used to make the classification
of miRNA in an H-DNN, maintaining high-level interpretability.
Every node in a decision tree, on the other hand, is a neural
network that makes low-level decisions. First, a hierarchy for DT
is constructed and then the sample is passed through the ANN,
which is a fully connected neural network, in each decision node.
Then the model computes the analysis by executing the final
fully connected layer as a series of integrated decision rules. The
final prediction is a culmination of these decisions. The ANN
structure proposed in this paper deals with a dense layer as input
layer with 512 nodes and ReLu activation function followed by
another dense layer with 256 nodes and a dropout layer, then
three more dense layers with 64, 32, 16 nodes respectively with
ReLu activation function and a dropout layer and finally one
dense layer with two nodes as output layer. This ANN structure,
as illustrated in Figure 2, is embedded into each node of the

Algorithm 1 Proposed H-DNN.

Input: Genome data, D, with attributes, a
Output: Decision Tree with classes
1. tree = { }
2. minVal = 0
3. for each a ǫD do :

//Considering Input Layer of ANN
4. for each node n ∈ a and input xn do :

5. outn = xn
//Considering Hidden Layer of ANN

6. for each hidden node h do :

7. outh =
∑

n∅(whn.outn)
8. g = GiniIndex(outh, d)
9. for each output node k do :

10. outk =
∑

k∅(wkh.outh)
11. Train ANN using Backpropagation(outh)
12. if g < minVal then
13. minVal = g

14. tree
′
= {a}

15. partition(tree, tree′)
16. repeat till all the partitions are processed
17. return tree

decision tree for making the decision rules. In the fully connected
layer of each node of the decision tree, the inner product of the
matrix-vector is calculated and an inner product that constitutes
the maximum value is chosen for the class decision rule as shown
in Equation 6.

[w1 w2

... wn ][
... x

... ] = [(x,w1) (x,w2)
... (x,wn) ]

= [y1 y2
... yn ]→ argmax(y) (6)

Algorithm 1 illustrates the H-DNN algorithm that uses the Deep
Decision Tree having Artificial Neural Network embedded in
each root node. The ANN framework in the proposed model has
a single input layer, a few hidden layers, and a single output layer.
In the final layer of the hidden layer, the decision rule for splitting
the tree has been incorporated using Gini Index. Line 1 and 2
in Algorithm 1 initialize the tree and the minimum criteria to
be considered for making the decision rule. The Deep ANN is
embedded into each node of the Deep DT as illustrated from lines
3 to 10. For a given input node and input, line 4 and 5 illustrates
the implementation of the first layer, i.e., the input layer of the
Deep ANN. Using the output of the input layer the hidden layer is
calculated using lines 6 and 7. In line 8 the Gini Index is calculated
to determine the decision rule for splitting the node or tree
further. Using the output of the hidden layers the output layer
is constructed in lines 9 and 10. In line 11 the Backpropagation
algorithm is called to adjust the weight according to the errors. In
lines 12 to 15, the decision rule has been implemented. Once the
decision rule is applied the nodes are split accordingly as shown
in line 16. This process is then implemented for each node until
all the nodes are processed and no further nodes can be split.
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Algorithm 2 illustrates the implementation of the
backpropagation algorithm used for generalizing the Neural
Network (NN) by fine-tuning the weights based on the previous
iteration’s error rate. After applying the forward propagation,
the backpropagation algorithm is called to fine-tune the NN.
From lines 1 to 6 in Algorithm 2 all the required parameters
are initialized. From lines 7 to 13 the backpropagation process is
applied to the neural network.

The proposed architecture can be divided into four modules
as illustrated in Figure 3. Module one is the Imbalanced genome
dataset which has the collection of Plant, Animal, Human,
Arabidopsis, and Virus genome data. This data is preprocessed

Algorithm 2Modified Backpropagation(a).

1. d← training dataset mxn dimension
2. y← class labels
3. w← weights
4. l← number of layers 1, . . . .., z
5. errorlij ← error for each i, j, l

6. blij ← 0 for each i, j, l
7. for i = 1 to m do :

8. dl ← a (z)− y(i)

9. blij ← blij + alj.b
l+1
i

10. if j 6= 0 then
11. errorlij ←

1
mblij + λwl

ij
12. else

13. errorlij ←
1
mblij

in module two wherein the feature variables are correlated to
find the relationship between the features. In this module, the
required features are extracted using the Select-K-Best Method
and Recursive Feature Elimination Method, and the rest of the
unwanted attributes are discarded. After the feature selection and
extraction, the preprocessed data is passed to the third module.
The third module is the proposed H-DNN architecture. The H-
DNN architecture is the integration of the Decision Tree and
the ANN framework. The ANN framework used here helps
to avoid overfitting and thereby increasing the performance.
The Decision tree helps to make a decision and examine the
benefits and cons of each final option. Every node in a decision
tree, on the other hand, is a neural network that makes low-
level decisions. The inputs of each node of the Decision Tree
are passed to ANN for making the decision and analyzing
the probability values of the class. The final evaluation of the
model is done in the fourth Module, the Model Evaluation
module, using Accuracy, Specificity, Precision, and F1-score as
the evaluation metrics.

EXPERIMENTAL RESULTS

Experimental Work
In this section, the dataset and the experimental results will be
explained in detail by each dataset (41). In the Animal dataset,
there are 7,053 positive and 218,154 negative samples and in
total there are 225,207 animal sequences. One lakh seventeen
thousands one hundred and one plant sequences are taken in
which 2,154 positive and 114,929 negative samples are present.
One thousand four hundred six positives and 81,228 negatives

FIGURE 3 | Proposed H-DNN framework.
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TABLE 2 | The no. of positive and negative samples for different Imbalance Ratios.

IR Animals Plants Human Arabidopsis

No. of

positives

No. of negatives No. of positives No. of negatives No. of positives No. of negatives No. of positives No. of negatives

1:1 7,053 7,053 2,172 2,172 1,406 1,406 231 231

1:100 2,182 218,154 1,149 114,929 812 81,228 231 23,100

1:500 436 218,154 230 114,929 162 81,228 57 28,359

1:1000 218 218,154 115 114,929 81 81,228 28 28,359

1:1500 145 218,154 77 114,929 54 81,228 19 28,359

1:2000 109 218,154 57 114,929 41 81,228 14 28,359

1:2500 87 218,154 46 114,929 32 81,228 11 28,359

1:3000 73 218,154 38 114,929 27 81,228 9 28,359

1:3500 62 218,154 33 114,929 23 81,228 8 28,359

1:4000 55 218,154 29 114,929 20 81,228 7 28,359

1:4500 48 218,154 26 114,929 18 81,228 6 28,359

1:5000 44 218,154 23 114,929 16 81,228 6 28,359

TABLE 3 | The number of positive and negative samples for different IRs for virus.

IR Virus

No. of positives No. of negatives

1:1 237 237

1:50 17 839

1:100 8 839

1:200 4 839

1:300 3 839

1:400 2 839

and in total 82,634 human samples are given in this dataset. In
Arabidopsis 231 positive samples and 28,359 negative samples
in total, and there are 28,590 sequences. The virus samples are
very few so it has only 1,076 in a total of which 237 are positive
and 839 are negative samples (26). This is treated as a separate
one and the maximum IR is only 1:400 (27). For the Animal,
Plant, Human, and Arabidopsis datasets, the number of positive
and negative samples for different IRs are tabulated in Table 2.
For the virus, the number of positive and negative samples for
different IRs is listed in Table 3. The initial target is to find the
specificity and other metrics till IR up to 1:2000. Later, to improve
the model it was extended to 1:5000. For the classification, here
two Algorithms are used. They are ANN and Decision Tree
Classifiers (10, 25, 28, 39, 40, 42–44).

RESULTS AND DISCUSSIONS

As discussed in section Proposed Work the ANN has been
integrated with the DT in our proposed work and the results are
represented graphically. Graphs are plotted for clear visualization
of the results. As explained in the previous sections, the
model is improvised by using different datasets like Animals,

Plants, Humans, Arabidopsis, and Viruses genomes. The work
is extended in terms of the Imbalance Ratios also it is extended
up to 1:5000. The model gives some predictions even for the
1:5000 ratio also, this can be visualized individually. Figure 4
illustrates the graphical representation of experimental results
done using the proposed H-DNN framework on Animal, Plant,
Human, Arabidopsis and, Virus genome datasets. The x-axis in
the graph indicates the IR and the y-axis in the graph plotted
illustrates the metric values. The result analysis of the proposed
H-DNN Algorithm was done based on the evaluation metrics:
Accuracy (Acc), Specificity (SP), Sensitivity (SE), F1-score (F1),
and Precision (Prec).

First, the ANN and Decision Tree Classifier results were
analyzed individually. Then their results were compared with
the proposed H-DNN framework. The Experimental analysis
was done by implementing the state-of-the-art ANN and DT
separately and then by implementing the proposed H-DNN
approach using the above-said dataset. The dataset was trained
batch-wise. Table 4 illustrates the result comparison of the
proposed H-DNN Algorithm with the ANN and the DT
algorithms for the Animal dataset. Table 5 illustrates the result
comparison of the proposed H-DNN Algorithm with the ANN
and the DT algorithms for the Plant dataset.

Table 6 illustrates the Experimental results for the Human
dataset. Table 7 illustrates the Experimental results for the
Arabidopsis datasets. Table 8 illustrates the Experimental results
for the Virus datasets.

By analyzing the results, we observed that the ANN gives
better results and gives a good True Positive Ratio (TPR)
with 2 epochs and up to IR 1:2000. If the model is trained
further for more epochs, then we are getting an over-fitted
model. The time required is also in milliseconds which is very
optimal whereas the existing system takes hours to train one
epoch. Furthermore, when the model needs to be trained with
IR up to 1:5000 Decision Tree Classifier gives better results
with good TPR. But when we integrate both the DT and
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TABLE 4 | Experimental results using animal dataset.

ANN Algorithm DT Algorithm Proposed H-DNN Algorithm

IR Acc SP SE F1 Prec Acc SE SP F1 Prec Acc SE SP F1 Prec

1 0.51 0.03 1.00 0.37 0.73 0.57 0.49 0.96 0.65 0.83 0.93 0.94 0.93 0.93 0.93

100 0.99 0.99 0.66 0.74 0.69 0.99 0.81 0.83 0.78 0.76 0.99 0.64 1.00 0.82 0.82

500 1.00 1.00 0.53 0.50 0.50 1.00 0.72 0.77 0.60 0.59 1.00 0.44 1.00 0.70 0.68

1,000 1.00 1.00 0.67 0.50 0.50 1.00 0.71 0.83 0.59 0.59 1.00 0.41 1.00 0.69 0.67

1,500 1.00 1.00 0.60 0.50 0.50 1.00 0.71 0.80 0.61 0.61 1.00 0.41 1.00 0.72 0.73

2,000 1.00 1.00 0.44 0.50 0.50 1.00 0.63 0.72 0.57 0.58 1.00 0.26 1.00 0.64 0.65

2,500 1.00 1.00 0.45 0.50 0.50 1.00 0.58 0.73 0.54 0.55 1.00 0.15 1.00 0.58 0.59

3,000 1.00 1.00 0.33 0.50 0.50 1.00 0.63 0.67 0.58 0.60 1.00 0.26 1.00 0.66 0.69

3,500 1.00 1.00 0.13 0.50 0.50 1.00 0.60 0.56 0.55 0.55 1.00 0.20 1.00 0.60 0.60

4,000 1.00 1.00 0.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 1.00 0.00 1.00 0.50 0.50

4,500 1.00 1.00 0.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 1.00 0.00 1.00 0.50 0.50

5,000 1.00 1.00 0.00 0.50 0.50 1.00 0.55 0.50 0.52 0.52 1.00 0.10 1.00 0.55 0.55

TABLE 5 | Experimental results using plant dataset.

ANN Algorithm DT Algorithm Proposed H-DNN Algorithm

IR Acc SP SE F1 Prec Acc SE SP F1 Prec Acc SE SP F1 Prec

1 0.51 1.00 0.96 0.99 0.98 0.73 0.97 0.96 0.97 0.97 0.95 0.94 0.97 0.95 0.95

100 0.99 1.00 0.55 0.76 0.49 0.99 0.88 0.77 0.82 0.68 1.00 0.77 1.00 0.87 0.87

500 1.00 1.00 0.36 0.50 0.50 1.00 0.79 0.68 0.63 0.62 1.00 0.58 1.00 0.76 0.74

1,000 1.00 1.00 0.45 0.50 0.50 1.00 0.77 0.73 0.61 0.59 1.00 0.53 1.00 0.71 0.67

1,500 1.00 1.00 0.54 0.50 0.50 1.00 0.67 0.77 0.58 0.57 1.00 0.33 1.00 0.65 0.64

2,000 1.00 1.00 0.50 0.50 0.50 1.00 0.68 0.75 0.60 0.61 1.00 0.36 1.00 0.70 0.73

2,500 1.00 1.00 0.33 0.50 0.50 1.00 0.64 0.67 0.57 0.57 1.00 0.27 1.00 0.64 0.64

3,000 1.00 1.00 0.11 0.50 0.50 1.00 0.71 0.56 0.57 0.55 1.00 0.43 1.00 0.64 0.61

3,500 1.00 1.00 0.00 0.50 0.50 1.00 0.80 0.50 0.61 0.58 1.00 0.60 1.00 0.71 0.67

4,000 1.00 1.00 0.00 0.50 0.50 1.00 0.80 0.50 0.62 0.61 1.00 0.60 1.00 0.75 0.71

4,500 1.00 1.00 0.00 0.50 0.50 1.00 0.58 0.50 0.54 0.54 1.00 0.17 1.00 0.58 0.58

5,000 1.00 1.00 0.00 0.50 0.50 1.00 0.61 0.50 0.56 0.56 1.00 0.22 1.00 0.61 0.61

TABLE 6 | ANN and DT results using human dataset.

ANN Algorithm DT Algorithm Proposed H-DNN Algorithm

IR Acc SP SE F1 Prec Acc SE SP F1 Prec Acc SE SE F1 Prec

1 0.50 1.00 0.99 0.86 0.85 0.72 0.97 0.97 0.90 0.90 0.94 0.94 0.95 0.94 0.94

100 0.99 1.00 0.79 0.50 0.50 0.99 0.85 0.89 0.67 0.66 0.99 0.69 1.00 0.83 0.83

500 1.00 1.00 0.56 0.50 0.50 1.00 0.75 0.78 0.63 0.63 1.00 0.51 1.00 0.76 0.76

1,000 1.00 1.00 0.46 0.50 0.50 1.00 0.67 0.73 0.61 0.65 1.00 0.34 1.00 0.72 0.81

1,500 1.00 1.00 0.41 0.50 0.50 1.00 0.76 0.71 0.62 0.61 1.00 0.53 1.00 0.74 0.72

2,000 1.00 1.00 0.45 0.50 0.50 1.00 0.79 0.72 0.63 0.62 1.00 0.57 1.00 0.77 0.75

2,500 1.00 1.00 0.24 0.50 0.50 1.00 0.75 0.62 0.59 0.57 1.00 0.50 1.00 0.69 0.65

3,000 1.00 1.00 0.13 0.50 0.50 1.00 0.80 0.56 0.58 0.56 1.00 0.60 1.00 0.67 0.62

3,500 1.00 1.00 0.00 0.50 0.50 1.00 0.60 0.50 0.55 0.55 1.00 0.20 1.00 0.60 0.60

4,000 1.00 1.00 0.00 0.50 0.50 1.00 0.80 0.50 0.65 0.65 1.00 0.60 1.00 0.80 0.80

4,500 1.00 1.00 0.00 0.50 0.50 1.00 1.00 0.50 0.56 0.54 1.00 1.00 1.00 0.62 0.57

5,000 1.00 1.00 0.00 0.50 0.50 1.00 0.92 0.50 0.63 0.60 1.00 0.83 1.00 0.76 0.69
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FIGURE 4 | Experimental results using (A) Animal, (B) Plant, (C) Human, (D) Arabidopsis and, (E) Virus genome datasets.

the ANN we get a better result for almost all the IRs up to
1:5000 as compared to the performance gained by DT and
ANN separately.

CONCLUSION

The production of imbalanced data in large quantities in
Bioinformatics provides a great scope for work in the AI world.
These kinds of problems require modern solutions for which
many questions will arise that have to be justified and have

to satisfy all the complex conditions too. One such problem is
the classification of these miRNA sequences which are very few
in genome data and are similar to other RNA structures. The
miRNA seems to help detect and diagnose cancer disease. Hence
classifying this miRNA is a big challenge that has to be faced.
So, a novel solution is required with minimal complexity that
provides better results in terms of the TPR, time, and accurate
classification of miRNA from the imbalanced genome dataset. In
this paper, we have proposed a Hybrid Neural Network model
in which we have integrated Deep ANN and Deep Decision Tree
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TABLE 7 | ANN and DT results using arabidopsis dataset.

ANN Algorithm DT Algorithm Proposed H-DNN Algorithm

IR Acc SP SE F1 Prec Acc SE SP F1 Prec Acc SE SE F1 Prec

1 0.54 1.00 0.85 0.35 0.27 0.74 0.98 0.87 0.64 0.60 0.93 0.96 0.90 0.93 0.93

100 0.54 1.00 0.75 0.35 0.27 0.75 0.98 0.85 0.65 0.61 0.95 0.96 0.95 0.95 0.95

500 1.00 1.00 0.12 0.50 0.50 1.00 0.79 0.56 0.66 0.67 1.00 0.58 1.00 0.81 0.84

1,000 1.00 1.00 0.25 0.50 0.50 1.00 0.70 0.63 0.61 0.62 1.00 0.40 1.00 0.72 0.75

1,500 1.00 1.00 0.55 0.50 0.50 1.00 0.55 0.77 0.53 0.53 1.00 0.10 1.00 0.56 0.56

2,000 1.00 1.00 0.24 0.50 0.50 1.00 0.75 0.62 0.62 0.62 1.00 0.50 1.00 0.75 0.75

2,500 1.00 1.00 0.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 1.00 0.00 1.00 0.50 0.50

3,000 1.00 1.00 0.00 0.50 0.50 1.00 0.63 0.50 0.57 0.58 1.00 0.25 1.00 0.64 0.67

3,500 1.00 1.00 0.00 0.50 0.50 1.00 1.00 0.50 0.60 0.56 1.00 1.00 1.00 0.70 0.63

4,000 1.00 1.00 0.00 0.50 0.50 1.00 0.75 0.50 0.57 0.55 1.00 0.50 1.00 0.64 0.60

4,500 1.00 1.00 0.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 1.00 0.00 1.00 0.50 0.50

5,000 1.00 1.00 0.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 1.00 0.00 1.00 0.50 0.50

TABLE 8 | ANN and DT results using virus dataset.

ANN Algorithm DT Algorithm Proposed H-DNN Algorithm

IR Acc SP SE F1 Prec Acc SE SP F1 Prec Acc SE SP F1 Prec

1 0.52 0.48 0.99 0.52 0.52 0.86 0.94 0.92 0.86 0.92 0.94 0.92 0.95 0.94 0.94

100 0.99 1.00 0.32 0.50 0.49 0.99 1.00 0.92 0.90 0.93 1.00 1.00 1.00 0.94 0.90

200 0.99 1.00 0.16 0.50 0.50 0.99 1.00 0.96 0.48 0.44 0.99 0.00 1.00 0.50 0.50

300 1.00 1.00 0.00 0.50 0.50 0.99 0.00 0.98 0.76 0.65 0.99 1.00 0.99 0.75 0.67

400 1.00 1.00 0.00 0.50 0.50 1.00 0.00 1.00 0.41 0.49 1.00 0.00 1.00 0.50 0.50

Classifiers. The Deep ANN gives better results when compared
with the existing result and good TPR with 2 epochs and
up to IR 1:2000. Furthermore, when the model needs to be
trained with IR up to 1:5000, Deep Decision Tree Classifier gives
better results with good TPR than ANN. When we integrate
both Deep ANN and Deep DT we get better performance as
compared to both taken individually. In our future work, we
would like to further extend by increasing the IR and reducing
the time of convergence. We would also like to check the
performance of the proposed model on other large genome
datasets. The main aim is that the model should not follow
any sort of sampling techniques and predict the miRNAs with
good TPR.
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